
Cost-Aware Multifaceted Reconfiguration of Service-
and Cloud-Based Dynamic Routing Applications

Amirali Amiri
University of Vienna, Software Architecture Group

University of Vienna, Doctoral School Computer Science
Vienna, Austria

amirali.amiri@univie.ac.at

Uwe Zdun
University of Vienna

Software Architecture Group
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—Dynamic reconfiguration is commonly used in
service- and cloud-based applications. In combination with au-
toscalers, dynamic routers can adapt the system to the re-
source demands, e.g., in an e-commerce application offering
discounts for services in a specific location. Without such mea-
sures, the quality-of-service measures are affected negatively,
and a system overload can lead to an application being non-
responsive. However, the cost of cloud resource usage must be
considered when performing these reconfiguration steps to avoid
adding high additional costs. This paper proposes a cost-aware
multifaceted reconfiguration of dynamic routing applications.
We study the depletion and rescheduling of idle components
and use an infrastructure-as-code module to apply changes to
the infrastructure. Moreover, when system components are in
a steady state, our approach dynamically self-adapts between
more central or distributed routing to optimize reliability and
performance. This adaptation is calculated based on a system-
wide optimization analysis. When components are overloaded, we
perform a per-component optimization to autoscale components
multidimensionally. Our extensive systematic evaluation shows
significant improvements in quality trade-off adaptations and
system overload prevention. We provide prototypical tool support
to demonstrate our concepts with illustrative sample cases.

Index Terms—Self-Adaptive Systems, Dynamic Routing, Reli-
ability and Performance Trade-Offs, Prototypical Tool Support,
System Overload, Cost-Awareness, Multidimensional Autoscaling

I. INTRODUCTION

CLoud-based systems require dynamic routing for ef-
ficient performance. Due to the constantly changing

nature of modern applications, dynamic routers such as API
Gateways [27], Enterprise Service Buses [8], Message Bro-
kers [14], or Sidecars [16] are typically utilized. These rout-
ing patterns may differ in implementation, but all serve the
purpose of routing or blocking requests. To switch between
these dynamic routing patterns, the number of routers in
a service- and cloud-based system can be adjusted. How-
ever, monitoring the quality of service measures and making
architectural decisions automatically is essential. Designing
routing architectures requires careful consideration of both
reliability and performance. Adding more routers to improve
performance may increase the risk of system crashes due to
introducing additional points of failure.

This work was supported by FWF (Austrian Science Fund), projects
IAC2: I 4731-N, API-ACE: I 4268.

Moreover, when adapting the routing architecture pattern
from distributed to centralized routing (and vice versa), we
should ensure that the components are not overloaded. Cloud
computing provides an elastic infrastructure to manage this
dynamic behaviour. Horizontal autoscaling, i.e., adding or
removing replicas, and vertical autoscaling, i.e., adding or
removing resources, are commonly used in practice. A newer
concept is multidimensional autoscaling1 that combines the
two previous methods in one decision-making step. However,
the concept is not fully developed and has limitations, such as
not considering the incoming load as an input.

Consider, for instance, an e-commerce shop that offers
discounted products for a specific location. The application
must cope with a sudden incoming load increase that needs to
be routed to these services. Dynamic routers and autoscalers
can accommodate the increased demand. However, when
adding components for the parallel processing of requests to
increase performance, a reliability decrease is observed as
there are more points of failure [2] in a system. Without
such measures, a system overload can lead to an application
being non-responsive. Nevertheless, if cloud resource costs are
not considered, a business may lose profit by inducing high
costs when dealing with sudden load spikes. To address such
scenarios, we set out to answer the research questions:

RQ1: Can we find a cost-aware multifaceted reconfiguration
approach for dynamic routing applications to adapt quality-
of-service trade-offs and prevent component overloads?

RQ2: What is the architecture of a supporting tool that
facilitates the reconfiguration of a dynamic routing application
using the optimal configuration solution?

RQ3: How well does this multifaceted reconfiguration perform
compared with the case where one architecture runs statically?

The contributions of this paper are as follows. Firstly,
we model components as queuing stations [17] and consider
different scenarios, i.e., when components are idle, steady, and
transient. We introduce a cost-aware multifaceted reconfigura-
tion of dynamic routing applications using an Infrastructure
as Code (IaC) module to apply changes to the infrastructure.

1https://cloud.google.com/kubernetes-engine/docs/how-to/
multidimensional-pod-autoscaling

https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling
https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling

Moreover, we consider a system-wide Multi-Criteria Optimiza-
tion analysis (MCO) [1] to optimize system reliability and
performance, as well as a per-component MCO to autoscale
components multidimensionally. Secondly, we provide a pro-
totypical tool that facilitates the reconfiguration of dynamic
routing applications. Our application provides artifacts to be
used by IaC tools and a visualization environment to study
different configurations and demonstrate our concepts.

To evaluate our approach, we consider multiple levels of
call frequencies, component configurations, and routing pro-
files that we studied in an already-published empirical study
[3]. Our extensive systematic evaluation shows significant
improvements in quality trade-off adaptations and system over-
load prevention. Our approach yields up to 16.60% reliability
gain and an average performance gain of 74.22%.

The structure of the paper is as follows: Section II presents
an approach overview. Section III explains our approach in de-
tail, and Section IV gives illustrative sample cases. Section V
provides our prototypical tool support. Section VI presents
the evaluation of the presented approach, and Section VII
discusses the threats to the validity of our research. We study
the related work in Section VIII and conclude in Section IX.

II. APPROACH OVERVIEW

In this paper, we study a cost-aware multifaceted reconfigu-
ration of dynamic routing applications. A router is defined as
an abstraction for any controller component that makes routing
decisions, e.g., an API Gateway [27], an enterprise service
bus [8], or Sidecars [16]. We model the system components,
i.e., services and routers, as queuing stations [17] having two
subcomponents, namely a buffer and a processor as shown in
Figure 1. Let λ be the arrival rate and µ the processing rate
of a component based on the number of requests per second
r/s. Incoming requests are buffered in a queue by a rate of λ
and processed by a rate of µ.

μλ
Buffer Processor

processing
rate (r/s)

arrival rate (r/s)

Fig. 1: Components as Queuing Stations

A component is in a steady state when its processing rate
is greater than or equal to its arrival rate:

µ ≥ λ (1)

In the steady state, a component is not overloaded and can
process incoming requests without delay because of buffering.
On the other hand, the transient state refers to when a
component is overloaded because its processing rate is lower
than the arrival rate of the requests:

µ < λ (2)

We study three interrelated scenarios for components:

TABLE I: Table of Mathematical Notations

Notation Description
nrout Number of routers
nserv Number of services
nreq Number of request
nscal Number of scaling replicas
npro Number of processing rate improvements
r/s requests per second
R Reliability Request loss model in r/s
Rth Reliability threshold in r/s

RGain Reliability gain in %
R(nrout) Reliability prediction in r/s

P Performance model in ms
Pth Performance threshold in ms

PGain Performance gain in %
P (nrout) Performance prediction in ms

T Observed system time in s
CI Crash interval in s
cf Incoming call frequency in r/s
Com Set of all components
Rout Set of all routers
dc Average downtime of a component c in r/s
Pc Crash probability of a component c in %

BFR Buffer fill rate in r/s
BFRr Buffer fill rate of a router r in r/s

BFR(nscal, npro) Buffer fill rate for autoscaling in r/s
µ Processing rate of a component in r/s
µr Processing rate of a router r in r/s
λ Arrival rate of a component in r/s
λr Arrival rate of a router r in r/s
RR Average reconfiguration ratio
C Average reconfiguration costs in cents/s
Cth Cost Threshold in cents/s

C(nrout) Reconfiguration costs in cents/s
C(nscal = 1) Cost of scaling out in cents/s
C(npro = 1) Cost of increasing the processing rate in cents/s
C(nscal, npro) Cost of multidimensional autoscaling in cents/s

• when components are idle and can be depleted.
• when components are active and steady.
• when components are overloaded.

The first scenario considers the infrastructure changes when
a reconfiguration occurs. The second scenario studies a per
system reconfiguration, which means we monitor the state of
a system as a whole and reconfigure the components. The third
scenario is a per component reconfiguration, i.e., our approach
monitors and reconfigures each component separately.

We study our empirical data set already reported in [3] to
present illustrative examples (see Section IV) and to evaluate
our approach. In our prior work, we performed an extensive
experiment of 1200 hours and measured the quality-of-service
metrics of dynamic routing applications. Our data set can be
downloaded in the online artifact of this paper to support
reproducibility2. Table I presents our mathematical notations.

III. APPROACH DETAILS

This section presents the details of our approach.

2 Published as an open-access artifact: https://zenodo.org/record/7771328

https://zenodo.org/record/7771328

Active
Period

Delay

Idle Time

call
frequency

Fig. 2: The Sporadical Load Profile of System Components
(Dots represent depletion.)

A. Depletion of Idle Components

Some system components process requests sporadically and
are idle between active periods. We characterize the sporadical
load profile with a frequency of incoming requests for an active
period followed by a delay of no incoming requests. As shown
in Figure 2, we deplete components when idle (represented by
dots). However, the depleted components can become active
again and must be rescheduled. So we must consider the
infrastructure changes, e.g., not overloading cloud nodes. We
use an IaC module to automatically create and free cloud nodes
to efficiently use resources and reduce costs. On the one hand,
when depleting idle components, an efficient rescheduling of
other active components might free a node. On the other hand,
when a depleted component receives a request and needs to
be rescheduled, all nodes might be occupied. The IaC module
can create a node and schedule the component.

Assume the capacity of each node is known based on
the number of scheduled containers. Algorithm 1 provides
the steps to reconfigure the infrastructure. The IaC Module
calculates the total capacity of nodes. If the number of system
components exceeds the total capacity, a new node is created,
and components are scheduled. Otherwise, the IaC module
checks if the containers can be rescheduled efficiently on fewer

Algorithm 1: Infrastructure Reconfiguration Algo-
rithm (reconfigure)

Input: nserv , nrout

totalCapacity ← 0

foreach node : nodes do
totalCapacity ← totalCapacity + capacity(node)

end
scheduleContainers()
if (nserv + nrout) > totalCapacity then

createNode()
scheduleContainers()

else
foreach node : nodes do

restCapacity ← totalCapacity − capacity(node)
if (nserv + nrout) ≤ restCapacity then

scheduleContainers()
deleteNode(node)

end
end

end

nodes. Having defined the infrastructure reconfiguration steps,
we check if a component is idle and deplete it (see Figure 2).
When a request is received for a depleted component, Algo-
rithm 1 schedules it either on existing nodes or a new one.

B. Reconfiguration of Steady Components

When all components are active and steady according to
Equation (1), we consider a system-wide MCO [1] optimizing
reliability and performance trade-offs of the system as a whole.

1) Definitions: We define the following model elements
in our reliability and performance models. nrout and nserv
are the number of routers and services, and CI is the crash
interval, i.e., the interval during which we check for a crash
of a component. Assuming the heartbeat pattern [15] or the
health check API pattern [24] are used, CI is the time between
two consecutive health checks. cf is the call frequency (r/s),
Com is the set of components, i.e., routers and services, Pc is
the crash probability of each component, and dc is the average
downtime of a component after it crashes.

2) Reliability Model: Based on Bernoulli processes [31],
request loss R during component crashes is modeled [2] as:

R =
b T
CI c · cf ·

∑
c∈Com Pc · dc
T

(3)

In this formula, request loss is defined as the number of client
requests not processed due to a failure, such as a component
crash. Equation (3) gives the request loss per second as a
metric of reliability by calculating the expected value of the
number of crashes. Having this information, we sum all the
requests received by a system during the downtime of a
component and divide them by the observed system time.

3) Performance Model: We model the average processing
time of requests per router as a performance metric P . This
metric is important as it allows us to study the quality of ser-
vice factors, e.g., the efficiency of architecture configurations.

P =
T

nrout · cf
(
T − b T

CI c ·
∑

c∈Com Pc · dc
) (4)

We count the processed requests in this formula by subtracting
the request loss from the total requests. We divide the observed
time by the processed requests and the number of routers.
Section IV-A presents an illustrative sample case.

4) System-Wide MCO: We perform a multi-criteria opti-
mization analysis to reconfigure an application by adjusting
nrout. We use the notations R(nrout) and P (nrout) to specify
the reliability and performance predictions of an architecture
configuration by their number of routers. Let Rth and Pth

be the reliability and Pth performance thresholds. We aim to
minimize request loss and average processing time of requests
per router without the prediction values violating Rth and Pth.

Additionally, we must ensure that the reconfiguration costs
do not exceed a cost threshold. We define C(nrout) as the
reconfiguration costs for an architecture configuration by its
number of routers and Cth as the cost threshold. Moreover,
when choosing a lower nrout, we must ensure that reducing

Algorithm 2: System-Wide Optimization Analysis
(systemWideMCO)

Input: cf , nserv , Rth, Pth, Cth

highBound ← (R = Rth) and (1 ≤ highBound ≤ nserv)

lowBound ← (P = Pth) and (1 ≤ lowBound ≤ highBound)

routersRange← {}
foreach solution : [lowBound, highBound] do

solutionInRange← true

if C(nrout) > Cth then
solutionInRange← false

end

foreach r : Rout do
if λr > µr then

solutionInRange← false
end

if solutionInRange then
routersRange← routersRange ∪ {solution}

end
end
return routersRange

the number of routers does not overload the routers. Let Rout
be the set of routers of a system:

Minimize

R(nrout) (5)
P (nrout) (6)

Subject to

R(nrout) ≤ Rth (7)
P (nrout) ≤ Pth (8)
C(nrout) ≤ Cth (9)
1 ≤ nrout ≤ nserv (10)
µr ≥ λr ∀ r ∈ Rout (11)

Typically, there is no single answer to an MCO problem but
a set of acceptable points in the solution space [1]. Algorithm
2 provides a simple solution to find a range of acceptable
nrout. The lower end of this range represents more centralized
routing, so we find the lowest acceptable nrout that does
not violate the performance threshold. Conversely, the highest
possible nrout is bound by the reliability threshold. Having
found the lower and upper values, we exclude the solutions
that violate the cost threshold or result in overloading a router.

5) Preference Function: We must choose a final recon-
figuration solution on the nrout range returned from the
above analysis. An architect assigns weights to reliability
and performance, so a preference function can automatically
choose a final solution. For example, when performance is
highly important, the preference function selects a higher
nrout to choose more distributed routing. This reconfiguration
processes requests in parallel, giving a higher performance.

6) Reconfiguration Algorithm: Algorithm 3 presents our
reconfiguration steps triggered, for instance, whenever relia-
bility or performance metrics degrade. Time intervals, manual
triggering, or changes in the incoming load can also trigger
the algorithm if more appropriate than metrics degradation.

C. Autoscaling of Overloaded Components

In this paper, we study a multifaceted reconfiguration of
dynamic routing applications. When a system component is
in a transient state (see Equation (2)), request processing is
delayed because of buffering in an overloading component.
In this case, we use multidimensional autoscaling3 to bring
the transient component to a steady state. To clarify, we
consider two reconfiguration measures in a per-component
MCO analysis: horizontal autoscaling, i.e., scaling out the
component, and vertical autoscaling, i.e., adding resources.

1) Buffer Fill Rate: We define the Buffer Fill Rate (BFR)
as the difference between the arrival and processing rates.

BFR = λ− µ (12)

BFR is an indicator that a component is in a transient state. In
this case, we reconfigure an overloaded component. We define
nscal as the number of scaling replicas, npro as the number
of processing rate improvements, and BFR(nscal, npro) as
buffer fill rate predictions for multidimensional autoscaling.

BFR(nscal, npro) =
nreq · cf
nscal + 1

− (µ+ npro) (13)

In this formula, nreq is the number of incoming requests
for a component, and cf is the call frequency of requests.

Algorithm 3: System-Wide Reconfiguration Steps
(systemWideReconfig)

Input: Rth, Pth, Cth, performanceWeight

cf, nserv ← consumeMonitoringData()
routersRange ← systemWideMCO(cf, nserv , Rth, Pth, Cth)
reconfigSolution ← preferenceFunction(routersRange,

performanceWeight)
reconfigure(nserv , reconfigSolution)

function preferenceFunction(range, PW)
begin

length ← max(range) - min(range) +1

floor ← b PW * length c

if floor == max(range) then
return max(range)

else if floor == 0 then
return min(range)

else
return floor + min(range) -1

end
end

3https://cloud.google.com/kubernetes-engine/docs/how-to/
multidimensional-pod-autoscaling

https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling
https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling

Equation (13) comes from the fact that scaling out an over-
loading component divides its arrival rate by the total number
of replicas, i.e., nscal + 1. The BFR is also affected by the
added processing rate, i.e., µ+ npro.

2) Reconfiguration Cost: The cost of reconfiguration must
be considered. Let C(nscal, npro) be the cost of multidimen-
sional autoscaling, C(nscal = 1) the cost of scaling out a com-
ponent by one replica, and C(npro = 1) the cost of increasing
the processing rate of an overloading component by one r/s.
The cost depends on the nscal and npro improvements.

C(nscal, npro) =

nscal · C(nscal = 1) + npro · C(npro = 1) (14)

Section IV-B presents a parameterization and a sample case.
3) Per-Component MCO: We adjust the buffer fill rate of

an overloading component to bring it to a steady state. This re-
configuration is based on a second multi-criteria optimization
analysis performed for each component separately. We aim to
minimize BFR but with a minimum reconfiguration cost.

Minimize

BFR(nscal, npro) (15)
C(nscal, npro) (16)

Subject to

λ ≤ µ (17)
C(nscal, npro) ≤ Cth (18)

Remember that there is typically no single answer to an
MCO problem but a set of acceptable points called the Pareto
front [1]. Using a preference function, we choose a final
solution that brings the component to a steady state according
to Equation (1) with a minimum cost. Having done this
analysis, all the components are in a steady state. We must
perform a system-wide analysis as described in Section III-B.
Algorithm 4 presents the reconfiguration steps.

IV. ILLUSTRATIVE SAMPLE CASES

A. Reconfiguration of Steady Components

We study an example from the data set of our experiment2

(see Section II for details) to parameterize our models and give
sample cases. An example configuration is shown in Figure 3,
where clients send requests to an API gateway that forwards
them to the services. We observed the system for T = 600 s,
had a crash interval of CI = 15 s and studied uniform crash
probabilities and downtimes for all components as Pc = 0.5%
and dc = 3 s. We can parameterize our reliability model (r/s)
and performance model (ms) in Equations (3) and (4) as:

R = cf · 0.001(nserv + nrout) (19)

P =
1000

nrout · cf(1− 0.001(nserv + nrout))
(20)

In the example configuration, we have nrout = 3 routers
and nserv = 6 services. Let us consider that this sample case
has an expected call frequency of cf = 25 r/s, and all routers
have a processing rate of µ = 64 r/s. We parameterize the

Algorithm 4: Reconfiguration Algorithm for an Over-
loading Component

Input: Rth, Pth, Cth, performanceWeight

cf, nserv , nreq , µ← consumeMonitoringData()
paretoFront ← perComponentMCO(cf, nreq , µ, Cth)
reconfigSolution ← preferenceFunction(paretoFront)

reconfigure(nserv , reconfigSolution)
systemWideReconfig(Rth, Pth, Cth, performanceWeight)

function preferenceFunction(paretoFront)
begin

C ← Cth

reconfigSolution ← (0, 0)

foreach solution : paretoFront do
C(nscal, npro)←

nscal ·C(nscal = 1)+npro ·C(npro = 1)

if C(nscal, npro) ≤ C then
C ← C(nscal, npro)

reconfigSolution ← solution
end

end
return reconfigSolution

end

arrival rates and the number of incoming requests of routers
(solid arrows in Figure 3) to check if they are overloaded. In
our experiment, we allocated services equally to routers:

nreq =
nserv
nrout

(21)

λr = cf · nreq =
cf · nserv
nrout

∀ r ∈ Rout (22)

In our sample case, nreq = 2 and λr = 50 r/s. Therefore, all
routers are steady according to Equation (1).

To parameterize the cost functions, we use the Google
Autopilot pricing4. Autopilot allows increments of 0.25 vCPUs
per container (same is offered by Amazon Fargate5) that
corresponds to 8 r/s in our experiment:

C(npro = 8) = 5 · 10−4 cents /s (23)

The scaling cost of our routers with µ = 64 r/s accounts to:

C(nscal = 1) = 4 · 10−3 cents /s (24)

We consider a reliability threshold of 1.2 r/s, a performance
threshold of 35 ms, and a cost threshold of 1 cent/s. We
study a case with a weight of 1.0 for performance and 0.0
for reliability. We perform the system-wide MCO analysis in
Section III-B4 by rewriting Equations (19) and (20):

Minimize

Rnrout
= 0.075 + 0.025 · nrout (25)

Pnrout =
1000

nrout · (24.925− 0.025 · nrout)
(26)

4https://cloud.google.com/kubernetes-engine/pricing
5https://aws.amazon.com/fargate/pricing/

https://cloud.google.com/kubernetes-engine/pricing
https://aws.amazon.com/fargate/pricing/

«host»

«host» «host»

«host»

«host»

«API Gateway»
gateway

«Router»
router3

«Router»
router1

«Service»
service5

«Service»
service6

«Service»
service1

«Service»
service2

«Router»
router2

«Client»
client1

«Service»
service4

«Service»
service3

ClientRequest

Fig. 3: Example Configuration of Dynamic Routing Applications
(Solid arrows show the incoming requests of routers.)

Subject to

Rnrout
≤ 1.2 (27)

Pnrout
≤ 35 ms (28)

C(nrout) ≤ 1 cent/s (29)
1 ≤ nrout ≤ 6 (30)
µr ≥ λr ∀ r ∈ Rout (31)

Equation (25) informs that the reliability predictions in the
1 ≤ nrout ≤ 6 always satisfy the reliability threshold. In
Equation (26), the constraint on the performance threshold of
Pnrout ≤ 35 ms gives the lowest value for the number of
routers as nrout = 2. Therefore, the range for nrout is:

2 ≤ nrout ≤ 6 (32)

Following Algorithm2, we see that the cost threshold of 1
cent/s is always satisfied in this range. We check if any
solution results in overloading the routers in this range. On the
lowest bound, i.e., nrout = 2, we have the following according
to Equations (21) and (22):

nreq = 3 (33)
λr = 75 r/s (34)

Since µr = 64 r/s, this overloads the routers according to
Equation (1). So we exclude this solution, and all the other
points on the range are acceptable. The acceptable range is:

3 ≤ nrout ≤ 6 (35)

The performance weight is 1.0, so the preference function
chooses the highest possible value for nrout according to
Algorithm 3. Therefore, the final solution is a configuration
with six routers, i.e., nrout = 6. We use this analysis also
when illustrating our other scenario, i.e., autoscaling transient
components multidimensionally to prevent system overload.

B. Autoscaling of Overloaded Components
Let us consider the studied example in Figure 3. Assume this

application is stressed with a call frequency of cf = 100 r/s.

According to Equations (13), (21) and (22), we have:

nreq = 2 (36)
λr = 200 r/s ∀ r ∈ Rout (37)
µr = 64 r/s ∀ r ∈ Rout (38)

BFRr = 136 r/s ∀ r ∈ Rout (39)

Having the same cost threshold of Cth = 1 cents/s, we can
rewrite the per-component MCO analysis in Section III-C3:

Minimize

200

nscal + 1
− (npro + 80) (40)

8 · npro · 5 · 10−4 + nscal · 4 · 10−3 (41)
Subject to

λ ≤ µ (42)
C(nscal, npro) ≤ 1 cents/s (43)

As mentioned in Section III-C3, we choose a final solution
that brings the component to a steady state with a minimum
cost. Following Algorithm 4, this reconfiguration solution is:

(nscal, npro) = (1, 40) (44)

that gives the buffer fill rate of BFR(1, 40) = −4. This
solution results in scaling out each router and increasing nrout
from three to six routers. Therefore, we must check that the
system-wide MCO does not violate the thresholds. As we
calculated before in Equation (35), the acceptable range of
routers is 3 ≤ nrout ≤ 6. So the solution is acceptable.

V. TOOL SUPPORT

We provide a prototypical tool in our online artifact2.
Figure 4 shows the high-level tool architecture. The Web
Frontend of our application provides the functionalities to
specify architecture configurations and model elements, such
as thresholds and cost functions. This information is sent to
the RESTful API in the backend that invokes the Optimizer
to perform MCO analyses and find the final reconfiguration
solution. The IaC Module generates artifacts in the form

«Docker Container»

IaC Module

«Docker Container»

Visualizer

Web Frontend

Optimizer

RESTful API

«Docker Container»

«Docker Container»«Docker Container»

Visualization

Visualization

 Arch. Config.

 Reconfig. Solution

 Arch. Config.

 Perform
MCO

Monitoring Data

Fig. 4: Tool Architecture Diagram

of Bash6 scripts and configuration files, e.g., infrastructure
configuration data to be used by an IaC tool. These scripts can
be used to schedule containers using the Docker technology7.
The Visualizer creates diagrams of the configurations using
PlantUML8 that are shown in the Web Frontend. The frontend
is implemented in React9 and the backend in Node.js10.

Reconfigure

Show Visualization

Create Visualization

Choose Final
Solution

Perform MCO

Time-Interval /
Manual Trigger

Observe Metrics
Degradation

Specify
Model Elements

Fig. 5: Model Reconfiguration Toolflow

6https://www.gnu.org/software/bash/
7https://www.docker.com/
8https://plantuml.com/
9https://reactjs.org/

10https://nodejs.org/

Figure 5 shows the flow regarding the model reconfigu-
ration. An architect specifies various model elements, i.e.,
the number of routers and services, thresholds, incoming call
frequencies, performance weight, processing rates of compo-
nents, and cost functions. A reconfiguration is triggered when
metrics degradation is observed, according to timers or manu-
ally. When reconfiguration is triggered, the backend performs
an MCO analysis, chooses a final reconfiguration solution,
and generates IaC artifacts. The reconfiguration visualization
is then created using PlantUML and shown in the frontend.

VI. EVALUATION

This section evaluates our approach in both scenarios illus-
trated in Section IV systematically. We compare the model
values to our empirical data set (see Section II). Note that
our study is neither specific to our experiment infrastructure
nor our cases. We use our empirical data set to evaluate our
approach using measured data from an extensive experiment.

A. Reconfiguration of Steady Components

We present our evaluation when components are steady.
1) Evaluation Cases: We systematically evaluate our

method through various thresholds and importance weights
for reliability and performance. We compare our model pre-
dictions with 9 experiment cases: three levels of routers and
three levels of services, each operational for four levels of cf .

nserv ∈ { 3, 5, 10 } (45)
nrout ∈ { 1, 3, nserv } (46)
cf ∈ { 10, 25, 50, 100 } r/s (47)

Regarding the Cost Threshold, we take Cth = 1 cent/s as
in our illustrative sample cases. For the processing rates, we
investigate 9 levels as follows. In Section IV-A, we mentioned
that a component with one vCPU has a processing rate of
roughly 32 r/s in our experiment. We start with components
having two vCPUs up to six in increments of 0.5 vCPUs.

64 ≤ µ ≤ 192 r/s (48)

https://www.gnu.org/software/bash/
https://www.docker.com/
https://plantuml.com/
https://reactjs.org/
https://nodejs.org/

(a) Reliability Gain (b) Performance Gain

Fig. 6: Reliability and Performance Gains with Processing Rates of µ = 64 and 192 r/s

Regarding reliability and performance thresholds, we start
with tight reliability and loose performance thresholds so that
more centralized routing is acceptable (lower value of nrout).
We increase the reliability and decrease the performance
thresholds by 10% in each step so that distributed routing be-
comes applicable. To find the starting points, we consider the
worst-case scenario of our empirical data. Equation (3) informs
that a higher nserv results in a higher expected request loss as
the number of components increases. In our experiment, the
highest number of services is ten. With nserv = 10, the worst-
case reliability for centralized routing and fully distributed
routing (nrout = 10) is 1.1 and 2.0 r/s, respectively.

Regarding performance, for the case of nserv = 10, we
investigate our predictions to find a range where a reconfigu-
ration is possible. The lowest possible performance prediction
is 33.7 ms, and the highest is 101.1 ms. We adjust these
values slightly and take our boundary thresholds as follows.
We analyze step-by-step by increasing the reliability threshold
and decreasing the performance threshold by 10% as before.

1.1 ≤ Rth ≤ 2.0 r/s (49)
35 ≤ Pth ≤ 100 ms (50)

2) Results Analysis: We evaluate 9801 systematic evalua-
tion cases: 9 experiment cases, 9 processing rate levels, 11 im-
portance weights, and 11 thresholds. To support reproducibil-
ity, the evaluation script and the evaluation log are provided in
the online artifact of this study2. We define reliability gain, i.e.,
RGain, and performance gain, i.e., PGain, as the average
percentage differences of our predictions compared to those
of fixed architectures. These formulas are based on the Mean
Absolute Percentage Error (MAPE) widely used in the cloud
quality-of-service research [31].

RGain =
100%

n
·
∑

c∈Cases

Rc −Rnrout

Rnrout

(51)

PGain =
100%

n
·
∑

c∈Cases

Pc − Pnrout

Pnrout

(52)

Remember Rnrout and Pnrout are reliability and performance
predictions. The gains are averaged over 9 experiment cases.

Figure 6 shows the reliability and performance gains. More-
over, each figure shows the plots for our lowest studied
processing rate of µ = 64 r/s and the highest bound in
our research, i.e., µ = 192 r/s. Regarding reliability, we
can see in Figure 6a that with a higher reliability weight,
we have an increase in reliability gain with µ = 192 r/s.
Remember in Algorithm 2, we check that the components are
not overloaded when choosing a more centralized routing to
increase reliability. Having a higher processing rate results in
a component processing higher call frequencies without being
overloaded. However, as a result of choosing a less centralized
routing, the gain in reliability is at most 16.60%.

Our approach provides significant improvements in perfor-
mance gains. As more importance is given to the performance
of a system, i.e., performance weight increases, our approach
reconfigures an application by choosing more distributed rout-
ing. This reconfiguration results in a rise of a performance gain
as shown by Figure 6b. On average, when cases with correct
and incorrect architecture choices are analyzed together, our
adaptive method provides 74.22% performance gain. A higher
gain for performance compared to reliability is expected. To
clarify, Equations (19) and (20) inform that changing the
number of routers has a higher effect on the performance than
a system’s reliability. Our paper defines performance as the
average processing time of requests per router. Having a higher
number of routers to process the requests in parallel results in
dividing the average processing time by more routers.

B. Autoscaling of Overloaded Components

This section systematically evaluates our approach regarding
component overload prevention.

(a) Average Cost (b) Average Reconfiguration Ratio

Fig. 7: Plots of Evaluation Data for the Autoscaling of Transient Components

1) Evaluation Cases: We go through the same range of
values as in the previous scenario:

nserv ∈ { 3, 5, 10 } (53)
nrout ∈ { 1, 3, nserv } (54)

10 ≤ cf ≤ 100 r/s (55)
64 ≤ µ ≤ 196 r/s (56)
Cth = 1 cent/s (57)

As before, we study increments of 0.5 vCPUs resulting in
9 µ levels. We consider the same range of call frequencies.
However, since we are studying component overloads, we
evaluate increments of 5 r/s, resulting in 19 cf levels.

2) Results Analysis: We evaluated 1539 cases for this
scenario, i.e., three levels of nserv, three levels of nrout, 9
levels of µ, and 19 levels of cf . We define the average cost C
and the average reconfiguration ratio RR, that is, the amount
of BFR improvements per cost spent as:

C =
1

n
·
∑

c∈Cases

C(nscal, npro) (58)

RR =
1

n
·
∑

c∈Cases

BFR(0, 0)−BFR(nscal, npro)
C(nscal, npro)

(59)

BFR(0, 0) is the buffer fill rate without reconfiguration. We
average over three levels of services and three levels of routers.

In Figure 7a, we can see that the reconfiguration costs
increase as the processing rate and the call frequency increase.
This is expected as reconfiguring a component with a higher
processing rate is more expensive, especially when scaling
out the overloaded component. Moreover, a higher incoming
call frequency results in more overloaded components and,
consequently, higher reconfiguration costs. However, as seen
in Figure 7b, a higher cf results in a higher reconfiguration
ratio. Our approach balances the costs with a bigger buffer fill
rate improvement converging RR to an average of 2.62. The
average reconfiguration cost over all cases is 0.0065 cents/s

bringing all overloading system components to a steady state.

VII. THREATS TO VALIDITY

We discuss the four threat types by Wohlin et al. [32].
Regarding construct validity, we used request loss and the
average processing time of requests per router as reliability
and performance metrics, respectively. The threat remains
that other metrics might model these quality attributes better,
e.g., a cascade of calls beyond a single call sequence for
reliability [22], or data transfer rates of messages which
are m byte-long for performance [19]. Moreover, we studied
reconfiguration measures of increasing the processing rate and
scaling out a component to prevent system overload. While this
is a common approach in service- and cloud-based research
(see Section VIII), other measures might work better in terms
of system overload prevention, for instance, changing the
routing technology, e.g., using a circuit breaker [26]. More
research with real-world systems is required to study.

Regarding internal validity, we considered a simple recon-
figuration strategy to start the new setup in parallel with the
running configuration to avoid impacts on reliability, e.g.,
request loss due to reconfiguration, and performance, e.g.,
increased processing time while reconfiguring. In a real-
world system, this solution is cost-ineffective that introduces
additional resource demands. The architects must specify a
reconfiguration strategy based on their application needs to
mitigate this threat. Moreover, we only considered constant
load when modeling the stress of components using queuing
theory. In reality, cloud-based systems are met with different
load profiles, e.g., sudden load spikes. In future work, we plan
to study more aspects of the proposed novel approach.

Concerning external validity, we designed our novel archi-
tecture with generality in mind. However, the threat remains
that evaluating our approach based on another infrastructure
may lead to different results. To mitigate this thread, we
evaluated our proposed approach with an extensive systematic
evaluation using the data of our experiment of 1200 hours (see

Section VI). Moreover, the results might not be generalizable
beyond the given experiment cases of 10-100 requests per
second and call sequences of length 3-10. As this covers a wide
variety of loads and call sequences in cloud-based applications,
the impact of this threat should be limited. Moreover, there
must be a balance between the applicability of the proposed
approach and the level of abstraction of the presented ideas, as
in all research presenting models of a real-world phenomenon.
To mitigate this thread, we performed many rounds of reviews
and improvements in the author team and constantly compared
them with the related work.

Concerning conclusion validity, as the statistical method
to evaluate the accuracy of our prediction models, we used
the Mean Absolute Percentage Error (MAPE) metric [31]
metric. We defined reliability and performance gains, as well
as the average percentage difference of buffer fill rate based
on MAPE, as it is widely used and offers good interpretability
in our research context.

VIII. RELATED WORK

The proposed approach is related to self-adaptive systems,
which typically use MAPE-K loops [4], and similar methods
to realize adaptations. We extend such studies with support
specific to the service- and cloud-based dynamic routing appli-
cations. Moreover, research on efficient resource provisioning,
e.g., [10], [18], and cloud elasticity, e.g., [12], [13], are related
to our work. Our study extends these approaches by consider-
ing the increase in the processing power of a component as a
reconfiguration measure. Moreover, we consider a multifaceted
reconfiguration of components taking into account system-
wide and per-component optimizations.

Architecture-based reliability and performance prediction
approaches [11], [31] employ (i) probabilistic analytical mod-
els such as discrete-time Markov chains (DTMCs) [9] and
(layered) queueing networks (QNs) [30], or (ii) high-level
architectural models such as profile-extended UML [23] or
Palladio [7], [25] models, which are simulated or transformed
into analytical models. Concerning architecture-based perfor-
mance prediction, numerous approaches have been proposed.
Spitznagel and Garlan [30] present a general architecture-
based model for performance analysis based on queueing
network theory. Probabilistic modeling is often applied, e.g.
based on discrete-time Markov chains (DTMCs) [9] .

Architecture-based decision making [1], [28] uses archi-
tectural tactics to search for (Pareto) optimal architectural
candidates. Architecture-based analysis approaches based on
queueing theory have been studied by, e.g., [23], [30]. Like our
study, those works focus on supporting architectural design
and decision-making. In contrast to our work, they do not
focus on specific kinds of architectures or architecture patterns
in dynamic routing to prevent system overload. Our approach
differs from these in focusing specifically on service- and
cloud-based dynamic routing architectures.

We extend research on auto-scalers for the cloud, e.g., [5],
[33], by adding specific cost studies. A particular related work
is [20], which introduces a cost-aware component that can be

added to auto-scalers. Lesch et al. use workload prediction to
decide on reconfiguration costs. Our approach differs from
this work in that they study the reconfiguration of cloud-
based Virtual Machines (VMs). Therefore, they consider time-
based cost functions to rent these VMs. Nevertheless, we study
components and consider cost functions related to the number
of resources an application uses. Moreover, we consider the
transient analysis, i.e., when components are overloading and
when they are in a steady state.

Multidimensional auto-scalers have been studied in the
literature. AutoMAP [6] uses response time triggers to pro-
vision resources. AutoMAP finds optimal resources using
Virtual Machine (VM) image sizes to support cost efficiency.
Nguyen et al. [21] provide a forecasting model to predict
CPU demand and use these predictions to start new machines
before load peak to increase performance. CloudScale [29]
supports scaling of CPU and memory resources when local
scaling is possible. Otherwise, it migrates VMs to prevent
overloaded hosts. Our work differs from all these studies be-
cause they consider auto-scaling at the VM level and configure
the resources. We proposed a cost-aware multidimensional
auto-scaler that works at the component level, adjusting the
resources of each component.

In contrast to the existing related work, the major con-
tributions of our study are that we proposed a model of
system overload specifically designed for dynamic routing in
service- and cloud-based architectures. Moreover, we perform
multifaceted reconfiguration considering different states com-
ponents can be in. Having this specific view and considering
possible runtime adaptations, we defined multiple targeted
reconfiguration algorithms to perform multi-criteria optimiza-
tion analyses and find the (Pareto) optimal reconfiguration
solutions. This would be hard to do in the generic case.

IX. CONCLUSIONS

In this paper, we proposed a multifaceted reconfiguration
approach that self-adapts between different routing patterns
considering the component overloads and idleness (RQ1).
Moreover, we provided a prototypical tool that provides visu-
alizations to study different architecture configurations (RQ2).
We systematically evaluated our approach based on our empir-
ical data (see Section II for details). Our extensive systematic
evaluation shows significant improvements in quality trade-off
adaptations and system overload prevention. In our experiment
cases, our approach can yield up to 16.60% reliability gain. On
average, where cases with the right and the wrong architecture
choices are analyzed together, our approach offers a 74.22%
performance gain (RQ3). Our architecture adapts, based on
triggers, e.g., change of incoming load frequency or degrada-
tion of monitoring data, to an optimal configuration to adapt
quality trade-offs and prevent system overload. Before our
work, architects needed to redesign and redeploy architecture
configurations manually. For our future work, we plan to apply
our novel approach to real-world applications and evaluate
the results. Moreover, we plan to cover different load profiles
when autoscaling components multidimensionally.

REFERENCES

[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review. IEEE Trans. Software Eng., 39(5):658–683, 2013.

[2] A. Amiri, U. Zdun, G. Simhandl, and A. van Hoorn. Impact of service-
and cloud-based dynamic routing architectures on system reliability.
In International Conference on Service Oriented Computing (ICSOC),
2020.

[3] A. Amiri, U. Zdun, and A. van Hoorn. Modeling and empirical
validation of reliability and performance trade-offs of dynamic routing in
service- and cloud-based architectures. In IEEE Transactions on Services
Computing (TSC), 2021.

[4] P. Arcaini, E. Riccobene, and P. Scandurra. Formal design and
verification of self-adaptive systems with decentralized control. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 11(4):1–35,
2017.

[5] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev.
Chameleon: A hybrid, proactive auto-scaling mechanism on a level-
playing field. IEEE Transactions on Parallel and Distributed Systems,
30(4):800–813, 2018.

[6] M. Beltrán. Automatic provisioning of multi-tier applications in cloud
computing environments. The Journal of Supercomputing, 2015.

[7] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-
based reliability prediction with the palladio component model. IEEE
Transactions on Software Engineering, 38(6):1319–1339, 2011.

[8] D. A. Chappell. Enterprise service bus. O’Reilly, 2004.
[9] R. C. Cheung. A user-oriented software reliability model. IEEE

transactions on Software Engineering, pages 118–125, 1980.
[10] J. Comden, S. Yao, N. Chen, H. Xing, and Z. Liu. Online optimization

in cloud resource provisioning: Predictions, regrets, and algorithms. In
Publication: Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2019.

[11] V. Cortellessa, A. Di Marco, and P. Inverardi. Model-based software
performance analysis. Springer, 2011.

[12] G. Galante and L. C. E. de Bona. A survey on cloud computing
elasticity. In 2012 IEEE Fifth International Conference on Utility and
Cloud Computing, pages 263–270. IEEE, 2012.

[13] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in cloud computing:
What it is, and what it is not. In 10th International Conference on
Autonomic Computing ({ICAC} 13), pages 23–27, 2013.

[14] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

[15] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson. Cloud
Design Patterns. Microsoft Press, 2014.

[16] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Mi-
croservices: The journey so far and challenges ahead. IEEE Software,
35(3):24–35, 2018.

[17] V. V. Kalashnikov. Mathematical Methods in Queuing Theory. Springer,
2013.

[18] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu. Efficiency
analysis of provisioning microservices. In Cloud Computing Technology
and Science (CloudCom), 2016 IEEE International Conference on, pages
261–268. IEEE, 2016.

[19] N. Kratzke. About microservices, containers and their underestimated
impact on network performance. arXiv preprint arXiv:1710.04049,
2017.

[20] V. Lesch, A. Bauer, N. Herbst, and S. Kounev. Fox: Cost-awareness
for autonomic resource management in public clouds. In Publication:
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 2019.

[21] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Agile: Elastic
distributed resource scaling for infrastructure-as-a-service. In 10th
International Conference on Autonomic Computing, 2013.

[22] M. Nygard. Release It!: Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2007.

[23] D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-based per-
formance analysis applied to a telecommunication system. IEEE
Transactions on Software Engineering, 26(11):1049–1065, 2000.

[24] P. Raj, A. Raman, and H. Subramanian. Architectural Patterns: Uncover
essential patterns in the most indispensable realm. Packt Publishing,
December 2017.

[25] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Kozi-
olek, M. Kramer, and K. Krogmann. Modeling and Simulating Software
Architectures: The Palladio Approach. The MIT Press, 2016.

[26] C. Richardson. Microservices Patterns: With examples in Java. Manning,
2018.

[27] C. Richardson. Microservice architecture patterns and best practices.
http://microservices.io/index.html, 2019.

[28] V. S. Sharma and K. S. Trivedi. Architecture based analysis of perfor-
mance, reliability and security of software systems. In Proceedings of the
5th International Workshop on Software and Performance, WOSP ’05,
page 217–227, New York, NY, USA, 2005. Association for Computing
Machinery.

[29] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource
scaling for multi-tenant cloud systems. In 2nd ACM Symposium on
Cloud Computing, 2011.

[30] B. Spitznagel and D. Garlan. Architecture-based performance analysis.
In Proc. the 1998 Conference on Software Engineering and Knowledge
Engineering. Carnegie Mellon University, June 1998.

[31] K. S. Trivedi and A. Bobbio. Reliability and availability engineering:
modeling, analysis, and applications. Oxford University Press, 2017.

[32] C. Wohlin, P. Runeson, M. Hoest, M. C. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering. Springer, 2012.

[33] F. Zhang, X. Tang, X. Li, S. U. Khan, and Z. Li. Quantifying cloud
elasticity with container-based autoscaling. Future Generation Computer
Systems, 98:672–681, 2019.

	Introduction
	Approach Overview
	Approach Details
	Depletion of Idle Components
	Reconfiguration of Steady Components
	Definitions
	Reliability Model
	Performance Model
	System-Wide MCO
	Preference Function
	Reconfiguration Algorithm

	Autoscaling of Overloaded Components
	Buffer Fill Rate
	Reconfiguration Cost
	Per-Component MCO

	Illustrative Sample Cases
	Reconfiguration of Steady Components
	Autoscaling of Overloaded Components

	Tool Support
	Evaluation
	Reconfiguration of Steady Components
	Evaluation Cases
	Results Analysis

	Autoscaling of Overloaded Components
	Evaluation Cases
	Results Analysis

	Threats to Validity
	Related Work
	Conclusions
	References

