
Fast (1 + ε)-Approximation Algorithms for Binary Matrix

Factorization

Ameya Velingker∗ Maximilian Vötsch† David P. Woodruff‡ Samson Zhou§

June 6, 2023

Abstract

We introduce efficient (1 + ε)-approximation algorithms for the binary matrix factorization
(BMF) problem, where the inputs are a matrix A ∈ {0, 1}n×d, a rank parameter k > 0, as well
as an accuracy parameter ε > 0, and the goal is to approximate A as a product of low-rank
factors U ∈ {0, 1}n×k and V ∈ {0, 1}k×d. Equivalently, we want to find U and V that minimize
the Frobenius loss ∥UV−A∥2F . Before this work, the state-of-the-art for this problem was the
approximation algorithm of Kumar et al. [ICML 2019], which achieves a C-approximation for
some constant C ≥ 576. We give the first (1 + ε)-approximation algorithm using running time
singly exponential in k, where k is typically a small integer. Our techniques generalize to other
common variants of the BMF problem, admitting bicriteria (1+ε)-approximation algorithms for
Lp loss functions and the setting where matrix operations are performed in F2. Our approach
can be implemented in standard big data models, such as the streaming or distributed models.

1 Introduction

Low-rank approximation is a fundamental tool for factor analysis. The goal is to decompose
several observed variables stored in the matrix A ∈ Rn×d into a combination of k unobserved and
uncorrelated variables called factors, represented by the matrices U ∈ Rn×k and V ∈ Rk×d. In
particular, we want to solve the problem

min
U∈Rn×k,V∈Rk×d

∥UV −A∥,

for some predetermined norm ∥·∥. Identifying the factors can often decrease the number of relevant
features in an observation and thus significantly improve interpretability. Another benefit is that
low-rank matrices allow us to approximate the matrixA with its factorsU andV using only (n+d)k

∗Google Research. E-mail: ameyav@google.com.
†Faculty of Computer Science, Univie Doctoral School Computer Science DoCS, University of Vienna. Email:

maximilian.voetsch@univie.ac.at.
‡Carnegie Mellon University. E-mail: dwoodruf@andrew.cmu.edu. Work done while at Google Research.
§UC Berkeley and Rice University. E-mail: samsonzhou@gmail.com.

M. Vötsch: This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)”.

1

ar
X

iv
:2

30
6.

01
86

9v
1

 [
cs

.D
S]

 2
 J

un
 2

02
3

mailto:ameyav@google.com
mailto:maximilian.voetsch@univie.ac.at
mailto:dwoodruf@andrew.cmu.edu
mailto:samsonzhou@gmail.com

parameters rather than the nd parameters needed to represent A. Moreover, for a vector x ∈ Rd,
we can approximate the matrix-vector multiplication Ax ≈ UVx in time (n+d)k, while computing
Ax requires nd time. These benefits make low-rank approximation one of the most widely used
tools in machine learning, recommender systems, data science, statistics, computer vision, and
natural language processing. In many of these applications, discrete or categorical datasets are
typical. In this case, restricting the underlying factors to a discrete domain for interpretability
often makes sense. For example, [KPRW19] observed that nearly half of the data sets in the UCI
repository [DG17] are categorical and thus can be represented as binary matrices, possibly using
multiple binary variables to represent each category.

In the binary matrix factorization (BMF) problem, the input matrix A ∈ {0, 1}n×d is binary.
Additionally, we are given an integer range parameter k, with 0 < k ≪ n, d. The goal is to
approximate A by the factors U ∈ {0, 1}n×k and V ∈ {0, 1}k×d such that A ≈ UV. The BMF
problem restricts the general low-rank approximation problem to a discrete space, making finding
good factors more challenging (see Section 1.3).

1.1 Our Contributions

We present (1+ ε)-approximation algorithms for the binary low-rank matrix factorization problem
for several standard loss functions used in the general low-rank approximation problem. Table 1
summarizes our results.

Reference Approximation Runtime Other

[KPRW19] C ≥ 576 2Õ(k
2) poly(n, d) Frobenius loss

[FGL+20] 1 + ε 2
2O(k)

ε2
log2 1

ε poly(n, d) Frobenius loss

Our work 1 + ε 2Õ(k
2/ε4) poly(n, d) Frobenius loss

[KPRW19] C ≥ 1222p−2 + 2p−1 2poly(k) poly(n, d) Lp loss, p ≥ 1

Here 1 + ε 2poly(k/ε) poly(n, d) Lp loss, p ≥ 1, bicriteria

[FGL+20] 1 + ε 2
2O(k)

ε2
log2 1

ε poly(n, d) Binary field

[BBB+19] 1 + ε 2
2O(k)

ε2
log 1

ε poly(n, d) Binary field

[KPRW19] C ≥ 40001 2poly(k) poly(n, d) Binary field, bicriteria

Our work 1 + ε 2poly(k/ε) poly(n, d) Binary field, bicriteria

Table 1: Summary of related work on binary matrix factorization

Binary matrix factorization. We first consider the minimization of the Frobenius norm, defined
by ∥A−UV∥2F =

∑
i∈[n]

∑
j∈d |Ai,j− (UV)i,j |2, where [n] := {1, . . . , n} and Ai,j denotes the entry

in the i-th row and the j-th column of A. Intuitively, we can view this as finding a least-squares
approximation of A.

We introduce the first (1+ε)-approximation algorithm for the BMF problem that runs in singly
exponential time. That is, we present an algorithm that, for any ε > 0, returns U′ ∈ {0, 1}n×k,V′ ∈
{0, 1}k×d with

∥A−U′V′∥2F ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥A−UV∥2F .

2

For ε ∈ (0, 1), our algorithm uses 2Õ(k
2/ε4) poly(n, d) runtime and for ε ≥ 1, our algorithm uses

2Õ(k
2) poly(n, d) runtime, where poly(n, d) denotes a polynomial in n and d.
By comparison, [KPRW19] gave a C-approximation algorithm for the BMF problem also using

runtime 2Õ(k
2) poly(n, d), but for some constant C ≥ 576. Though they did not attempt to optimize

for C, their proofs employ multiple triangle inequalities that present a constant lower bound of at
least 2 on C. See Section 1.2 for a more thorough discussion of the limitations of their approach.
[FGL+20] introduced a (1+ ε)-approximation algorithm for the BMF problem with rank-k factors.

However, their algorithm uses time doubly exponential in k, specifically 2
2O(k)

ε2
log2 1

ε poly(n, d),

which [BBB+19] later improved to doubly exponential runtime 2
2O(k)

ε2
log 1

ε poly(n, d), while also

showing that time 2k
Ω(1)

is necessary even for constant-factor approximation, under the Small Set
Expansion Hypothesis and the Exponential Time Hypothesis.

BMF with Lp loss. We also consider the more general problem of minimizing for Lp loss for
a given p, defined as the optimization problem of minimizing ∥A −UV∥pp =

∑
i∈[n]

∑
j∈d |Ai,j −

(UV)i,j |p. Of particular interest is the case p = 1, which corresponds to robust principal component
analysis, and which has been proposed as an alternative to Frobenius norm low-rank approxima-
tion that is more robust to outliers, i.e., values that are far away from the majority of the data
points [KK03, KK05, Kwa08, ZLS+12, BDB13, MKP14, SWZ17, PK18, BBB+19, MW21]. On the
other hand, for p > 2, low-rank approximation with Lp error increasingly places higher priority on
outliers, i.e., the larger entries of UV.

We present the first (1 + ε)-approximation algorithm for the BMF problem that runs in singly
exponential time, albeit at the cost of incurring logarithmic increases in the rank k, making it
a bicriteria algorithm. Specifically, for any ε > 0, our algorithm returns U′ ∈ {0, 1}n×k′ ,V′ ∈
{0, 1}k′×d with

∥A−U′V′∥pp ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥A−UV∥pp,

where k′ = O
(
k log2 n

ε2

)
. For ε ∈ (0, 1), our algorithm uses 2poly(k/ε) poly(n, d) runtime and for

ε ≥ 1, our algorithm uses 2poly(k) poly(n, d) runtime.
Previous work [KPRW19] gave a C-approxmiation algorithm for this problem, using singly

exponential runtime 2poly(k) poly(n, d), without incurring a bicriteria loss in the rank k. However,
their constant C ≥ 1222p−2 + 2p−1 is large and depends on p. Again, their use of multiple triangle
inequalities in their argument bars this approach from being able to achieve a (1+ε)-approximation.
To our knowledge, no prior works achieved (1 + ε)-approximation to BMF with Lp loss in singly
exponential time.

BMF on binary fields. Finally, we consider the case where all arithmetic operations are per-
formed modulo two, i.e., in the finite field F2. Specifically, the (i, j)-th entry of UV is the in-
ner product ⟨Ui,V

(j)⟩ of the i-th row of U and the j-th column of V, taken over F2. This
model has been frequently used for dimensionality reduction for high-dimensional data with bi-
nary attributes [KG03, SJY09, JPHY14, DHJ+18] and independent component analysis, espe-
cially in the context of signal processing [Yer11, GGYT12, PRF15, PRF18]. This problem is also
known as bipartite clique cover, the discrete basis problem, or minimal noise role mining and

3

has been well-studied in applications to association rule mining, database tiling, and topic model-
ing [SBM03, SH06, VAG07, MMG+08, BV10, LVAH12, CIK16, CSTZ22].

We introduce the first bicriteria (1 + ε)-approximation algorithm for the BMF problem on
binary fields that runs in singly exponential time. Specifically, for any ε > 0, our algorithm returns
U′ ∈ {0, 1}n×k′ ,V′ ∈ {0, 1}k′×d with

∥A−U′V′∥pp ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥A−UV∥pp,

where k′ = O
(
k logn

ε

)
and all arithmetic operations are performed in F2. For ε ∈ (0, 1), our

algorithm has running time 2poly(k/ε) poly(n, d) and for ε ≥ 1, our algorithm has running time
2poly(k) poly(n, d).

By comparison, [KPRW19] gave a bicriteria C-approximation algorithm for the BMF problem on
binary fields with running time 2poly(k) poly(n, d), for some constant C ≥ 40001. Even though their
algorithm also gives a bicriteria guarantee, their approach, once again, inherently cannot achieve
(1+ε)-approximation. On the other hand, [FGL+20] achieved a (1+ε)-approximation without a bi-

criteria guarantee, but their algorithm uses doubly exponential running time 2
2O(k)

ε2
log2 1

ε poly(n, d),

which [BBB+19] later improved to doubly exponential running time 2
2O(k)

ε2
log 1

ε poly(n, d), while
also showing that running time doubly exponential in k is necessary for (1 + ε)-approximation on
F2.

Applications to big data models. We remark that our algorithms are conducive to big data
models. Specifically, our algorithmic ideas facilitate a two-pass algorithm in the streaming model,
where either the rows or the columns of the input matrix arrive sequentially, and the goal is to
perform binary low-rank approximation while using space sublinear in the size of the input matrix.
Similarly, our approach can be used to achieve a two-round protocol in the distributed model, where
either the rows or the columns of the input matrix are partitioned among several players, and the
goal is to perform binary low-rank approximation while using total communication sublinear in
the size of the input matrix. See Section 5 for a formal description of the problem settings and
additional details.

1.2 Overview of Our Techniques

This section briefly overviews our approaches to achieving (1 + ε)-approximation to the BMF
problem. Alongside our techniques, we discuss why prior approaches for BMF fail to achieve
(1 + ε)-approximation.

The BMF problem under the Frobenius norm is stated as follows: Let U∗ ∈ {0, 1}n×k and
V∗ ∈ {0, 1}k×d be optimal low-rank factors, so that

∥U∗V∗ −A∥2F = min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F . (1)

Our approach relies on the sketch-and-solve paradigm, and we ask of our sketch matrix S that it
is an affine embedding, that is, given U∗ and A, for all V ∈ {0, 1}k×d,

(1− ε)∥U∗V −A∥2F ≤ ∥SU∗V − SA∥2F ≤ (1 + ε)∥U∗V −A∥2F .

4

Observe that if S is an affine embedding, then we obtain a (1+ ε)-approximation by solving for the
minimizer V∗ in the sketched space. That is, given S and U∗, instead of solving Equation 1 for
V∗, it suffices to solve

argmin
V∈{0,1}k×d

∥SU∗V − SA∥2F .

Guessing the sketch matrix S. A general approach taken by [RSW16, KPRW19, BWZ19] for
various low-rank approximation problems is first to choose S in a way so that there are not too
many possibilities for the matrices SU∗ and SA and then find the minimizer V∗ for all guesses of
SU∗ and SA. Note that this approach is delicate because it depends on the choice of the sketch
matrix S. For example, if we chose S to be a dense matrix with random Gaussian entries, then
since there are 2nk possibilities for the matrix U∗ ∈ {0, 1}n×k, we cannot enumerate the possible
matrices SU∗. Prior work [RSW16, KPRW19, BWZ19] made the key observation that if A (and
thus U∗) has a small number of unique rows, then a matrix S that samples a small number of rows
of A has only a small number of possibilities for SA.

To ensure that A has a small number of unique rows for the BMF problem, [KPRW19] first
find a 2k-means clustering solution Ã for the rows of A. Instead of solving the problem on A, they
then solve BMF on the matrix Ã, where each row is replaced by the center the point is assigned to,
yielding at most 2k unique rows. Finally, they note that ∥U∗V∗−A∥2F is at least the 2k-means cost,

as U∗V∗ has at most 2k unique rows. Now that Ã has 2k unique rows, they can make all possible

guesses for both SU∗ and SÃ in time 2Õ(k
2). By using an algorithm of [KMN+04] that achieves

roughly a 9-approximation to k-means clustering, [KPRW19] ultimately obtain a C-approximation
to the BMF problem, for some C ≥ 576.

Shortcomings of previous work for (1 + ε)-approximation. While [KPRW19] do not opti-
mize for C, their approach fundamentally cannot achieve (1 + ε)-approximation for BMF for the
following reasons. First, they use a k-means clustering subroutine [KMN+04], (achieving roughly a
9-approximation) which due to hardness-of-approximation results [CK19, LSW17] can never achieve
(1+ε)-approximation, as there cannot exist a 1.07-approximation algorithm for k-means clustering
unless P=NP. Moreover, even if a (1 + ε)-approximate k-means clustering could be found, there is
no guarantee that the cluster centers obtained by this algorithm are binary. That is, while UV has
a specific form induced by the requirement that each factor must be binary, a solution to k-means
clustering offers no such guarantee and may return Steiner points. Finally, [KPRW19] achieves a
matrix S that roughly preserves SU∗ and SA. By generalizations of the triangle inequality, one
can show that ∥SU∗V∗ − SA∥2F preserves a constant factor approximation to ∥U∗V∗ −A∥2F , but
not necessarily a (1 + ε)-approximation.

Another related work, [FGL+20], reduces instances of BMF to constrained k-means clustering
instances, where the constraints demand that the selected centers are linear combinations of binary
vectors. The core part of their work is to design a sampling-based algorithm for solving binary-
constrained clustering instances, and the result on BMF is a corollary. Constrained clustering is a
harder problem than BMF with Frobenius loss, so it is unclear how one might improve the doubly
exponential running time using this approach.

Our approach: computing a strong coreset. We first reduce the number of unique rows in
A by computing a strong coreset Ã for A. The strong coreset has the property that for any choices

5

of U ∈ {0, 1}n×k and V ∈ {0, 1}k×d, there exists X ∈ {0, 1}n×k such that

(1− ε)∥UV −A∥2F ≤ ∥XV − Ã∥2F ≤ (1 + ε)∥UV −A∥2F .

Therefore, we instead first solve the low-rank approximation problem on Ã first. Crucially, we
choose Ã to have 2poly(k/ε) unique rows so then for a matrix S that samples poly(k/ε) rows, there
are 2poly(k/ε) possibilities for SÃ, so we can make all possible guesses for both SU∗ and SÃ.
Unfortunately, we still have the problem that ∥SU∗V∗ − SÃ∥2F does not even necessarily give a

(1 + ε)-approximation to ∥U∗V∗ − Ã∥2F .

Binary matrix factorization. To that end, we show that when S is a leverage score sampling
matrix, then S also satisfies an approximate matrix multiplication property. Therefore S can
effectively be used for an affine embedding. That is, the minimizer to ∥SU∗V∗ − SÃ∥2F produces

an (1+ ε)-approximation to the cost of the optimal factors ∥U∗V∗− Ã∥2F . Thus, we can then solve

V′ = argmin
V∈{0,1}k×d

∥SU∗V − SÃ∥2F

U′ = argmin
U∈{0,1}n×k

∥UV′ −A∥2F ,

where the latter optimization problem can be solved by iteratively optimizing over each row so that
the total computation time is O

(
2kn

)
rather than 2kn.

BMF on binary fields. We again form the matrix Ã by taking a strong coreset ofA, constructed
using an algorithm that gives integer weight wi to each point, and then duplicating the rows to
form Ã. That is, if the i-th row Ai of A is sampled with weight wi in the coreset, then Ã will
contain wi repetitions of the row Ai. We want to use the same approach for binary fields to make
guesses for SU∗ and SÃ. However, it is no longer true that S will provide an affine embedding over
F2, in part because the subspace embedding property of S computes leverage scores of each row
of U∗ and A with respect to general integers. Hence, we require a different approach for matrix
operations over F2.

Instead, we group the rows of Ã by their number of repetitions, so that group Gj consists of

the rows of Ã that are repeated [(1 + ε)j , (1 + ε)j+1) times. That is, if Ai appears wi times in Ã,
then it appears a single time in group Gj for j = ⌊logwi⌋. We then perform entrywise L0 low-rank
approximation over F2 for each of the groups Gj , which gives low-rank factors U(j) and V(j). We

then compute Ũ(j) by duplicating rows appropriately so that if Ai is in Gj , then we place the row

of U(j) corresponding to Ai into the i-th row of Ũ(j), for all i ∈ [n]. Otherwise if Ai is not in Gj ,

then we set i-th row of Ũ(j) to be the all zeros row. We compute V(j) by padding accordingly and
then collect

Ũ =
[
Ũ(0)| . . . |Ũ(ℓ)

]
, Ṽ← Ṽ(0) ◦ . . . ◦ Ṽ(i),

where
[
Ũ(0)| . . . |Ũ(ℓ)

]
denotes horizontal concatenation of matrices and Ṽ(0) ◦ . . . ◦ Ṽ(i) denotes

vertical concatenation (stacking) of matrices, to achieve bicriteria low-rank approximations Ũ and
Ṽ to Ã. Finally, to achieve bicriteria factors U′ and V′ to A, we ensure that U′ achieves the same
block structure as Ũ.

6

BMF with Lp loss. We would again like to use the same approach as our (1+ ε)-approximation
algorithm for BMF with Frobenius loss. To that end, we observe that a coreset construction for
clustering under Lp metrics rather than Euclidean distance is known, which we can use to construct

Ã. However, the challenge is that no known sampling matrix S guarantees an affine embedding.
One might hope that recent results on active Lp regression [CP19, PPP21, MMWY22, MMM+22,
MMM+23] can provide such a tool. Unfortunately, adapting these techniques would still require
taking a union bound over a number of columns, which would result in the sampling matrix having
too many rows for our desired runtime.

Instead, we invoke the coreset construction on the rows and the columns so that Ã has a small
number of distinct rows and columns. We again partition the rows of Ã into groups based on their
frequency, but now we further partition the groups based on the frequency of the columns. Thus, it
remains to solve BMF with Lp loss on the partition, each part of which has a small number of rows
and columns. Since the contribution of each row toward the overall loss is small (because there is a
small number of columns), we show that there exists a matrix that samples poly(k/ε) rows of each
partition that finally achieves the desired affine embedding. Therefore, we can solve the problem
on each partition, pad the factors accordingly, and build the bicriteria factors as in the binary field
case.

1.3 Motivation and Related Work

Low-rank approximation is one of the fundamental problems of machine learning and data science.
Therefore, it has received extensive attention, e.g., see the surveys [KV09, Mah11, Woo14]. When
the underlying loss function is the Frobenius norm, the low-rank approximation problem can be
optimally solved via singular value decomposition (SVD). However, when we restrict both the
observed input A and the factors U,V to binary matrices, the SVD no longer guarantees optimal
factors. In fact, many restricted variants of low-rank approximation are NP-hard [RSW16, SWZ17,
KPRW19, BBB+19, BWZ19, FGL+20, MW21].

Motivation and background for BMF. The BMF problem has applications to graph par-
titioning [CIK16], low-density parity-check codes [RPG16], and optimizing passive organic LED
(OLED) displays [KPRW19]. Observe that we can use A to encode the incidence matrix of the
bipartite graph with n vertices on the left side of the bipartition and d vertices on the right side
so that Ai,j = 1 if and only if there exists an edge connecting the i-th vertex on the left side with
the j-th vertex on the right side. Then UV can be written as the sum of k rank-1 matrices, each
encoding a different bipartite clique of the graph, i.e., a subset of vertices on the left and a subset
of vertices on the right such that there exists an edge between every vertex on the left and every
vertex on the right. It then follows that the BMF problem solves the bipartite clique partition
problem [Orl77, FMPS09, CHHK14, Neu18], in which the goal is to find the smallest integer k such
that the graph can be represented as a union of k bipartite cliques.

[KPRW19] also present the following motivation for the BMF problem to improve the perfor-
mance of passive OLED displays, which rapidly and sequentially illuminate rows of lights to render
an image in a manner so that the human eye integrates this sequence of lights into a complete
image. However, [KPRW19] observed that passive OLED displays could illuminate many rows si-
multaneously, provided the image being shown is a rank-1 matrix and that the apparent brightness
of an image is inversely proportional to the rank of the decomposition. Thus [KPRW19] notes that
BMF can be used to not only find a low-rank decomposition that illuminates pixels in a way that

7

seems brighter to the viewer but also achieves binary restrictions on the decomposition in order to
use simple and inexpensive voltage drivers on the rows and columns, rather than a more expensive
bank of video-rate digital to analog-to-digital converters.

BMF with Frobenius loss. [KPRW19] first gave a constant factor approximation algorithm for

the BMF problem using runtime 2Õ(k
2) poly(n, d), i.e., singly exponential time. [FGL+20] intro-

duced a (1 + ε)-approximation to the BMF problem with rank-k factors, but their algorithm uses

doubly exponential time, specifically runtime 2
2O(k)

ε2
log2 1

ε poly(n, d), which was later improved to

doubly exponential runtime 2
2O(k)

ε2
log 1

ε poly(n, d) by [BBB+19], who also showed that 2k
Ω(1)

runtime
is necessary even for constant-factor approximation, under the Small Set Expansion Hypothesis and
the Exponential Time Hypothesis. By introducing sparsity constraints on the rows of U and V,
[CSTZ22] provide an alternate parametrization of the runtime, though, at the cost of runtime
quasipolynomial in n and d.

BMF on binary fields. Binary matrix factorization is particularly suited for datasets involving
binary data. Thus, the problem is well-motivated for binary fields when performing dimensionality
reduction on high-dimension datasets [KG03]. To this end, many heuristics have been developed
for this problem [KG03, SJY09, FJS10, JPHY14], due to its NP-hardness [GV18, DHJ+18].

For the special case of k = 1, [SJY09] first gave a 2-approximation algorithm that uses polyno-
mial time through a relaxation of integer linear programming. Subsequently, [JPHY14] produced a
simpler approach, and [BKW17] introduced a sublinear time algorithm. For general k, [KPRW19]
gave a constant factor approximation algorithm using runtime 2poly(k) poly(n, d), i.e., singly ex-
ponential time, at the expense of a bicriteria solution, i.e., factors with rank k′ = O (k log n).
[FGL+20] introduced a (1 + ε)-approximation to the BMF problem with rank-k factors, but their

algorithm uses doubly exponential time, specifically runtime 2
2O(k)

ε2
log2 1

ε poly(n, d), which was later

improved to doubly exponential runtime 2
2O(k)

ε2
log 1

ε poly(n, d) by [BBB+19], who also showed that
doubly exponential runtime is necessary for (1 + ε)-approximation without bicriteria relaxation
under the Exponential Time Hypothesis.

BMF with Lp loss. Using more general Lp loss functions can result in drastically different
behaviors of the optimal low-rank factors for the BMF problem. For example, the low-rank factors
for p > 2 are penalized more when the corresponding entries of UV are large, and thus may choose
to prioritize a larger number of small entries that do not match A rather than a single large entry.
On the other hand, p = 1 corresponds to robust principal component analysis, which yields factors
that are more robust to outliers in the data [KK03, KK05, Kwa08, ZLS+12, BDB13, MKP14,
SWZ17, PK18, BBB+19, MW21]. The first approximation algorithm with provable guarantees
for L1 low-rank approximation on the reals was given by [SWZ17]. They achieved poly(k) · log d-
approximation in roughly O (nd) time. For constant k, [SWZ17] further achieved constant-factor
approximation in polynomial time.

When we restrict the inputs and factors to be binary, [KPRW19] observed that p = 1 corresponds
to minimizing the number of edges in the symmetric difference between an unweighted bipartite
graph G and its approximation H, which is the multiset union of k bicliques. Here we represent the
graph G with n and d vertices on the bipartition’s left- and right-hand side, respectively, through

8

its edge incidence matrix A. Similarly, we have Ui,j = 1 if and only if the i-th vertex on the left
bipartition is in the j-th biclique and Vi,j = 1 if and only if the j-th vertex on the right bipartition
is in the i-th biclique. Then we have ∥UV −A∥1 = |E(G)△E(H)|. [CIK16] showed how to solve
the exact version of the problem, i.e., to recover U,V under the promise that A = UV, using

2O(k
2) poly(n, d) time. [KPRW19] recently gave the first constant-factor approximation algorithm

for this problem, achieving a C-approximation using 2poly(k) poly(n, d) time, for some constant
C ≥ 1222p−2 + 2p−1.

1.4 Preliminaries

For an integer n > 0, we use [n] to denote the set {1, 2, . . . , n}. We use poly(n) to represent a fixed
polynomial in n and more generally, poly(n1, . . . , nk) to represent a fixed multivariate polynomial
in n1, . . . , nk. For a function f(n1, . . . , nk), we use Õ (f(n1, . . . , nk)) to denote f(n1, . . . , nk) ·
poly(log f(n1, . . . , nk)).

We generally use bold-font variables to denote matrices. For a matrix A ∈ Rn×d, we use Ai to
denote the i-th row of A and A(j) to denote the j-th column of A. We use Ai,j to denote the entry
in the i-th row and j-th column of A. For p ≥ 1, we write the entrywise Lp norm of A as

∥A∥p =

∑
i∈[n]

∑
j∈[d]

Ap
i,j

1/p

.

The Frobenius norm of A, denoted ∥A∥F is simply the entrywise L2 norm of A:

∥A∥F =

∑
i∈[n]

∑
j∈[d]

A2
i,j

1/2

.

The entrywise L0 norm of A is

∥A∥0 = |{(i, j) | i ∈ [n], j ∈ [d] : Ai,j ̸= 0}| .

We use ◦ to denote vertical stacking of matrices, so that

A(1) ◦ . . . ◦A(m) =

A(1)

...

A(m)

 .

For a set X of n points in Rd weighted by a function w, the k-means clustering cost of X with
respect to a set S of k centers is defined as

Cost(X,S,w) :=
∑
x∈X

w(x) ·min
s∈S
∥x− s∥22.

When the weights w are uniformly unit across all points in X, we simply write Cost(X,S) =
Cost(X,S,w).

One of the core ingredients for avoiding the triangle inequality and achieving (1+ε)-approximation
is our use of coresets for k-means clustering:

9

Definition 1.1 (Strong coreset). Given an accuracy parameter ε > 0 and a set X of n points in
Rd, we say that a subset C of X with weights w is a strong ε-coreset of X for the k-means clustering
problem if for any set S of k points in Rd, we have

(1− ε)Cost(X,S) ≤ Cost(C, S,w) ≤ (1 + ε)Cost(X,S).

Many coreset construction exist in the literature, and the goal is to minimize |C|, the size of
the coreset, while preserving (1 ± ε)-approximate cost for all sets of k centers. If the points lie in
Rd, we can find coresets of size Õ

(
poly(k, d, ϵ−1)

)
, i.e., the size is independent of n.

Leverage scores. Finally, we recall the notion of a leverage score sampling matrix. For a matrix
A ∈ Rn×d, the leverage score of row ai with i ∈ [n] is defined as ai(A

⊤A)−1a⊤i . We can use the
leverage scores to generate a random leverage score sampling matrix as follows:

Theorem 1.2 (Leverage score sampling matrix). [DMM06a, DMM06b, Mag10, Woo14] Let C > 1
be a universal constant and α > 1 be a parameter. Given a matrix A ∈ Rn×d, let ℓi be the leverage

score of the i-th row of A. Suppose pi ∈
[
min

(
1, Cℓi log k

ε2

)
,min

(
1, Cαℓi log k

ε2

)]
for all i ∈ [n].

For m := O
(
α
ε2

d log d
)
, let S ∈ Rm×n be generated so that each row of S randomly selects row

j ∈ [n] with probability proportional to pj and rescales the row by 1√
mpj

. Then with probability at

least 0.99, we have that simultaneously for all vectors x ∈ Rd,

(1− ε)∥Ax∥2 ≤ ∥SAx∥2 ≤ (1 + ε)∥Ax∥2.

The main point of Theorem 1.2 is that given constant-factor approximations pi to the leverage
scores ℓi, it suffices to sample O (d log d) rows of A to achieve a constant-factor subspace embedding
of A, and similar bounds can be achieved for (1 + ε)-approximate subspace embeddings. Finally,
we remark that S can be decomposed as the product of matrices DT, where T ∈ Rm×n is a sparse
matrix with a single one per row, denoting the selection of a row for the purposes of leverage score
sampling and D is the diagonal matrix with the corresponding scaling factor, i.e., the i-th diagonal
entry of D is set to 1√

mpj
if the j-th row of A is selected for the i-th sample.

2 Binary Low-Rank Approximation

In this section, we present a (1 + ε)-approximation algorithm for binary low-rank approximation
with Frobenius norm loss, where to goal is to find matrices U ∈ {0, 1}n×k and V ∈ {0, 1}k×d to
minimize ∥UV −A∥2F . Suppose optimal low-rank factors are U∗ ∈ {0, 1}n×k and V∗ ∈ {0, 1}k×d,
so that

∥U∗V∗ −A∥2F = min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F .

Observe that if we knew matrices SU∗ and SA so that for all V ∈ {0, 1}k×d,

(1− ε)∥U∗V −A∥2F ≤ ∥SU∗V − SA∥2F ≤ (1 + ε)∥U∗V −A∥2F ,

then we could find a (1 + ε)-approximate solution for V∗ by solving the problem

argmin
V∈{0,1}k×d

∥SU∗V − SA∥2F

10

instead.
We would like to make guesses for the matrices SU∗ and SA, but first we must ensure there are

not too many possibilities for these matrices. For example, if we chose S to be a dense matrix with
random gaussian entries, then SU∗ could have too many possibilities because without additional
information, there are 2nk possibilities for the matrix U∗ ∈ {0, 1}n×k. We can instead choose S to
be a leverage score sampling matrix, which samples rows from U∗ and A. Since each row of U∗

has dimension k, then there are at most 2k distinct possibilities for each of the rows of U∗. On the
other hand, A ∈ {0, 1}n×d, so there may be 2d distinct possibilities for the rows of A, which is too
many to guess.

Thus we first reduce the number of unique rows in A by computing a strong coreset Ã for A.
The strong coreset has the property that for any choices of U ∈ {0, 1}n×k and V ∈ {0, 1}k×d, there
exists X ∈ {0, 1}n×k such that

(1− ε)∥UV −A∥2F ≤ ∥XV − Ã∥2F ≤ (1 + ε)∥UV −A∥2F .

Therefore, we instead first solve the low-rank approximation problem on Ã first. Crucially, Ã has

2poly(k/ε) unique rows so then for a matrix S that samples poly(k/ε) rows, there are
(
2poly(k/ε)

poly(k/ε)

)
=

2poly(k/ε) possible choices of SÃ, so we can enumerate all of them for both SU∗ and SÃ. We can
then solve

V′ = argmin
V∈{0,1}k×d

∥SU∗V − SÃ∥2F

and
U′ = argmin

U∈{0,1}n×k

∥UV′ −A∥2F ,

where the latter optimization problem can be solved by iteratively optimizing over each row, so that
the total computation time is O

(
2kn

)
rather than 2kn. We give the full algorithm in Algorithm 4

and the subroutine for optimizing with respect to Ã in Algorithm 3. We give the subroutines for
solving for V′ and U′ in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Algorithm for computing optimal V given U

Input: Ã ∈ {0, 1}N×d, U ∈ {0, 1}N×k

Output: V′ = argminV∈{0,1}k×d ∥UV − Ã∥F
1: for i = 1 to i = d do ▷Optimize for each column individually
2: Set V′(i) = argminV(i)∈{0,1}k×1 ∥UV(i) − Ã(i)∥2 ▷Enumerate over all 2k possible binary

vectors
3: return V′ =

[
V′(1)| . . . |V′(d)]

First, we recall that leverage score sampling matrices preserve approximate matrix multiplica-
tion.

Lemma 2.1 (Lemma 32 in [CW13]). Let U ∈ RN×k have orthonormal columns, Ã ∈ {0, 1}N×d,
and S ∈ Rm×N be a leverage score sampling matrix for U with m = O

(
1
ε2

)
rows. Then,

Pr
[
∥U⊤S⊤SÃ−U⊤Ã∥2F < ε2∥U∥2F ∥Ã∥2F

]
≥ 0.99.

Next, we recall that leverage score sampling matrices give subspace embeddings.

11

Algorithm 2 Algorithm for computing optimal U given V

Input: Ã ∈ {0, 1}N×d, V ∈ {0, 1}k×d

Output: U′ = argminU∈{0,1}N×k ∥UV − Ã∥F
1: for i = 1 to i = N do ▷Optimize for each row individually
2: Set U′

i = argminUi∈{0,1}1×k ∥UiV − Ãi∥2 ▷Enumerate over all 2k possible binary vectors

3: return U′ = U′
1 ◦ . . . ◦U′

N

Algorithm 3 Low-rank approximation for matrix Ã with t distinct rows

Input: Ã ∈ {0, 1}N×d with at most t distinct rows, rank parameter k, accuracy parameter ε > 0
Output: U′ ∈ {0, 1}n×k,V′ ∈ {0, 1}k×d satisfying the property that ∥U′V′ − A∥2F ≤ (1 +

ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥UV − Ã∥2F
1: V ← ∅
2: for each guess of SU∗ and SÃ, where S is a leverage score sampling matrix withm = O

(
k log k
ε2

)
rows with weights that are powers of two up to poly(N) do

3: V ← V ∪ argminV∈{0,1}k×d ∥SU∗V − SÃ∥2F ▷Algorithm 1

4: for each V ∈ V do
5: Let UV = argminU∈{0,1}N×k ∥UV − Ã∥2F ▷Algorithm 2

6: V′ ← argminV∈{0,1}k×d ∥SUVV − SÃ∥2F
7: U′ ← UV′

8: return (U′,V′)

Theorem 2.2 (Theorem 42 in [CW13]). For U ∈ RN×k, let S ∈ Rm×N be a leverage score sampling

matrix for U ∈ {0, 1}N×k with m = O
(
k log k
ε2

)
rows. Then with probability at least 0.99, we have

for all V ∈ Rk×d,
(1− ε)∥UV∥2F ≤ ∥SUV∥2F ≤ (1 + ε)∥UV∥2F .

Finally, we recall that approximate matrix multiplication and leverage score sampling suffices
to achieve an affine embedding.

Theorem 2.3 (Theorem 39 in [CW13]). Let U ∈ RN×k have orthonormal columns. Let S be a
sampling matrix that satisfies Lemma 2.1 with error parameter ε√

k
and also let S be a subspace

embedding for U with error parameter ε. Let V∗ = argminV ∥UV − Ã∥F and X = UV∗ − Ã.
Then for all V ∈ Rk×d,

(1− 2ε)∥UV − Ã∥2F − ∥X∥2F ≤ ∥SUV − SÃ∥2F − ∥SX∥2F ≤ (1 + 2ε)∥UV − Ã∥2F − ∥X∥2F .

We first show that Algorithm 3 achieves a good approximation to the optimal low-rank factors
for the coreset Ã.

Lemma 2.4. Suppose ε < 1
10 . Then with probability at least 0.97, the output of Algorithm 3 satisfies

∥U′V′ − Ã∥2F ≤ (1 + 6ε)∥U∗V∗ − Ã∥2F .

12

Proof. Let V′′ = argminV∈{0,1}k×d ∥SU∗V − Ã∥2F and let U′′ = argminU∈{0,1}N×k ∥SUV′′ − Ã∥2F
Since the algorithm chooses U′ and V′ over U′′ and V′′, then

∥U′V′ − Ã∥2F ≤ ∥U′′V′′ − Ã∥2F .

Due to the optimality of U′′,

∥U′′V′′ − Ã∥2F ≤ ∥U∗V′′ − Ã∥2F .

Let X = U∗V∗−Ã. Note that since U∗ has orthonormal columns, then by Lemma 2.1, the leverage
score sampling matrix S achieves approximate matrix multiplication with probability at least 0.99.
By Theorem 2.2, the matrix S also is a subspace embedding for U. Thus, S meets the criteria
for applying Theorem 2.3. Then for the correct guess DT of matrix S corresponding to U∗ and
conditioning on the correctness of S in Theorem 2.3,

∥U∗V′′ − Ã∥2F ≤
1

1− 2ε
[∥SU∗V′′ − SÃ∥2F − ∥SX∥2F + ∥X∥2F .]

Due to the optimality of V′′,

1

1− 2ε
[∥SU∗V′′ − SÃ∥2F − ∥SX∥2F + ∥X∥2F] ≤

1

1− 2ε
[∥SU∗V∗ − SÃ∥2F − ∥SX∥2F + ∥X∥2F].

Then again conditioning on the correctness of S,

1

1− 2ε
[∥SU∗V∗ − SÃ∥2F − ∥SX∥2F + ∥X∥2F]

≤ 1

1− 2ε
[(1 + 2ε)∥U∗V∗ − Ã∥2F + ∥SX∥2F − ∥X∥2F − ∥SX∥2F + ∥X∥2F]

≤ (1 + 6ε)∥U∗V∗ − Ã∥2F ,

for sufficiently small ε, e.g., ε < 1
10 . Thus, putting things together, we have that conditioned on

the correctness of S in Theorem 2.3,

∥U′V′ − Ã∥2F ≤ (1 + 6ε)∥U∗V∗ − Ã∥2F .

Since the approximate matrix multiplication property of Lemma 2.1, the subspace embedding
property of Theorem 2.2, and the affine embedding property of Theorem 2.3 all fail with probability
at most 0.01, then by a union bound, S succeeds with probability at least 0.97.

We now analyze the runtime of the subroutine Algorithm 3.

Lemma 2.5. Algorithm 3 uses 2O(m
2+m log t) poly(N, d) runtime for m = O

(
k log k
ε2

)
.

Proof. We analyze the number of possible guesses D and T corresponding to guesses of SÃ (see the

remark after Theorem 1.2). There are at most
(
t
m

)
= 2O(m log t) distinct subsets of m = O

(
k log k
ε2

)
rows of Ã. Thus there are 2O(m log t) possible matrices T that selects m rows of Ã, for the purposes
of leverage score sampling. Assuming the leverage score sampling matrix does not sample any rows
with leverage score less than 1

poly(N) , then there are O (logN)m = 2O(m log logN) total guesses for

13

the matrix D. Note that log n ≤ 2m implies that 2O(m log logN) ≤ 2O(m
2) while logN > 2m implies

that 2O(m log logN) ≤ 2O(log
2 logN) ≤ N . Therefore, there are at most 2O(m

2+m log t)N total guesses
for all combinations of T and D, corresponding to all guesses of SÃ.

For each guess of S and SÃ, we also need to guess SU∗. Since U∗ ∈ {0, 1}N×k is binary and T
samples m rows before weighting each row with one of O (logN) possible weights, the number of
total guesses for SU∗ is (2 · O (logN))mk.

Given guesses for SA and SU∗, we can then compute argminV∈{0,1}k×d ∥SU∗V − SA∥2F using

O
(
2kd

)
time through the subroutine Algorithm 1, which enumerates through all possible 2k binary

vectors for each column. For a fixed V, we can then compute UV = argminU∈{0,1}N×k ∥UV−A∥2F
using O

(
2kN

)
time through the subroutine Algorithm 2, which enumerates through all pos-

sible 2k binary vectors for each row of UV. Therefore, the total runtime of Algorithm 3 is

2O(m
2+m log t) poly(N, d).

We recall the following construction for a strong ε-coreset for k-means clustering.

Theorem 2.6 (Theorem 36 in [FSS20]). Let X ⊂ Rd be a subset of n points, ε ∈ (0, 1) be an accu-

racy parameter, and let t = O
(
k3 log2 k

ε4

)
. There exists an algorithm that uses O

(
nd2 + n2d+ nkd

ε2
+ nk2

ε2

)
time and outputs a set of t weighted points that is a strong ε-coreset for k-means clustering with
probability at least 0.99. Moreover, each point has an integer weight that is at most poly(n).

Algorithm 4 Low-rank approximation for matrix A

Input: A ∈ {0, 1}n×d, rank parameter k, accuracy parameter ε > 0
Output: U′ ∈ {0, 1}n×k,V′ ∈ {0, 1}k×d satisfying the property that ∥U′V′ − A∥2F ≤ (1 +

ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥UV −A∥2F
1: t← O

(
23kk2

ε4

)
▷Theorem 2.6 for 2k-means clustering

2: Compute a strong coreset C for 2k-means clustering of A, with size t and total weight N =
poly(n)

3: Let Ã ∈ {0, 1}N×d be the matrix representation of C, where weighted points are duplicated
appropriately

4: Let (Ũ, Ṽ) be the output of Algorithm 3 on input Ã
5: U′ ← argminU∈{0,1}n×k ∥UṼ −A∥2F , V′ ← Ṽ ▷Algorithm 2
6: return (U′,V′)

We now justify the correctness of Algorithm 4.

Lemma 2.7. With probability at least 0.95, Algorithm 4 returns U′,V′ such that

∥U′V′ −A∥2F ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F .

Proof. Let M̃ be the indicator matrix that selects a row of ŨṼ = ŨV′ to match to each row of A,
so that by the optimality of U′,

∥U′V′ −A∥2F ≤ ∥M̃ŨṼ −A∥2F .

14

Note that any V is a set of k points in {0, 1}d and so each row Ui of U induces one of at most 2k

possible points UiV ∈ {0, 1}d. Hence ∥UV−A∥2F is the objective value of a constrained 2k-means

clustering problem. Thus by the choice of t in Theorem 2.6, we have that Ã is a strong coreset, so
that

∥M̃ŨṼ −A∥2F ≤ (1 + ε)∥ŨṼ − Ã∥2F .

Let U∗ ∈ {0, 1}n×k and V∗ ∈ {0, 1}k×d such that

∥U∗V∗ −A∥2F = min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F .

Let M∗ be the indicator matrix that selects a row of U∗V∗ to match to each row of Ã, so that by
Lemma 2.4,

(1 + ε)∥ŨṼ − Ã∥2F ≤ (1 + ε)2∥M∗U∗V∗ − Ã∥2F .

Then by the choice of t in Theorem 2.6, we have that

(1 + ε)2∥M∗U∗V∗ − Ã∥2F ≤ (1 + ε)3∥U∗V∗ −A∥2F .

The desired claim then follows from rescaling ε.

We now analyze the runtime of Algorithm 4.

Lemma 2.8. Algorithm 4 uses 2Õ(k
2/ε4) poly(n, d) runtime.

Proof. By Theorem 2.6, it follows that Algorithm 4 uses O
(
nd2 + n2d+ nkd

ε2
+ nk2

ε2

)
time to com-

pute Ã ∈ {0, 1}N×d with N = poly(n). By Lemma 2.5, it follows that Algorithm 3 on input Ã

thus uses runtime 2O(m
2+m log t) poly(N, d) for m = O

(
k log k
ε2

)
and t = O

(
23kk2

ε4

)
. Finally, com-

puting U′ via Algorithm 2 takes O
(
2kn

)
time after enumerating through all possible 2k binary

vectors for each row of U′. Therefore, the total runtime of Algorithm 4 is 2
Õ
(

k2 log2 k

ε4

)
poly(n, d) =

2Õ(k
2/ε4) poly(n, d).

Combining Lemma 2.7 and Lemma 2.8, we have:

Theorem 2.9. There exists an algorithm that uses 2Õ(k
2/ε4) poly(n, d) runtime and with probability

at least 2
3 , outputs U′ ∈ {0, 1}n×k and V′ ∈ {0, 1}k×d such that

∥U′V′ −A∥2F ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F .

3 F2 Low-Rank Approximation

In this section, we present a (1+ε)-approximation algorithm for binary low-rank approximation on
F2, where to goal is to find matrices U ∈ {0, 1}n×k and V ∈ {0, 1}k×d to minimize the Frobenius
norm loss ∥UV−A∥2F , but now all operations are performed in F2. We would like to use the same
approach as in Section 2, i.e., to make guesses for the matrices SU∗ and SA while ensuring there are
not too many possibilities for these matrices. To do so for matrix operations over general integers,
we chose S to be a leverage score sampling matrix that samples rows from U∗ and A. We then

15

used the approximate matrix multiplication property in Lemma 2.1 and the subspace embedding
property in Theorem 2.2 to show that S provides an affine embedding in Theorem 2.3 over general
integers. However, it no longer necessarily seems true that S will provide an affine embedding over
F2, in part because the subspace embedding property of S computes leverage scores of each row
of U∗ and A with respect to general integers. Thus we require an alternate approach for matrix
operations over F2.

Instead, we form the matrix Ã by taking a strong coreset of A and then duplicating the rows
according to their weight wi to form Ã. That is, if the i-th row Ai of A is sampled with weight
wi in the coreset, then Ã will contain wi repetitions of the row Ai, where we note that wi is an
integer. We then group the rows of Ã by their repetitions, so that group Gj consists of the rows of

Ã that are repeated [(1 + ε)j , (1+ ε)j+1) times. Thus if Ai appears wi times in Ã, then it appears
a single time in group Gj for j = ⌊logwi⌋.

We perform entrywise L0 low-rank approximation over F2 for each of the groups Gj , which gives

low-rank factors U(j) and V(j). We then compute Ũ(j) ∈ Rn×d from U(j) by following procedure.

If Ai is in Gj , then we place the row of U(j) corresponding to Ai into the i-th row of Ũ(j), for
all i ∈ [n]. Note that the row of U(j) corresponding to Ai may not be the i-th row of U(j), e.g.,
since Ai will appear only once in Gj even though it appears wi ∈ [(1 + ε)j , (1 + ε)j+1) times in A.

Otherwise if Ai is not in Gj , then we set i-th row of Ũ(j) to be the all zeros row. We then achieve
V(j) by padding accordingly. Finally, we collect

Ũ =
[
Ũ(0)| . . . |Ũ(ℓ)

]
, Ṽ← Ṽ(0) ◦ . . . ◦ Ṽ(i)

to achieve bicriteria low-rank approximations Ũ and Ṽ to Ã. Finally, to achieve bicriteria low-
rank approximations U′ and V′ to A, we require that U′ achieves the same block structure as Ũ.
We describe this subroutine in Algorithm 5 and we give the full low-rank approximation bicriteria
algorithm in Algorithm 6.

We first recall the following subroutine to achieve entrywise L0 low-rank approximation over
F2. Note that for matrix operations over F2, we have that the entrywise L0 norm is the same as
the entrywise Lp norm for all p.

Lemma 3.1 (Theorem 3 in [BBB+19]). For ε ∈ (0, 1), there exists a (1 + ε)-approximation algo-
rithm to entrywise L0 rank-k approximation over F2 running in d · npoly(k/ε) time.

Algorithm 5 Algorithm for computing optimal U given V(1), . . . ,V(ℓ)

Input: Ã ∈ {0, 1}N×d, V(1), . . . ,V(ℓ) ∈ {0, 1}k×d

Output: U′ = argminU∈{0,1}N×ℓk ∥UV − Ã∥F , where U is restricted to one nonzero block of k
coordinates

1: for i = 1 to i = N do
2: Set (U′

i, j
′) = argminUi∈{0,1}1×k,j∈[ℓ] ∥UiV

(j) − Ãi∥2 ▷Enumerate over all 2k possible
binary vectors, all ℓ indices

3: Pad U′
i with length ℓk, as the j′-th block of k coordinates

4: return U′ = U′
1 ◦ . . . ◦U′

N

We first justify the correctness of Algorithm 6.

16

Algorithm 6 Bicriteria low-rank approximation on F2 for matrix A

Input: A ∈ {0, 1}n×d, rank parameter k, accuracy parameter ε > 0
Output: U′ ∈ {0, 1}n×k,V′ ∈ {0, 1}k×d satisfying the property that ∥U′V′ − A∥2F ≤ (1 +

ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥UV −A∥2F , where all matrix operations are performed in F2

1: ℓ← O
(
logn
ε

)
, t← O

(
(2kℓ)3k2

ε4

)
, k′ ← ℓk ▷Theorem 2.6 for 2k-means clustering

2: Compute a strong coreset C for 2k-means clustering of A, with size t and total weight N =
poly(n)

3: Let Ã ∈ {0, 1}N×d be the matrix representation of C, where weighted points are duplicated
appropriately

4: For i ∈ [ℓ], let G(i) be the group of rows (removing multiplicity) of Ã with frequency [(1 +
ε)i, (1 + ε)i+1)

5: Let (Ũ(i), Ṽ(i)) be the output of Lemma 3.1 on input G(i), padded to Rn×k and Rk×d, respec-
tively

6: Ṽ← Ṽ(0) ◦ . . . ◦ Ṽ(ℓ)

7: Use Algorithm 5 with Ṽ(0), . . . , Ṽ(ℓ) and A to find U′

8: return (U′,V′) with V′ = Ṽ

Lemma 3.2. With probability at least 0.95, Algorithm 6 returns U′,V′ such that

∥U′V′ −A∥2F ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F ,

where all matrix operations are performed in F2.

Proof. Let Ũ←
[
Ũ(0)| . . . |Ũ(ℓ)

]
in Algorithm 6. Let M̃ be the indicator matrix that selects a row

of ŨṼ = ŨV′ to match to each row of A, so that by the optimality of U′,

∥U′V′ −A∥2F ≤ ∥M̃ŨṼ −A∥2F .

Since V is a set of k points in {0, 1}d and each row Ui of U induces one of at most 2k possible
points UiV ∈ {0, 1}d, then ∥UV−A∥2F is the objective value of a constrained 2k-means clustering
problem, even when all operations performed are on F2. Similarly, V(j) is a set of k points in {0, 1}d
for each j ∈ [ℓ]. Each row Ui of U induces one of at most 2k possible points UiV

(j) ∈ {0, 1}d for
a fixed j ∈ [ℓ], so that ∥UV′ −A∥2F is the objective value of a constrained 2kℓ-means clustering
problem, even when all operations performed are on F2.

Hence by the choice of t in Theorem 2.6, it follows that Ã is a strong coreset, and so

∥M̃ŨṼ −A∥2F ≤ (1 + ε)∥ŨṼ − Ã∥2F .

We decompose the rows of Ã into G(0), . . . ,G(ℓ) for ℓ = O
(
logn
ε

)
. Let Gi be the corresponding

indices in [n] so that j ∈ Gi if and only if Ãj is nonzero in Gi. Then we have

∥ŨṼ − Ã∥2F =
∑
i∈[ℓ]

∑
j∈Gi

∥U′
jV

′ − Ãj∥2F .

17

Since each row in Gi is repeated a number of times in [(1 + ε)i, (1 + ε)i+1), then∑
j∈Gi

∥U′
jV

′ − Ãj∥2F ≤ (1 + ε)2 min
U(i)∈{0,1}n×k,V(i)∈{0,1}×k×d

∥U(i)V(i) −G(i)∥2F ,

where the first factor of (1 + ε) is from the (1 + ε)-approximation guarantee of U(i) and V(i) by
Lemma 3.1 and the second factor of (1 + ε) is from the number of each row in G(i) varying by at
most a (1 + ε) factor. Therefore,

∥U′V′ −A∥2F ≤ (1 + ε)3
∑
i∈[ℓ]

min
U(i)∈{0,1}n×k,V(i)∈{0,1}k×d

∥U(i)V(i) −G(i)∥2F

≤ (1 + ε)3 min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV − Ã∥2F .

Let U∗ ∈ {0, 1}n×k and V∗ ∈ {0, 1}k×d such that

∥U∗V∗ −A∥2F = min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F ,

where all operations are performed in F2. Let M∗ be the indicator matrix that selects a row of
U∗V∗ to match to each row of Ã, so that by Lemma 2.4,

min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV − Ã∥2F ≤ (1 + ε)∥M∗U∗V∗ − Ã∥2F .

Then by the choice of t in Theorem 2.6 so that Ã is a strong coreset of A,

∥M∗U∗V∗ − Ã∥2F ≤ (1 + ε)∥U∗V∗ −A∥2F .

Therefore, we have
∥U′V′ −A∥2F ≤ (1 + ε)5∥U∗V∗ −A∥2F

and the desired claim then follows from rescaling ε.

It remains to analyze the runtime of Algorithm 6.

Lemma 3.3. Algorithm 6 uses 2poly(k/ε) poly(n, d) runtime.

Proof. By Theorem 2.6, we have that Algorithm 6 usesO
(
nd2 + n2d+ nkd

ε2
+ nk2

ε2

)
time to compute

Ã ∈ {0, 1}N×d with N = poly(n). By Lemma 3.1, it takes d · (2k)poly(k/eps) time to compute

Ũ(i), Ṽ(i) for each i ∈ [ℓ] for ℓ = O
(
logn
ε

)
. Hence, it takes 2poly(k/eps) poly(n, d) runtime to compute

Ũ and Ṽ. Finally, computing U′ via Algorithm 5 takes O
(
2k

′
n
)
time after enumerating through

all possible 2kℓ binary vectors for each row of U′. Therefore, the total runtime of Algorithm 4 is
2poly(k/ε) poly(n, d).

By Lemma 3.2 and Lemma 3.3, we thus have:

Theorem 3.4. There exists an algorithm that uses 2poly(k/ε) poly(n, d) runtime and with probability
at least 2

3 , outputs U′ ∈ {0, 1}n×k′ and V′ ∈ {0, 1}k′×d such that

∥U′V′ −A∥2F ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F ,

where k′ = O
(
k log k

ε

)
.

18

4 Lp Low-Rank Approximation

In this section, we present a (1 + ε)-approximation algorithm for binary low-rank approximation
with Lp loss, where to goal is to find matrices U ∈ {0, 1}n×k and V ∈ {0, 1}k×d to minimize
∥UV −A∥pp. We would like to use the same approach as in Section 2, where we first compute a

weighted matrix Ã from a strong coreset for A, and then we make guesses for the matrices SU∗ and
SA and solve for minV∈{0,1}k×d ∥SU∗V−SA∥2F while ensuring there are not too many possibilities
for the matrices SU∗ and SA. Thus to adapt this approach to Lp loss, we first require the following
strong coreset construction for discrete metrics:

Theorem 4.1 (Theorem 1 in [CSS21]). Let X ⊂ Rd be a subset of n points, ε ∈ (0, 1) be an
accuracy parameter, p ≥ 1 be a constant, and let

t = O
(
min(ε−2 + ε−p, kε−2) · k log n

)
.

There exists an algorithm that uses poly(n, d, k) runtime and outputs a set of t weighted points that
is a strong ε-coreset for k-clustering on discrete Lp metrics with probability at least 0.99. Moreover,
each point has an integer weight that is at most poly(n).

For Frobenius error, we crucially require the affine embedding property that

(1− ε)∥U∗V −A∥2F ≤ ∥SU∗V − SA∥2F ≤ (1 + ε)∥U∗V −A∥2F ,

for all V ∈ {0, 1}k×d. Unfortunately, it is not known whether there exists an efficient sampling-
based affine embedding for Lp loss.

We instead invoke the coreset construction of Theorem 4.1 on the rows and the columns so
that Ã has a small number of distinct rows and columns. We again use the idea from Section 3
to partition the rows of Ã into groups based on their frequency, but now we further partition the
groups based on the frequency of the columns. It then remains to solve BMF with Lp loss on the
partition, each part of which has a small number of rows and columns. Because the contribution
of each row toward the overall loss is small (because there is a small number of columns), it turns
out that there exists a matrix that samples poly(k/ε) rows of each partition that finally achieves
the desired affine embedding. Thus, we can solve the problem on each partition, pad the factors
accordingly, and build the bicriteria factors as in the binary field case. The algorithm appears in
full in Algorithm 9, with subroutines appearing in Algorithm 7 and Algorithm 8.

Algorithm 7 Algorithm for computing optimal U given V(1), . . . ,V(ℓ)

Input: Ã ∈ {0, 1}N×d, V(1), . . . ,V(ℓ) ∈ {0, 1}k×d

Output: U′ = argminU∈{0,1}N×ℓk ∥UV − Ã∥pp, where U is restricted to one nonzero block of k
coordinates

1: for i = 1 to i = N do
2: Set (U′

i, j
′) = argminUi∈{0,1}1×k,j∈[ℓ] ∥(UiV

(j) − Ãi∥pp ▷Enumerate over all 2k possible
binary vectors, all ℓ indices

3: Pad U′
i with length ℓk, as the j′-th block of k coordinates

4: return U′ = U′
1 ◦ . . . ◦U′

N

We first justify the correctness of Algorithm 8 by showing the existence of an L0 sampling
matrix S that achieves a subspace embedding for binary inputs.

19

Algorithm 8 Low-rank approximation for matrix Ã with t distinct rows and t′ distinct columns

Input: Ã ∈ {0, 1}N×D with at most t distinct rows and r distinct columns
Output: U′,V′ with ∥UV − Ã∥p ≤ (1 + ε)minU∈{0,1}N×k,V∈{0,1}k×D ∥UV − Ã∥p
1: V ← ∅
2: for each guess of SU∗ and SA, where S is a L0 sampling matrix with m = O

(
kp+1

ε2
log r

)
rows

with weights that are powers of two up to poly(N) do
3: V ← V ∪ argminV∈{0,1}k×D ∥SU∗V − SA∥pp ▷Algorithm 1 with Lp loss

4: for each V ∈ V do
5: Let UV = argminU∈{0,1}N×k ∥UV −A∥pp ▷Algorithm 2 with Lp loss

6: V′ ← argminV∈{0,1}k×d ∥SUVV − SA∥pp
7: U′ ← UV′

8: return (U′,V′)

Algorithm 9 Bicriteria low-rank approximation with Lp loss for matrix A

Input: A ∈ {0, 1}n×d, rank parameter k, accuracy parameter ε > 0
Output: U′ ∈ {0, 1}n×k,V′ ∈ {0, 1}k×d satisfying the property that ∥U′V′ − A∥pp ≤ (1 +

ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥UV −A∥pp
1: t← O

(
min(ε−2 + ε−p, kε−2) · k log n

)
▷Theorem 4.1

2: ℓ← O
(
logn
ε

)
, k′ ← ℓk

3: Compute a strong coreset C for 2k-means clustering ofA, with t rows, with weightsN = poly(n)
4: Compute a strong coreset C ′ for 2k-means clustering of C, with t rows and columns, with

weights N,D = poly(n)
5: Let Ã ∈ {0, 1}N×D be the matrix representation of C, where weighted points are duplicated

appropriately
6: For i ∈ [ℓ], let G(i) be the group of rows (removing multiplicity) of Ã with frequency [(1 +

ε)i, (1 + ε)i+1)
7: For i, j ∈ [ℓ], let G(i,j) be the group of columns (removing multiplicity) of G(i,j) with frequency

[(1 + ε)j , (1 + ε)j+1)

8: Compute the low-rank minimizers (Ũ(i,j), Ṽ(i,j)) on input G(i,j) using Algorithm 8, padded to
Rn×k and Rk×D, respectively

9: Ũ←
[
Ũ(0,0)|Ũ(1,0)| . . . |Ũ(ℓ,ℓ)

]
, Ṽ← Ṽ(0,0) ◦ Ṽ(1,0) . . . ◦ Ṽ(ℓ,ℓ)

10: Use Algorithm 7 with Ũ(0,0), Ũ(1,0) . . . , Ũ(ℓ,ℓ) and C to find V′

11: Use V′ and A to find U′, i.e., Algorithm 2 with dimension k′ and Lp loss
12: return (U′,V′)

Lemma 4.2. Given matrices A ∈ {0, 1}n×k and B ∈ {0, 1}n×r, there exists a matrix S ∈ Rm×n

with m = O
(
kp+1

ε2
log r

)
such that with probability at least 0.99, we have that simultaneously for all

X ∈ {0, 1}k×r,
(1− ε)∥AX−B∥pp ≤ ∥SAX− SB∥pp ≤ (1 + ε)∥AX−B∥pp.

Proof. Let M ∈ {0, 1, . . . , k}n×1 be an arbitrary matrix and let S be a set that contains the nonzero

20

rows of M and has cardinality that is a power of two. That is, |S| = 2i for some integer i ≥ 0. Let
z be a random element of S, i.e., a random non-zero row of M, so that we have

E
[
2i · ∥z∥pp

]
= ∥M∥pp.

Similarly, we have
Var(2i · ∥z∥pp) ≤ 2ikp ≤ 2kp∥M∥pp.

Hence if we repeat take the mean of O
(
kp

ε2

)
estimators, we have that with probability at least 0.99,

(1− ε)∥M∥pp ≤ ∥SM∥pp ≤ (1 + ε)∥M∥pp.

We can further improve the probability of success to 1 − δ for δ ∈ (0, 1) by repeating O
(
log 1

δ

)
times. By setting M = Ax − B(i) for fixed A ∈ {0, 1}n×k, x ∈ {0, 1}k, and B ∈ {0, 1}n×r with
i ∈ [r], we have that the sketch matrix gives a (1 + ε)-approximation to ∥Ax−B(i)∥pp. The result
then follows from setting δ = 1

2kr
, taking a union bound over all x ∈ {0, 1}k, and then a union

bound over all i ∈ [r].

We then justify the correctness of Algorithm 9.

Lemma 4.3. With probability at least 0.95, Algorithm 9 returns U′,V′ such that

∥U′V′ −A∥pp ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥pp.

Proof. Let M1 and M2 be the sampling and rescaling matrices used to acquire Ã ∈ RN×D, so that
by the optimality of U′,

∥U′V′ −A∥pp ≤ ∥M1ŨṼM2 −A∥pp.

Observe that V is a set of k points in {0, 1}d. Thus, each row Ui of U induces one of at
most 2k possible points UiV ∈ {0, 1}d. Hence, ∥UV −A∥pp is the objective value of a constrained
2k-clustering problem under the Lp metric. Similarly, since V(j) is a set of k points in {0, 1}d for
each j ∈ [ℓ], then each row Ui of U induces one of at most 2k possible points UiV

(j) ∈ {0, 1}d for a
fixed j ∈ [ℓ]. Therefore, ∥UV′−A∥pp is the objective value of a constrained 2kℓ-clustering problem
under the Lp metric.

By the choice of t in Theorem 4.1, Ã is a strong coreset, and so

∥M1ŨṼM2 −A∥2F ≤ (1 + ε)∥ŨṼ − Ã∥2F .

We decompose the rows of Ã into groups G(0), . . . ,G(ℓ) for ℓ = O
(
logn
ε

)
. For each group G(i),

we decompose the columns of G(i) into groups G(i,0), . . . ,G(i,ℓ) for ℓ = O
(
logn
ε

)
. Let Gi be the

indices in [n] corresponding to the rows in G(i) and let Gi,j be the indices in [n] corresponding to
the columns in G(i,j). Then

∥ŨṼ − Ã∥pp =
∑
i∈[ℓ]

∑
a∈Gi

∑
j∈[ℓ]

∑
b∈Gi,j

∣∣∣(U′V′)a,b − Ãa,b

∣∣∣p .

21

Since each row in Gi is repeated a number of times in [(1+ ε)i, (1+ ε)i+1) and each column in Gi,j

is repeated a number of times in [(1 + ε)i, (1 + ε)i+1), then∑
a∈Gi

∑
b∈Gi,j

∣∣∣(U′V′)a,b − Ãa,b

∣∣∣p ≤ (1 + ε)3 min
U∈{0,1}n×k,V∈{0,1}×k×d

∑
a∈Gi

∑
b∈Gi,j

∣∣∣(UV)a,b − Ãa,b

∣∣∣p ,
where the first factor of (1 + ε) is from the (1 + ε)-approximation guarantee of U(i) and V(i) by
Lemma 3.1 and the second and third factors of (1 + ε) is from the number of each row and each
column in G(i,j) varying by at most (1 + ε) factor. Therefore,

∥U′V′ −A∥pp ≤ (1 + ε)
∑
i∈[ℓ]

∑
a∈Gi

∑
j∈[ℓ]

∑
b∈Gi,j

∣∣∣(U′V′)a,b − Ãa,b

∣∣∣p
≤ (1 + ε)4 min

U∈{0,1}n×k,V∈{0,1}k×d
∥UV − Ã∥pp

Let U∗ ∈ {0, 1}n×k and V∗ ∈ {0, 1}k×d be minimizers to the binary Lp low-rank approximation
problem, so that

∥U∗V∗ −A∥pp = min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥pp.

Let M3 and M4 be the indicator matrices that select rows and columns of U∗V∗ to match to each
row of Ã, so that by Lemma 2.4,

min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV − Ã∥pp ≤ (1 + ε)∥M3U
∗V∗M4 − Ã∥pp.

Then by the choice of t in Theorem 4.1 so that Ã is a strong coreset of A,

∥M3U
∗V∗M4 − Ã∥pp ≤ (1 + ε)∥U∗V∗ −A∥pp.

Therefore,
∥U′V′ −A∥pp ≤ (1 + ε)6∥U∗V∗ −A∥pp

and the desired claim then follows from rescaling ε.

We now analyze the runtime of Algorithm 9.

Lemma 4.4. For any constant p ≥ 1, Algorithm 9 uses 2poly(k/ε) poly(n, d) runtime.

Proof. By Theorem 4.1, we have that Algorithm 9 uses 2O(k) · poly(n, d) time to compute Ã ∈
{0, 1}N×D with N,D = poly(n). We now consider the time to compute Ũ(i,j), Ṽ(i,j) for each

i, j ∈ [ℓ] for ℓ = O
(
logn
ε

)
. For each i, j, we make guesses for SU∗ and SA in Since SU∗ and SA

have m = O
(
kp+1 log r

ε2

)
rows, then there are

(
t
m

)
possible choices for SU∗ and

(
t
m

)
choices for SA,

where t = 2k logn
εp . Hence, there are 2poly(k/ε) poly(n, d) possible guesses for SU∗ and SA.

For each guess of SU∗ and SA, Algorithm 8 iterates through the columns of Ṽ(i,j), which uses

2O(k) · poly(n, d) time. Similarly, the computation of Ũ(i,j), U′, and V′ all take 2O(k) · poly(n, d)
time. Therefore, the total runtime of Algorithm 9 is 2poly(k/ε) poly(n, d).

22

By Lemma 4.3 and Lemma 4.4, we thus have:

Theorem 4.5. For any constant p ≥ 1, there exists an algorithm that uses 2poly(k/ε) poly(n, d)
runtime and with probability at least 2

3 , outputs U′ ∈ {0, 1}n×k′ and V′ ∈ {0, 1}k′×d such that

∥U′V′ −A∥pp ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥pp,

where k′ = O
(
k log2 k

ε2

)
.

We note here that the poly(k/ε) term in the exponent hides a kp factor, as we assume p to be
a (small) constant.

5 Applications to Big Data Models

This section describes how we can generalize our techniques to big data models such as streaming
or distributed models.

Algorithmic modularization. To adapt our algorithm to the streaming model or the dis-
tributed model, we first present a high-level modularization of our algorithm across all applications,
i.e., Frobenius binary low-rank approximation, binary low-rank approximation over F2, and binary
low-rank approximation with Lp loss. We are given the input matrix A ∈ {0, 1}n×d in each of these

settings. We first construct a weighted coreset Ã for A. We then perform a number of operations
on Ã to obtain low-rank factors Ũ and Ṽ for Ã. Setting V′ = Ṽ, our algorithms finally use A and
V′ to construct the optimal factor U′ to match V′.

5.1 Streaming Model

We can adapt our approach to the streaming model, where either the rows or columns of the input
matrix arrive sequentially. For brevity, we shall only discuss the setting where the rows of the input
matrix arrive sequentially; the setting where the columns of the input matrix arrive sequentially is
symmetric.

Formal streaming model definition. We consider the two-pass row-arrival variant of the
streaming model. In this setting, the rank parameter k and the accuracy parameter ε > 0 are
given to the algorithm before the data stream. The input matrix A ∈ {0, 1}n×d is then defined
through the sequence of row-arrivals, A1, . . . ,An ∈ {0, 1}d, so that the i-th row that arrives in the
data stream is Ai. The algorithm passes over the data twice so that in the first pass, it can store
some sketch S that uses space sublinear in the input size, i.e., using o(nd) space. After the first pass,
the algorithm can perform some post-processing on S and then must output factors U ∈ {0, 1}n×k

and V ∈ {0, 1}k×d after being given another pass over the data, i.e., the rows A1, . . . ,An ∈ {0, 1}d.

Two-pass streaming algorithm. To adapt our algorithm to the two-pass streaming model,
recall the high-level modularization of our algorithm described at the beginning of Section 5. The
first step is constructing a coreset Ã of A. Whereas our previous coreset constructions were offline,
we now require a streaming algorithm to produce the coreset Ã. To that end, we use the following

23

well-known merge-and-reduce paradigm for converting an offline coreset construction to a coreset
construction in the streaming model.

Theorem 5.1. Suppose there exists an algorithm that, with probability 1 − 1
poly(n) , produces an

offline coreset construction that uses f(n, ε) space, suppressing dependencies on other input pa-
rameters, such as k and p. Then there exists a one-pass streaming algorithm that, with probability
1− 1

poly(n) , produces a coreset that uses f(n, ε′) · O (log n) space, where ε′ = ε
logn .

In the first pass of the stream, we can use Theorem 5.1 to construct a strong coreset C of
A with accuracy O (ε). However, C will have 2poly(k) · poly

(
1
ε , log n

)
rows, and thus, we cannot

immediately duplicate the rows of C to form Ã because we cannot have log n dependencies in the
number of rows of Ã.

After the first pass of the stream, we further apply the respective offline coreset construction,
i.e., Theorem 2.6 or Theorem 4.1 to C to obtain a coreset C ′ with accuracy ε and a number of
rows independent of log n. We then use C ′ to form Ã and perform a number of operations on Ã
to obtain low-rank factors Ũ and Ṽ for Ã. Setting V′ = Ṽ, we can finally use the second pass of
the data stream over A, along with V′, to construct the optimal factor U′ to match V′. Thus the
two-pass streaming algorithm uses 2poly(k) · d · poly

(
1
ε , log n

)
total space in the row-arrival model.

For the column-arrival model, the two-pass streaming algorithm uses 2poly(k) ·n ·poly
(
1
ε , log d

)
total

space.

5.2 Two-round distributed algorithm.

Our approach can also be adapted to the distributed model, where the rows or columns of the input
matrix are partitioned across multiple users. For brevity, we again discuss the setting where the
rows of the input matrix are partitioned; the setting where the columns of the input matrix are
partitioned is symmetric.

Formal distributed model definition. We consider the two-round distributed model, where
the rank parameter k and the accuracy parameter ε > 0 are known in advance to all users. The
input matrix A ∈ {0, 1}n×d is then defined arbitrarily through the union of rows, A1, . . . ,An ∈
{0, 1}d, where each row Ai may be given to any of γ users. An additional central coordinator
sends and receives messages from the users. The protocol is then permitted to use two rounds of
communication so that in the first round, the protocol can send o(nd) bits of communication. The
coordinator can process the communication to form some sketch S, perform some post-processing
on S, and then request additional information from each user, possibly using o(nd) communication
to specify the information demanded from each user. After the users again use o(nd) bits of
communication in the second round of the protocol, the central coordinator must output factors
U ∈ {0, 1}n×k and V ∈ {0, 1}k×d.

Two-round distributed algorithm. To adapt our algorithm to the two-round distributed
model, again recall the high-level modularization of our algorithm described at the beginning of
Section 5. The first step is constructing a coreset Ã of A. Whereas our previous coreset construc-
tions were offline, we now require a distributed algorithm to produce the coreset Ã. To that end,
we request that each of the t users send a coreset with accuracy O (ε) of their respective rows.
Note that each user can construct the coreset locally without requiring any communication since

24

the coreset is only a summary of the rows held by the user. Thus the total communication in the
first round is just the offline coreset size times the number of players, i.e., γ ·2poly(k) ·poly

(
1
ε , log n

)
rows.

Given the union C of the coresets sent by all users, the central coordinator then constructs a
coreset C ′ of A with accuracy ε, again using an offline coreset construction. The coordinator then
uses C ′ to form Ã and performs the required operations on Ã to obtain low-rank factors Ũ and Ṽ
for Ã.

The coordinator can then send V′ to all players, using V′ and their local subset rows of A
to construct U′ collectively. The users then send the rows of U′ corresponding to the rows of A
local to the user back to the central coordinator, who can then construct U′. Thus the second
round of the protocol uses Õ (nk + kd) · poly

(
1
ε

)
bits of communication. Hence, the total com-

munication of the protocol is dγ · 2poly(k) · poly
(
1
ε , log n

)
+ Õ (nk + kd) · poly

(
1
ε

)
in the two-round

row-partitioned distributed model. For the two-round column-partitioned distributed model, the
total communication of the protocol is nγ · 2poly(k) · poly

(
1
ε , log d

)
+ Õ (nk + kd) · poly

(
1
ε

)
.

6 Experiments

In this section, we aim to evaluate the feasibility of the algorithmic ideas of our paper against
existing algorithms for binary matrix factorization from previous literature. The running time of
our full algorithms for BMF is prohibitively expensive, even for small k, so our algorithm will be
based on the idea of [KPRW19], who only run their algorithms in part, obtaining weaker theoretical
guarantees. Indeed, by simply performing k-means clustering, they obtained a simple algorithm
that outperformed more sophisticated heuristics in practice.

We perform two main types of experiments, first comparing the algorithm presented in the next
section against existing baselines and then showing the feasibility of using coresets in the BMF
setting.

Baseline and algorithm. We compare several algorithms for binary matrix factorization that
have implementations available online, namely the algorithm by Zhang et al. [ZLDZ07], which has
been implemented in the NIMFA library [ZZ12], the message passing algorithm of Ravanbakhsh et
al. [RPG16], as well as our implementation of the algorithm used in the experiments of [KPRW19].
We refer to these algorithms as Zh, MP, and kBMF, respectively. We choose the default parameters
provided by the implementations. We chose the maximum number of rounds for the iterative
methods so that the runtime does not exceed 20 seconds, as all methods besides [KPRW19] are
iterative. However, in our experiments, the algorithms usually converged to a solution below
the maximum number of rounds. We let every algorithm use the matrix operations over the
preferred semiring, i.e. boolean, integer, or and-or matrix multiplication, in order to achieve the
best approximation. We additionally found a binary matrix factorization algorithm for sparse
matrices based on subgradient descent and random sampling1 that is not covered in the literature.
This algorithm was excluded from our experiments as it did not produce binary factors in our
experiments. Specifically, we found that it produces real-valued U and V, and requires binarizing
the product UV after multiplication, therefore not guaranteeing that the binary matrix is of rank
k.

1https://github.com/david-cortes/binmf

25

https://github.com/david-cortes/binmf

0 10

0

10

20

30

40

Congress

0 10

0

10

20

30

40

kBMF Approximation

0 10

0

10

20

30

40

kBMF+ Approximation

0 10

0

10

20

30

40

0 10

0

10

20

30

40

Fig. 1: A demonstration of the improved approximation of our algorithm over the algorithm used
in the experiments of [KPRW19]. In the first column, we show the first 50 rows of the congress data
set, where purple indicates 0 and yellow indicates 1. The next columns show the approximation
of [KPRW19], and our algorithm’s approximation, both with k = 10. The second row indicates
the entries in which the respective approximations differ from the original dataset in yellow. Our
experiments found that the number of wrongly reconstructed entries almost halved from the kBMF
to the kBMF+ algorithm on this dataset for k = 10.

Motivated by the idea of partially executing a more complicated algorithm with strong the-
oretical guarantees, we build upon the idea of finding a k-means clustering solution as a first
approximation and mapping the Steiner points to their closest neighbors in A, giving us a matrix
V of k binary points, and a matrix U of assignments of the points of A to their nearest neighbors.
This solution restricts U to have a single non-zero entry per row. Instead of outputting this U
as [KPRW19] did, we solve the minimization problem minU∈{0,1}n×k ∥UV−A∥2F exactly at a cost

of 2k per row, which is affordable for small k. For a qualitative example of how this step improves
the solution quality, see Figure 1. We call this algorithm kBMF+.

Using k-means as the first step in a binary matrix factorization algorithm is well-motivated
by the theoretical and experimental results of [KPRW19], but does not guarantee a (1 + ε)-
approximation. However, as we do not run the full algorithm, we are not guaranteed a (1 + ε)-
approximation either way, as unfortunately, guessing the optimal matrix V is very time-consuming.
We would first have to solve the sketched problem ∥SÃ− SUV∥2F for all guesses of SA and SU.

We implement our algorithm and the one of [KPRW19] in Python 3.10 and numpy. For solving
k-means, we use the implementation of Lloyd’s algorithm with k-means++ seeding provided by
the scikit-learn library [PVG+11]. All experiments were performed on a Linux notebook with
a 3.9 GHz 12th generation Intel Core i7 six-core processor with 32 gigabytes of RAM.

26

Datasets. We use both real and synthetic data for our experiments. We choose two datasets
from the UCI Machine Learning Repository [DG17], namely the voting record of the 98th Congress,
consisting of 435 rows of 16 binary features representing each congressperson’s vote on one of 16
bills, and the Thyroid dataset2, of 9371 patient data comprising 31 features. We restricted ourselves
to only binary features, leaving us with 21 columns. Finally, we use the ORL dataset of faces, which
we binarize using a threshold of 0.33, as in [KPRW19].

For our synthetic data, we generate random matrices, where each entry is set to be 1 inde-
pendently with probability p, at two different sparsity levels of p ∈ {0.1, 0.5}. Additionally, we
generate low-rank matrices by generating U ∈ {0, 1}n×k and V ∈ {0, 1}k×d and multiplying them
together in F2. We generate U and V at different sparsity levels of 0.5 and 0.1, for k ∈ {5, 10, 15}.
Finally, we also use these matrices with added noise, where after multiplying, each bit is flipped
with probability pe ∈ {0.01, 0.001}.

We generate 25 matrices of size 250 × 50 for each configuration. These classes are named, in
order of introduction: full, lr, and noisy.

Limitations. We opted to use only binary datasets, thus limiting the available datasets for
our experiments. Because of this, our largest dataset’s size is less than 10000. Our algorithms
are practical for these sizes and the parameters k we have chosen. Investigating the feasibility of
algorithms for binary matrix factorization for large datasets may be an interesting direction for
future research.

6.1 Comparing Algorithms for BMF

Synthetic data. For each algorithm, Table 2 shows the mean Frobenius norm error (i.e. errA(U,V) =
∥UV−A∥F) across 10 runs of each algorithm and the mean runtime in milliseconds for the synthetic
datasets described above. For our choices of parameters, we find that all algorithms terminate in
under a second, with Zhang’s algorithm and BMF being the fastest and the message-passing algo-
rithm generally being the slowest. This is, of course, also influenced by the fact that the algorithms’
implementations use different technologies, which limits the conclusions we can draw from the data.
We find that the kBMF+ algorithm slows down by a factor of 1.5 for small k ∈ {2, 3, 5}, and 15
when k = 15, compared to the kBMF algorithm.

This is offset by the improved error, where our algorithm kBMF+ generally achieves the best
approximation for dense matrices, being able to sometimes find a perfect factorization, for example,
in the case of a rank 5 matrix, when using k ∈ {10, 15}. Even when the perfect factorization is
not found, we see that the Frobenius norm error is 2-10 times lower. On spare matrices, we find
that Zhang’s and the message-passing algorithms outperform kBMF+, yielding solutions that are
about 2 times better in the worst case (matrix of rank 5, with sparsity 0.1 and k = 5). The
kBMF algorithm generally performs the worst across datasets, which is surprising considering the
results of [KPRW19]. Another point of note is that Zhang’s algorithm is tuned for sparse matrices,
sometimes converging to factors that yield real-valued matrices. If so, we attempted to round the
matrix as best we could.

Real data. As before, Table 3 shows the algorithms’ average Frobenius norm error and average
running time. We observe, that all algorithms are fairly close in Frobenius norm error, with the

2https://www.kaggle.com/datasets/emmanuelfwerr/thyroid-disease-data

27

https://www.kaggle.com/datasets/emmanuelfwerr/thyroid-disease-data

Error [Frobenius norm] Time [ms]
Alg kBMF kBMF+ MP Zh kBMF kBMF+ MP Zh

Dataset k

Random 2 75.8 72.3 71.3 71.3 11.2 8.6 280.7 11.6
p = 0.5 3 74.3 69.9 69.4 68.7 14.9 12.5 309.8 11.7

5 72.2 65.8 66.6 64.9 10.9 11.5 347.7 13.3
10 68.7 57.4 61.5 58.5 15.4 53.4 486.6 17.2
15 66.4 50.4 57.9 53.7 16.2 272.1 667.3 21.7

Random 2 36.0 35.0 34.9 35.2 10.8 11.3 277.3 9.9
p = 0.1 3 35.9 34.9 34.9 35.0 7.5 13.9 302.1 10.6

5 35.6 34.6 35.5 34.2 12.7 18.5 336.9 12.6
10 35.0 33.9 35.8 31.7 17.0 64.5 459.6 15.9
15 34.3 33.0 38.5 29.0 20.9 269.5 628.4 19.6

Low-Rank 2 72.5 67.1 66.0 67.8 4.1 7.9 274.9 11.9
r = 5 3 69.2 60.0 62.3 64.0 12.8 12.0 301.5 13.5
p = 0.5 5 64.0 26.9 55.2 56.7 10.4 11.9 339.8 15.4

10 52.9 0.7 41.0 42.5 14.7 72.7 472.5 19.5
15 43.3 0.0 32.8 31.1 18.0 296.0 658.0 23.8

Low-Rank 2 20.5 20.4 16.5 15.8 9.4 6.3 185.6 4.8
r = 5 3 17.0 16.6 13.1 12.0 5.0 5.8 209.1 12.3
p = 0.1 5 11.1 8.4 4.6 5.1 7.0 8.0 275.9 14.8

10 5.1 0.0 0.7 2.3 19.3 75.0 460.5 18.1
15 1.5 0.0 0.4 1.4 20.2 297.0 630.9 22.1

Low-Rank 2 75.8 72.2 71.1 71.7 13.4 15.5 281.2 11.5
r = 10 3 74.3 69.6 69.1 69.0 15.8 20.0 308.0 11.7
p = 0.5 5 72.0 64.7 66.1 64.8 20.9 19.7 345.5 13.6

10 68.2 28.4 60.2 57.9 16.2 51.4 477.8 17.3
15 65.6 0.8 56.0 52.9 19.3 245.2 659.6 21.3

Low-Rank 2 30.8 30.5 27.6 28.5 10.0 14.3 213.4 5.7
r = 10 3 28.5 28.1 25.2 25.5 11.1 13.3 248.5 11.5
p = 0.5 5 24.7 23.2 20.4 19.9 13.1 18.7 292.0 13.4

10 18.3 10.2 7.6 8.8 16.4 76.2 434.6 16.9
15 15.2 2.5 4.7 5.4 14.8 261.3 638.8 22.1

Low-Rank 2 75.7 72.3 71.2 71.3 14.5 18.6 277.6 11.3
r = 15 3 74.2 69.9 69.3 68.7 12.7 11.1 306.5 11.7
p = 0.5 5 72.1 65.7 66.6 64.8 15.0 19.0 339.7 13.0

10 68.6 56.5 61.5 58.4 18.7 51.4 478.3 17.2
15 66.4 29.2 57.7 53.6 13.0 239.9 652.8 21.1

Low-Rank 2 38.7 38.2 35.6 36.5 12.1 10.4 242.2 9.7
r = 15 3 37.1 36.2 33.7 34.2 10.0 13.0 274.1 12.8
p = 0.1 5 33.7 32.2 29.8 29.5 13.2 17.9 313.2 14.6

10 28.1 22.3 20.3 19.8 20.2 56.3 457.3 17.9
15 25.3 14.2 11.6 13.4 21.2 247.9 643.8 21.2

Noisy 2 75.8 72.3 71.2 71.6 13.9 12.8 290.4 11.3
r = 10 3 74.3 69.6 69.3 69.0 13.8 15.6 309.3 11.6
p = 0.5 5 72.1 64.7 66.2 65.0 17.6 23.8 345.8 13.6
pnoise = 0.001 10 68.2 33.8 60.3 58.1 16.8 54.0 481.1 17.6

15 65.6 4.8 56.2 53.2 18.4 247.1 661.8 21.6

Noisy 2 32.5 32.1 29.3 30.0 6.3 9.6 223.6 7.6
r = 10 3 30.0 29.5 26.9 27.1 6.4 10.1 255.4 11.6
p = 0.1 5 26.2 24.6 22.0 21.3 6.6 9.7 291.9 13.5
pnoise = 0.001 10 19.8 12.0 9.3 10.4 16.4 67.4 441.2 18.2

15 16.7 4.9 6.8 7.2 13.9 255.0 641.8 22.4

Noisy 2 75.8 72.1 71.0 71.7 9.7 11.4 276.1 11.4
r = 10 3 74.3 69.5 69.0 69.1 12.1 13.3 302.4 12.0
p = 0.5 5 72.0 64.7 66.0 64.8 12.4 12.5 338.9 13.4
pnoise = 0.01 10 68.3 38.2 60.2 57.9 15.0 50.7 475.0 17.2

15 65.7 16.7 56.1 52.8 18.0 254.0 672.9 21.3

Noisy 2 33.3 33.0 30.3 30.9 9.9 11.5 225.3 9.2
r = 10 3 31.3 30.8 28.2 28.0 10.8 10.5 257.5 12.5
p = 0.1 5 27.8 26.2 23.6 23.4 9.4 18.3 292.1 14.3
pnoise = 0.01 10 22.3 16.3 14.0 15.1 21.0 58.5 448.5 17.4

15 19.9 12.5 12.5 12.0 20.5 260.3 645.4 21.7

Table 2: The average running time and error for different Binary Matrix Factorization algorithms
on synthetic datasets. The minimum Frobenius norm error is marked in bold.

28

Error [Frobenius norm] Time [ms]
Alg kBMF kBMF+ MP Zh kBMF kBMF+ MP Zh

Dataset k

Congress 2 40.0 38.8 38.8 36.4 2.0 3.3 280.7 6.9
3 38.4 36.6 35.9 32.7 2.3 4.1 311.2 13.6
5 35.7 32.7 31.1 27.7 4.6 5.2 332.9 16.2
10 32.7 23.9 22.5 18.4 3.2 16.9 407.1 22.6
15 30.9 14.8 15.5 9.6 7.4 246.7 480.5 27.5

ORL 2 39.4 37.8 35.9 33.5 2.0 2.9 203.7 11.6
3 35.7 34.6 32.2 29.7 2.9 4.7 241.6 13.1
5 31.7 30.7 27.7 25.6 3.8 5.8 289.4 15.4
10 26.4 25.7 21.6 21.4 4.3 22.3 415.7 19.1
15 23.4 22.8 17.8 19.7 6.1 318.0 575.5 22.2

Thyroid 2 106.6 98.6 90.5 91.6 12.6 14.2 7063.6 44.3
3 94.5 90.5 75.5 73.9 14.4 18.7 7822.0 92.9
5 82.7 80.4 78.5 61.8 31.8 25.2 8860.2 132.1
10 66.0 55.4 54.0 52.9 28.9 59.6 12686.3 241.4
15 57.6 38.9 39.2 46.7 26.7 313.4 16237.7 432.7

Table 3: The average running time and error for different Binary Matrix Factorization algorithms
on real datasets, minimum frobenius norm error highlighted in bold.

best and worst factorizations’ error differing by about up to a factor of 3 across parameters and
datasets. Zhang’s algorithm performs best on the Congress dataset, while the message-passing
algorithm performs best on the ORL and Thyroid datasets. The kBMF algorithm generally does
worst, but the additional processing we do in kBMF+ can improve the solution considerably,
putting it on par with the other heuristics. On the Congress dataset, kBMF+ is about 1.1-2 times
worse than Zhang’s, while on the ORL dataset, it is about 10-30% worse than the message-passing
algorithm. Finally, the Thyroid dataset’s error is about 10-20% worse than competing heuristics.

We note that on the Thyroid datasets, which has almost 10000 rows, Zhang’s algorithm slows
considerably, about 10 times slower than kBMF and even slower than kBMF+ for k = 15. This
suggests that for large matrices and small to moderate k, the kBMF+ algorithm may actually run
faster than other heuristics while providing comparable results. The message-passing algorithm
slows tremendously, being almost three orders of magnitude slower than kBMF, but we believe this
could be improved with another implementation.

Discussion. In our experiments, we found that on dense synthetic data, the algorithm kBMF+
outperforms other algorithms for the BMF problem. Additionally, we found that is competitive for
sparse synthetic data and real datasets. One inherent benefit of the kBMF and kBMF+ algorithms
is that they are very easily adapted to different norms and matrix products, as the clustering step,
nearest neighbor search, and enumeration steps are all easily adapted to the setting we want. A
benefit is that the factors are guaranteed to be either 0 or 1, which is not true for Zhang’s heuristic,
which does not always converge. None of the existing heuristics consider minimization of Lp norms,
so we omitted experimental data for this setting, but we note here that the results are qualitatively
similar, with our algorithm performing best on dense matrices, and the heuristics performing well
on sparse data.

6.2 Using Coresets with our Algorithm

Motivated by our theoretical use of strong coresets for k-means clustering, we perform experiments
to evaluate the increase in error using them. To this end, we run the BMF+ algorithm on either the
entire dataset, a coreset constructed via importance sampling [BLK17, BFL+21], or a lightweight

29

0.0 0.5 1.0

100

125

150

175

200
Er

ro
r

k = 5 | Dataset = low_rank

0.0 0.5 1.0

34

36

38

k = 5 | Dataset = congress

0.0 0.5 1.0

80

90

100

k = 5 | Dataset = thyroid

0.0 0.5 1.0
Size

10

20

30

40

Er
ro

r

k = 10 | Dataset = low_rank

0.0 0.5 1.0
Size

24

25

26

27

28

k = 10 | Dataset = congress

0.0 0.5 1.0
Size

55

60

65

70

75

k = 10 | Dataset = thyroid

Algorithm
kBMF+
Importance + kBMF+
Lightweight + kBMF+

Fig. 2: A plot of the effect of different relative coreset sizes on the results of our algorithm.

coreset [BLK18]. Both of these algorithms were implemented in Python. The datasets in this
experiment are a synthetic low-rank dataset with additional noise (size 5000 × 50, rank 5 and
0.0005 probability of flipping a bit), the congress, and thyroid datasets.

We construct coresets of size rn for each r ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, . . . , 0.9}. We
sample 10 coresets at every size and use them when finding V in our BMF+ algorithm. Theory
suggests that the quality of the coreset depends only on k and the dimension of the points d, which
is why in Figure 2, we observe a worse approximation for a given size of coreset for larger k. We
find that the BMF+ algorithm performs just as well on lightweight coresets as the one utilizing the
sensitivity sampling framework. This is expected in the binary setting, as the additive error in the
weaker guarantee provided by lightweight coresets depends on the dataset’s diameter. Thus, the
faster, lightweight coreset construction appears superior in this setting.

We observe that using coreset increases the Frobenius norm error we observe by about 35%,
but curiously, on the low-rank dataset, the average error decreased after using coresets. This may
be due to coreset constructions not sampling the noisy outliers that are not in the low-dimensional
subspace spanned by the non-noisy low-rank matrix, letting the algorithm better reconstruct the
original factors instead.

Our datasets are comparatively small, none exceeding 1000 points, which is why, in combination
with the fact that the coreset constructions are not optimized, we observe no speedup compared
to the algorithm without coresets. However, even though constructing the coreset takes additional
time, the running time between variants remained comparable. We expect to observe significant
speedups for large datasets using an optimized implementation of the coreset algorithms. Using off
the shelf coresets provides a large advantage to this algorithm’s feasibility compared to the iterative
methods when handling large datasets.

30

7 Conclusion

In this paper, we introduced the first (1 + ε)-approximation algorithms for binary matrix factor-
ization with a singly exponential dependence on the low-rank factor k, which is often a small
parameter. We consider optimization with respect to the Frobenius loss, finite fields, and Lp loss.
Our algorithms extend naturally to big data models and perform well in practice. Indeed, we
conduct empirical evaluations demonstrating the practical effectiveness of our algorithms. For fu-
ture research, we leave open the question for (1 + ε)-approximation algorithms for Lp loss without
bicriteria requirements.

References

[BBB+19] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee, and
David P. Woodruff. A PTAS for ℓp-low rank approximation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 747–
766, 2019. 2, 3, 4, 7, 8, 16

[BDB13] J Paul Brooks, José H Dulá, and Edward L Boone. A pure l1-norm principal compo-
nent analysis. Computational statistics & data analysis, 61:83–98, 2013. 3, 8

[BFL+21] Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou.
Efficient coreset constructions via sensitivity sampling. In Asian Conference on Ma-
chine Learning, ACML, pages 948–963, 2021. 29

[BKW17] Karl Bringmann, Pavel Kolev, and David P. Woodruff. Approximation algorithms for
l0-low rank approximation. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems, pages 6648–6659,
2017. 8

[BLK17] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions
for machine learning. arXiv preprint arXiv:1703.06476, 2017. 29

[BLK18] Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k-means clustering via
lightweight coresets. In Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages 1119–1127, 2018. 30

[BV10] Radim Belohlávek and Vilém Vychodil. Discovery of optimal factors in binary data
via a novel method of matrix decomposition. J. Comput. Syst. Sci., 76(1):3–20, 2010.
4

[BWZ19] Frank Ban, David P. Woodruff, and Qiuyi (Richard) Zhang. Regularized weighted
low rank approximation. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems, NeurIPS, pages 4061–
4071, 2019. 5, 7

[CHHK14] Parinya Chalermsook, Sandy Heydrich, Eugenia Holm, and Andreas Karrenbauer.
Nearly tight approximability results for minimum biclique cover and partition. In
Algorithms - ESA 2014 - 22th Annual European Symposium, Proceedings, volume
8737, pages 235–246, 2014. 7

31

[CIK16] L. Sunil Chandran, Davis Issac, and Andreas Karrenbauer. On the parameterized
complexity of biclique cover and partition. In 11th International Symposium on Pa-
rameterized and Exact Computation, IPEC, pages 11:1–11:13, 2016. 4, 7, 9

[CK19] Vincent Cohen-Addad and Karthik C. S. Inapproximability of clustering in lp metrics.
In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages
519–539, 2019. 5

[CP19] Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Con-
ference on Learning Theory, COLT, pages 663–695, 2019. 7

[CSS21] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset
framework for clustering. In STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 169–182. ACM, 2021. 19

[CSTZ22] Sitan Chen, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Symmetric sparse boolean
matrix factorization and applications. In 13th Innovations in Theoretical Computer
Science Conference, ITCS, pages 46:1–46:25, 2022. 4, 8

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference, STOC,
pages 81–90, 2013. 11, 12

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. 2, 27

[DHJ+18] Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou. Low
rank approximation of binary matrices: Column subset selection and generalizations.
In 43rd International Symposium on Mathematical Foundations of Computer Science,
MFCS, pages 41:1–41:16, 2018. 3, 8

[DMM06a] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling
and relative-error matrix approximation: Column-based methods. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 9th In-
ternational Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, APPROX and 10th International Workshop on Randomization and Com-
putation, RANDOM, Proceedings, pages 316–326, 2006. 10

[DMM06b] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling and
relative-error matrix approximation: Column-row-based methods. In Algorithms -
ESA 2006, 14th Annual European Symposium, Proceedings, pages 304–314, 2006. 10

[FGL+20] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and Saket
Saurabh. Approximation schemes for low-rank binary matrix approximation problems.
ACM Trans. Algorithms, 16(1):12:1–12:39, 2020. 2, 3, 4, 5, 7, 8

[FJS10] Yinghua Fu, Nianping Jiang, and Hong Sun. Binary matrix factorization and consen-
sus algorithms. In 2010 International Conference on Electrical and Control Engineer-
ing, pages 4563–4567. IEEE, 2010. 8

32

[FMPS09] Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering
graphs with few complete bipartite subgraphs. Theor. Comput. Sci., 410(21-23):2045–
2053, 2009. 7

[FSS20] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny
data: Constant-size coresets for k-means, pca, and projective clustering. SIAM J.
Comput., 49(3):601–657, 2020. 14

[GGYT12] Harold W. Gutch, Peter Gruber, Arie Yeredor, and Fabian J. Theis. ICA over finite
fields - separability and algorithms. Signal Process., 92(8):1796–1808, 2012. 3

[GV18] Nicolas Gillis and Stephen A. Vavasis. On the complexity of robust PCA and ℓ1-norm
low-rank matrix approximation. Math. Oper. Res., 43(4):1072–1084, 2018. 8

[JPHY14] Peng Jiang, Jiming Peng, Michael Heath, and Rui Yang. A clustering approach to
constrained binary matrix factorization. In Data Mining and Knowledge Discovery
for Big Data, pages 281–303. Springer, 2014. 3, 8

[KG03] Mehmet Koyutürk and Ananth Grama. PROXIMUS: a framework for analyzing
very high dimensional discrete-attributed datasets. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
147–156, 2003. 3, 8

[KK03] Qifa Ke and Takeo Kanade. Robust subspace computation using l1 norm, 2003. 3, 8

[KK05] Qifa Ke and Takeo Kanade. Robust l1 norm factorization in the presence of outliers
and missing data by alternative convex programming. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 739–746,
2005. 3, 8

[KMN+04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. Comput. Geom., 28(2-3):89–112, 2004. 5

[KPRW19] Ravi Kumar, Rina Panigrahy, Ali Rahimi, and David P. Woodruff. Faster algorithms
for binary matrix factorization. In Proceedings of the 36th International Conference
on Machine Learning, ICML, pages 3551–3559, 2019. 2, 3, 4, 5, 7, 8, 9, 25, 26, 27

[KV09] Ravi Kannan and Santosh S. Vempala. Spectral algorithms. Found. Trends Theor.
Comput. Sci., 4(3-4):157–288, 2009. 7

[Kwa08] Nojun Kwak. Principal component analysis based on l1-norm maximization. IEEE
transactions on pattern analysis and machine intelligence, 30(9):1672–1680, 2008. 3,
8

[LSW17] Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapprox-
imability for k-means. Inf. Process. Lett., 120:40–43, 2017. 5

[LVAH12] Haibing Lu, Jaideep Vaidya, Vijayalakshmi Atluri, and Yuan Hong. Constraint-aware
role mining via extended boolean matrix decomposition. IEEE Trans. Dependable
Secur. Comput., 9(5):655–669, 2012. 4

33

[Mag10] Malik Magdon-Ismail. Row sampling for matrix algorithms via a non-commutative
bernstein bound. CoRR, abs/1008.0587, 2010. 10

[Mah11] Michael W. Mahoney. Randomized algorithms for matrices and data. Found. Trends
Mach. Learn., 3(2):123–224, 2011. 7

[MKP14] Panos P. Markopoulos, George N. Karystinos, and Dimitrios A. Pados. Optimal algo-
rithms for l1-subspace signal processing. IEEE Trans. Signal Process., 62(19):5046–
5058, 2014. 3, 8

[MMG+08] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki Man-
nila. The discrete basis problem. IEEE transactions on knowledge and data engineer-
ing, 20(10):1348–1362, 2008. 4

[MMM+22] Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, and
Samson Zhou. Fast regression for structured inputs. In The Tenth International
Conference on Learning Representations, ICLR, 2022. 7

[MMM+23] Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, and
Samson Zhou. Near-linear sample complexity for lp polynomial regression. In Pro-
ceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
3959–4025, 2023. 7

[MMWY22] Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active
linear regression for ℓp norms and beyond. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 744–753, 2022. 7

[MW21] Arvind V. Mahankali and David P. Woodruff. Optimal ℓ1 column subset selection
and a fast PTAS for low rank approximation. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 560–578, 2021. 3, 7, 8

[Neu18] Stefan Neumann. Bipartite stochastic block models with tiny clusters. In Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems, NeurIPS, pages 3871–3881, 2018. 7

[Orl77] James Orlin. Contentment in graph theory: covering graphs with cliques. Indagationes
Mathematicae (Proceedings), 80(5):406–424, 1977. 7

[PK18] Young Woong Park and Diego Klabjan. Three iteratively reweighted least squares
algorithms for l1-norm principal component analysis. Knowledge and Information
Systems, 54(3):541–565, 2018. 3, 8

[PPP21] Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights
subsampling. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pages 49:1–49:21, 2021. 7

[PRF15] Amichai Painsky, Saharon Rosset, and Meir Feder. Generalized independent com-
ponent analysis over finite alphabets. IEEE Transactions on Information Theory,
62(2):1038–1053, 2015. 3

34

[PRF18] Amichai Painsky, Saharon Rosset, and Meir Feder. Linear independent component
analysis over finite fields: Algorithms and bounds. IEEE Transactions on Signal
Processing, 66(22):5875–5886, 2018. 3

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. 26

[RPG16] Siamak Ravanbakhsh, Barnabás Póczos, and Russell Greiner. Boolean matrix factor-
ization and noisy completion via message passing. In Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML, pages 945–954, 2016. 7, 25

[RSW16] Ilya P. Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approx-
imations with provable guarantees. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC, pages 250–263, 2016. 5, 7

[SBM03] Jouni K. Seppänen, Ella Bingham, and Heikki Mannila. A simple algorithm for topic
identification in 0-1 data. In Knowledge Discovery in Databases: PKDD 2003, 7th
European Conference on Principles and Practice of Knowledge Discovery in Databases,
Proceedings, pages 423–434, 2003. 4

[SH06] Tomás Singliar and Milos Hauskrecht. Noisy-or component analysis and its application
to link analysis. J. Mach. Learn. Res., 7:2189–2213, 2006. 4

[SJY09] Bao-Hong Shen, Shuiwang Ji, and Jieping Ye. Mining discrete patterns via binary ma-
trix factorization. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 757–766, 2009. 3, 8

[SWZ17] Zhao Song, David P. Woodruff, and Peilin Zhong. Low rank approximation with en-
trywise ℓ1-norm error. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC, pages 688–701, 2017. 3, 7, 8

[VAG07] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining problem: finding
a minimal descriptive set of roles. In Proceedings of the 12th ACM symposium on
Access control models and technologies, pages 175–184, 2007. 4

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends
Theor. Comput. Sci., 10(1-2):1–157, 2014. 7, 10

[Yer11] Arie Yeredor. Independent component analysis over galois fields of prime order. IEEE
Trans. Inf. Theory, 57(8):5342–5359, 2011. 3

[ZLDZ07] Zhongyuan Zhang, Tao Li, Chris Ding, and Xiangsun Zhang. Binary matrix factor-
ization with applications. In Seventh IEEE international conference on data mining
(ICDM 2007), pages 391–400. IEEE, 2007. 25

35

[ZLS+12] Yinqiang Zheng, Guangcan Liu, Shigeki Sugimoto, Shuicheng Yan, and Masatoshi
Okutomi. Practical low-rank matrix approximation under robust l1-norm. In 2012
IEEE Conference on Computer Vision and Pattern Recognition, pages 1410–1417,
2012. 3, 8

[ZZ12] Marinka Zitnik and Blaz Zupan. Nimfa: A python library for nonnegative matrix
factorization. Journal of Machine Learning Research, 13:849–853, 2012. 25

36

	Introduction
	Our Contributions
	Overview of Our Techniques
	Motivation and Related Work
	Preliminaries

	Binary Low-Rank Approximation
	GF2 Low-Rank Approximation
	Lp Low-Rank Approximation
	Applications to Big Data Models
	Streaming Model
	Two-round distributed algorithm.

	Experiments
	Comparing Algorithms for BMF
	Using Coresets with our Algorithm

	Conclusion

