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Abstract—The Infrastructure as Code (IaC) concept enables
IT infrastructure to be managed as software: resources can be
managed, monitored, and provisioned automatically instead of
manually by developers or operations teams. Many industries
have already embraced this concept widely. However, research on
IaC-based deployments, particularly research focusing on loose
coupling, often does not offer methods for evaluating architec-
tural conformance, spotting architecture smells, and support for
correcting the found smells. Our work strives to provide an au-
tomatic method for continuously developing microservice-based
systems and the associated infrastructure. We aim to offer an
automated architectural refactoring method that checks if IaC-
based deployments adhere to patterns and best practices and do
not contain potential architectural smells. We provide architects
with viable options for enhancing architectural conformance
during microservice development. In short, by continuously
detecting architectural smells and suggesting possible fixes, we
aim to support architecture evolution within the framework of
continuous delivery practices. We evaluate our approach using
three case studies and variants based on open-source microservice
architectures.

Index Terms—Infrastructure as code, metrics, architecture
smells, modeling, best practices

I. INTRODUCTION

Microservice-based systems often support rapid release
techniques, resulting in frequent infrastructure and deployment
modifications. Additionally, the infrastructure components that
a system needs are growing rapidly [1]. Managing and or-
ganizing these pieces often impacts the development and
deployment processes. Infrastructure as Code (IaC) facilitates
automated management and provisioning of infrastructure
components [2]. By dividing deployment artifacts according
to the duties of services and teams, IaC can also ensure that a
deployed environment stays the same each time it is deployed
in the same configuration [2], [3]. Furthermore, it can help
with coherence and maintain loose coupling by separating de-
ployment artifacts according to the responsibilities of services
and teams. It helps keep the architecture diagrams and the
actual deployment consistent.

There have been several architectural patterns and other
“best practices” for microservice-based systems [4], [5], [6]
as well as microservice deployments [2]. However, providing
practical mechanisms to enforce such patterns and practices
specifically for IaC-based deployments has received very little

attention up to this point. This is troublesome because man-
aging architecture compliance manually can be challenging,
particularly in big complex architectures. Moreover, enhancing
one best practice may cause problems with another since best
practices are often interdependent. Thus, numerous additional
system architectural and implementation constraints impact
the architectures in ways that might result in unintentional
or deliberate breaches of best practices for IaC-based deploy-
ments. In the context of DevOps and continuous delivery, it
is anticipated that the architecture changes rapidly and often
without central coordination. Architecture smell is a term used
in software engineering to describe specific characteristics
or traits of a software architecture that indicate a potential
problem or suboptimal design [7]. These smells can arise
due to various factors, such as poor modularization, lack of
cohesion, high coupling, or inefficient use of design patterns.

We have observed that there are multiple factors contribut-
ing to the increasing complexity of architecture. If infras-
tructure as code technologies are utilized to deploy these
architectures, there is a significant possibility that architectural
issues may be embedded in the IaC models without the
developers’ immediate knowledge.

This study aims to provide actionable solutions to fix ar-
chitectural smells of loose coupling-related IaC best practices.
We focus on two major Architectural Design Decisions (ADD)
in this scope, System Coupling through Deployment Strategy
and System Coupling through Infrastructure Stack Grouping,
that have been modeled based on an empirical study of
existing best practices and patterns used by practitioners in
our previous work [8].

We provide automated architecture refactoring tailored for
architectural design in the context of IaC-related ADDs. We
also employ the experimentally proven metrics suggested in
our previous work [8]. These metrics allow us to analyze
the degree to which an IaC deployment model adheres to
preferred or less preferred design alternatives for each of
the ADDs previously mentioned. We systematically specify
each potential smell for every design option in the ADDs,
and propose automated smell detection algorithms based on
those specifications. Using the combination of available ADD
options, the chosen option, potential smells, and detected
smells, we can determine all possible next decision options



by applying solutions to the smells. This results in a search
tree of models for the next architecture iteration, which we
individually evaluate using our metrics. Based on this, we
can assess the conformance of IaC-based deployment models
regarding architectural patterns and potential refactorings and
provide an architect with all potential improvements. The
purpose of smell detection is to discover the precise locations
in the models where the smells occur.

This method is also intended to be continually applicable
across each run of a continuous delivery pipeline.

This paper aims to study the following research questions:
• RQ1 What are the potential coupling-related architectural

smells in IaC-based deployment models related to Sys-
tem Coupling through Deployment Strategy and System
Coupling through Infrastructure Stack Grouping, and how
can they be automatically detected?

• RQ2 What are the possible fixes for the architectural
smells in IaC-based deployment models related to Sys-
tem Coupling through Deployment Strategy and System
Coupling through Infrastructure Stack Grouping, and how
can architects be supported in correcting them?

In total, 12 IaC-based deployment models (three case studies
and nine variations) based on microservice-based systems that
practitioners developed are used to evaluate our approach
(see Table I). We implemented automated smell detection and
refactoring algorithms to detect potential smells and develop
every solution that may be used to solve each smell. The
improvements over the initial version are then measured using
our metrics [8] on coupling aspects in IaC-based deployments.
The results show that every smell can be addressed in no more
than three refactoring steps, producing ideal metric values.

This paper is structured as follows: In Section II, we explain
the decisions in the focus of this paper. We also explain related
patterns and practices, as well as the corresponding metrics,
as the background of our work. Section III discusses and com-
pares to related work. Next, we describe the research methods
and the tools we have applied in our study in Section IV. Then,
three case studies are explained in Section V. We then describe
the approach details in Section VI. In Section VII, we explain
the evaluation process of our work. Section VIII discusses
the RQs regarding the evaluation results. In Section IX, we
then analyze the threats to validity. Finally, in Section X, we
conclude and discuss future work.

II. BACKGROUND

This section will briefly discuss two coupling-related ADDs
and their associated options. This information is based on our
previous research [8], in which we conducted an empirical
study to identify the IaC-related best practices and patterns
currently used by practitioners. We also examined the potential
decision drivers, or the factors that influence the decision-
making process, and developed metrics to evaluate how well
a given system model adheres to our decision model’s rec-
ommended patterns and practices. By analyzing the reported
outcomes of these decisions, we can determine which options
are more or less popular among microservice practitioners. We
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Fig. 1: The lifecycle of an infrastructure stack. this figure is
adopted from Morris book [2]

employed 9 IaC-based component and deployment architecture
models for evaluation, which are used and extended in this
work, listed in Table I and explained in Section IV.

A. Infrastructure Stack

Infrastructure stacks can be used to organize the deployment
infrastructure, which refers to the set of hardware, software,
and networking resources required to deploy and run ap-
plications, services, and systems in a production environ-
ment. According to [2], an infrastructure stack is a group
of infrastructure resources defined, provisioned, and updated
collectively. A non-optimal structure can harm the system if
coupling-related factors are not considered. For instance, the
dependencies of system parts and teams and the independent
deployability of system services might be impacted by group-
ing all declarations of the system’s infrastructure resources in
only one infrastructure stack.

Figure 1 shows the lifecycle of an infrastructure stack.
The resources and services that an infrastructure platform
offers are the elements of a stack, and they are described by
source code. For instance, a stack might consist of computing
resources (e.g., a virtual machine), storage resources (e.g.,
disk volume), and network resources (e.g., a subnet) [2]. A
stack management tool reads the source code for the stack
and assembles the defined elements in the code to provision
an instance of the infrastructure stack using a cloud platform’s
API [2].

B. Architectural Design Decisions (ADDs)

1) ADD 1: System Coupling through Deployment Strategy:
Maintaining the services’ independence, scalability, and loose
coupling is crucial when implementing a microservice-based
system. The corresponding development teams should be able
to construct and deploy a service swiftly, and services should
be segregated. Another aspect to consider is resource use per
service since certain services may restrict CPU or memory
usage [4]. Extra criteria should be guaranteed for each au-
tonomous service, such as availability or behavior monitoring.

The System Coupling through Deployment Strategy deci-
sion concerns how services are deployed in execution envi-
ronments. The following decision options can be chosen: (i)
Multiple Services per Execution Environment, where services



are all deployed in the same execution environment making
it problematic to change, build, and deploy the services
independently. Execution Environment is used here to denote
the environment in which a service runs, such as a VM, a
Container, or a Host. Please note that execution environments
can be nested. For instance, a VM can be part of a Production
Environment, which runs on a Public Cloud Environment.
Execution environments run on Devices (e.g., Cloud Server).
The most recommended option is the (ii) Single Service per
Execution Environment pattern [4], in which each service is
deployed in its execution environment and can be managed
independently. In our previous work [8], we empirically iden-
tified two metrics that can be used to differentiate and assess
the decision options’ conformance:

• Shared Execution Environment Connectors Metric
(SEEC) to measure the proportion of the shared
connectors between services and execution environments.

• Shared Execution Environment Metric (SEE) to measure
the proportion of the shared execution environments.

2) ADD 2: System Coupling through Infrastructure Stack
Grouping: Another essential aspect of microservices deploy-
ment is the grouping of the infrastructure elements. The Sys-
tem Coupling through Infrastructure Stack Grouping decision
concerns how grouping different resources into infrastructure
stacks should reflect the development teams’ responsibilities
to ensure independent deployability and scalability. The fol-
lowing decision options can be chosen: Monolith Stack [2],
where all resources are grouped in a single stack. Another
option is Application Group Stack, in which multiple services
are deployed by one stack. A structuring that can work better
with microservice-based systems is the Service Stack, in which
one stack deploys one service and all related infrastructure
resources. The Micro Stack pattern [2] goes one step further
by breaking the Service Stack into even smaller pieces and
creating stacks for each infrastructure resource in a service
(e.g., router, server, database, etc.). For this decision, we have
empirically defined six metrics that can be used to assess
conformance to each of the decision options:

• Monolithic Stack Detection Metric (MSD) to detect if
a single stack is used to deploy all the infrastructure
elements.

• Application Group Stack Detection Metric (AGSD) to
detect if a single stack is used to deploy all system
services.

• Service-Stack Detection Metric (SES) to detect if every
service is deployed by its own stack.

• Micro-Stack Detection Metric (MST) to detect if every
infrastructure element is deployed by its own stack.

• Services per Stack Metric (SPS) to measure how many
services are deployed by a service-deploying stack on
average.

• Components per Stack Metric (CPS) to measure how
many components, on average, are deployed by a
component-deploying stack.

III. RELATED WORK

In this section, we provide details on and compare related
works. We first discuss related studies for IaC-based best
practices and patterns, then tool-based approaches for smell
detection, and finally, approaches for evaluating the confor-
mance of architectures.

A. Related Works on IaC-Based Best Practices and Patterns

As the industry adopts and popularizes IaC practices, many
scientific studies are compiling or organizing IaC-related pat-
terns, practices, smells, and anti-patterns. For example, a list
of design and implementation language-specific smells for
Puppet is presented by Sharma et al. [9]. Kumara et al. [10]
offer a comprehensive list of best and worst practices relating
to implementation problems, design problems and smells of
fundamental IaC concepts. Schwarz et al. [11] provide a list
of smells for Chef. Morris [2] provides management recom-
mendations for infrastructure as code. This book includes an
extensive list of patterns and practices that fall under several
categories and a complete discussion of technologies relevant
to IaC-based practices. Our work follows the IaC-specific
principles outlined in this book and those in [4]. Many of these
publications are less concerned with architecture decisions in
the deployment architecture than our work is. In contrast to
our research, they do not provide architecture conformance
assessment or detect and resolve architecture smells.

B. Tool-based and Network Smell Detection Approaches

A tool-based approach for detecting smells in TOSCA mod-
els is proposed by Kumara et al. [12]. Sotiropoulos et al. [13]
develop a tool-based approach that identifies dependency-
related issues by analyzing Puppet manifests and their system
call trace. Van der Bent et al. [14] define metrics that also
reflect best practices to assess Puppet code quality. Saatkamp
et al. [15] utilize architectural and design patterns to reor-
ganize topology-driven deployment models to identify any
issues obstructing a successful deployment. Their approach
covers two aspects: (1) identifying problems in reorganized
deployment models through architecture and design patterns
and (2) automating problem detection by formalizing the
issue and its context through implementing patterns. This
work presents a method for identifying and implementing
suitable solutions for issues in declarative deployment models
in an automated manner. Saatkamp et al. [16] also present an
approach that uses first-order logic to evaluate the applicability
of solutions to a specific deployment model by expressing the
required deployment context as a logical formula. Adaptation
algorithms are also defined to operate on topological elements
indicated by the deployment context to realize the solution in
the deployment model. In [17] Saatkamp et al. demonstrate
using formalized patterns to detect problems in two applica-
tion scenarios. The Message Mover and Integration Provider
patterns, relevant to restructured topology-based deployment
models in distributed applications, show the approach’s ap-
plicability in message-based systems. Reusable conditions to
express pattern rules have also been defined. Although some



of these works concentrate on the quality assurance of IaC
systems, none of them, unlike our work, address and focus
primarily on coupling-related issues in IaC deployment models
and on architecture smell detection and fixes.

C. Related works on Frameworks and Metrics

An approach for automatically verifying declarative deploy-
ment models’ conformity throughout design time is presented
in [18], [19]. The method enables modeling compliance rules
as two fragments of a deployment model. One of the parts
is a detector subgraph that decides whether the rule applies
to a particular deployment model. Subgraph isomorphism
compares the model fragments to the deployment model in
question. In contrast to our study, this technique generally does
not incorporate any particular compliance rules, like checking
coupling-related ADDs in IaC models. It presupposes that the
rule modeler can convert best practices into compliance rules
with the desired format. Additionally, it doesn’t indicate the
severity of a rule violation; instead, it merely offers a Boolean
result showing whether or not the rule is being broken.
Weller et al. [20] present the Deployment Model Abstraction
Framework (DeMAF), a tool that allows the transformation
of technology-specific deployment models into technology-
independent deployment models modeled based on the Es-
sential Deployment Metamodel (EDMM). This framework
demonstrates the capability of abstracting deployment models
in a technology-agnostic manner.

Numerous studies concentrate on methods for spotting de-
sign or architectural smells, but most do not specifically target
the IaC domain. Garcia et al.’s approach [21], [22] provides
a format for a collection of offensive smells in architecture.
Additionally, these findings provide potential methods for
detecting these architectural smells. The relationship between
smells and project problems was investigated by Le et al. [23].
Marinescu [24] has proposed several detection techniques that
use metrics-based heuristics to find design flaws. To detect
architecture erosion or drift, Garcia et al. [25] describe a
machine learning-based method for reconstructing an architec-
tural perspective that includes a system’s parts and connectors.

Although several of these publications examine features
of the microservice domain and other aspects of architec-
ture smell detection, none address detecting and refactoring
coupling-related smells in an IaC domain. This leads to our
expectation that, in the context of loose coupling, our work
yields more precise detections of decision-specific smells and
more focused suggestions for fixes than this other research
possibly could.

IV. RESEARCH AND MODELING METHODS

This section summarizes the main research and modeling
methods applied in our study. For reproducibility, all the code
and models produced in this study are available online as an
open-access data set in a long-term archive 1.

1https://doi.org/10.5281/zenodo.7692017

A. Research Method
The steps used in this study are shown in Figure 3. We have

already provided a detailed explanation of the architectural
decisions and model-based metrics that served as the founda-
tion for this study in Section II. We offer explicit definitions
and algorithms for detecting potential smells for each decision
option and detailed definitions and methods for the possible
fixes for each smell in Section VI.

Every smell associated with the ADDs listed in the previ-
ous section will be found using our method. Any suggested
architecture refactorings will be applied to each model in our
data set. For each smell fix, we ran all possible smell detection
algorithms and refactorings on the resulting refactored models
until no more smells were found or the refactored model
matched a previous version. In the latter case, this shows
that it is impossible to eliminate all smells because doing
so would require creating new smells. To assess each final
model’s improvement over the initial model, we examined
pattern conformance using metrics on IaC coupling.

B. Modeling Method
We used a dataset of 12 IaC-based deployment models

(3 case studies and 9 variations) listed in Table I to evalu-
ate our approach. This dataset consists of three sources of
microservice-based systems and deployment artifacts. The fact
that professionals with relevant expertise created the systems
we discovered supports the notion that they serve as a solid
example of the IaC coupling-related best practices enumerated
in Section II. Figure 2 shows the steps we followed for
reconstructing the model from the source code. We conducted
a complete manual static code analysis for the IaC models
included in the repositories and the source code for the
applications. Our modeling tool Codeable models, 2 allows
for the precise specification of meta-models, models, and code
instances used to create the models. The result is a collection
of meticulously designed software systems and IaC-based
deployment models. Figure 4 shows an excerpt of an IaC-
based deployment model.

V. CASE STUDIES

This section briefly describes the case studies used to evalu-
ate our approach. We studied three open-source microservice-
based systems and created nine variants that introduce typical
ADD smells of the ADDs described in Section II. Table I
summarizes the case studies and corresponding variants.

a) Case Study 1: eShopOnContainers Application: The
eShopOnContainers case study is a prototype reference ap-
plication, realized by Microsoft, built on a microservices
architecture and Docker containers that can be used with Azure
and Azure cloud services. It features several independent mi-
croservices and accommodates various communication modes
(e.g., synchronous and asynchronous via a message broker).
The code repository also offers the necessary IaC scripts to
work with ELK for logging and deployment on a Kubernetes
cluster (Elasticsearch, Logstash, Kibana).

2https://github.com/uzdun/CodeableModels

https://github.com/uzdun/CodeableModels
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Fig. 2: Overview diagram of the model generation process

b) Case Study 2: Sock Shop Application: The Sock Shop
is a microservices reference application built by the company
Weaveworks to show several microservice architectures and
the company’s technologies. The application showcases cloud-
native and microservices technology. Services are deployed
on Docker containers, and the system employs Kubernetes
to manage containers. The system may be deployed on
Amazon Web Services (AWS) using infrastructure scripts for
Terraform. In our opinion, this is a common practice in the
industry regarding microservice-based designs and IaC-based
deployments.

c) Case Study 3: Robot-Shop Application: Robot-Shop is
a reference application by the company Instana that showcases
polyglot microservice architectures with Instana monitoring.
The IaC scripts are included. Kubernetes is used for container
orchestration, and all system services are deployed on Docker
containers. Helm is also supported for automated cluster
Kubernetes construction, packaging, setup, and deployment.
In addition, some services support Prometheus metrics and
offer end-to-end monitoring.

VI. ARCHITECTURE SMELLS AND FIX OPTIONS
DEFINITION

This section presents an overview of the various smells,
possible solutions, and algorithms we have designed for de-
tecting smells and implementing fixes. To further clarify our
approach, we also include examples from the decision of
“System Coupling via Infrastructure Stack Grouping.”

Our previous work [8] presents a microservice-based ar-
chitecture model description/modeling of a directed graph
of components and connectors. This model serves as the
foundation for our definitions of smells and fixes.

A microservice decomposition and deployment architecture
model M is a tuple (NM , CM , NTM , CTM , c_source,
c_target, nm_connectors, n_type, c_type) where:
• NM is a finite set of components and infrastructure nodes

in Model M .
• CM ⊆ NM × NM is an ordered finite set of connector

edges.
• NTM is a set of component types.
• CTM is a set of connector types.
• c_source : CM → NM is a function returning the

component that is the source of a link between two nodes.
• c_target : CM → NM is a function returning the

component that is the target of a link between two nodes.
• nm_connectors : P(NM ) → P(CM ) is a function

returning the set of connectors for a set of nodes:

nm_connectors(nm) = {c ∈ CM : (∃n ∈ nm :
(c_source(c) = n∧c_target(c) ∈ CM )∨(c_target(c) =
n ∧ c_source(c) ∈ CM ))}.

• n_type : NM → P(NTM ) is a function that maps each
node to its set of direct and transitive node types. (For
a formal definition of node types, see [26].)

• c_type : CM → P(CTM ) is a function that maps each
connector to its set of direct and transitive connec-
tor types. (For a formal definition of connector types,
see [26].)

All deployment nodes are of type Deployment_Node, which
has the subtypes Execution_Environment and Device. These
have further subtypes, such as VM and Container for Exe-
cution_Environment, and Server, IoT Device, Cloud, etc. for
Device. Environments can also distinguish logical environ-
ments on the same infrastructure, such as a Test_Environment
and a Production_Environment. Combining all types, e.g.,
Production_Environment and VM, is possible.

The microservice decomposition is modeled as nodes of
type Component with component types such as Service and
connector types such as RESTful HTTP.

The connector type deployed_on is used to denote a de-
ployment relation of a Component (as a connector source)
on an Execution_Environment (as a connector target). It is
also used to denote the transitive deployment relation of Ex-
ecution_Environments on other ones, e.g., a Container that is
deployed on a VM or a Test_Environment. The connector type
runs_on models the relations between execution environments
and the devices they run on.

The type Stack is used to define deployments of Devices
using the defines_deployment_of relation. Stacks include en-
vironments with their deployed components using the in-
cludes_deployment_node relation.

A. Smell Detection

Table II summarizes the possible smells we have detected
for each ADD. It also describes how the algorithms we
use to detect smells in models are based on meta-model
definition introduced in Section VI. For example, Algorithm 1
describes the steps required for detecting the Smell Services
are Deployed on a Single Execution Environment of ADD 1.
It returns a list of smells, each represented by a set of service
environment connectors in which two services sm and sj share
an execution environment ei.

Algorithm 1: Detect System Services are Deployed on a Single
Execution Environment Smell



Case Study
ID

Model Size Description / Source

CS1 68 components
167 connectors

E-shop application using pub/sub communication for event-based interaction and files for deployment on a
Kubernetes cluster. All services are deployed in their infrastructure stack (from https://github.com/dotnet-architecture/
eShopOnContainers).

CS1.V1 67 components
163 connectors

Variant of Case Study 1 in which half of the services are deployed on the same execution environment, and some
infrastructure stacks deploy more than one service.

CS1.V2 60 components
150 connectors

Variant of Case Study 1 in which some services are deployed on the same execution environment and half of the
non-services components are deployed by a component-deploying stack.

CS1.V3 60 components
150 connectors

Variant of Case Study 1 in which some services are deployed on the same execution environment and the non-services
components are deployed by a component-deploying stack.

CS2 38 components
95 connectors

An online shop that demonstrates and tests microservice and cloud-native technologies and uses a single infrastructure
stack to deploy all the elements (from https://github.com/microservices-demo/microservices-demo).

CS2.V1 40 components
101 connectors

Variant of Case Study 2 where multiple infrastructure stacks are used to deploy the system elements, as well as some
services are deployed on the same execution environment.

CS2.V2 40 components
101 connectors

Variant of Case Study 2 where two infrastructure stacks are used to deploy the system elements (one for the services
and one for the rest elements), as well as some services are deployed on the same execution environment.

CS2.V3 60 components
150 connectors

Variant of Case Study 2 in which some services are deployed on the same execution environment and the non-services
components are deployed by a component-deploying stack.

CS3 32 components
118 connectors

Robot shop application with various kinds of service interconnections, data stores, and Instana tracing on most
services, as well as an infrastructure stack that deploys the services and their related elements (from https://github.
com/instana/robot-shop).

CS3.V1 56 components
147 connectors

Variant of Case Study 3 where some services are deployed in their infrastructure stack and some services are deployed
on the same execution environment.

CS3.V2 56 components
147 connectors

Variant of Case Study 3 where all services are deployed in their infrastructure stack and all services are deployed
on their execution environment.

CS3.V3 54 components
148 connectors

Variant of Case Study 3 where some services are deployed in their infrastructure stack and some services are deployed
on their execution environment.

TABLE I: Overview of modeled case studies and the variants (size, details, and sources), adapted from our previous work [8]

Smell Detection and Fix
AlgorithmsSmell Definition

Fix Definition  IaC-Based Model
Architecture Refactoring

Evaluation

Architectural Design
Decisions on IaC Coupling

IaC Component Architecture
Models

Metrics on Coupling in IaC-
Based Deployments

Background Smells/Fixes Architecture Refactoring

Architecture Evaluation

Fig. 3: Overview diagram of the research method followed in this study (the diagram is adapted from our previous work [8])

i n p u t : Model M
o u t p u t : Set <Tuple >
beg in
s m e l l s ← ∅
f o r sm ∈ s e r v i c e s (M) :

f o r sj ∈ s e r v i c e s (M) :
f o r ei ∈ e x e c u t i o n _ e n v i r o n m e n t (M) :

i f ((sm, ei) ∈ s e r v i c e _ e n v _ c o n n e c t o r s (M) ∧
(sj , ei) ∈ s e r v i c e _ e n v _ c o n n e c t o r s (M) ) :

smells ← smells ∪ {(sm, ei), (sj , ei)}
r e t u r n smells

end

B. Fixes

Table III summarizes all possible fixes for each detected
smell and the fix algorithm. Many of the fixes require human
review and sometimes a human decision to be applicable.

For instance, the architect may be faced with a decision of
which infrastructure stack is better suitable to the application
requirements. For example, Algorithm 2 shows one of the
fix algorithms, integrating services deployed in the same
execution environments needed to realize D1.S1.F3.

Algorithm 2: Integrate Services Deployed in the Same Execu-
tion Environment (D1.S1.F3)

i n p u t : Model M , E x e c u t i o n _ E n v i r o n m e n t env
o u t p u t : −
beg in

new_service ← Nul l
first ← True
integration_annotations ← ∅

f o r s ∈ g e t _ s e r v i c e s (M , env ) :
i f f i r s t :

new_service = c r e a t e _ s e r v i c e (M ,

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/microservices-demo/microservices-demo
https://github.com/instana/robot-shop
https://github.com/instana/robot-shop


Smells Smell Detection Algorithm Summary
D1: System Coupling through Deployment Strategy
D1.S1: System services are running/deployed on a single
execution environment [Host/VM/Container].

All service connectors in the model are traversed. If at least two services are
deployed on the same execution environment, an instance of the smell is found.
The detector operation returns each such service-execution connector that is
found.

D2: System Coupling through Infrastructure Stack Grouping
D2.S1: All infrastructure elements and services are part of
a single infrastructure stack.

All infrastructure elements connectors in the model are traversed. If only one
infrastructure stack is found to be used by them, an instance of this smell is
found. The detector operation returns the list of all relevant model elements.

D2.S2: Two or more services are part of a single infrastruc-
ture stack.

All service and stack connectors in the model are traversed. The smell is found
if multiple services are clustered in groups on at least one of the stacks. The
detector operation returns the list of all relevant model elements.

D2.S3: If Service Stack is True: Infrastructure elements (e.g.,
databases, routers, etc.) that services depend on are not part
of their service stack.

All infrastructure elements connectors in the model are traversed. Suppose non-
service components (e.g., databases) are connected to a different stack than their
services. In that case, the smell is found. The detector operation returns the list
of all such model elements.

D2.S4: If Service Stack is True: Infrastructure elements (e.g.,
databases, routers, etc.) that services are not dependent on
are part of their service stack.

All infrastructure elements connectors in the model are traversed. Suppose non-
service components (e.g., databases) are connected to a stack they are not
dependent on. In that case, the smell is found, and the detector operation returns
the list of all relevant model elements.

TABLE II: Detected Smells and Smell Detection Algorithms

Smell Fix Fix Summary
D1: System Coupling through Deployment Strategy

D1.S1
D1.S1.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it has

no significant impact on system deployment.
D1.S1.F2: Deploy each service in a separate ex-
ecution environment

Disconnect services from the execution environment and introduce a
new execution environment for each service. Connect the services to
the execution environments.

D1.S1.F3: Integrate the services deployed on the
same execution environment into one service

Disconnect services from the execution environment. Merge the ser-
vices using the same execution environment into a single service
using that execution environment. Connect the new service to the
execution environment. Here we add annotations that functionality has
been added to one service so that implementers, later on, can realize
this functionality. The architect must check whether such integration
is possible and can provide developers with annotations about the
envisaged service integration details.

D1.S1.F4: Introduce VMs/Containers in a
Host/VM to separate services in different
execution environments

Disconnect services from the execution environment and introduce
new VMs/containers for each service in the same host. Connect the
services to the VMs/containers.

D2: System Coupling through Infrastructure Stack Grouping

D2.S1

D2.S1.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it has
no significant impact on system deployment.

D2.S1.F2: Create separate infrastructure stacks
for each service and additional infrastructure el-
ements

Disconnect services from the infrastructure stack. Introduce new
infrastructure stacks for each service and additional infrastructure
elements. Connect the services and elements to their stack.

D2.S2

D2.S2.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it has
no significant impact on system deployment.

D2.S2.F2: Create separate infrastructure stacks
for each service

Disconnect services from the infrastructure stack. Introduce new
infrastructure stacks for each service and connect the services to their
stack.

D2.S3

D2.S3.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it has
no significant impact on system deployment.

D2.S3.F2: Move the service-dependent infrastruc-
ture elements in the same service stack

Disconnect service-dependent infrastructure elements from the infras-
tructure stack. Connect service-dependent infrastructure elements to
the infrastructure stacks they are dependent on.

D2.S4

D2.S4.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it has
no significant impact on system deployment.

D2.S4.F2: Move the service-independent infras-
tructure elements in the dependent service stack

Disconnect service-independent infrastructure elements from the in-
frastructure stack. Connect service-independent infrastructure elements
to the infrastructure stacks they are dependent on.

TABLE III: Detected Fixes And Fix Algorithms

g e t _ s e r v i c e _ n a m e (M , s ) ,
g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M , s ) )

f i r s t ← F a l s e
e l s e :

s e t _ s e r v i c e _ n a m e (M , new_service ,
g e t _ s e r v i c e _ n a m e (M , new_service ) + " + " +
g e t _ s e r v i c e _ n a m e (M , s ) )

a d d _ a p p l i c a b l e _ s t e r e o t y p e s (M , new_service , s )

integration_annotations ← integration_annotations
∪ {" i n t e g r a t e d f u n c t i o n a l i t y from : " +

g e t _ s e r v i c e _ n a m e (M , s ) }
a d d _ c o n n e c t o r (new_service , env ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M , (s , env ) ) )
d e l e t e _ s e r v i c e (s )

a d d _ a n n o t a t i o n s (M , new_service , integration_annotations )
end



C. Smell Detection and Fixes Example

Figure 4 shows an excerpt model of CS1.V2 from Table I.
As an illustrative example, we use it here to demonstrate the
System services are running/deployed on a single execution
environment [Host/VM/Container](D1.S1) smell. All services
are deployed on a single Container in this model. Here, the
Docker Container 0.0.0.3 is considered as shared execution
environment, causing the corresponding smell. It would be
triggered in our approach by providing a bad metric value,
which would trigger the detailed detection, which would return
the {(Catalog, Docker Container 0.0.0.3), (Basket, Docker
Container 0.0.0.3), (Order, Docker Container 0.0.0.3)} set of
tuples. If we run our fix algorithms, the resulting model fix
suggestions are:
• Applying Fix D1.S1.F2: Catalog, Order and Basket ser-

vices will be disconnected from the execution environ-
ment. The fix will introduce different execution environ-
ments for each service, which will be connected to its
own execution environment.

• Applying Fix D1.S1.F3: The Catalog, Order and Basket
services can be integrated into one new service.

• Applying Fix D1.S1.F4: The fix will introduce new
execution environments for each service as part of the
same host. Catalog, Order, and Basket services will be
disconnected from the execution environment, and each
service will be connected to its execution environment.

VII. EVALUATION

To evaluate our work, we have fully implemented our
algorithms for detecting smells and performing fixes, and
generating the metrics described in Section II to measure
the improvements and presence of remaining smells in our
model set. If multiple smells are present in a model, then the
algorithms can be employed iteratively until all smells have
been fully resolved.

For example, let us illustrate the exhaustive, iterative refac-
toring for the CS1.V2 Model (see Figure 4). CS1.V2 has
the following smells—“System services are running/deployed
on a single execution environment” (D1.S1), “Two or more
services are part of the same infrastructure stack” (D2.S2),
and “Infrastructure elements (e.g., databases, routers, etc.) that
services depend on are not part of their service stack” (D2.S3)
as indicated by the respective measures in Table II. There
are two branches at the first iteration step of the refactoring
process in Table IV. The first iteration step results in 4 possible
model variants, one for each fix option from Table III. In these
models, the corresponding smells have been fixed. However,
all the new models still contain a smell. M1–M3 still has the
D2.S2 smell since this is not resolved in this branch. M4 still
has the D1.S3 smell.

The second iteration step results in four further models.
In turn, the resulting models M1.A, M2.A, and M3.A, now
contain the additional smells D2.S3. At the end of the third
step, we have four suggested model variants, all optimally
resolving the smells. The architect can choose the refactoring

sequence from among these final optimal model variants but
can also choose not to apply specific fixes, e.g., due to other
constraints outside our study’s scope.

We followed this technique for all 12 system models in
Table I to evaluate them. In Table V, along with the starting
smells and architecture evaluation values for each model, are
the number of intermediate models and smell cases at every
step, as well as the number of final suggested models with
an optimal metric assessment. Please note that the metrics
below correspond to each of the smells; D1.S1 has two related
metrics, and D2.S2 has three metrics, one for detecting the
Application Group Stack pattern, one for detecting the Service
Stack pattern, and one to measure the proportion of this.

The number of smells in the starting model and the potential
emergence of additional smells throughout the refactoring
process determines the number of steps necessary to attain
ideal models. All models are fully resolved, or all assessment
metrics have optimal values after a maximum of three phases,
as shown in Table V.

VIII. DISCUSSION OF RESEARCH QUESTIONS

For each potential alternative option, we methodically de-
tected several decision-based smells, which are included in
Table II to address RQ1. The purpose of the smell detectors
is to discover the precise locations in the models where the
smells occur because we have empirically demonstrated in
our prior work [8] that the metrics described in Section II
can reliably distinguish preferred or less preferred design
options. For each system model in our evaluation dataset,
proposing corrections to improve the architecture was possible.
This indicates that the algorithms had correctly detected the
resolution’s proper location or locations.

We built a variety of methods for RQ2 that addressed every
conceivable smell and provided several correction alternatives
(see Table III). A search tree of potential architecture models
is produced if every option is tested (such as the one shown in
Table IV). This search tree may then be evaluated using met-
rics to gauge how much the basic architecture has improved
and detect unresolved issues. We have demonstrated that an
iterative method of employing our algorithms successively
yields, within a few steps, a variety of potential architectural
models that eliminate all smells detected and guarantee pattern
conformity of the system architecture (see Table V). The
numerous ideal model versions produced by our method offer
architects a great deal of design flexibility. The approach is
suited to be used in a continuous delivery environment, which
was one of our study’s aims. This is because detection is
automated, and human expertise is only used in the fix process.

IX. THREATS TO VALIDITY

The information and solutions presented in our study are
based on published literature and best practices in the field.
Our evaluation dataset consists of a representative collection of
systems drawn from three different sources and specifically se-
lected to demonstrate various features of IaC architectures (see
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Fig. 4: Excerpt of an Architecture Component Model of Case CS1.V2 in Table I.

CS1.V2

Step 1
Smells D1.S1 D2.S2
Produced Component Models (Fixes) M1, M2, M3 M4

Step 2
Smells D2.S2 D2.S3
Produced Component Models (Fixes) M1.A, M2.A, M3.A M4.A

Step 3
Smells D2.S3 No additional smell
Produced Component Models (Fixes) M1.A-1, M2.A-2, M3.A-3 –

Total 4 Optimal Component Models

TABLE IV: Example of an exhaustive iterative application of our approach in the CS1.V2 model. Final (i.e. optimally resolved)
resulting models are rendered in boldface font.

Table I). While our method is based on traditional component-
and-connector models, widely used in the literature, and
modified to include deployment aspects, it is designed to be
abstract and general.

To ensure our results’ accuracy and reliability, the authors’
team carried out the modeling process, and all models were
independently cross-checked. The authors have extensive ex-
pertise in modeling methodologies and are confident that al-
ternative interpretations of the models would still be generally
similar and compatible with our findings. However, it should
be noted that our method depends on a specific modeling
strategy and may not apply to all architectures.

One of the main limitations of our study is that it only con-
siders two specific ADDs and the associated trends, metrics,

and issues. In real-world architectures, it would be necessary to
consider a broader range of ADDs to evaluate the architecture
fully. Additionally, our measurements and tools were applied
at a relatively high level of abstraction to accommodate
different IaC technologies, such as Ansible, Terraform, and
Puppet.

Another potential limitation of our technique is its ability to
effectively address larger, more complex systems commonly
found in industry but which we could not include in our
research. While our method is automated to some extent, it
still requires input and guidance from the architect, which may
make it challenging to implement in practice. Additionally,
our method cannot match the expertise and ability of a skilled
architect to design a more optimal solution. This is a common



Model
ID

Initial Model Models Generated / Remaining smell Instances Resulting
Suggested

Models
Assessments per Refactoring Step

D1.S1 D2.S1 D2.S2 D2.S3,
D2.S4

Step 1 Step 2 Step 3

CS1 0.00, 0.00 False True, False, 1.00 True, 1.00 1 / 1 1 / 0 – 1
CS1.V1 0.71, 0.50 False False, False, 0.20 True, 1.00 4 / 3 3 / 0 – 4
CS1.V2 0.42, 0.20 False False, False, 0.57 False, 0.50 4 / 4 4 / 3 3 / 0 4
CS1.V3 0.57, 0.25 False False, False, 0.42 False, 0.33 4 / 4 4 / 3 3 / 0 4
CS2 0.00, 0.00 True False,False, 0.00 False, 0.00 1 / 1 1 / 0 – 1
CS2.V1 0.25, 0.14 False False,False, 0.12 False, 1.00 4 / 3 3 / 0 – 4
CS2.V2 0.62, 0.40 False False,True, 0.00 False, 0.00 4 / 4 6 / 0 – 6
CS2.V3 0.25, 0.14 False False,False, 0.12 False, 0.33 4 / 4 4 / 3 3 / 0 4
CS3 0.00, 0.00 False False,False, 0.00 False, 0.00 1 / 1 1 / 0 – 1
CS3.V1 0.37, 0.16 False False,False, 0.62 False, 1.00 4 / 4 6 / 0 – 6
CS3.V2 0.00, 0.00 False True,False, 1.00 True, 1.00 1 / 1 1 / 0 – 1
CS3.V3 0.25, 0.14 False False,False, 0.75 False, 0.33 4 / 4 4 / 3 3 / 0 4

TABLE V: This table shows the results of evaluating the initial models used in our study. It includes the number of models
created at each step of applying our algorithms in an iterative process, the number of smell instances (calculated by multiplying
the number of generated models by the number of smells per model) that remained or were introduced in each iteration, and
the final count of recommended (optimal) models.

limitation of generic architecture assistance techniques that we
aim to address in future research.

We want to emphasize that our current approach is just
a starting point for examining the issue of evaluating and
improving IaC architectures. The models we have produced
do not yet consider factors such as the amount of code or
rewriting needed to implement them. Despite these limitations,
it is still valuable to have a semi-automatic approach that can
detect and analyze violations of architectural best practices,
even if some of these issues may be inevitable in practice.
Practitioners may not always adhere to best practices, and
systems may be developed without a deliberate effort to follow
them or may drift from their original specifications over time.

X. CONCLUSION AND FUTURE WORK

In this work, we investigate the use of coupling-related
architectural design decisions in infrastructure as code archi-
tectures and their impact on the system’s overall design. We
identify specific "smells" that may indicate issues and have
developed automated detectors to locate the source of these
smells within the model. We have created a set of potential
solutions for each detected smell to address these smells
and ensure adherence to best practices in microservice-based
architectures.

We conducted three case studies on open-source
microservice-based systems to evaluate our approach.
We introduced smells or refactorings to 9 variants of these
systems to test the performance of our smell detection
algorithms in more complex scenarios. Our analysis of these
models, which ranged in architectural complexity and the
presence of patterns and smells, showed that our technique
could eliminate smells in just three refactoring steps, most of
which could be automated.

One of the main advantages of our method is its fully
automated metric computation and smell detection, which
makes it suitable for incorporation into a continuous delivery
pipeline as an additional “architecture evaluation” step. While

the proposed fixes on the IaC-based models are automated,
architects still have the flexibility to make design choices and
provide feedback as needed.

We plan to expand the range of ADDs and smells supported
by our method and improve it by including runtime metrics
and other design components. We also plan to increase the size
and complexity of our model dataset and empirically validate
our approach through its use in real delivery pipelines as part
of a feedback loop.
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