
Dynamic Demand-Aware Link Scheduling
for Reconfigurable Datacenters

Kathrin Hanauer
Faculty of Computer Science

University of Vienna
Vienna, Austria

Monika Henzinger
Faculty of Computer Science

University of Vienna
Vienna, Austria

Lara Ost
Faculty of Computer Science

University of Vienna
Vienna, Austria

Stefan Schmid
TU Berlin

Berlin, Germany

Abstract—Emerging reconfigurable datacenters allow to dy-
namically adjust the network topology in a demand-aware
manner. These datacenters rely on optical switches which can
be reconfigured to provide direct connectivity between racks, in
the form of edge-disjoint matchings. While state-of-the-art optical
switches in principle support microsecond reconfigurations, the
demand-aware topology optimization constitutes a bottleneck.

This paper proposes a dynamic algorithms approach to im-
prove the performance of reconfigurable datacenter networks,
by supporting faster reactions to changes in the traffic demand.
This approach leverages the temporal locality of traffic patterns
in order to update the interconnecting matchings incrementally,
rather than recomputing them from scratch. In particular, we
present six (batch-)dynamic algorithms and compare them to
static ones. We conduct an extensive empirical evaluation on
176 synthetic and 39 real-world traces, and find that dynamic
algorithms can both significantly improve the running time and
reduce the number of changes to the configuration, especially in
networks with high temporal locality, while retaining matching
weight.

Index Terms—reconfigurable networks, dynamic algorithms,
graph algorithms

I. INTRODUCTION

The performance of many cloud-based applications crit-
ically depends on the underlying network, requiring high-
throughput datacenter networks which provide extremely large
bandwidth [1]–[3]. For example, in distributed machine learn-
ing and data mining applications that periodically require
large data transfers, the network is increasingly becoming a
bottleneck. High network throughput requirements are also
introduced by today’s trend of resource disaggregation in

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant agreement
No. 101019564 “The Design of Modern Fully Dynamic Data Structures
(MoDynStruct)” and Grant agreement No. 864228 “Self-Adjusting Networks
(AdjustNet)”), and from the Austrian Science Fund (FWF) project “Fast
Algorithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with
additional funding from the netidee SCIENCE Stiftung, 2020–2024. The
third author is funded by the Vienna Graduate School on Computational
Optimization, FWF project no. W1260-N35.
{kathrin.hanauer,monika.henzinger,lara.ost}@univie.ac.at,

stefan.schmid@tu-berlin.de
© 2023 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

v1 v2 v3 v4 v5 v6 v7 v8

fixed topology

optical switch 1
matching 1

optical switch 2
matching 2

v1

v2v3

v4

v5

v6 v7

v8

controller observes demand

reconfigures

Fig. 1. Two optical switches establishing direct connections between nodes
v1, . . . , v8, as instructed by the network controller, and the demand graph
with the corresponding two matchings.

datacenters, where fast access to remote resources (e.g., GPUs
or memory) is critical, and the trend to hardware-driven
workloads such as distributed training [1].

The stringent throughput requirements of modern datacenter
applications have led researchers to propose innovative data-
center network designs which rely on reconfigurable topolo-
gies [4]–[13]: emerging optical technologies allow to en-
hance existing datacenter networks with reconfigurable optical
matchings. In particular, optical circuit switches can provide
direct connectivity between datacenter racks, in the form
of one matching per optical circuit switch. This technology
enables demand-aware networks [14]: the optical matchings,
and hence the datacenter topology interconnecting the racks,
are adjusted depending on the current communication traffic.

Such demand-aware topology optimizations are attractive as
datacenter traffic typically features much spatial and temporal
structure, and most transmitted bytes belong to a small number
of so-called elephant flows [15]–[17]. Thus, throughput may be
significantly increased by optimizing the topology towards the
current traffic matrix and elephant flows. This can be achieved,
for example, by providing direct connectivity between fre-
quently communicating racks rather than serving traffic along
multiple hops, which introduces a “bandwidth tax” [13], [18].

However, demand-aware topology optimizations are com-
putationally expensive. In fact, state-of-the-art algorithms [8],
[19]–[24] to compute optimized demand-aware switch match-
ings for a given demand matrix can have a running time
that is significantly higher than the actual reconfiguration time
provided by the state-of-the-art optical technologies (which is
in the order of microseconds or even less [25], [26]). Thus,
the computation of the demand-aware topology can be the
bottleneck for demand-aware datacenter networks.

ar
X

iv
:2

30
1.

05
75

1v
1

 [
cs

.N
I]

 1
3

Ja
n

20
23

https://orcid.org/0000-0002-5945-837X
https://orcid.org/0000-0002-5008-6530
https://orcid.org/0000-0003-4311-9928
https://orcid.org/0000-0002-7798-1711

0
1

2 3

4

5

6−

+
0

1

2 3

4

5

6

Update

0
1

2 3

4

5

6

Recompute

Fig. 2. Updating vs. recomputing a solution from scratch for k= 2: The two
matchings are visualized in dotted green and dashed blue, the line width of
an edge corresponds to its weight. Shaded edges have been changed.
Center: Initial situation. Two updates arrive, one increases an edge weight
+ , another decreases an edge weight − . Left: The result after processing
the updates. Only four edges are affected. Right: The potential result after a
full recomputation from scratch. The whole network is reconsidered and also
unaffected edges may have change, which can be inefficient.

Formally, the problem of optimizing the topology of a
demand-aware network is a novel variant of a matching
problem consisting of “heavy” disjoint matchings [25] (see
Fig. 1): given k optical switches and a traffic demand (a.k.a.
demand matrix) represented as a weighted graph where each
node corresponds to a datacenter rack and weighted edges
represent demands, compute k (edge-)disjoint matchings of
high weight. The weight of these matchings hence corresponds
to the amount of traffic which can be offloaded to the recon-
figurable network, and hence to the throughput achieved by
the datacenter network. In most existing reconfigurable dat-
acenter architectures, including Helios [20], c-Through [22],
or recently Google’s Gemini [27], among many others [19],
[21], [23], [24], this topology optimization is performed by
a centralized software controller. Computing such a set of
matchings of maximum weight is NP-hard and cannot be
approximated with arbitrary precision for all k≥ 2 [25], [28].

The goal of this work is to improve the running time for
computing k disjoint matchings to allow datacenter networks
to react to changes in the demand more quickly and improve
throughput further. Our main idea is as follows: Since traffic
exhibits much temporal locality, it can be inefficient to re-
compute the datacenter topology from scratch for each traffic
matrix. Rather, we study dynamic algorithms, i.e., algorithms
which update the topology incrementally, as a reaction to shifts
in the demand matrix. Besides speeding up the computation,
such dynamic algorithms may also require fewer changes
in configurations to achieve a given throughput. The latter
benefits ongoing flows as fewer of them will be interrupted.

We illustrate our motivation with a simple example network,
see also Fig. 2: Assume the communication demand, i.e. edge
weight, of a node to two of its neighbors changes. A dynamic
algorithm, which processes the updates itself, has the possi-
bility to adjust the configuration locally and to leave most of
the old solution untouched. By contrast, a static one, which
does a full recomputation from scratch, needs to process the
entire network and, as it is unaware of the old configuration,
may additionally introduce unnecessary changes. This can
negatively affect both the running time of the algorithm and
the number of changes to implement on the optical switches.

Thus, we study the following dynamic weighted k-disjoint
matching problem: Given an undirected graph G with edge
weights representing the current communication demands,
process a sequence of batch updates, each consisting of a set

of (edge) updates, where each (edge) update either inserts or
deletes an edge or changes the weight of one edge. The main
goal is to process each batch as quickly as possible and deliver
an up-to-date configuration, i.e., k edge-disjoint matchings,
after each batch such that the total weight is maximized. A
secondary goal is to keep the recourse small, i.e., to minimize
the number of changes to the matchings.

Contributions: We develop and evaluate a diverse set of
algorithmic techniques for the weighted k-disjoint matching
problem arising in the context of reconfigurable datacenter
networks. Based on the best static algorithms in [25], we
design two dynamic algorithms, which process each update
individually, three batch-dynamic algorithms, which process
a batch of updates collectively, and two hybrid algorithms,
which combine subroutines of static and dynamic approaches.
Furthermore, we introduce a universal speedup technique that
filters out insignificant updates, as well as a universal post-
processing routine that ensures an at least 1

2 -approximation
of the maximum weight and can also be run standalone. We
compare these algorithms and their speedup and postprocess-
ing versions in detail with respect to solution weight, running
time, and recourse in theory and practice to the best static
algorithms from [25].

Main Experimental Results: Our extensive study on 39
real-world and 176 synthetic instances shows that our batch-
dynamic and dynamic algorithms can beat the best static
algorithm w.r.t. running time and recourse, while essentially
retaining the solution weight. The combination of the post-
processing and speedup technique proved to be particularly
important for the solution weight of the dynamic algorithms.
On instances where batches are small, their advantage over
static algorithms is even more pronounced. Our two hybrid
algorithms successfully combine the advantages of static and
dynamic algorithms and are a good general-purpose choice.

We note that our approach is compatible with most existing
reconfigurable datacenter architectures, including [19]–[24],
[29], [30], which can hence directly benefit from these per-
formance improvements. Due to space restrictions, all proofs
are omitted.

II. PRELIMINARIES

a) Basics: We model the communication demand be-
tween peers as an undirected, weighted graph G= (V,E,w)
with node set V , edge set E, and use n := |V |, m := |E|.
The function w :E→N0 maps each edge to a weight, which
corresponds to the respective communication demand. An
edge e with w(e) = 0 is considered absent. The maximum
edge weight is W := maxe∈E w(e). The weight of a set of
edges S is w[S] =

∑
e∈S w(e). Edges sharing an endpoint

are adjacent. For two sets of vertices X,Y ⊆V , E(X,Y) =
E(Y,X) := {{x, y}∈E |x∈X, y ∈Y } is the set of all edges
between X and Y . The neighborhood N(e) of an edge e is
N(e) :=E({u, v}, V) \ {e}. Adding a set S⊆E as subscript
restricts the neighborhood to NS(e) :=N(e)∩S. The degree
deg(v) of a vertex v is the number of edges incident to v, and
∆ := maxv∈V deg(v) is the maximum degree.

A matching in G is a subset of E such that no two
edges are adjacent. A k-disjoint matching M is a set of
k matchings (M1, . . . ,Mk) such that Mi ∩Mj = ∅ for all
i, j ∈ [k], i 6= j. The weight of a k-disjoint matching M is
w(M) :=

∑k
i=1 w[Mi]. We can alternatively view a k-disjoint

matching as a partial (edge) k-coloring. Such a coloring
C :E→ [k]∪{⊥} assigns to each edge one of k colors or the
symbol ⊥, where for each pair of adjacent edges e, e′ either
C(e) 6= C(e′) or ⊥∈{C(e), C(e′)}. An edge e is uncolored
if C(e) =⊥ and colored otherwise. A color c∈ [k] is free
at vertex v (resp. edge e) if there is no edge e′ incident
to v (resp. adjacent to e) such that C(e′) = c. The set of
all neighboring edges of an edge e that have color c is
denoted by Nc(e). The weight of a coloring C is w(C) :=∑
e∈E:C(e)6=⊥ w(e), i.e., the sum of the weights of all colored

edges. We mainly use the coloring perspective and k always
refers to the number of colors, i.e. disjoint matchings.

b) Dynamic Setting: Our algorithms maintain an partial
k-coloring under edge updates, where an (edge) update U(e, δ)
is a change in the weight of an edge e by some amount
δ 6= 0, i.e., w(e)←w(e) + δ. The weight may either increase or
decrease. We consider a change from 0 to a positive weight to
be an insertion and a change from a positive weight to 0 to be a
deletion. The updates are presented to the algorithm in a fixed
order, and no information about the updates themselves or the
length of the update sequence is known to the algorithms be-
forehand. Additionally, the sequence of updates is partitioned
into consecutive subsequences, each forming a batch. For each
edge e if there are multiple updates of e in a batch, we add up
the weight of the corresponding updates creating at most one
update per edge per batch. The set of edges updated within
a batch B is referred to as EB. We assume that after each
batch the algorithms are required to (i) output the value of an
up-to-date solution, and to (ii) be able to output the update to
the solution itself (i.e., the differences in the coloring) in time
linear in the recourse. The recourse corresponds to the total
number of changes in the coloring over a batch, i.e., if C′ and
C are the edge colorings before and after a batch of updates
B, respectively, the recourse is |{e∈EB | C′(e) 6= C(e)}|.

We consider four types of algorithms: Dynamic algorithms
update their solution after every individual update; Batch-
dynamic algorithms process the entire batch at once and in
self-chosen order; Static algorithms recompute from scratch
after each batch. Hybrid algorithms decide on the basis of
the observed updates whether they update the solution like a
dynamic algorithm or recompute from scratch like a static one.

c) Related Work: The study of the k-disjoint matching
problem is motivated by emerging datacenter networks which
augment a static (fixed) topology, with a dynamic topology
implemented with k optical (circuit) switches. Each optical
switch provides a set of exclusive direct connections between
top-of-rack switches that form a matching, For a recent survey
of the field see Hall et al. [31].

Our work builds upon a recently suggested approach by
Hanauer et al. [25], who showed that the static version of the
problem is NP-hard and no FPTAS can exist. They evaluated

TABLE I
RUNNING TIMES AND RECOURSE FOR A BATCH OF b UPDATES.
m, n AND ∆ REFER TO THE CARDINALITIES afterwards.

Algorithm Batch Update Time Recourse

GreedyIt O(m logm+ km) O(m)
NodeCentered O(n logn+m log ∆ + km) O(m)
kEC O(m logm+ kn2) O(m)

dyn-greedy(α, β)∗ O(b(β · 2α +β2)) O(b · 2α)
dyn-kEC∗ O(b ·n) O(b ·n)

batch-greedy-l O(∆b log(∆b) + k∆2b) O(b ·∆)
batch-greedy O(∆b log(∆b) + k∆b) O(b ·∆)
batch-NC O(b(log b+ ∆ log ∆ + k∆)) O(b ·∆)
batch-2apx O(m(k+ logm)) O(m)

hybrid-greedy(α, β) see Lemma 5 O(m)
hybrid-kEC O(m logm+ kn2) O(m)

∗for b calls to AttemptMatch or DecreaseWeight

a variety of algorithms in theory and practice.
The matching problem has been intensively studied in the

dynamic setting, see [32] for a survey. For the dynamic edge
coloring problem, only algorithms for the unweighted setting
exist, which are not applicable to our setting.

Bienkowski et al. [33] studied a problem in the online
setting that is similar to k-disjoint matchings, but can be solved
to optimality in polynomial time.

III. ALGORITHMS

Our algorithms are in part based on static algorithms
described in [25], specifically GreedyIt, NodeCentered,
and kEC. For space reasons, we can only review these algo-
rithms briefly. We then present our dynamic, batch-dynamic,
and hybrid algorithms, as well as a speedup technique and a
postprocessing routine. Table I gives a compact overview over
their asymptotic running time and recourse.

Below we use the two functions SwapIn(e, c) and
SwapOut(e), where e is an edge and c∈ [k] is a color.
SwapIn(e, c) colors e with c and uncolors e’s neigh-
bors Nc(e) if w(e)>w[Nc(e)], otherwise it does nothing.
SwapOut(e) looks for up to two non-adjacent, uncolored
edges e′ and e′′ in N(e) such that (i) C(e) is free for both
e′ and e′′ and (ii) their total weight w′ is maximum over all
such edge pairs. If and only if w′>w(e), SwapOut(e) colors
these edges with C(e) and uncolors e.

A. Static Algorithms

We use the best static algorithms from Hanauer et al. [25],
which we refer to for more details. They are rerun from scratch
after each batch of updates. As they are ignorant of previous
colorings, they have a worst-case recourse of O(m).

The GreedyIt algorithm is a “greedy” matching algo-
rithm: For each color c, all uncolored edges are processed
in non-increasing order of their weight and colored with c
if admissible. At the end of the iteration for c, it optionally
performs a LocalSwaps procedure, where SwapOut(e) is
run on each edge of color c.

The NodeCentered algorithm is also greedy, but pro-
ceeds node by node. The nodes are processed in non-
increasing order by their rating, which corresponds to the
sum of the weights of the k heaviest incident edges. For each
node, up to k incident edges are colored with any available
color in order of non-increasing weight. To avoid an overly
greedy coloring, the algorithm defers the coloring of edges
with weight below θ ·W , where θ is a threshold parameter,
until after all nodes have been processed. We use θ= 0.2, as
suggested in [25].

The kEC algorithm is based on the edge coloring algorithm
of Misra and Gries (MG) [34]. Hanauer et al. [25] adapted
this algorithm to consider edge weights and to limit the
number of colors to k, and considered different speedup
techniques. The key observations that allow a modification of
the algorithm without compromising its correctness are that MG
(i) colors the edges in arbitrary order and (ii) never uncolors
an already colored edge. We use kEC as suggested [25] with
the flags CC and RL enabled. kEC tries to color the edges
in non-increasing order according to their weight, using a
procedure kColorEdge, which largely follows the routine
in MG, as follows: To color an edge e= {u, v}, kEC first
checks whether u and v both have at least one free color
each, and leaves e uncolored otherwise. If a common free
color exists, it is used for e (CC flag). Otherwise, following
MG, kEC constructs a fan Fu around u. A fan is a maximal
sequence Fu = (f0 = v, f1, . . . , f`) of distinct neighbors of u,
where for all 1≤ i≤ `, if {u, fi} has color ci, then color ci
is free on fi−1. Note that Fu is not necessarily unique. Now
we pick a color c that is free at u and a color d that is free
at f`. In MG, d always exists, whereas in kEC, the number
of colors is limited to k. Thus, if kEC does not find a free
color at f`, kColorEdge has failed for u and kEC repeats
kColorEdge symmetrically at v. If kColorEdge failed at
both u and v, {u, v} remains uncolored.

Otherwise, assume that f` in fan Fu has a free color d. We
consider two cases. (1) If d is free at u, kEC rotates the full
fan Fu (RL flag), i.e., for all 1≤ i≤ `, the edge {u, fi−1} is
recolored with the color of {u, fi}, and {u, f`} receives the
color d. (2) Otherwise, as d was free at f` and the fan is
maximal, there must be a neighbor fj in Fu such that {u, fj}
has color d. Like MG, kEC constructs a path in the graph of
maximal length that starts with the edge {u, fj} and whose
colors alternate between d and c. The colors d and c are then
swapped along this path, which guarantees that d is free both
at u and at at least one vertex in Fu [34]. kEC (and MG) now
rotate Fu as in (1), but only up to the first vertex fx where d
is free, and then recolor {u, fx} with d.

B. Dynamic Algorithms

The algorithm dyn-greedy is a dynamic enhancement of
GreedyIt and takes two parameters α and β. Each update
is treated separately, where the subroutines AttemptColor
and DecreaseWeight handle weight increases of uncol-
ored edges and weight decreases of colored edges, respec-

tively. Nothing is done on weight increases of already colored
edges or weight decreases of uncolored edges.
AttemptColor: If there is a free color on e, we color

e with this color. Otherwise, we try to find a color c
where SwapIn(e, c) is successful. If yes, we recursively
call AttemptColor on the newly uncolored edges up to
a recursion depth of α. To determine c, if β≥ k, c is the color
of the edges adjacent to e that have minimum total weight. If
β <k, we pick a subset of β colors uniformly at random from
[k] and just among these, we use the color where the edges
adjacent to e have the minimum total weight.
DecreaseWeight: We first call a modified SwapOut(e)

which only considers a random subset of β incident edges per
end node. If this changed the coloring, the algorithm tries to
recolor e using AttemptColor with α= 0 and β as given.
The procedure is deterministic for β= ∆.

Lemma 1. dyn-greedy processes an edge weight increase
in time O(β · 2α) and a decrease in O(β2). The recourse is
O(2α), respectively O(1).

The dynamic k-edge coloring algorithm dyn-kEC uses
the kColorEdge procedure of the static kEC algorithm to
color edges. Similar to dyn-greedy, it tries to color a
previously uncolored edge if its weight increases, and the
heaviest uncolored edges adjacent to an updated, colored edge
in case of a weight decrease. Weight increases of colored edges
and weight decreases of uncolored edges are again ignored.

Before calling kColorEdge for an edge {u, v}, the algo-
rithm ensures that both u and v have at least one free color
each (cf. Sect. III-A): Let Eu = ∅ if u has a free color and
let Eu otherwise be the singleton containing the colored edge
incident to u with the smallest weight. Ev is defined likewise
for v. If Eu ∪Ev = ∅, kColorEdge is called immediately.
Otherwise, if w[Eu ∪Ev]<w({u, v}), the edges in Eu ∪Ev
are uncolored before kColorEdge is called. The uncoloring
is undone if kColorEdge failed to color {u, v}, otherwise,
the algorithm just tries to recolor an edge in Eu ∪Ev with a
free color. No action is taken if w[Eu ∪Ev]≥w({u, v}).

Lemma 2. Algorithm dyn-kEC processes each update in
time O(n) and has a recourse of O(n).

C. Batch-Dynamic Algorithms

The algorithm batch-greedy is a batch-dynamic adap-
tation of the static GreedyIt algorithm. For each batch, it
processes only those edges that are present and either updated
or adjacent to at least one updated or deleted edge. The latter
ensures that an edge with large weight increase can be colored
at the expense of an unchanged neighboring edge. The edges to
be processed are first uncolored and then treated like the set of
all edges in GreedyIt, including the optional LocalSwaps
procedure. We refer to the algorithm by batch-greedy-l
with LocalSwaps and by batch-greedy without.

Lemma 3. For a batch of size b, batch-greedy and
batch-greedy-l run in time O(b∆ log(b∆) + kb∆) and
O(b∆ log(b∆) + kb∆2), respectively. The recourse is O(b∆).

The batch node centered algorithm batch-NC is an adap-
tation of the static NodeCentered algorithm and, similar
to batch-greedy, processes only updated edges and their
adjacent edges. For every node that is incident to an updated
edge, its rating is computed as in NodeCentered and all its
incident edges are uncolored. These nodes are then ranked and
processed as in NodeCentered, using the same threshold
parameter θ= 0.2.

Lemma 4. For a batch of size b, batch-NC runs in time
O(b(log b+ ∆ log ∆ + k∆)). The recourse is O(b∆).

D. Hybrid Algorithms
If a large fraction of the edges in the graph is updated, it

can be better to recompute a coloring from scratch instead of
processing each update in the batch individually. To this end,
we combine the static algorithm with the best time-for-weight
tradeoff [25], kEC, with the update procedures of our two
dynamic algorithms, dyn-greedy and dyn-kEC, and thus
obtain a hybrid-greedy and a hybrid-kEC algorithm.

The hybrid algorithms choose between the static and dy-
namic algorithm with the goal to minimize the running time.
For the decision, they use a simple heuristic that can be
computed quickly and relates the size of the batch b to n:
if b<n, the dynamic algorithm should be faster, otherwise,
we expect the dynamic algorithm to do much more work than
the static, also due to bookkeeping, so the static should be
faster. To run the procedures of the dynamic algorithms at the
time the update is observed, the decision needs to be made
before the next batch arrives. We hence use the batch size b′

of the previous batch as an estimate for the current batch.

Lemma 5. hybrid-greedy, parameterized by α and β,
and hybrid-kEC process a batch of updates in O(n ·
(β · 2α +β2) +m logm+ kn2) and O(m logm+ kn2) time,
respectively. The recourse is O(n).

E. Reducing Work by Filtering Updates
Minor changes in the weight of an edge do not have a large

effect on the overall solution weight. This holds particularly
in large graphs, where the contribution of an individual edge
to the solution weight is small by comparison. We filter such
updates with the goal of improving the running time without
degrading the weight of the solutions.

Our strategy is parameterized by a threshold t≥ 1. Let
U(e, δ) be an update that changes the weight of e from w to
w′=w+ δ. With the filtering enabled, updates with w,w′ 6= 0
and w′

w ∈ [1/t, t] are not processed by the dynamic algorithms.
Insertions and deletions are never discarded. We suffix an
algorithm with -f if filtering is used.

F. Post-Processing and Approximation Guarantees
To improve the weight of a given coloring, we consider

a post-processing routine that performs local optimization in
the neighborhood of uncolored edges. It ensures that for every
color i, an uncolored edge has either one or two edges with
color i in its neighborhood that are (in sum) at least as heavy
as the uncolored edge. It establishes the following invariant:

TABLE II
REAL-WORLD AND SPLIT INSTANCES: MAX. #EDGES M AT ANY POINT IN

TIME, MAX. BATCH SIZE B, MAX. #BATCHES b, MAX. #NODES n,
PERCENTAGE OF INSERTIONS I , DELETIONS D AND WEIGHT CHANGES C
AMONG UPDATES, AND THE NUMBER OF INSTANCES IN EACH DATASET.

dataset M B b n I D C #

FB 66 423 66 421 1399 367 6 % 4 % 90 % 9
hpc 9330 16 755 5000 1024 36 % 36 % 28 % 12
pfab 1390 2588 4999 144 33 % 33 % 33 % 9
FB/s 62 799 64 777 27 980 367 48 % 47 % 5 % 26

Invariant 1. For every uncolored edge e∈E and each color
c∈ [k], w[Nc(e)]≥w(e).

The post-processing algorithm places all uncolored edges in
a priority queue, ordered by decreasing edge weight. For each
edge e that is removed from the queue, it (1) colors it with
a free color c if one exists, or (2) finds a color c′ for which
the invariant is violated and performs a SwapIn(e, c′), which
must succeed due to the violation. The newly uncolored edges
are then pushed onto the queue for an invariant check. Due to
the violated invariant, they must both be strictly lighter than e.
Thus, each edge can be enqueued and dequeued at most once
and the procedure terminates after at most m iterations. (3) If
the invariant is satisfied for all colors, e remains uncolored.

The post-processing can be combined with any of the
aforementioned algorithms by applying it to the coloring after
a batch is complete. We suffix an algorithm with -p if post-
processing is used.

Lemma 6. The post-processing algorithm outputs at least a 1
2 -

approximation for the weighted k-disjoint matching problem.

The post-processing can also be run on its own as a batch-
dynamic algorithm, which we refer to as batch-2apx. This
algorithm collects those edges for which the invariant may
have been violated by an update. At the end of a batch, it
processes the collected edges as described above.

Lemma 7. The post-processing algorithm and batch-2apx
run in time O(m(k+ t+ + t−)), where t+ and t− are the times
for enqueuing and dequeuing an edge. The recourse is O(m).

IV. EXPERIMENTS

We evaluate the running time, solution weight, and recourse
of the algorithms from Sect. III in practice on a large and
diverse set of instances for k∈{2, 4, 8, 16, 32}.

A. Instances

To perform a thorough analysis we include both real-world
as well as large synthetic instances. All real-world instances
were generated from measured or simulated network traffic on
real-world networks. Synthetic instances are random dynamic
weighted graphs generated according to different models.

a) Real-World Instances: We obtained dynamic instances
from three real-world data collections that have been used to
analyze network communication before [25], [33].

The facebook (FB) [16] datasets consist of IP packet
information from Database, WebService and Hadoop clusters.

Each packet is associated with a Unix timestamp, the packet
size, and the source and destination server. We construct our
instances as follows: (1) We group x timestamps into one batch
of updates. (2) For each source-destination pair (a, b), we sum
the size of all packets occurring in this batch, which defines
the new weight of the edge (a, b) in the graph. This may
result in an edge insertion or deletion if the old or new weight,
respectively, is zero. From each of the three clusters we obtain
three instances by choosing x∈{60, 1800, 3600}.

The three pfab [15], [35] and four hpc [15] datasets
consist of source-destination pairs, each of which is associated
with a unique sequence number. We proceed similarly to the
FB dataset, with the sequence number as timestamp and the
number of packets per batch as the packet size and edge
weight. We obtain three instances per dataset by choosing the
group size x∈{10, 100, 1000}.

b) Split Instances: The FB instances are based on traces
with a temporal resolution of one second. To simulate in-
stances with higher resolution and more frequent reconfigu-
rations of the optical network as well as to study the influence
of edge weights, we generate a set of split instances as
follows: We distribute the weight of an edge in a batch over
multiple “sub-batches” such that its new weight never exceeds
a threshold z ∈{105, 106} and set the number of sub-batches
that are created from each original batch to y ∈{5, 10, 15, 20}.
For an original batch B, we create exactly y sub-batches
B1, . . . ,By and, for each edge that is updated to weight w
in B, we randomly select dwz e consecutive sub-batches from
B1, . . . ,By and create the corresponding update operations.
For example, for y= 5, and z= 105, if there is an edge e that
is updated to w= 215 342 in B, e will have weight z during
two sub-batches and the remaining weight r= 15 342 in a
third. If the three randomly chosen consecutive sub-batches are
B2,B3,B4, we create update operations that set e’s weight to
z in B2, reduce it to r in B4, and to weight 0 in B5 (zeroing),
which means to delete e. Note that e keeps its weight of z
during B3, so no update is required. The zeroing is omitted if
the last sub-batch is among the randomly chosen ones and e’s
weight is updated in the first sub-batch B′1 of the following
(original) batch B′. Thus, we create at most three updates for
each update in the original instance. As a split instance has
y times as many batches as the one it was created from, the
batch sizes in the split instances are decreased. Smaller values
for z increase the number of sub-batches dwz e that need to
be selected, which reduces the number of zeroings and further
decreases the batch sizes. For each combination of s and l and
each instance in FB, we create a split instance, but only if its
maximum edge weight is at most y · z. The resulting data set
FB/s contains 26 instances.

Table II summarizes the properties of the real-world and
split instances. On average over the batches, 47 % of the
updates in FB, hpc, and pfab are weight changes, 28 % are
insertions, 25 % are deletions and 130 %1 of the edges are

1W.r.t. the number of edges after the batch. Deletions can cause values
above 100 %.

facebook hpc pfab

103 105 107 100.477 101 101.477 101 101.48 102 102.48

10−3

10−1

101

edge weight

pe
rc

en
ta

ge
 o

f e
dg

es

Fig. 3. Weight distributions of the four datasets on a log-log scale.

updated. Splitting the batches and distributing the updates over
sub-batches in FB/s greatly increases the relative number of
insertions and deletions. Fig. 3 shows the weight distributions.

c) Synthetic Instances: To diversify our test set and to
further study the algorithms’ behavior on large instances,
we generated synthetic dynamic graphs from RMAT [36]
instances, which have also been used to evaluate the static
algorithms [25]. Following [25], the initiator matrices for
the RMAT generator are (0.55, 0.15, 0.15, 0.15) (rmat_b),
(0.45, 0.15, 0.15, 0.25) (rmat_g), and (0.25, 0.25, 0.25, 0.25)
(rmat_er), with a number of nodes n= 2x and 14≤x≤ 18.
Whereas each edge is equally likely for the rmat_er (Erdős-
Rényi) graphs, rmat_b and rmat_g instances have skewed
normal degree distributions, small-world properties, and larger
clustering coefficients [37]. The weights follow an exponential
distribution with values between 1 and 500 000. We create the
dynamic instances as follows: In the first batch, all edges of the
static graph are inserted. In every subsequent batch, a fraction
f ∈{0.1, 0.3, 0.5, 0.7, 0.9} of edges is updated. If the edge
currently has positive weight, its weight is set to zero with
probability p∈{0.1, 0.3}, i.e., the edge is deleted. Otherwise
we assign a new weight uniformly at random from the weights
in the original instance. We obtain 150 instances altogether,
which we group by graph size n. Every group contains 30
instances (3× 5× 2), each of which has 30 batches of updates.

On average over all synthetic instances, a batch consists of
17 % insertions, 16 % deletions and 67 % weight changes.

B. Setup and Methodology

We implemented2 the algorithms in C++17 on top of the
Algora library3. We record the running time and weight of
the solution for each batch of updates. When applying a
batch, the Algora framework notifies the algorithms of every
update individually. The dynamic algorithms dyn-greedy
and dyn-kEC immediately update the disjoint matching; the
batch-dynamic algorithms batch-greedy, batch-NC, and
batch-2apx use these notifications to prepare the batch, i.e.,
to build up the sets of (nodes incident to) updated edges.

We obtain the number of changes to the coloring over a
batch by comparing the coloring before and after the batch.
This is done by explicitly storing the state of the coloring
before the batch and counting the changes in a separate run,
where no running times are measured.

2Source code available at https://github.com/DJ-Match/DyDJ-Match [39].
3https://libalgora.gitlab.io

https://github.com/DJ-Match/DyDJ-Match
https://libalgora.gitlab.io

We run our experiments on a machine (A) with two Intel
Xeon Gold 6130 CPUs (16 cores each) and 256 GB of main
memory, and a machine (B) with two Intel Xeon E5-2643
CPUs and 2×750 GB of main memory. Machine A was used
for all experiments on real-world and synthetic instances,
whereas experiments for the split instances were run on
machine B. For each experiment, the process was pinned to
a NUMA node and its local memory. We focus on the time
to obtain a new configuration, i.e., the running time of our
algorithms, which are designed to be run on a central server.

To obtain reliable running times, we repeated each ex-
periment three times. For the analysis, we take the median
time over each batch for the deterministic algorithms and
the arithmetic mean for the randomized algorithms, using
different seeds. For the average per-update time τ̄I(A) of
an algorithm A on an instance I , we divide the time per
batch by the batch size and take the arithmetic mean over all
batches. The average solution weight σ̄I(A) is the arithmetic
mean over all batches. In case of deterministic algorithms, the
average recourse ōI(A) is defined analogously, whereas for
randomized algorithms, we first take the mean recourse per
batch over all repetitions and then the mean over these means.

We compare the algorithms relative to each other w.r.t.
speedup, solution weight, and recourse. When comparing
algorithm A to a reference algorithm R for an instance I , we
obtain (1) the speedup as τ̄I(R)

τ̄I(A) , (2) the relative solution weight

as σ̄I(A)
σ̄I(R) , (3) the relative recourse as ōI(A)

ōI(R) . To average over a
dataset, we always use the geometric mean. Observe that A is
better than R in terms of speedup and relative solution weight
if the value is greater than 1.0 and vice-versa for recourse.

C. Results

We analyze our algorithms first in smaller groups on the
set of real-world instances, then consider their performance in
terms of running time, solution weight, and recourse on the
split and synthetic instances.

Filtering Updates: The update filtering strategy described
in Sect. III-E aims at ignoring small updates that are not ex-
pected to lead to large changes in the coloring. A preliminary
parameter study demonstrated that the decrease in running
time due to filtering roughly matched the decrease in solution
weight. Combined with post-processing, the speedup was
retained, but the solution weight was not impaired. Hence, we
present only results for filtering together with post-processing.

Parameters for dyn-greedy: Preliminary results
showed that increasing the recursion-depth parameter α be-
yond α= 1 yields no significant improvement in the solu-
tion weight, but increases the running time. Similarly, when
comparing the randomized version of dyn-greedy with β <
max{k,∆} to the deterministic version with β= max{k,∆},
we observed that setting β= 1 yields the best trade-off be-
tween running time and solution weight for the randomized
algorithm. In the following we thus consider only two ver-
sions: a randomized one with β= 1, which is identified by
the suffix -r, and a deterministic one without this suffix.

kEC

hybrid-kEC

hybrid-greedy-rpf

batch-2apx

dyn-greedy-rpf

dyn-kEC-pf

dyn-greedy-p
dyn-kEC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

bo
x

pl
ot

: t
im

e
(

s)
 p

er
 u

pd
at

e;

: g
eo

m
et

ric
 m

ea
n

k=8

6700

6750

6800

6850

6900

6950

: g
eo

m
et

ric
 m

ea
n

we
ig

ht

Fig. 4. Average per-update times (left axis, boxes and �) and weight (right
axis, ?) for k= 8 on all real-world instances.

1) Real-World Instances: Fig. 4 provides an overview over
per-update times and solution weights for selected algorithms.

Batch-Dynamic and Static Algorithms: We evaluate the
performance of these algorithms relative to each other. Our
results confirm the earlier study for the static setting [25]
and show that kEC is on average the fastest static algorithm.
The same applies to batch-greedy, batch-greedy-l,
and batch-NC. For all instances and all k, the speedup of
NodeCentered and GreedyIt-l is between 0.2 and 1.5.
However, for each value of k, the average speedup across all
instances does not exceed 0.9. GreedyIt is faster than kEC
only on the pfab dataset with speedups up to 1.3, but takes
more than twice as long as kEC on the other datasets. Only
batch-2apx achieves significant improvements over kEC,
with the average speedup over all pfab instances ranging
from 1.3 to 1.7. On average across all instances, however,
kEC remains faster than all batch-dynamic algorithms.

In terms of solution weight, the algorithms differ by no more
than 2.5 % from the solution weight of kEC. We conclude
that among the static and batch-dynamic algorithms, kEC
performs best and that batch-2apx is the only batch-
dynamic algorithm that is competitive on some datasets. In the
following, we hence use kEC as reference for comparisons.

Dynamic Algorithms: We compare dyn-greedy and
the randomized dyn-greedy-r to the respective variants
with both filtering and post-processing, dyn-greedy-pf
and dyn-greedy-rpf. The latter two achieve equal solu-
tion weight, which is in all cases at least 98 % of the weight
achieved by kEC. dyn-greedy-pf is always slower than
dyn-greedy-rpf, which achieves speedups between 0.6
and 3.3 relative to kEC across all k and instances. The close
performance in solution weight of dyn-greedy-pf and
dyn-greedy-rpf suggests that the post-processing con-
tributes significantly to the solution weight and can compen-
sate for low-weight solutions produced by the base algorithm.

The randomized dyn-greedy-r cannot match kEC in
terms of solution weight. For each k, the average solution
weight across all instances in FB is below 89 % relative
to kEC. Also dyn-greedy does not provide an advantage
over kEC: it is either significantly slower or its solutions are
more than 10 % worse. Among the dyn-greedy variants,
dyn-greedy-rpf thus offers the best trade-off between

kEC

hybrid-kEC

hybrid-greedy-rp

batch-2apx

dyn-greedy-rp

dyn-kEC-p

dyn-greedy
dyn-kEC

0

1

2

3

4

5

6

bo
x

pl
ot

: t
im

e
(

s)
 p

er
 u

pd
at

e;

: g
eo

m
et

ric
 m

ea
n

k=8

3.6

3.8

4.0

4.2

4.4

4.6

4.8

: g
eo

m
et

ric
 m

ea
n

we
ig

ht

1e7

Fig. 5. Average per-update times (left axis, boxes and �) and weight (right
axis, ?) for k= 8 on all split instances.

solution weight and running time.
The dynamic version of kEC, dyn-kEC, only becomes

competitive with kEC when combined with filtering and post-
processing. Without either its solutions are about 10 % worse
than that of kEC on average for each k and it takes up to
three times as long as kEC, except for k≤ 4 on FB, where the
speedup is up to 1.7. Enabling post-processing (dyn-kEC-p)
improves the solution weight slightly, but makes it even
slower. The combination with filtering (dyn-kEC-pf) again
compensates the loss in running time: dyn-kEC-pf is faster
than dyn-kEC overall, but still slower than kEC, however
by only 4 % on average. Its solution weight is comparable to
dyn-greedy-rpf (cf. Fig. 4).

Hybrid Algorithms: kEC and hybrid-kEC perform
similar in terms of solution weight, differing in no more than
2 % on any instance. hybrid-kEC also tends to be at least
as fast as kEC: On average over all k and all instances, it
is equally fast on FB, 40 % faster on pfab and 8 % faster
on hpc. Both algorithms do not benefit from post-processing,
which increases the running time but not the solution weight.

Hybridizing kEC with dyn-greedy-rpf yields the algo-
rithm hybrid-greedy-rpf, which produces solutions that
are for each k on average no more than 1 % worse. It is also
faster than kEC, with average speedups up to 40 %.

Summary: kEC is clearly the best static algorithm on the
real-world instances, and also superior to all batch-dynamic
algorithms except batch-2apx. Among the dynamic algo-
rithms, dyn-greedy-rpf provides the best performance
overall, with large speedups and solutions close in weight
to those of kEC. hybrid-greedy-rpf and hybrid-kEC
are also faster than kEC and have comparable solution weight.

2) Split Instances: On the FB/s instances, we see a sim-
ilar, though not identical picture in comparison to the real-
world instances (cf. Fig. 5). One notable difference is that
due to the limited maximum edge weight, filtering remains
essentially without effect. As the number of updates per sub-
batch decreases as the number of sub-batches increases or for
a smaller weight limit, the speedup achieved by the dynamic
algorithms relative to kEC improves in these cases.

The speedups are more pronounced on average for small
k. The fastest algorithms across all values of k are

●

● ● ● ●

●

● ● ● ●

●

● ● ● ●

2 8 32

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

1

2

3

4

5

fraction of updated edges

sp
ee

du
p

ov
er

 k
−

E
C

●

dyn−kEC−pf batch−2apx dyn−greedy−rpf

hybrid−kEC hybrid−greedy

Fig. 6. Speedup of (batch-)dynamic algorithms over kEC for k= 2, 8, 32 on
the synthetic instances, where fraction of updated edges = #updates / m.

dyn-greedy-rp and batch-2apx, both with a mean
speedup across all k of 2.5 and with a maximum speedup
over kEC on an instance of 5.1 and 6.0, respectively. The
hybrid algorithms show a similar performance as kEC with a
speedup between 0.85 and 1.2.

All algorithms perform similar w.r.t. solution weight,
only dyn-greedy-r and dyn-kEC (both without post-
processing) fall significantly behind the others with a weight
relative to kEC in the ranges 0.7–0.9 and 0.5–0.9, respectively.

3) Synthetic Instances: kEC is the fastest static algorithm
on the synthetic instances. It is also faster than the batch-
dynamic algorithms batch-greedy, batch-greedy-l,
and batch-NC. batch-2apx is faster than kEC if at most
10 % of the edges are updated, and for k= 2 even if up
to half of the edges are updated. The average speedups of
batch-2apx over kEC for each k are between 4 % and 2.9.

Fig. 6 shows the speedup of (batch-)dynamic and hybrid
algorithms over kEC. The dynamic algorithms are on average
faster than kEC if 10 % of the edges are updated in a
batch. For k= 2, the dynamic algorithms dyn-greedy-rpf
and dyn-kEC-pf achieve a maximum speedup of 5.2 and
4.0, respectively, even if 70 % of the edges are updated.
hybrid-kEC takes on average the same time as kEC unless
only 10 % of edges are updated. Here, it is significantly faster
as it uses the dynamic routine to update the solution. Similarly,
hybrid-greedy-rpf is faster if k= 2 and 10 % of edges
are updated, but slower if at least half of the edges are updated.

As k increases, the solution weights generally improve
relative to kEC and, e.g. for k= 8, they are already within
6 % for all algorithms. The worst case arises for k= 2 and
we discuss it next in more detail: batch-2apx produces
solutions that differ from those of kEC by no more than 3 %
on average. Both hybrid-kEC and hybrid-greedy-rpf
match the solution weight of kEC on instances where they
mainly employ the static algorithm. However, when only 10 %
of the edges are updated the solution weight drops off by 10 %
relative to kEC. This matches the performance of their dy-
namic counterparts: dyn-kEC-pf and dyn-greedy-rpf
yield solutions that are at least 10 % lighter than those of kEC
when only 10 % of edges are updated. With increasing batch
size the solution weight improves, but for dyn-kEC-pf does
not get within less than 8 % of kEC for k= 2.

In conclusion, while the dynamic algorithms are generally
faster than kEC on instances with smaller batch size, the
speedup comes at the cost of a somewhat decreased solution
weight. For k= 2, this decrease can be quite significant, but it
improves for larger k. batch-2apx produces high-weight
solutions even for k= 2, which are within 3 % of kEC’s.
Thus, batch-2apx is the recommended choice for small
k, whereas hybrid-kEC and hybrid-greedy-rpf are
faster for larger k without sacrificing solution weight.

4) Recourse: We compare the best algorithms from the
previous sections. As the static algorithms differ in recourse
by no more than 2 %, we use kEC as reference.

Real-World Instances: dyn-greedy-rpf and
batch-2apx have similar recourse on FB and hpc,
which is between 56 % and 69 % of kEC’s. On pfab,
batch-2apx is slightly better than dyn-greedy-rpf
and clearly better than kEC. dyn-kEC-pf performs similarly
well as dyn-greedy-rpf on hpc and pfab, and even
better on FB with a recourse of at most 39 % relative to kEC.

The recourse of the hybrid algorithms tends to be between
kEC and their dynamic subroutine. hybrid-kEC performs
equal to kEC on FB, better on hpc, but worse on pfab.
hybrid-greedy-rpf has lower recourse than kEC on all
instances and matches that of dyn-greedy-rpf on pfab.

Synthetic Instances: We expect the recourse of the
dynamic and hybrid algorithms to be less than that of
kEC for small batch sizes. The results on the synthetic
instances confirm this. dyn-greedy-rpf, dyn-kEC-pf,
and batch-2apx show similar results in terms of recourse:
for k= 2 the recourse ranges between 50 % and 95 % relative
to kEC and between 22 % and 36 % for k= 32. As ex-
pected, the recourse increases with the batch size. Surprisingly
on first sight, the recourse relative to kEC decreases as k
increases. However, for larger k more edges are colored
and, thus, a larger percentage of edges keep their color
during an update. The hybrid algorithms hybrid-kEC and
hybrid-greedy-rpf have the same recourse as kEC if at
least half of the edges are updated in a batch. If only 10 %
of edges are updated, the recourse is similar to their dynamic
counterparts. This behavior reflects the above discussion of
running times and solution weights.

Split Instances: We observe a similar reduction in
recourse for small batches on the split instances FB/s.
hybrid-kEC and hybrid-greedy-rp showed the same
performance w.r.t. running time and solution weight, and
they also produce the same recourse as kEC, regardless of
batch size. The dynamic algorithms’ recourse is on average
at least 20 % lower than that of kEC. Post-processing has
a significant impact on recourse: for dyn-greedy-rp has
average recourse up to twice that of dyn-greedy-r. A
similar trend can be seen for dyn-kEC-p compared to
dyn-kEC, but the effect is not as pronounced. Filtering, on
the other hand, has no significant impact on the recourse,
which also matches our observations w.r.t. running time and
solution weight. In general, the recourse relative to kEC
increases for dynamic algorithms as the batches become

larger. For k= 2 dyn-greedy-rp produces an average
recourse between 51 % and 73 % and 44 % to 74 % for k= 32.
dyn-kEC-p, dyn-greedy-rp and batch-2apx have a
recourse roughly equal to dyn-greedy-rp.

Summary: The (batch-) dynamic and hybrid algorithms
generally have a smaller recourse than the static algorithms,
which leads to fewer changes in the network configuration. On
instances where the hybrid algorithms mainly use the static
kEC, they have no advantage in terms of recourse.

5) Summary of Experiments: Our results show that dy-
namic algorithms are particularly good on instances with
smaller batches, while static algorithms perform well on
large batches. This suggests the following recommendations:
(1) When dealing with small batches and small numbers
of matchings, i.e., frequent reconfigurations of the network
and a small number of switches, batch-2apx exhibits the
best trade-off between running time and solution weight.
(2) For a larger number of matchings, the dynamic algo-
rithms dyn-greedy-rpf and dyn-kEC-pf provide faster
running times and high-weight solutions. (3) When dealing
with large batches, e.g. if the intervals between reconfigu-
rations are longer, the hybrid algorithms hybrid-kEC and
hybrid-greedy-rpf provide the best performance if run-
ning time, solution weight, and recourse are considered. They
are also well-suited for other situations and thus are a very
good general-purpose choice. (4) If the solution weight has
the top priority and sacrifices w.r.t. running time and recourse
are acceptable, the best choice is kEC. Generally, the dynamic
and hybrid algorithms have a lower recourse than the static
algorithms, with dyn-kEC-pf giving recourse as low as
30 % relative to kEC. Note that reduced recourse implies less
reconfiguration cost in the optical network and, thus, less
overhead.

V. CONCLUSION

To improve the performance of emerging reconfigurable
datacenter networks, we studied efficient algorithms to max-
imize the amount of traffic which can be offloaded to the
optical topology in a demand-aware manner. In particular,
we presented several dynamic algorithms which exploit the
temporal structure of workloads, by computing the disjoint
matchings offered by optical switches in an adaptive manner.

Our work opens several interesting avenues for future re-
search. In particular, we have so far focused on algorithms
running on a centralized controller, which matches the pre-
dominant architectural datacenter network model today [27],
[31], [38]. Still, it would be interesting to explore distributed
versions of our algorithms: emerging reconfigurable datacenter
architectures support a distributed control, e.g., performed
directly on the switches. Furthermore, we have so far focused
on online algorithms which do not require any knowledge of
future traffic demands. This is attractive, as the predictability
of such traffic demands is application-specific. Nevertheless, it
would be interesting to explore how a dynamic scheduler can
benefit from headroom, as it may be available for repetitive
applications (e.g., related to learning): such knowledge may be

exploited to pre-compute solutions dynamically to some extent
and hence to further improve the algorithms. Our algorithms
may also be adapted to the related problem of scheduling
connections in satellite-based communication networks, where
colors correspond to time slots [28]. The problem differs in
that the matchings are unweighted and bounded in cardinality.

REFERENCES

[1] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision congestion
control,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 44–58.

[2] M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick, K. Bergman,
A. Vahdat, B. Klenk, and E. Ebrahimi, “SiP-ML: high-bandwidth optical
network interconnects for machine learning training,” in Proceedings of
the ACM SIGCOMM, 2021, pp. 657–675.

[3] J. C. Mogul and L. Popa, “What we talk about when we talk about cloud
network performance,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 5, pp. 44–48, 2012.

[4] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and
H. Zheng, “Mirror mirror on the ceiling: Flexible wireless links for data
centers,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 443–454, 2012.

[5] S. Kandula, J. Padhye, and V. Bahl, “Flyways to de-congest data center
networks,” 2009.

[6] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,
H. Shah, and A. Tanwer, “Firefly: A reconfigurable wireless data center
fabric using free-space optics,” in Proceedings of the ACM SIGCOMM,
2014, pp. 319–330.

[7] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen, “Osa: An optical switching architecture for data
center networks with unprecedented flexibility,” IEEE/ACM Transactions
on Networking, vol. 22, no. 2, pp. 498–511, April 2014.

[8] M. Ghobadi, R. Mahajan, A. Phanishayee, N. R. Devanur, J. Kulkarni,
G. Ranade, P. Blanche, H. Rastegarfar, M. Glick, and D. C. Kilper, “Pro-
jecToR: Agile reconfigurable data center interconnect,” in Proceedings
of the ACM SIGCOMM, 2016, pp. 216–229.

[9] M. Hampson, “Reconfigurable optical networks will move supercompu-
terdata 100x faster,”,” IEEE Spectrum, 2021.

[10] F. Douglis, S. Robertson, E. Van den Berg, J. Micallef, M. Pucci,
A. Aiken, K. Bergman, M. Hattink, and M. Seok, “Fleet—fast lanes for
expedited execution at 10 terabits: Program overview,” IEEE Internet
Computing, vol. 25, no. 3, pp. 79–87, 2021.

[11] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network designs
of bounded degree,” Distributed Computing, vol. 33, no. 3, pp. 311–325,
2020.

[12] M. Y. Teh, Z. Wu, and K. Bergman, “Flexspander: augmenting expander
networks in high-performance systems with optical bandwidth steering,”
Journal of Optical Communications and Networking, vol. 12, no. 4, pp.
B44–B54, 2020.

[13] C. Griner, J. Zerwas, A. Blenk, S. Schmid, M. Ghobadi, and C. Avin,
“Cerberus: The power of choices in datacenter topology design (a
throughput perspective),” in Proc. ACM SIGMETRICS, 2022.

[14] C. Avin and S. Schmid, “Toward demand-aware networking: A theory
for self-adjusting networks,” in ACM SIGCOMM Computer Communi-
cation Review (CCR), 2018.

[15] C. Avin, M. Ghobadi, C. Griner, and S. Schmid, “On the complexity of
traffic traces and implications,” in Proc. ACM SIGMETRICS, 2020.

[16] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” Proceedings of the ACM
SIGCOMM, 2015.

[17] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the ACM Internet Measurement, 2009, pp. 202–208.

[18] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proceedings of the ACM SIGCOMM, 2017, pp.
267–280.

[19] J. Kulkarni, S. Schmid, and P. Schmidt, “Scheduling opportunistic links
in two-tiered reconfigurable datacenters,” in 33rd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2021.

[20] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid
electrical/optical switch architecture for modular data centers,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 339–
350, 2011.

[21] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus:
a topology malleable data center network,” in Proceedings of the ACM
Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[22] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng,
M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
in Proceedings of the ACM SIGCOMM, 2010, pp. 327–338.

[23] S. B. Venkatakrishnan, M. Alizadeh, and P. Viswanath, “Costly circuits,
submodular schedules and approximate carathéodory theorems,” Queue-
ing Systems, vol. 88, no. 3-4, pp. 311–347, 2018.

[24] C. Avin and S. Schmid, “Renets: Statically-optimal demand-aware
networks,” in Proc. SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS), 2021.

[25] K. Hanauer, M. Henzinger, S. Schmid, and J. Trummer, “Fast and heavy
disjoint weighted matchings for demand-aware datacenter topologies,”
in IEEE Conference on Computer Communications, INFOCOM, 2022.

[26] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,
F. Karinou, S. Lange, K. Shi, B. Thomsen, and H. Williams, “Sirius: A
flat datacenter network with nanosecond optical switching,” in Proceed-
ings of the ACM SIGCOMM, 2020, pp. 782–797.

[27] M. Zhang, J. Zhang, R. Wang, R. Govindan, J. C. Mogul, and A. Vahdat,
“Gemini: Practical reconfigurable datacenter networks with topology and
traffic engineering,” CoRR, 2021.

[28] U. Feige, E. Ofek, and U. Wieder, “Approximating maximum edge
coloring in multigraphs,” in International Workshop on Approximation
Algorithms for Combinatorial Optimization, 2002, pp. 108–121.

[29] J. Zerwas, C. Gyorgyi, A. Blenk, S. Schmid, and C. Avin, “Duo: A
high-throughput reconfigurable datacenter network using local routing
and control,” in ACM SIGMETRICS, 2023.

[30] V. Addanki, C. Avin, and S. Schmid, “Mars: Near-optimal throughput
with shallow buffers in reconfigurable datacenter networks,” in ACM
SIGMETRICS, 2023.

[31] M. N. Hall, K.-T. Foerster, S. Schmid, and R. Durairajan, “A survey of
reconfigurable optical networks,” in Optical Switching and Networking
(OSN), Elsevier, 2021.

[32] K. Hanauer, M. Henzinger, and C. Schulz, “Recent advances in fully
dynamic graph algorithms - A quick reference guide,” ACM J. Exp.
Algorithmics, vol. 27, pp. 1.11:1–1.11:45, 2022.

[33] M. Bienkowski, D. Fuchssteiner, J. Marcinkowski, and S. Schmid, “On-
line dynamic b-matching: With applications to reconfigurable datacenter
networks,” SIGMETRICS Perform. Evaluation Rev., vol. 48, no. 3, pp.
99–108, 2020.

[34] J. Misra and D. Gries, “A constructive proof of Vizing’s theorem,” Inf.
Process. Lett., vol. 41, no. 3, pp. 131–133, 1992.

[35] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: minimal near-optimal datacenter transport,”
Proceedings of the ACM SIGCOMM, 2013.

[36] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proceedings of the Fourth SIAM International
Conference on Data Mining, 2004, pp. 442–446.

[37] M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen, “Ap-
proximate weighted matching on emerging manycore and multithreaded
architectures,” Int. J. High Perform. Comput. Appl., vol. 26, no. 4, pp.
413–430, 2012.

[38] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” ACM SIGCOMM computer communication review, vol. 45,
no. 4, pp. 183–197, 2015.

[39] https://doi.org/10.5281/zenodo.7535351.

https://doi.org/10.5281/zenodo.7535351

	I Introduction
	II Preliminaries
	III Algorithms
	III-A Static Algorithms
	III-B Dynamic Algorithms
	III-C Batch-Dynamic Algorithms
	III-D Hybrid Algorithms
	III-E Reducing Work by Filtering Updates
	III-F Post-Processing and Approximation Guarantees

	IV Experiments
	IV-A Instances
	IV-B Setup and Methodology
	IV-C Results
	IV-C1 Real-World Instances
	IV-C2 Split Instances
	IV-C3 Synthetic Instances
	IV-C4 Recourse
	IV-C5 Summary of Experiments

	V Conclusion
	References

