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Abstract—There are many challenges in maintaining the
desired quality of service levels in modern microservice and
cloud applications. Numerous techniques and patterns, such as
API Rate Limit, Load Balancing, and Request Bundle, have
been suggested for API services and clients to improve quality
properties related to performance and reliability. However, no
study has measured the impact of these techniques and their
combinations in a specific configuration, especially using a large
distributed system workload setting. This paper experimentally
studies the effects of combining the API Rate Limit, Load
Balancing, and Request Bundle patterns based on a realistic,
third-party microservice-based application deployed in a private
cloud and on the Amazon Web Services cloud (AWS) using 130
different configurations. We have run each configuration 500
times in the private cloud, totaling more than 4500 hours of
runtime, and 200 times on AWS, totaling more than 3900 hours of
runtime. We developed regression models from the collected data
to predict the performance and reliability impacts of combining
such techniques and patterns. We found that the models provide
acceptable prediction errors below 30% on the private cloud
and AWS. Further, we found that the models work best in
highly reliable environments like AWS. In addition to the concrete
analyses provided in our work, we propose a general and largely
automated method that can be followed iteratively to evaluate
similar techniques and patterns for their quality properties.

Index Terms—API Patterns; Microservices; Cloud; Perfor-
mance; Reliability.

I. INTRODUCTION

With the emergence of cloud and microservices-based archi-
tectures, many challenges and issues have arisen due to these
architectures’ high versatility and volatility. As an essential
aspect of such architectures, API design plays a significant
role in having seamless and reliable access from API clients to
backends [1]. Hence, it has become crucial to evaluate current
techniques, best practices, and their combinations to achieve
the desired quality of service properties. This paper focuses on
reliability and performance qualities and the tradeoffs between
them. Improving one of these quality properties should not de-
grade the other. Unfortunately, objective support for choosing
the right combination of API patterns to balance such quality
properties in distributed systems is lacking so far. Also, no
realistic and large-scale datasets exist that can be used as a
basis for that support.

Many API patterns and techniques related to microservices
APIs are recommended in the literature [2], [3], [4] to achieve

desired quality properties such as performance and reliability.
Three of the most common API patterns in this context are:

• Request Bundle [5] is a technique used on both client and
server sides to reduce communication overhead caused
by exchanging too many messages between both sides.
This is usually achieved programmatically on both the
API client and backend by adding up the data in those
messages to form one block of data to be sent simulta-
neously. However, some complexity might be introduced
since the client and server sides must handle large chunks
of data [6].

• Rate Limit [7] can be enabled only on the server side
to limit the number of requests from API clients at a
specific time. This can be achieved by keeping track of
the requests per API client by storing this information
in a database. When the maximum limit of requests
is reached, the API client is blocked until the reset
time. This pattern is usually realized using Front or
Edge Proxies [8], depending on the target scope of the
application. As a result, it can prevent excessive and
abusive API clients’ requests [9]. However, it might also
create bottlenecks and traffic congestion.

• Load Balancing at the API level is usually realized using
API Gateways [10], [11]. It works by distributing the
load over multiple node instances to avoid overload-
ing or underloading them [12]. This is realized using
Load Balancing algorithms like round-robin, random,
and weighted algorithms that keep track of the API
requests and their assigned node instances utilizing a
database. However, this might also create bottlenecks
and performance degradation, especially when the Load
Balancing algorithm is not configured correctly.

Those are essential API patterns to study because they are
commonly used techniques for optimizing the performance
and scalability of APIs. By studying these patterns, developers
can learn how to implement them effectively in their APIs and
gain a deeper understanding of how they work and how they
can be used to improve the performance and scalability of
their APIs.

Studying these patterns in combination is particularly useful
because they are often used in real-world API architectures



and might influence each other’s performance and scalability.
By understanding how these patterns can be combined and
used, developers can understand more comprehensively how to
design and build performant and scalable APIs. Additionally,
studying these patterns in combination can help developers
understand the trade-offs and potential challenges in using
them together. It can help them to make informed decisions
about which patterns are most appropriate for their specific
use cases.

Our study first presents a regression model we have de-
veloped to quantify the performance and reliability impacts
of such combinations of patterns. Then, we experimentally
evaluate the model using a large-scale setup and a realistic,
third-party microservices-based application. Please note that
besides providing concrete data and analyses for the studied
patterns that can, e.g., be used during early architecting,
our approach can also be used as a general and largely
automated method that can be applied iteratively to study other
combinations of optimization techniques and patterns.

We aim to answer the following research questions:
• RQ1 What method(s) can be used to experimentally study

and evaluate possible combinations of the Rate Limit,
Load Balancing, and Request Bundle patterns concerning
the performance and reliability impacts on microservices
API?

• RQ2 What are the performance and reliability impacts
of possible combinations of those patterns in a realistic
application and workload setting?

We have set up a modern cloud-based infrastructure to
answer these questions using the Istio1 service mesh. Istio
provides several features natively, like Rate Limit and Load
Balancing [8], using its integrated Envoy2 proxy. We used
this infrastructure to measure widely-used industry practices.
We have selected the Lakeside Mutual application3 as our
benchmark application, which is a realistic, third-party appli-
cation (i.e., the authors were not involved in its development)
developed based on practitioner experiences using several API
best practices.

The benchmark tests were realized based on nine different
API operations of the benchmark application using or not
using Request Bundle. Then the other two patterns were
added in different combinations for each case. The tests were
executed 500 times on a private cloud and 200 times on AWS4

for each configuration, equivalent to 130000 repetitions in total
and more than 4500 hours of runtime using the private cloud
and 52000 repetitions on AWS and more than 3900 hours of
runtime, generating a huge data set.

We believe this is a realistic, large-scale experimental study
(designed to fulfill the first methodological principle for re-
producible performance evaluation in Cloud Computing [13]).
Our benchmark is provided as open access5 and can be used

1https://istio.io/
2https://www.envoyproxy.io
3c.f. https://github.com/Microservice-API-Patterns/LakesideMutual
4https://aws.amazon.com
5https://doi.org/10.5281/zenodo.7692007

to run similar tests for other API patterns and combinations
of API patterns and reproduce our study.

Next, we developed regression models that could be used
for guidance to architect similar types of microservice ap-
plications, as in our benchmark application, and present a
complete and largely automated method to apply iteratively
in different contexts and settings. We found that the models
provide acceptable prediction errors on the private cloud
and AWS since they are lower than 30% for Cloud-based
architectures [14]. The models work best in highly reliable
environments such as AWS.

The paper is structured as follows. Section II describes
related works. More detailed background about API Load
Balancing, Request Bundle, and Rate Limit is provided in Sec-
tion III. Then we describe our approach in Section IV. After
that, we present our regression model in Section V. Section VI
provides details about our experiments setup and running
the experiments. Then, the data generated are collected and
analyzed in Section VII-A. Section VIII thoroughly discusses
the results and threats to validity. Finally, we conclude in
Section IX.

II. RELATED WORK

Many experimental studies have studied performance and
reliability prediction models in software architecture. Wartika
et al. [15] proposed applying a Bayesian algorithm to evaluate
the performance of a software complexity prediction model
based on three requirements: user, system, and software spec-
ifications. Another study [16] performed a similar parametric
approach by using the Palladio component model and a
simulation tool based on that model to realize performance
predictions. In contrast to the previous studies, Wang et al. [17]
proposed an approach to defining a reliability prediction model
based on a deep learning neural network. The authors also
claim that their approach is experimentally proven to be
more accurate than the other approaches. A more relevant
experimental study [18] suggested the methodology MIPaRT
to evaluate the performance and reliability of microservice
systems continuously. The authors use the Markov model to
randomly generate valid and invalid requests to the backend
to explicitly force failure and ex-vivo testing to generate raw
data for performance-reliability analysis. None of these studies
have focused on API patterns and their combination impact on
performance and reliability.

Many studies have proposed solutions to improve load
balancing efficiency in microservices architecture and their
future directions [19]. Yipei et al. [20] argue that existing load-
balancing strategies lack optimization and suffer from network
congestion and complexity. They propose a chain-oriented
load-balancing algorithm (COLBA) to solve these problems
and claim it is more efficient than existing load-balancing
strategies. Similarly, XiaoDong et al. [21] propose a shortest
queue-waiting-time load balancing algorithm (SQLB) that
outperforms classical load balancing algorithms. In addition,
the authors experimentally demonstrate that this algorithm
generates a low prediction error. On the other hand, Rusek



et al. [22] show that decentralized load-balancing algorithms
are more efficient than centralized ones by analyzing their time
complexity. Another study used scenario calculus to formally
analyze load balancing impact on scalability and capability
of microservices [23]. It demonstrates that elastic round-
robin scheduling is more scalable than shortest-waiting queue
scheduling. Li et al. [24] developed the DWLOAD (Dynamic
Weight Loading) algorithm to maintain high efficiency and
reliability of load balancing in a microservices environment.
This was mainly realized by calculating and recording the real-
time weights of the hosting servers. BLOC, a self-managing
load balancing system, was also proposed [25] to provide
a second layer control for service mesh load balancers in
microservices architectures using other patterns like Rate
Limit. Lastly, an online decision algorithm based on Lyapunov
optimization techniques was proposed to distribute the load
in a hybrid cloud cost-effectively when a flash crowd event
occurs [26]. As a result, only a few studies have evaluated the
impact of load balancing on reliability. Also, they have yet
to consider combining it with other patterns such as Request
Bundle either.

Request Bundle and Rate Limit have been defined as best
practices or patterns [27], [28], [29], [30], and particularly in
the context of Service-Level Agreements [31], [32]. Although
these API patterns have been studied experimentally [5], [33],
their combinations with other API patterns and techniques
have not been the subject of any experimental study in
the scientific literature. This represents a significant gap in
understanding the impact of widely used API practices such
as Rate Limit and Load Balancing and their combinations.
Also, there is no way to measure the impact of those API
patterns and their combinations on some important quality
properties of a specific configuration setting, such as perfor-
mance and reliability. Our study closes this gap by presenting
an experimentally validated regression model using a real-life
microservice-based application and setting. This model could
also support the existing simulators and prediction models.

III. BACKGROUND ABOUT LOAD BALANCING, REQUEST
BUNDLE AND RATE LIMIT

Load Balancing is a technique to distribute the load evenly
between two or more resources to avoid overloading or under-
loading them. This technique can be performed either on cloud
resources level [34] or service level [35]. Our study mainly
focuses on service level load balancing, a feature provided
by service meshes like Istio [8]. Indeed, Istio provides four
methods to achieve load balancing. While the round robin
method dispatches API requests to replicas using a particular
order, the random method does it randomly. On the other
hand, the weighted method explicitly assigns a percentage
weight to each node instance. More interestingly, the least
requests method gives the largest weight dynamically to the
node instance with the least number of requests.

Request Bundle [6] generally consists of containerizing
multiple messages into one containing additional information
related to those messages, such as identifiers. Instead of

sending many messages to the API backend, request bundling
encapsulates those messages into one, avoiding unnecessary
chatty communication. However, some complexity might be
introduced on both the API client and server, which might
also cause bottlenecks and traffic congestion. In our study, we
limited the bundle size to 50 to reduce the likelihood of those
issues. Request Bundle is a general practice already adopted in
many APIs [6]. Since those APIs and others without request
bundling constantly evolve, measuring the impact of using
such a practice and its combination with other API patterns
regarding performance and reliability is crucial.

Rate Limit has also been the focus of many studies [7],
[27], [29], but has also not been studied with combinations
of other patterns and techniques. It is usually implemented
using an API Gateway [36] and ensures that API providers
are not overwhelmed by an intentional or unintentional flood
of requests from API clients. Rate Limit plays an essential role
in maintaining the desired level of quality property related to
performance and reliability, and combining it with a billing
strategy or a Rate Plan [37] makes it even more effective.
However, efficiency drastically decreases by including manda-
tory patterns like API key [37] to keep track of API clients.
In our study, we use Istio, which supports two types of rate-
limiting: global and local rate limiting. While the former is
activated globally on the service mesh level, the latter triggers
each service instance of the mesh.

IV. APPROACH OVERVIEW

Figure 1 illustrates the patterns and combination scenarios
we have considered in our study. Finding an optimal point
or area in possible solutions where performance and reliabil-
ity are maximized is not straightforward without additional
information. So, we need first to identify parameters and
metrics to estimate the localization of this point or area.
Also, this optimal point or area might change in time due to
unforeseen circumstances like resource saturation. Thus, we
need to identify a model that accurately considers chosen and
third-party parameters related to resource management. We
have also defined metrics that could estimate the localization
of the optimal point or area in the space of possible solutions.

Combining the three patterns and techniques we have con-
sidered in our study must be carefully decided. For example,
in many situations, it will not make sense to use Request
Bundle with Rate Limit, since otherwise, we would have large
API requests that overload the backend before Rate Limit is
triggered. Also, using Request Bundle with Load Balancing is
a logical choice to not overwhelm one node on the backend
with large API requests to handle. However, using Request
Bundle along with Rate Limit might not work correctly since
the backend would be already overloaded after only a few API
requests. Then, it would be wiser to introduce Load Balanc-
ing, too, to avoid such a scenario. Also, combining patterns
generates costs and complexity, which should be justified in
advance by accurately measuring the foreseen improvements
of those combinations on performance and reliability. There
should be a way to find a balance between high performance
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and reliability in conjunction with low costs and complexity
and, if required, find the best combination to handle a specific
workload configuration, which is the aim of our model.

Our proposed regression model employs data extracted
from API or API Gateway, API clients, and API backend or
microservices. The data extraction is realized by considering
each possible combination of the patterns in our study. The
iterative process illustrated in Figure 1 makes the approach
dynamic and adaptive, depending on the usage period and the
cloud setting. That means the same regression model could
dynamically extract the performance and reliability indicators
in a completely different cloud environment. Please note that
these indicators would only represent a rough estimation to
the software architect for decision-making. More accurate
predictions, like the usage period, would need more parameters
to consider in the regression model.

V. REGRESSION MODEL DESCRIPTION

A. Independent and dependent variables

As previously stated in Section III, our work is motivated
by the high uncertainty in the scenarios covered in Figure 1
to localize the optimal point or area in the combination of
the patterns to achieve optimal performance and reliability. In
addition, the optimal selected point or area might change in
time due to unforeseen circumstances like resource saturation.
Hence, given a specific workload configuration, we first need
to define a model that could help us measure the performance
and reliability impact.

Our study has considered two types of independent vari-
ables: numerical and categorical. The first type of variables
includes rpm, which is the number of requests per minute for
a specific workload setting, api users which is the number
of API users that generate load for that particular workload
setting, rate limit, which is the maximum predefined number
of requests allowed per API user per minute, bundle size
which indicates the size of the request bundle, in case it
is used and methods count which reflects the number of
methods that are considered in the study. The second type
of variables includes request bundle and load balancing,
which indicate whether Request Bundle and Load Balancing
are used respectively. It also includes method, which indicates

the API operation executed on the backend: Get, Update,
Delete, or Create. (see Table I).

The first dependent variable we have considered is
total time, equivalent to the total round trip time spent by
API requests to be completely fulfilled. It is defined as:

total time = network time+ backend time

network time is equivalent to the round-trip time spent
by API requests from the API client and the API Gateway,
and backend time is the round-trip time spent from the API
Gateway backend service(s) and maybe database(s). The prior
study needed to include server details concerning program
execution and database time. As these details are not required
here, we employ rpm as an API client parameter that is more
straightforward to calculate to define total time as follows:

total time =

api users∑
i=1

bundle sizei
rpmi

where,

bundle size =

{
10 . . . 50, if request bundle = Y es.

1, otherwise.

The second dependent variable is failure rate, which
indicates these API requests’ failure percentage. Here, we do
not distinguish failure rate due to rate limiting and failure rate
due to other reasons than rate limiting. We define:

failure rate =



∑methods count
i=1 rpmi ·

load weighti
load balancers − rate limiti,

if rpmi ·
load weighti

load balancers > rate limiti
∧ load balancers ≥ 1

∑nt
Pt
failure

api users · failure ratet, otherwise.

The load balancing algorithm determines load weighti. In
our study, we exclusively used the weighted load balancing
algorithm, and thus their values are fixed and known in
advance along with methods count and load balancers.
Therefore, these variables are not included in the following
regression analysis. P t

failure and failure ratet denote the
probability of failure during each time interval t and the
corresponding failure rate as proposed in a prior study [33].
This is a Bernoulli distribution composed of nt trials and is
not considered further in the current study, so these parameters
are not included in the regression analysis.

VI. EXPERIMENTATION SETUP

A. Application under study

We have decided to choose Lakeside Mutual6 application,
which is a real-life application developed to make in practice
various microservice API patterns like Request Bundle [6].
Indeed, we have primarily extended the application to support
request bundling on the following functions (provided in the

6https://github.com/Microservice-API-Patterns/LakesideMutual



TABLE I
DEFINITION OF PARAMETERS

Independent
variable Description

rpm The number of requests per minute for API users.
api users The number of API users sending the requests.

rate limit
The value of the applied rate limit ranging from 100 to 1200
(100 increments).

request bundle
Categorical variable indicating whether
request bundling is used or not.

bundle size The request bundle size ranges from 10 to 50 (10 increments).

load balancing
Categorical variable indicating whether
load balancing is used or not.

load balancers Number of load balancers.

load weight
Percentage of requests that is forwarded to a specific backend
instance.

method Categorical variable indicating the method executed by API users.
methods count Number of methods executed by API users.

Dependent
variables Description

total time
The total roundtrip time spent for requests
between API client and backend.

failure rate The percentage failure rate of API requests.

replication package7 and designed to fulfill the fourth method-
ological principle for reproducible performance evaluation in
Cloud Computing [13]):

• Update customers using their IDs by application cus-
tomers or administrators. Get customers already supports
request bundling.

• Create/Get/Delete insurance quota requests using their
IDs, which application customers do.

• Create/Get/Update/Delete insurance policies done by
the application administrator using policy-management-
backend microservice.

Request Bundle is enabled by implementing a new dedicated
chain of methods on the backend supporting a list as an
input parameter instead of one parameter at a time for each
API operation described above. For example, getCustomers()
method now gets a list of customers’ IDs instead of one ID at
a time. Rate Limit and Load Balancing are both supported by
Istio through EnvoyFilter8 and virtual services9 respectively.
The full implementation details are provided in the replication
package.

We are executing nine different API functions on the
backend with and without using Request Bundle. In our
study, we could have used an existing benchmark. Other
cloud benchmarks exist, like those proposed in the context of
Cloudsim [38] and PerfCompass [39], but they are relatively
low-level. They are defined at the network rather than the busi-
ness application level, which is relevant for request bundling.
As a consequence, there are no usable cloud application-level
benchmarks. Even if some existed, they likely would not apply
to our study, as we would need them to use request bundling.
Instead, we defined realistic scenarios based on Lakeside
Mutual’s request bundling functions described above.

7https://doi.org/10.5281/zenodo.7692007
8https://istio.io/latest/docs/tasks/policy-enforcement/rate-limit/
9https://istio.io/latest/docs/concepts/traffic-management/#virtual-services

TABLE II
AWS COST DETAILS (IN US DOLLARS)

Service Cost
EC2-Other 1783,53

EC2-Instances 1369,52
Elastic Container Service for Kubernetes 356,67

EC2-ELB 356,67

Tax 701,98

Total 4211,89

B. Infrastructure details

We have used a private cloud hosted in our University data
center for our experiment. It is composed of 11 Ubuntu10

18.04.5 LTS Virtual Machines (VMs) installed on vSphere11

6.7 environment. Each of these VMs runs a Minikube in-
stance version 1.20.0 with eight dedicated CPU cores Intel
Xeon(R)TMCPU E5-2650 v4 @ 2.20GHz and 20 GB of
system dedicated memory. Each Minikube instance executes
a Kubernetes12 engine version 1.20.2 and Istio version 1.10.0.

There are two Cluster environments that we have set up to
differentiate API requests that are handled with and without
load balancing. The first Cluster comprises two replicated cen-
tral Minikube instances containing the central Control Plane
and the customer-self-service-backend microservice built using
Java version 8 each. Replication is also done for Minikube
instances running customer-management-backend and policy-
management-backend, which are built using the same version
of Java and accessible using Ingress Controller YAML-defined
Kubernetes Endpoints13 and Ingress Rules14. The replicas
share one Mongo15 (latest version) database instance. The
second Cluster does not support load balancing, and thus there
is no replication.

On the client side, two Ubuntu 18.04.5 LTS virtual desktops
inject HTTP requests into the private cloud. Each virtual
desktop has 2 CPU cores Intel R© Xeon(R) CPU E5-2650 0
@ 2.00GHz with 8 GB of system memory.

We have also run the same experiment on AWS using a four-
node Amazon Elastic Kubernetes Services (EKS16) cluster.
The costs of using AWS are described in Table II (designed
to fulfill the eighth methodological principle for reproducible
performance evaluation in Cloud Computing [13] and not
applicable for the private cloud).

C. Running the experiment

Each virtual desktop executes a Shell17 script with 130
different configurations of bundle sizes ranging from 10 to
50, rate limits ranging from 100 to 1200 set on server-side
(∞ if rate-limiting is disabled), and whether request bundling

10https://releases.ubuntu.com/18.04/
11https://www.vmware.com/products/vsphere.html
12https://kubernetes.io
13https://kubernetes.io/docs/concepts/services-networking/service/
14https://docs.konghq.com/kubernetes-ingress-controller/1.1.x/guides/

getting-started/
15https://www.mongodb.com
16https://aws.amazon.com/eks/
17https://www.shellscript.sh



TABLE III
COMBINED MODELS’ DESCRIPTION ON THE PRIVATE CLOUD: TOTAL TIME

PREDICTION

Model Total time

InterceptLoad
balancing

Request
bundle

Rate
limit

API
usersRPMMethod

delete
Method
get

Method
update

1 745,1 294,9 -79,37 0,005136,78 -0,12 -334,9 -1009 17,53
2 338,4 294,9 -79,73 0,005136,78 -0,12 X X X
3 297,6 295,2 X 0,005236,74 -0,12 X X X
4 489,7 X -80,66 0,004836,85 -0,13 X X X
5 448,4 X X 0,004936,81 -0,13 X X X

TABLE IV
COMBINED MODELS’ DESCRIPTION ON AWS: TOTAL TIME PREDICTION

Model Total time

InterceptLoad
balancing

Request
bundle

Rate
limit

API
usersRPM Method

delete
Method
get

Method
update

1 8504 620,5 -5872 0,19 310,4-16,71 -662,4 -1852 -1349
2 7406 592,8 -5845 0,19 310,4-16,72 X X X
3 297,6 295,2 X 0,005236,74 -0,12 X X X
4 489,7 X -80,66 0,004836,85 -0,13 X X X
5 448,4 X X 0,004936,81 -0,13 X X X

is used or not. The script executes the following depending on
the configuration:
• Create a predefined number of API users;
• Get customers’ data with or without request bundling;
• Update customers’ addresses with or without request

bundling;
• Create/get/delete insurance quota requests with or without

request bundling;
• Create/get/update/delete policies with or without request

bundling;
Those API requests or methods are executed using load

balancing in only the first Cluster, as stated in Section VI-B.
We have run the script 500 times for each configuration in the
private cloud, totaling 130000 repetitions and more than 4500
hours of runtime, and 200 times on AWS, counting 52000
repetitions and more than 3900 hours of runtime (designed
to fulfill the second methodological principle for reproducible
performance evaluation in Cloud Computing [13]). total time
is calculated at the end of each trial, and failure rate is
calculated when switching from one configuration to another.

VII. MULTIVARIATE REGRESSION ANALYSIS

A. Data collection and analysis

All the data are collected from output log files on the client
side. Due to the large set of data collected (130 configurations
tested), we have decided to include it in an online Appendix18.

We have realized data analysis using R language19. Ta-
bles III and IV list the combined models that we generated
from the data collection for total time prediction on the
private cloud and AWS, respectively. Tables V and VI list the
combined models that we generated from the data collection
for failure rate prediction on the private cloud and AWS,
respectively. We have only collected data concerning the

18https://doi.org/10.5281/zenodo.7692007
19https://www.r-project.org

TABLE V
COMBINED MODELS’ DESCRIPTION ON THE PRIVATE CLOUD: FAILURE

RATE PREDICTION

Model Failure rate

InterceptLoad
balancing

Request
bundle

Rate
limit

API
users RPM Method

delete
Method
get

Method
update

1 46,02 -11,63 -38,59 -0,0025-0,0880,0058 n/a n/a n/a
2 46,02 -11,63 -38,59 -0,0025-0,0880,0058 X X X
3 26,2 -11,46 X -0,0024 -0,1 0,0062 X X X
4 40,05 X -38,54 -0,0024-0,0910,0059 X X X
5 20,34 X X -0,0024 -0,11 0,0063 X X X

TABLE VI
COMBINED MODELS’ DESCRIPTION ON AWS: FAILURE RATE PREDICTION

Model Total time

InterceptLoad
balancing

Request
bundle

Rate
limit

API
usersRPM Method

delete
Method
get

Method
update

1 -1,76 0,81 3,13 0,000170,059-0,0045 -0,07 n/a n/a
2 -1,77 0,81 3,13 0,000170,059-0,0045 X X X
3 -1,43 0,66 X 0,000240,041-0,0004 X X X
4 -1,38 X 3,01 0,000170,059-0,0045 X X X
5 -1,11 X X 0,000240,041-0,0043 X X X

independent variables that we have experimentally varied as
described in Section V-A. Notice that the method variable is
not significant using model 1 concerning failure rate pre-
diction but highly significant using the same model concerning
total time prediction. Also, the coefficient values relative to
load balancing and request bundling reflect the case where
they are enabled. In other words, when they are disabled, the
values of those coefficients are zero, as described [40]. The
same applies to method create that gets zero value for its
coefficient in model 1.

On the private cloud and as shown in Table VII, the F-
statistic p-value is very low for all the models, and the
Adjusted R-Squared is relatively high, especially for models 1,
2, and 4 regarding failure rate prediction. The latter is even
higher on AWS regarding total time prediction but lower
regarding failure rate prediction. However, no conclusion
can be made without analyzing the models’ residuals. We
used Anderson-Darling’s and Henze- Zirkler’s tests to realize
residuals’ univariate and multivariate normality. As clearly
shown in the models (provided in the online Appendix18), the
histograms are not curvy-shaped, indicating that the residuals
are not normally distributed. This is confirmed by the Chi-
Square Q-Q plots and Scatter plots showing that the points are
widely spread and do not form any obvious straight line. The
perspective 3D plots deny residuals multivariate normality as

TABLE VII
COMBINED MODELS’ SUMMARY: TOTAL TIME & FAILURE RATE

PREDICTION

Private Cloud AWS

# Total time Failure rate Total time Failure rate
Adjusted

R-squared
F-Statistic

p-value
Adjusted

R-squared
F-Statistic

p-value
Adjusted

R-squared
F-Statistic

p-value
Adjusted

R-squared
F-Statistic

p-value
1 0,2452 <2.2e-16 0,5925 <2.2e-16 0,6438 <2.2e-16 0,09809 <2.2e-16
2 0,1683 <2.2e-16 0,5925 <2.2e-16 0,6383 <2.2e-16 0,09806 <2.2e-16
3 0,1677 <2.2e-16 0,3641 <2.2e-16 0,6113 <2.2e-16 0,05358 <2.2e-16
4 0,1599 <2.2e-16 0,5717 <2.2e-16 0,6374 <2.2e-16 0,08846 <2.2e-16
5 0,1593 <2.2e-16 0,3439 <2.2e-16 0,6094 <2.2e-16 0,04708 <2.2e-16



TABLE VIII
MODELS SUMMARY (ON THE PRIVATE CLOUD): PILLAI’S TRACE TEST

Variable Model 1 Model 2 Model 3 Model 4 Model 5
Pillaip-valuePillai p-value Pillaip-valuePillaip-valuePillaip-value

rpm 0,15 <2.2
e-16 0,15 <2.2

e-16 0,14 <2.2
e-16 0,16 <2.2

e-16 0,15 <2.2
e-16

api users 0,08 <2.2
e-16 0,07 <2.2

e-16 0,07 <2.2
e-16 0,07 <2.2

e-16 0,07 <2.2
e-16

rate limit 0,1 <2.2
e-16 0,1 <2.2e-16 0,07 <2.2

e-16 0,1 <2.2
e-16 0,07 <2.2

e-16
request
bundle

0,32 <2.2
e-16 0,32 <2.2

e-16 n/a n/a 0,32 <2.2
e-16 n/a n/a

load
balancing

0,04 <2.2
e-16 0,04 <2.2

e-16 0,03 <2.2
e-16 n/a n/a n/a n/a

method 0,07 <2.2
e-16 n/a n/a n/a n/a n/a n/a n/a n/a

TABLE IX
MODELS SUMMARY (ON AWS): PILLAI’S TRACE TEST

Variable Model 1 Model 2 Model 3 Model 4 Model 5
Pillaip-valuePillai p-value Pillaip-valuePillaip-valuePillaip-value

rpm 0,16 <2.2
e-16 0,16 <2.2

e-16 0,54 <2.2
e-16 0,15 <2.2

e-16 0,54 <2.2
e-16

api users 0,34 <2.2
e-16 0,33 <2.2

e-16 0,38 <2.2
e-16 0,33 <2.2

e-16 0,38 <2.2
e-16

rate limit 0,02 <2.2
e-16 0,02 <2.2e-16 0,02 <2.2

e-16 0,02 <2.2
e-16 0,02 <2.2

e-16
request
bundle

0,11 <2.2
e-16 0,11 <2.2

e-16 n/a n/a 0,11 <2.2
e-16 n/a n/a

load
balancing

0,01 <2.2
e-16 0,01 <2.2

e-16 0,01 <2.2
e-16 n/a n/a n/a n/a

method 0,01 <2.2
e-16 n/a n/a n/a n/a n/a n/a n/a n/a

well. Since the normality of residuals, one of the assumptions
of MANOVA (Multivariate Analysis of Variance), is violated,
we have decided to perform MANOVA Pillai’s Trace test
statistics for further analysis [41].

As shown in Table VIII, all the variables have very high
significance since their p-values are very low. As a reminder,
this significance increases as a variable’s Pillai value gets
closer to 1. As a result, we notice that request bundle is the
best predictor in models 1, 2, and 4 on the private cloud. On
the other hand, load balancing has the lowest Pillai value
in models 1, 2, and 3. Also, each specific variable’s Pillai
value remains stable in the models where the variable is used.
Concerning AWS, Table IX also shows that all the variables
have very high significance. However, we see clearly that
api users and rpm are the best predictors in all the models,
and the rest of the variables have lower significance.

VIII. DISCUSSION AND THREATS TO VALIDITY

A. Models comparison

Let us compare the models we have found in detail, first
for their performance and then for their reliability impacts.
Figure 220 shows that total time in model 1 is very sensitive
to bundle size, thus a large performance degradation starts
very early. In contrast, rate limit does not show any clear
impact on performance. All the remaining models overlap,
meaning they have similar behavior concerning performance.

20All the figures in this section were realized using the Plotly package
provided by R language; see https://plotly.com.

Fig. 2. Performance analysis (on the private cloud)

Fig. 3. Performance analysis (on AWS)

bundle size does not play a role in models 2 and 4, but
increasing rate limit slightly decreases performance. Also,
load balancing has no apparent effect on performance. As a
result, model 1 is only usable in architectures where Request
Bundle is not the preferred option and high performance is
required. For example, this is where API messages are already
large and need a high amount of bandwidth. On the other hand,
the remaining models are more suitable when API messages
are small and should use Request Bundle. This reduces the
impact of Rate Limit on performance consequently and keeps
it manageable, as clearly shown in the figure. Figure 3, realized
using AWS-generated data, confirms the conclusions above
with a degraded performance overall due to latencies and
timeouts usually occurring in public clouds.

In Figure 4, we can see that the models diverge but show a
similar trend as in Figure 2. Model 1 is also susceptible here
and witnesses a massive increase in reliability at the highest
value of bundle size for all values of rate limit. The re-
maining models exhibit a gradual reliability increase, with the
increase of rate limit. In models 2 and 4, bundle size does
not play a role, too. Here, load balancing impacts reliability,
especially in model 2. Like the conclusions drawn regarding
performance analysis, model 1 is suitable for architecting
systems that exchange large API messages where bundle size
is less than or equal to 10. Also, the remaining models can be
used by systems exchanging smaller API messages using (or
not using) Request Bundle. However, at this time, the impact



Fig. 4. Reliability analysis (on the private cloud)

Fig. 5. Reliability analysis (on AWS)

of Rate Limit on reliability is influenced by load balancing
and illustrated specifically by models 2 and 3 in the figure.

Figure 5, realized using AWS-generated data, shows a
different trend for the models. The increase in failure rate
when increasing bundle size is mainly due to the lack of
scalability since we have only used one AWS cluster as
described in Section VI-B. For models 2 to 5, failure rate
is higher in Figure 4 due to lower latency, which increases
failure rate due to Rate Limit. For model 1, as the bundle
size increases, more requests get bundled, which produces
fewer rpm and thus less failure rate due to Rate Limit.

B. Tradeoff analysis

We have investigated different combinations of API patterns
like Circuit Breaker and Rate Limit. We have not considered
such combinations since they did not show any interesting
dependencies from which design advice can be derived. For
instance, Circuit Breaker may directly hinder the real impact
of Rate Limit on reliability. In contrast, the selected combi-
nations have revealed a clear understanding of their impact
on reliability and performance. We perform an API patterns
tradeoff analysis from the experimental data to validate and
complement the models’ analysis presented above. We analyze
tradeoffs of using Load Balancing with firstly Rate Limit
and secondly Request Bundle in terms of performance and

Fig. 6. Load Balancing vs. Request Bundle: performance perspective (on the
private cloud)

Fig. 7. Load Balancing vs. Request Bundle: performance perspective (on
AWS)

reliability impact. Thus we also study tradeoffs between the
two investigated quality properties.

Load Balancing vs. Request Bundle. As seen in Figure 6,
Load Balancing has a clear negative impact on performance,
especially when bundle size gets higher starting from ap-
proximately 30 requests. That is because processing large
chunks of data by only one load balancer quickly creates a
long waiting queue, which could be resolved by adding more
load balancers. This trend is partially confirmed by Figure 7
realized using AWS-generated data, with a significant degra-
dation in performance explainable by latency and timeouts that
usually occur on public clouds. However, as bundle size gets
higher, Load Balancing improves performance considerably,
unlike in the private cloud. Also, both patterns do not impact
reliability, as depicted in Figure 8. Models 1 and 2 include
load balancing and request bundle, but only Model 2 is
recommended in case of Request Bundle usage, as stated in
the previous section.

Load Balancing vs. Rate Limit. On AWS, the failure
rate remains very low, mainly due to the high reliability
provided by public clouds and latency that prevents Rate
Limit activation. On the other hand, Figure 9 shows that Load
Balancing reduces the failure rate on private cloud, especially



Fig. 8. Load Balancing vs. Request Bundle: reliability perspective (on private
cloud and AWS)

Fig. 9. Load Balancing vs. Rate Limit: reliability perspective (on the private
cloud)

Fig. 10. Load Balancing vs. Rate Limit: reliability perspective (on AWS)

when the rate limit value is very high; though, this is hardly
noticeable when its value is between 200 and 600 requests
per minute. Otherwise, as mentioned earlier, Load Balancing
reduces the impact of Rate Limit on reliability. This could also
be reinforced by using additional load balancers. However,
this could also lead to bottlenecks and traffic congestion, as

Fig. 11. Load Balancing vs. Rate Limit: performance perspective (on the
private cloud)

Fig. 12. Load Balancing vs. Rate Limit: performance perspective (on AWS)

depicted in Figures 11. Performance degradation is higher
on AWS, and the highest total time value is collected at
a rate limit of approximately 800 requests per minute, as
depicted in Figure 12. Notice that Load Balancing has no
obvious impact on performance because, as stated previously,
only one cluster is used. Here, we consider Models 2 and 3
since Model 1 is not influenced by the rate limit as far as
reliability is concerned, as mentioned in the previous section.
Also, model 3 is best where load balancing has the lowest
impact on reliability.

C. Models evaluation

To evaluate the accuracy of the models, we have used the
Mean Average Error (MAE) calculations for failure rate
prediction errors using the private cloud and AWS data. We
have also used the Mean Absolute Percentage Error (MAPE)
estimates for total time prediction errors. The results are
reported in Table X. Usually, it is advised to use MAPE
for calculating model prediction error [42]. However, as
failure rate usually equals 0, MAPE is not applicable, and
MAE is the next preferred choice. We see that all models’
prediction errors on both clouds are lower than 30%. This is
often considered to be acceptable for Cloud-based architec-
tures [14]. These numbers are good enough, especially when



TABLE X
CALCULATED MAE AND MAPE FOR FAILURE RATE PREDICTION ERRORS

AND TOTAL TIME PREDICTION ERRORS RESPECTIVELY

Model Private Cloud AWS
MAE%MAPE%MAE%MAPE%

1 19,72 28.51 1,56 24,83
2 19,72 27,99 1,56 24,83
3 27,25 28,44 1,33 24,58
4 19,67 28,97 1,48 24,82
5 27,95 29,51 1,29 25,3

used for early architecting, where orders of magnitude are
needed rather than precise predictions. We also observe that
the prediction errors are lower on AWS compared to the private
cloud, especially regarding failure rate. This is explainable
by the large latency gap that diverges the two environments
and that we have not included in the models. Indeed, in the
private cloud, the latency is very low, and thus failure rate
due to Rate Limit is high compared to AWS. It demonstrates
that the models work best in high-latency environments like
public clouds.

D. Threats to validity

In the model presented, we have carefully selected the
independent variables and varied them in such a way as to
comprehend their causal effect relationship to performance and
reliability. We have also generated five models of all possible
combinations of those independent variables. As described
in Table VIII, all the models present very high statistical
significance, which emphasizes the causal effect relationship,
and thus mitigates many related internal threats to validity.
However, we could have unwillingly made errors in the
experiment’s selection and implementation of some scenarios.
The workloads could also not be representative of a real-world
benchmark. We have mitigated this issue by covering several
widely used scenarios in the experiment.

As described in Table VIII, all the models present very high
statistical significance but with different Pillai values. We have
also found that these values for specific variables remain stable
from one model to another. This could be biased because
we only used a unique setup for the experiment described
in Section VI-B, leading to a construct threat of validity. To
mitigate this threat, we have run the same experiment in the
public cloud AWS.

In our experiment, we have considered the API patterns
Request Bundle and Rate Limit and their combinations with
Load Balancing. We have used a limited and predefined range
for bundle size, rate limit, and load balancers. Also, we
have used only local rate-limiting and weighted load balancing
and ran the experiment 500 times on the private cloud but only
200 times on AWS. This is mainly due to the limited scope and
time of the experiment. However, this could lead to an external
threat to validity regarding the generalizability of the results.
We plan to mitigate this issue by extending our research to
other types of Rate Limit and Load Balancing. We also plan
to generalize our results by increasing the load balancers,

bundle size values, and the number of experiment runs on
AWS.

A similar threat to validity could be caused by using
only one application deployed on one private cloud and one
public cloud for the experiment. However, the application
is a large open-source application developed using industry
best practices by experienced professionals. Also, we plan to
further mitigate this issue by running the experiment in other
infrastructure environments and settings.

In Section VI-A, we have explained that extended modifi-
cations of the Lakeside mutual application have been made to
enable request bundling. This might engender the reliability of
treatment implementation thread of validity. We will validate
our models using other applications and settings to waive this
threat.

IX. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the impact of combining the API
patterns Request Bundle, Rate Limit, and Load Balancing on
the performance and reliability of a cloud-based benchmark
based on a realistic application and setting.

To answer RQ1, we have first presented a regression model
to predict the impact of combining the API patterns above
on performance and reliability. Then, we validated that model
by experimenting with a real-life application and cloud setting.
We repeated the experiment of 130 configurations 500 times in
the private cloud, which took more than 4500 hours of runtime
and 200 times on AWS, totaling more than 3900 hours of
runtime, generating a vast dataset. The data collected are then
used to create five distinctive and highly significant models.
Besides providing general experimental insights, our models
can be used during early architecting. In cases where an
environment needs concrete numbers, our approach presents a
complete and largely automated method applicable iteratively
in different contexts and settings.

As of answering RQ2, we used the experiment-generated
data to present five models with very high statistical sig-
nificance. As described in Section VIII, we have found a
distinctive impact of those API patterns on performance and
reliability. These models could be used in the early phases
of architecting distributed systems to evaluate the impact
of combining such patterns on those quality properties. As
discussed in Section VIII, Model 2 is recommended when
combining Request Bundle and Load Balancing, and Model 3
is best when combining Rate Limit and Load Balancing. Also,
Model 1 is only usable when we have large API messages and
Request Bundle is not used. The remaining models are suitable
otherwise. All the models provide the lowest prediction errors
on AWS.

For future work, we plan to add more variables to our model,
including those already defined in Section V-A and fixed in
advance due to the time and scope of the experiment and
include other Load Balancing algorithms and API patterns.
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