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Abstract—The extensive use of APIs as the entry point to many
Cloud-based applications has created challenging problems, es-
pecially concerning API quality properties such as performance
and reliability. API best practices and patterns, such as bundling
requests, rate limiting, or load balancing, have been proposed to
solve these challenges. Unfortunately, no study investigating the
impact of existing API practices and patterns on such quality
properties exists beyond informal recommendations. In this
paper, we fill this gap by proposing a pattern-based, automated
recommendation approach to improve the performance and
reliability of API operations. We provide a benchmark suite
based on a realistic open-source microservice application to
enable the automatic generation of comprehensive decision tree
models. These models are then processed to generate API design
recommendation algorithms to improve API operations regarding
performance and reliability stored in catalogs for reuse. We
validate our algorithms using extensive data sets generated by
running the benchmark on a private cloud and AWS. For both
environments, based on the decision tree models automatically
generated from the measured data, API design recommendation
algorithms have been calculated using our approach.

Index Terms—API Patterns; Modeling; Microservices; Cloud;
Performance; Reliability.

I. INTRODUCTION

The widespread use of cloud-based applications accessible
through APIs has led to many challenges regarding the quality
of these APIs, especially when deployed on a large scale.
To cope with such challenges, API design has become an
essential building block in achieving the desired level of
quality properties for the APIs. API design prevents degrading
such quality properties and concerns refactoring APIs based
on runtime usage observations. While already an extensive
set of API patterns and best practices has been proposed [1],
[2], [3], [4], today, no support beyond informal guidance
on API quality exists. This is particularly unsatisfactory for
measurable properties such as performance and reliability.
In addition, it is often unclear which effect a combination
of different patterns would have when just following such
informal guidance. Thus, API designers need to improve their
APIs based on these informal recommendations by trial and

error, which is costly and likely does not lead to optimal
results.

Some notable API patterns specifically focusing on improv-
ing performance and reliability properties of APIs are Request
Bundle, Rate Limit, and Load Balancing:

• Request Bundle [1], [5] is achieved by bundling multiple
message chunks into one combined message to avoid
chatty communications between API clients and servers.
As such, message chunks can get large enough to produce
complexity and congestion on both the client and server
side, which should be avoided [6].

• Rate Limit [1], [7] limits the number of requests that can
be handled by API servers during a specific amount of
time to avoid problems caused by excessive and abusive
API clients’ requests [8]. This pattern often makes use
of Front or Edge proxies [9] and may combine both of
them.

• Load Balancing is usually achieved using API Gate-
ways [10], [11] and aims to balance the load between
multiple instances in the backend [12]. Many algorithms
supporting Load Balancing exist but must be selected
carefully to avoid problems like bottlenecks and perfor-
mance degradation.

This paper aims to study the possible combinations of such
API patterns and, based on the gathered data, automatically
generate recommendations to enable refactoring or adaptions
of API design to optimize these combinations concerning their
performance and reliability impact. This work is based on a
prior work in which possible pattern combinations have been
studied by providing an initial empirical study resulting in a
regression model, which had the aim to quantify the impact of
combining Request Bundle, Rate Limit, and Load Balancing
patterns on API performance and reliability. However, such
a model is static and does not consider parameters like
the application type and usage period. For this reason, in
this paper, we have substantially extended these empirical
studies to provide a novel automatic and dynamic API design
recommendation approach based on decision tree modeling,



which is the core contribution of this paper. We aim to answer
the following research questions:
• RQ1 What are the different decision criteria that should

be considered to evaluate the impact of combining Re-
quest Bundle, Rate Limit, and Load Balancing patterns
on API performance and reliability?

• RQ2 How can we select the best combinations of these
patterns and API operations in terms of performance and
reliability impacts?

We provide a benchmark suite based on a real-life application
deployed on modern cloud-based infrastructure. In the proto-
type implementation for experiments, the Istio1 service mesh
and the Envoy2 proxy were used as a widely used combination
of representative modern infrastructure tools that enable to
combine features like Rate Limit and Load Balancing [9].

We use the data generated in the experiment to automat-
ically construct decision tree models for each combination
of those API patterns to answer those questions. Then, we
develop API design recommendation algorithms to select the
best combination of API patterns and operations in terms of
performance and reliability impacts using these decision trees.
These algorithms are stored in catalogs for reuse. Please note
that such reuse of our empirical results makes sense in similar
settings (business application on a similar private cloud or
AWS configuration) to get initial estimates. Also, we have
derived generic recommendations on pattern combinations
that were yet unknown or not yet empirically proven (see
Section VI). We propose an API design recommendation
pipeline that essentially re-runs our benchmark in such a
new setting or configuration to get exact recommendation
algorithms or estimates in vastly different configurations. Our
approach automatically generates and validates the necessary
decision trees and API design recommendation algorithms in
this context.

The paper is organized as follows. Section II describes
related work. Our research methods are then summarized in
Section III. Next, we describe our approach in Section IV. In
Section V, we analyze the data and develop the API design
recommendation algorithm. Then, we provide a discussion and
threats to validity in Section VI. Finally, we conclude and
describe future work in Section VII.

II. RELATED WORK

Many studies have suggested different approaches for deal-
ing with self-adaptive systems to improve quality properties
like performance and reliability. Self-adaptation was a topic
that emerged in early Service-oriented Architecture (SOA)
research as a way to increase resiliency [13]. Garlan et
al. [14] presented Rainbow as a reusable infrastructure for
system developers to realize self-adaptation cost-effectively.
Layaida et al. [15] presented PLASMA as a component-based
framework for building self-adaptive multimedia applications.
The framework is based on a hierarchical composition and

1https://istio.io/
2https://www.envoyproxy.io

reconfiguration model. Adapt! [16] plug-in architectures were
proposed as an external adaptation solution to achieve full self-
adaptation functionality. The middleware approach [17] was
introduced to enable this externalization through application
and service mirroring. However, all of these approaches are
general and not API-centric. They are also not applicable to
highly versatile environments like Cloud-based architectures.

The decision tree modeling approach has also been the
subject of many studies in the literature. Rathore et al. [18]
presented a decision tree-based approach to predict software
faults. Another similar military-based research developed a
decision tree model to identify fault-prone software mod-
ules [19]. Chui et al. [20] provided an approach based on de-
cision tree modeling considering the time of data collection to
improve performance prediction rate without affecting predic-
tion accuracy. Decision tree modeling has also been combined
with other techniques, like Bayes in the transportation world,
to build a lane-changing assistance simulation model [21]
to increase the safety of passengers. These extensive use
cases and others for decision tree modeling to predict the
performance and reliability of diverse applications show that
the approach followed in this paper is relevant.

Several prior studies tried measuring the real impact of API
patterns on reliability and performance [22], [23]. Lawin et
al. [24] evaluated the effect of using GraphQL and REST
technologies on the performance of massively used API. They
figured out that the first technology is the better choice when
data frequently change, while the second stands out when there
is a need for multiple requests. While these studies and others
have proposed robust models and interesting results to derive
API configuration recommendations based on specific settings
and technologies, those models and recommendations lack
important properties like self-adaptation and easy reuse. Also,
they treat each API pattern individually, not in combination
with others, and deal with specific technologies. In our study,
we try to fill this gap by proposing a complete self-adapted
and agnostic API design recommendation pipeline.

III. RESEARCH METHODS

Our approach is based on a dataset generated in a prior
study which we describe first. Then, we provide details about
the benchmark used to evaluate the model.

A. Regression model

The study considered two types of variables: numeri-
cal and categorical. The first type of variables includes
rpm, api users, and bundle size, collected at the client-
side, rate limit, which (if enabled) is set at the server-
side, and total time and failure rate which are collected
at the server-side. The second type of variables includes
request bundle and load balancing, which indicate whether
Request Bundle and Load Balancing are used respectively.
It also includes method, which indicates the API operation
executed on the backend (see Table I).



TABLE I
DEFINITION OF PARAMETERS

Independent variable Description
rpm The number of requests per minute for API users.

api users The number of API users sending the requests.

rate limit The value of the applied rate limit ranges from 100 to 1200 (in increments of 100).

request bundle Categorical variable indicating whether request bundling is used or not.

bundle size The request bundle size ranges from 10 to 50 (in increments of 10).

load balancing Categorical variable indicating whether load balancing is used or not.

method Categorical variable indicating the method executed by API users (get, delete, update, or create).

Dependent variables Description
total time The total roundtrip time spent for requests between API client and backend.

failure rate The percentage failure rate of API requests.

B. Benchmark description

As no benchmark for studying API operations existed, a
novel benchmark was developed for the study based on the
open-source Lakeside Mutual3 application that is realistic and
developed based on real-life experience and makes use of sev-
eral microservice API patterns such as Request Bundle [5], [6]
(already implemented for the API operation: get customers).

Based on a manual analysis of which other API opera-
tions could benefit from Request Bundle, the application was
extended to support Request Bundle in the following API
operations: create, delete, and update. The implementation
follows the same style as the existing bundle implementation
in Lakeside Mutual. The application is composed of four Java-
based microservices packaged using Maven4, containerized
using Docker5 and deployed on the Istio service mesh. Con-
tainers orchestration is realized using Kubernetes6. Database
per service model is used when Load Balancing is inactive.
Otherwise, the database is shared by the service and its replica.
Istio is used since it provides various functionalities out of the
box like Rate Limit and Load Balancing [9]. On the client
side, the workload is defined using Shell7 script covering all
possible combinations of the API patterns under study.

To evaluate the impact of the combination of those API pat-
terns on performance and reliability, we present the benchmark
described in Table II generated from earlier experimental data.
In the benchmark, the authors of this study define bundle size
ranging from 10 to 50, which reflects the bundle size, in case
Request Bundle is active. They also define rate limit ranging
from 100 to 1200, in case Rate Limit is active. Otherwise,
rate limit = ∞. load balancing is a categorical value
indicating whether Load Balancing is used or not.

The benchmark was run on a private Cloud provided by
the University Data Center and AWS8. Infrastructure details
are provided in Table III. Both experiments were executed
covering 130 different configurations 500 times on the private

3https://github.com/Microservice-API-Patterns/LakesideMutual
4https://maven.apache.org
5https://hub.docker.com
6https://kubernetes.io
7https://www.shellscript.sh
8https://aws.amazon.com

cloud and 200 times on AWS, totaling 130000 repetitions,
more than 4500 hours of runtime in the private cloud, and
52000 repetitions on AWS, and more than 3900 hours of
runtime. A small portion of the data collected is summarized
by calculating the mean and shown in Table II. The full dataset
is provided in an online appendix9.

IV. APPROACH DESCRIPTION

Modern applications expose many APIs accessible by API
clients and interoperable with other third-party applications.
However, part of these APIs is rarely (and sometimes never)
exploited by the API clients and applications. The regression
model described briefly in Section III-A could be used to find
the right combination of API patterns to improve performance
and reliability. However, this approach is static and does not
include parameters like the application type and usage period.
Since this kind of parameter is hard to consider in the model,
we further developed an approach introducing decision trees
using the model parameters and the data generated in the
experiment described in Section III-B. We then automatically
generate an API design recommendation algorithm from the
decision trees that could enable APIs to adapt at runtime.
Details are provided in the next section.

Figure 1 represents the API design recommendation bench-
mark pipeline that continuously delivers API improvement
recommendations to a target platform, described in Step 1. The
benchmark is configured using the target cloud setting during
this initial step, and the application is deployed. In Step 2, the
benchmark suite is executed to generate data which are then
collected along with this target configuration to verify whether
it exists in the configurations catalog in Step 3. If that is the
case, the benchmark selects the corresponding algorithm with
the collected data to generate API recommendations in Step 4.
Otherwise, data are extracted and analyzed in Step 3 to create
decision trees, which are then used to develop new algorithms
with the collected data. After validation, these algorithms are
used to reconfigure API and added to the algorithms catalog
in Step 4. The configurations and algorithms catalogs are
continuously synchronized and updated for each newer version
of the target application and cloud setting.

9https://doi.org/10.5281/zenodo.7691350
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Fig. 1. API design recommendation pipeline

V. API ANALYSIS AND RECOMMENDATIONS

In this section, we provide details of our API analysis
approach. Then, we use this analysis approach to generate API
design recommendation algorithms from the private cloud and
AWS data collected using the proposed benchmark.

A. API analysis

The data generated using the experimentation described
in Section III-B are analyzed utilizing the package rpart14

provided by R language15. This package builds classification
and regression models using a two-phase procedure. First, it
selects the variables that best split the data into two groups
and recursively repeats this until the subgroup is too small or
there is no further improvement. Secondly, the resulting tree
is reevaluated by selecting the subtree with the lowest risk.
We have generated 14 decision trees covering all API patterns
and method combinations for each cloud type (private cloud
and AWS). The decision trees in Figures 2 to 7 are used to
generate the algorithms for AWS. The remaining figures are
for the private cloud.

Let’s take as an example the case when combining Rate
Limit, Request Bundle, and Load Balancing on AWS in
Figures 2 to 7. The first figure shows the case where all the
patterns are combined. The performance here is best when
api users < 14 with total time = 853ms. Regarding
reliability, Figure 3 adjusts the value of rate limit to ≥ 150
for maximum reliability. When api users < 24, the best

14https://cran.r-project.org/web/packages/rpart/rpart.pdf
15https://www.r-project.org

combination is Request Bundle and Rate Limit in Figure 6,
where total time ranges between 730ms and 1270ms de-
pending on the value of rpm. The range values of rate limit
do not change as described in Figure 7. The remaining and
extreme case with api users ≥ 24 is illustrated by the first
figure with a maximum value of total time = 1534ms (not
considering the case where rpm < 207 with the probability of
occurrence ≈ 0%). Those conditions are generated for specific
applications and cloud settings in a certain period. To do that
in real-time, we need to construct algorithms based on those
decision trees that must be run continuously, as explained in
Section IV. The following Section describes our algorithms in
more detail.

B. API design recommendation algorithms
Let LB, RB, and RL denote Load Balancing, Request Bun-

dle, and Rate Limit, respectively. Each possible combination
is described as:

combination ∈ {LB∧RB,LB∧RL,RL∧RB,LB∧RB∧RL}

Algorithms 1 and 2 are generated from the data collected on
both AWS and the private cloud, respectively, to determine the
best API patterns and methods combinations. The values cor-
responding to rate limit, rpm, and api users are generated
from the collected data. Each new data collection will yield
values specific to the application settings and usage period. In
Algorithm 1, in case api users < 14 or api users ≥ 24,
then the conditions that are displayed are extracted from the
decision trees depicted in Figures 2 and 3, as described in the
last section. The case in the middle is illustrated by Figures 6



TABLE II
SAMPLE DATA: LB=LOAD BALANCING, RB=REQUEST BUNDLE, OP=OPERATION, SZ=BUNDLE SIZE, TT=TOTAL TIME(MS), FR=FAILURE RATE(%)

Rate limit
100 200 300 400 500 600 700 ∞

LB RB OP SZ TT FR TT FR TT FR TT FR TT FR TT FR TT FR TT

Yes

Yes

Get

50 173,32 31,91 222,56 15,96 239,01 10,64 249,17 7,98 386,46 12,76 588,87 10,64 814,30 9,12 280,98
40 100,60 49,66 161,85 24,83 182,33 16,55 194,88 12,42 235,96 19,87 446,65 16,55 683,52 14,19 235,89
30 79,,00 53,54 127,72 26,77 145,45 17,85 155,48 13,39 249,52 21,42 507,21 17,85 725,92 15,30 204,03
20 94,84 29,97 109,34 21,78 116,87 14,52 122,38 10,89 317,50 14,71 541,16 14,52 746,28 12,44 164,43
10 64,18 31,20 75,23 15,60 79,02 10,40 81,55 7,80 277,31 12,48 501,92 10,40 690,79 8,92 125,88

Update

50 1694,0547,872347,0823,932829,8715,963202,4811,973417,89 9,57 3440,80 7,98 3062,2713,682206,88
40 690,41 74,171501,5137,252054,1924,832412,7618,622616,7814,902686,6712,422333,1421,241557,92
30 443,77 80,311237,4740,161659,4126,771998,1320,082182,2916,062227,4913,391925,8822,951264,42
20 917,49 44,961227,7322,481404,5221,781689,1016,331826,2313,071841,1210,891621,9815,76 836,63
10 510,90 46,81 686,79 23,40 873,89 15,601035,3811,701131,87 9,36 1180,39 7,80 1032,1613,37 451,94

Delete

50 1878,4747,872802,2923,933008,7615,963039,5511,973041,84 9,57 3021,96 7,98 2685,2713,682152,24
40 544,65 74,171611,9237,252084,1424,832218,9718,622262,2314,902268,2012,421980,3821,241484,82
30 280,74 80,311340,5640,161600,0426,771674,1820,081687,2116,061693,7513,391471,8622,951316,66
20 823,02 44,961194,0122,481037,5721,781108,9216,331140,9113,071148,5810,891033,1615,76 934
10 516,88 46,81 691,40 23,40 742,61 15,60 734,47 11,70 721,58 9,36 707,89 7,80 633,57 13,37 459,28

Create

50 1804,2847,872541,2823,932676,8715,962702,8511,972700,02 9,57 2677,38 7,98 2505,3013,682686,54
40 763,51 74,171625,9237,251934,9724,832019,4818,622060,3214,902065,0412,421862,3421,241867,13
30 413,74 80,311292,9540,161548,4226,771584,9020,081609,7116,061609,3313,391439,6822,951580,91
20 905,41 44,961196,4822,481033,2921,781086,6316,331123,1113,071115,1610,891056,3315,761084,51
10 456,18 46,81 670,42 23,40 733,00 15,60 735,22 11,70 723,65 9,36 700,85 7,80 652,40 13,37 551,97

No

Get

50 689,96 64,67 855,37 71,251206,9549,611406,6037,391275,4342,841397,8848,681788,7842,631643,10
40 563,35 64,15 703,43 69,93 985,75 48,071137,5436,341039,1341,901182,2747,541530,6141,371302,57
30 463,46 64,03 574,90 65,59 777,26 44,37 883,25 33,75 812,65 39,80 922,42 44,361224,4538,301034,79
20 270,45 96,51 348,13 81,03 487,17 54,30 575,15 40,73 559,09 51,88 671,44 54,16 955,22 46,54 719,87
10 148,16 95,85 224,22 75,96 279,79 50,64 314,54 37,98 299,71 49,56 437,46 50,64 689,05 43,41 388,14

Update

50 918,42 48,691068,7771,841459,0371,252212,9755,822662,9944,652758,2537,392469,2039,002923,57
40 789,48 48,77 936,57 71,341253,9469,931831,4054,082172,2443,262239,1236,342010,2638,122198,13
30 696,78 48,49 757,38 71,101017,4365,591455,3549,911708,4339,931742,7833,751570,5835,861767,02
20 429,95 97,55 491,03 95,25 668,80 81,03 966,40 61,091147,0148,871227,8640,731091,5948,841182,39
10 205,06 96,96 263,27 93,86 431,99 75,96 597,72 56,97 690,20 45,58 710,35 37,98 628,98 46,41 597,28

Delete

50 895,41 48,69 824,58 71,841482,6971,253084,9355,824308,4944,654349,2837,393810,9339,003528,01
40 821,04 48,77 722,60 71,341225,4569,932583,9654,083486,2643,263492,4436,343063,4038,122633,99
30 744,96 48,49 606,85 71,101213,1065,592252,4049,912846,3739,932785,8633,752448,7335,862363,27
20 240,22 97,55 257,92 95,25 676,70 81,031169,4261,091554,5748,871730,5740,731519,1848,841577,66
10 131,79 96,96 133,15 93,86 344,33 75,96 600,10 56,97 791,03 45,58 878,57 37,98 771,18 46,41 786,28

Create

50 895,41 48,69 824,58 71,841482,6971,253084,9355,824308,4944,654349,2837,393810,9339,004486,12
40 821,04 48,77 722,60 71,341225,4569,932583,9654,083486,2643,263492,4436,343063,4038,123137,15
30 744,96 48,49 606,85 71,101213,1065,592252,4049,912846,3739,932785,8633,752448,7335,862801,52
20 240,22 97,55 257,92 95,25 676,70 81,031169,4261,091554,5748,871730,5740,731519,1848,841815,61
10 131,79 96,96 133,15 93,86 344,33 75,96 600,10 56,97 791,03 45,58 878,57 37,98 771,18 46,41 899,42

TABLE III
INFRASTRUCTURE DETAILS OF THE EXPERIMENTS

Private cloud AWS

Cluster 11 Ubuntu10 18.04.5 LTS Virtual Machines (VMs)
installed on vSphere11 6.7 environment.

Amazon EKS Cluster12

composed of four EC213 instances pool.

Clients
Ubuntu 18.04.5 LTS virtual desktops are used to inject HTTP requests into the private cloud.

Each of the virtual desktops has 2 CPU cores
Intel R© Xeon(R) CPU E5-2650 0 @ 2.00GHz with 8 GB of system memory.

Minikube 1.20.0
Kubernetes 1.20.2

Istio 1.10.0
Number of clusters 2 1

and 7. Algorithm 2 follows the same logic using different
decision trees depicted in Figures 8 to 13.

VI. DISCUSSION AND THREATS TO VALIDITY

In this section, we first discuss the generalizability of the
results and the possible design advice. Then, we provide some
threats of validity that we may encounter.

A. Discussion
The following results are observed from both generated

algorithms 1 and 2. While the outcomes of these algorithms
differ in several cases, we also observe some similarities,
which are discussed in the following.

Algorithm 1 API design recommendation (AWS)
1: for each method ∈ methods do
2: if api users < 14 then
3: bundle size = 10 and
4: range(rate limit, [150,∞]) and
5: combination = LB ∧ RB ∧ RL
6: else if api users < 24 then
7: bundle size = 20 and
8: range(rate limit, [150,∞]) and
9: combination = RL ∧ RB

10: else
11: range(bundle size, {30, 40, 50}) and
12: range(rate limit, [150,∞]) and
13: combination = LB ∧ RB ∧ RL
14: end if
15: end for



Fig. 2. Load balancing, request bundle & rate limit combined: Performance
decision tree on AWS (milliseconds)

Fig. 3. Load balancing, request bundle & rate limit combined: Reliability
decision tree on AWS (% failure)

Fig. 4. Load balancing & rate limit combined: Performance decision tree on
AWS (milliseconds)

Load balancing & request bundle combined: This com-
bination is beneficial when rpm is not very high, if at all since

Fig. 5. Load balancing & rate limit combined: Reliability decision tree on
AWS (% failure)

Fig. 6. Rate limit & request bundle combined: Performance decision tree on
AWS (milliseconds)

Fig. 7. Rate limit & request bundle combined: Reliability decision tree on
AWS (% failure)

else it would overload the API backend with large messages
and create congestion in the load balancer. It is illustrated



Fig. 8. Load balancing, request bundle & rate limit combined: Performance
decision tree on the private cloud (milliseconds)

Fig. 9. Load balancing, request bundle & rate limit combined: Reliability
decision tree on the private cloud (% failure)

Fig. 10. Load balancing & rate limit combined: Performance decision tree
on the private cloud (milliseconds)

in Algorithm 2 that this combination is only recommended

Fig. 11. Load balancing & rate limit combined: Reliability decision tree on
the private cloud (% failure)

Fig. 12. Rate limit & request bundle combined: Performance decision tree
on the private cloud (milliseconds)

Fig. 13. Rate limit & request bundle combined: Reliability decision tree on
the private cloud (% failure)

with relatively low api users and bundle size in the private



Algorithm 2 API design recommendation (private cloud)
1: for each method ∈ methods do
2: if api users < 14 then
3: bundle size = 10 and
4: range(rate limit, [650,∞]) and
5: combination = LB ∧ RL
6: else if api users < 24 then
7: bundle size = 20 and
8: combination = LB ∧ RB
9: else if api users < 34 then

10: bundle size = 30 and
11: if rpm ≥ 1900 then
12: range(rate limit, [150,∞]) and
13: combination = RL ∧ RB
14: else
15: range(rate limit, [650,∞]) and
16: combination = LB ∧ RL
17: end if
18: else
19: range(bundle size, {40, 50}) and
20: if rpm ≥ 2071 then
21: range(rate limit, [150,∞]) and
22: combination = RL ∧ RB
23: else
24: range(rate limit, [250,∞]) and
25: combination = LB ∧ RB ∧ RL
26: end if
27: end if
28: end for

cloud. However, for AWS, our algorithms do not recommend
this combination. The combination should be used in appli-
cations with a limited or dedicated number of users, like a
private company website.

Rate limit & request bundle combined: When using
the private cloud, this combination might be used in highly
demanding environments with high values of api users and
rpm. Rate Limit plays a significant role in preventing the
backend from being overwhelmed. Also, when combined with
Request Bundle, Rate Limit does not cause a high failure
rate, increasing reliability from the API clients’ perspective.
However, Request Bundle has to be supported on both the
client and server side, increasing complexity and costs.

Load balancing & rate limit combined: The combination
is to be used when api users and rpm are relatively low
due to using one load balancer. Adding more load balancers
will make the combination more scalable. It should also
be used with relatively high values of rate limit(≥ 650).
This shows that Load Balancing plays a significant role in
distributing the load and alleviating the role of Rate Limit in
preventing server overload and decreasing both performance
and reliability. The combination should not be used in highly
versatile environments like AWS.

Load balancing, request bundle & rate limit combined:
The combination is recommended in relatively extreme situa-
tions when either api users or rpm are relatively high. Re-
quest Bundle plays a crucial role, especially on AWS, by pre-
venting the load balancer from overloading when api users
and rpm are very high. The combination is the most flexible
and should be used in highly versatile applications like Social
Media and E-commerce.

B. Threats to validity

In any modeling study, a couple of threats to validity need
to be considered and mitigated by workaround solutions or
future improvements.

The first threat to validity is regarding the algorithms
presented in the last section. We considered all methods to be
the same because the type of the method had a negligible effect
on the total time calculated. However, we do not exclude
the general case where in some situations, some types of
methods might take much longer execution times than others.
To mitigate this issue, we plan to add a method time variable
to our model in future work.

Also, the API pattern implementations used in our model
are particular to the configuration used in a prior study. For
instance, only one load balancer and one type of rate limiting
are used. This could lead to an external threat of validity
regarding the general applicability of our model. While the
dataset used for different configurations might be completely
different, we believe that the automation and cyclic process of
the tree decision modeling to generate best-case scenarios is
still valid. Nevertheless, we must validate that using different
datasets from different configurations and settings.

The proposed benchmark might be biased because it is
based on only one open-source application. We tried to
mitigate this issue by selecting a realistic open-source ap-
plication (based on real-life experience in the domain) by
former practitioners. As the authors were not involved in the
application writing, the bias that we could have influenced
the experiment outcomes this way is mitigated. We selected
diverse operations from the application to represent a realistic
operation set in the benchmark. However, the application is
a business system. Systems with vastly different loads might
have different characteristics and need other benchmarks. For
these reasons, we cannot claim generalizability beyond the
system represented well by this benchmark.

Our results might not be generalizable beyond the envi-
ronments and technologies used in our study. We tried to
mitigate this threat by using two very different environments,
the private cloud and AWS. We only tested one configuration
on each, but as our approach requires rerunning the benchmark
on a new environment to provide accurate recommendations,
dealing with this threat is part of our approach. We believe that
for similar private or public cloud scenarios, our generated
algorithms will likely give a reasonable estimate but no
precise recommendations. This would be good enough for
design advice but not for automatic adaptations based on our
approach.

VII. CONCLUSION AND FUTURE WORK

To answer RQ1 and RQ2, we have developed algorithms
based on decision trees generated for each combination of the
studied API patterns.

Regarding RQ1, we have found that the api users and
rpm values are the main criteria for each decision on those
algorithms. We also conclude that each recommended combi-
nation of API patterns is relevant to a specific configuration



setting. Specifically to the configuration in this paper, Load
Balancing and Request Bundle combined should only be used
with a limited number of api users, preferably in a dedicated
environment. Similarly, the combination Load Balancing and
Rate Limit should be avoided in public clouds, for example.
Instead, all the patterns should be combined unless the cost
and complexity of Request Bundle is an issue.

Concerning RQ2, not only have we developed algorithms
from decision tree models to generate the best combinations of
these patterns in terms of performance and reliability impacts,
but we also propose an entire API design recommendation
pipeline that generates those algorithms automatically by re-
running our benchmark using new settings and configurations.
The validated algorithms are then stored in a catalog for re-use
if the same configuration setting is triggered.

Our generated algorithms can provide for private or public
cloud scenarios similar to our experiment setting a good
estimate which would be good enough for design advice. Also,
using our approach in a self-adaptation scenario is possible,
i.e., to run automatic adaptations based on our approach.
But for this, we need to re-run our benchmark on the target
environment to provide precise recommendations.

In future work, we plan to run the API design recommenda-
tion pipeline for new configurations and settings. We also aim
to integrate new parameters into our model, like the methods
execution time.
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