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ABSTRACT
This paper presents an approach to architectural knowledge man-
agement that does not assume existing architectural design de-
cisions or pattern applications are documented as architectural
knowledge, but benefits from more existing data. We drew inspira-
tion from manual qualitative research methods for mining patterns
and architectural knowledge and created a guidelinemodel of which
the ADD models are instances. We evaluated our approach on 11
cases from the gray literature. We found that it can provide suitable
recommendations after modeling only a single case and reaches
theoretical saturation and recommendations with low to very low
errors after only 6-8 cases. Our approach shows that creating a
reusable architectural design space is possible based only on lim-
ited case data. Our approach not only provides a novel approach
to architectural knowledge management but can also be used as a
tool for pattern mining.
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1 INTRODUCTION
Architectural Knowledge Management (AKM) [15, 34] is about the
management of (software) Architectural Knowledge (AK), often in
the form of Architectural Design Decisions (ADDs). Today, these
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ADDs, i.e., the significant design decisions in a software system, are
seen as an integral part of the architecture of a software system [14].
An ADD includes, among other things, the decision to make, a
context in which the decision is made, a set of decision drivers
or forces that influence the decision outcome, a set of alternative
options considered, and a decision outcome (i.e., the chosen option).

Decision options are closely related to patterns. In software archi-
tecture decision-making, decisions for or against time-proven solu-
tions often have patterns as (chosen or alternative) options [10, 41].
Recurring decision outcomes are good starting points for pattern
mining in fields where such patterns still need to be mined and
documented.

Early AKM and ADD tools [3, 27, 34, 35] have focused on ADD
and AK capturing. Later, suggestions to improve steps in the AKM
process were proposed, and tool support was provided. Reusable
ADDs [40, 41] have been proposed and tool-supported [21, 22]
to minimize the work of ADD documentation across projects in
which similar ADDs are recurring. Patterns can play a crucial role
in such approaches, as they are time-proven solutions already well-
documented in the literature [10, 41]. Other suggestions to improve
AKM process steps are, for example, to support AK retrieval via
Web search [32], consider Technical Debt during AKM [2, 31], use
ontologies to organize and manage the AK [8] or make recommen-
dations based on the requirements [20]. Please note that while each
of these approaches solves a specific problem of AKM, each tool
still requires substantial manual work to be applied in a project. For
instance, the reusable ADD approaches require effort invested into
maintaining the reusable ADD model to reuse it across projects, a
Web retrieval tool would require constant review and editing, and
an AK ontology needs to be maintained.

We observed in industry projects which introduced ADD
tools [21] that initially, practitioners are interested and see the
need for such tools. But unfortunately, in many industry settings,
under daily time pressure, it is hard to find volunteers who feel
responsible for maintaining a common AK base, and it isn’t easy to
find incentives for such work. Consequently, in today’s industry
practice, AK is often recorded with simple templates, e.g., in
Markdown [18, 26] with no further AKM tool support than storing
the template in a version repository, or even not at all. To address
this problem, we set out to study how far it is possible to benefit
from AKM tool support across different projects without a need to
perform extra maintenance work for the common AK base.

https://doi.org/10.1145/3628034.3628037
https://doi.org/10.1145/3628034.3628037
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A possible approach for a tool to learn AKM is through machine
learning. Some existing machine-learning-based AKM approaches
focus on classification or adaptation tasks only, and can only learn
AKM from past projects to make it reusable [1, 4, 24, 33, 38]. To
create such approaches, a substantial amount of data from past
ADDs in a particular field or pre-trained machine-learning models
are required. However, for new fields, such as the Cyber-Physical
Systems (CPS), knowledge bases for even widely used software
patterns do not exist. Informal sources, such as heterogeneous blog
posts, system documentation, and open-source implementations,
exist as knowledge sources for new fields. Therefore, an approach
that requires no existing AKM data but improves as more data is
present is needed.

For these reasons, the researchers took inspiration from the man-
ual, qualitative research methods used to mine patterns and archi-
tectural knowledge. Specifically, they drew from the more informal
Pattern Mining approach used in the pattern community [30] and
the Grounded Theory research method [7, 9]. In their approach, dif-
ferent projects in a company or community are added to the design
space and modeled as ADDModels. Their tool uses this information
to gradually build up a Guidance Model, or a reusable ADD Model,
of which the ADDModels are instances. An Guidance Model is a set
of guidelines that provides direction, best practices, and recommen-
dations for designing and implementing software architectures. It
aims to assist software architects and development teams in making
informed decisions. The system learns the Guidance Model and
can start making recommendations based on frequency-based or
text similarity recommendations relatively early. The only required
maintenance work needs to be done during modeling if an architect
creates a name conflict. The architect can review it immediately
and resolve it for the whole design space. Although no interaction
between projects is strictly necessary, some interaction between
architects would be helpful, such as agreeing on central decisions
or option names.

We evaluated our approach using 11 cases from the gray liter-
ature and compared various frequency-based, and text-similarity
recommendation approaches. We reached theoretical saturation
and recommendations with low to very low errors in our cases after
only 6-8 cases. Even after modeling a single case, our tool provided
already fitting recommendations in many cases. This confirms that
our approach can help to create a reusable ADD design space based
only on limited (and potentially incomplete) instance data.

Please note that a secondary goal of our approach is supporting
pattern mining. Each instance in a design space modeled with our
tool can be seen as a known use of several pattern candidates
(the chosen options). The decision option types in the Guidance
Model are thus the pattern candidates. They are modeled along
with contexts, forces, and related patterns and practices.

This paper is structured as follows: In Section 2, we discuss the
research methods pattern mining and GT used as our background,
as well as the research methods used in the evaluation. Next, in
Section 3 we introduce our approach, and then illustrate our pro-
totype tool in Section 4. The evaluation is presented in Section 5,
and our contributions are compared to related work in Section 6.
Finally, we conclude in Section 7.

2 BACKGROUND AND RESEARCH METHODS
Our approach is inspired by the pattern mining methods in the
pattern community. The Grounded Theory (GT) researchmethod [7,
9] is a systematic research method for discovering theory from data.
Iterative steps are taken when interpreting data, whereby the focus
and central goal is to build a theory grounded in the data. Data
analysis should occur during data collection and not afterward.

The most important activity in GT is Constant Comparison: the
researcher continuously and iteratively compares pre-existing data
and concepts with new data. Any newly-arising abstract concepts
should then be compared with pre-existing concepts and data. The
concepts are organized into categories, so-called codes, and are com-
pared and linked to properties and each other via relations [7]. The
concepts, categories, and properties derived from the data should
guide the next iteration of research activities. Theoretical sampling
involves actively seeking out new data based on the results of the
previous iteration, considering the kinds of data that should be
collected next [16]. This is continued until Theoretical Saturation
is reached, i.e., “the point in category development at which no
new properties, dimensions, or relationships emerge during analy-
sis” [7].

We applied the methodology of Strauss and Corbin [7], which is
characterized by three types of coding activity:

• Open coding involves developing concepts based on the data
sources. It entails asking specific (and consistent) questions
about the data, precise (and consistent) coding, and memo
writing with minimal assumptions.

• Axial coding is the development of categories and the linking
of data, concepts, categories, and properties.

• Selective coding refers to the integration of the categories that
have been developed and their grouping around a central
core category.

Hentrich et al. provide details on how GT’s coding process is
mapped to pattern mining [11]. Riehle et al. [30] explain various
such systematic pattern mining methods, and propose steps for
discovering, codifying, evaluating, and validating the patterns dur-
ing pattern mining. In GT-based pattern mining, those steps are
embodied in GT’s coding and constant comparison processes.

We evaluated our approach using 11 cases documented in the
gray literature. These were modeled as different projects in a com-
pany or a community. We passed the names for decisions, decision
options (patterns and practices), external solutions, decision con-
texts, and forces used in the sources in our tool. We compared them
to the recommendation for the reusable decision names selected
during the modeling. This way, it is possible to show that after
only 6-7 cases, simple frequency-based recommendations contain
the selected value with a very low error but could perform bet-
ter in suggesting the correct value or ranking it in the first three
suggested values. Text similarity recommendations for a keyword
phrase reach very low or low errors not only for suggesting the
correct value but also for predictions, suggesting on correct value,
and ranking it in the first three suggested values after only 7-8
cases. We compared predictions based on Word2Vec-based angular
similarity and Levenshtein similarity. Both perform close to each
other; we thus suggest using the simpler Levenshtein similarity
in practical applications. As the number of new elements in the
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models can be seen as a measure of Theoretical Saturation, and it
seems Theoretical Saturation is approached after around 8 cases
in our evaluation where only a very few elements are newly intro-
duced, it seems that our approach’s recommendation performance
correlates well with the Theoretical Saturation.

3 APPROACH
In this section, we first introduce the main steps of our approach
and then explain the meta-models of the ADD models and the
guidance model. Based on these foundations, we explain examples
of both models from our cases used in the evaluation. Next, we
describe the relations of our approach to pattern mining. Finally,
we explain our recommendation approaches.

3.1 Main Steps
The process of our approach is illustrated in Figure 1, which fol-
lows the main coding steps of GT. To facilitate the mapping, we
have used the same terminology as GT. Our approach assumes
that multiple models will be created in a shared design space that
pertains to a particular domain or topic. For instance, in our study,
all cases were related to the interaction between IoT devices and
sensors, edge devices, and the cloud in a CPS. The projects collect
data in various forms such as field notes, source code notes, docu-
mentation, annotations, and memos, which are then modeled in our
tool to identify new possible ADD model elements. This manual
identification process is akin to Open Coding in GT.

Once a new element is identified, it can be added to the tool,
and our system automatically recommends a model element based
on prior usage frequency or a text similarity recommendation if a
name is provided. The user can either accept or reject the sugges-
tion and decide to use the new element as a new type. If a new type
is added, the guidance model is updated automatically by incorpo-
rating the new element or relation type. These steps correspond
to the Axial Coding step in GT, where categories and relations of
concepts are identified. In this step, we refer to it as semi-automatic
because the process of adding newly identified elements to the tool
is performed manually by the user. However, the recommendations
and updates of types within the tool are automated, requiring no
manual intervention.

Finally, our tool allows for selective coding where architects can
detect and resolve inconsistencies, errors, or simplify the model by
renaming type names. For example, two concepts might refer to the
same decision option but have different names, which can be unified
by renaming one or both to a common name. Our tool automatically
updates the guidance model accordingly, making it easy for users
to rename model entities or types. This step is also categorized as
semi-automatic as the user manually performs modifications such
as renaming, while the tool automatically handles the updates for
similar elements.

3.2 Meta-model of the ADD Model
Figure 2 shows the meta-model for ADD models. Each ADD model
is described in our tool as a Model. A model has a name, a descrip-
tion, and a link to the Guidance Model. This guidance model is
automatically derived from this ADD model and all other ADD
models in the design space, as explained above.

Themodel contains theDecisions of the ADDmodel. The decision
has a Context, which is described by a domain object that denotes
the system part or aspect in which the decision is applied. Each
decision has chosen Options and considered alternative Options. All
options are Solutions. In addition to decision options, the model also
contains external Solutions. These solutions are needed to describe
the model fully but are outside the core decisions.

An option has Forces, which can have a force impact. We model
the impact using a five-point Likert scale: ++ for very positive
impact, + for positive impact, o for neutral impact, − for negative
impact, and −− for very negative impact.

Finally, decisions, solutions, and options can have Relations. A
solution can relate to another solution, but the relation’s source or
target must be an option. All solutions in the model must be linked
directly or via other options to a decision. Decisions and options
can have next-decision relations, too.

The following constraints formally define the possible relation
sources and targets:
context Solution
inv: self.relations->forAll(r | r.source.oclIsKindOf(Option) or
r.target.oclIsKindOf(Option))

context Option
inv: self.next_decision_relations->forAll(r | r.target.oclIsKindOf(Decision))
context Decision
inv: self.next_decision_relations->forAll(r | r.source.oclIsKindOf(Decision) and
r.target.oclIsKindOf(Decision))

Decisions, contexts, solutions (and options), forces, and relations
are all named elements, meaning they can have an optional name,
an optional description, and must have a type (described in the next
section).

3.3 Meta-model of the Guidance Model
Figure 3 shows the details of guidance models as a meta-model. This
part of our meta-model is linked to the meta-model from Figure 2
using type and model relations. It contains mainly the types that
are learned from and then shared by multiple instance models. Like
the model, the Guidance Model has a name and a description. But
unlike the names and descriptions on Named Element Type, these
are type names and descriptions. In addition, the guidance model
has a list of all models derived from it.

Context Type, Decision Type, Option Type, Solution Type, Relation
Type, and Force Type correspond to the ADD meta-model elements
starting with the same base name. These elements and their rela-
tions are learned from the instances. Thus, they have very similar
relations and attributes. Chosen and alternative options are not
distinguished at the type level, as a chosen option of one instance
can be the alternative option of another or vice versa. The following
constraints express the implied type relations formally:
context Named_Element
inv: self.oclIsKindOf(Decision) implies self.type.oclIsKindOf(Decision_Type)
inv: self.oclIsKindOf(Relation) implies self.type.oclIsKindOf(Relation_Type)
inv: self.oclIsKindOf(Force) implies self.type.oclIsKindOf(Force_Type)
inv: self.oclIsKindOf(Context) implies self.type.oclIsKindOf(Context_Type)
inv: self.oclIsKindOf(Option) implies self.type.oclIsKindOf(Option_Type)
inv: self.oclIsKindOf(Solution) implies self.type.oclIsKindOf(Solution_Type)

Solutions (and thus options) have a solution that, at the moment,
is either Practice, Pattern, or Do Nothing. Do Nothing is a special
kind that indicates that this solution (or option) requires no action
to be realized. Practice is a generic solution, and Pattern implies
a Practice that has formally been described as a recurring Design
Pattern in the literature.

The same kinds of relation types as relations are supported. The
relation types thus require the same constraints:
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Figure 1: Overview of steps of the approach
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Figure 2: Meta-model for ADD Models

context Solution_Type
inv: self.relation_types->forAll(r | r.source_type.oclIsKindOf(Option_Type) or

r.target_type.oclIsKindOf(Option_Type))
context Option_Type
inv: self.next_decision_relation_types->forAll(r |

r.target_type.oclIsKindOf(Decision_Type))
context Decision_Type
inv: self.next_decision_relation_types->forAll(r |

r.source_type.oclIsKindOf(Decision_Type) and
r.target.oclIsKindOf(Decision_Type))

Each relation type can have a stereotype that indicates the kind
of relation. As solution-to-solution relations (including option re-
lations) have different relation kinds to next decision relations,
we model the stereotype as a string here and model the possible
relation types in the following constraints:
context Solution_Type
inv: self.relation_types->forAll(r | Set{'Requires', 'Uses', 'Can Use',

'Can Be Combined With', 'Can be Realized By', 'Has Variant', 'Extension',
'Is-a', 'Realizes', 'Includes', 'Can Include', 'Alternative To',
'Rules Out', 'Influences', 'Leads To', 'Enables'}->includes(r.stereotype))

context Option_Type
inv: self.next_decision_relation_types->forAll(r | Set{'Mandatory Next',

'Optional Next', 'Next', 'Consider If Not Decided Yet'}->includes(
r.stereotype))
context Decision_Type
inv: self.next_decision_relation_types->forAll(r | Set{'Mandatory Next',

'Optional Next', 'Next', 'Consider If Not Decided Yet'}->includes(
r.stereotype))

3.4 ADD and Guidance Model Examples
To illustrate our approach, let us first discuss two ADD model ex-
cerpts from the AIE and THW cases used below in our evaluation.
Each excerpt shows a single decision instance from these ADD
models. The decision instance in Figure 4 shows a decision for ei-
ther using MQTT/AMQP-based messaging or a Device Protocol for
Handling the IoT Traffic on the edge when integrating using the
Microsoft Azure IoT Edge platform. This decision must be made in
a Device and an Edge Component context. We can select one of the
options for each device/edge component combination. Here, two
chosen options are possible: a Direct Connection with Messaging
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Figure 3: Meta-model for Guidance Models

using the said messaging protocols (if messaging is supported on
the device) or using a Device Protocol for the connection and then
integrating via the Messaging Gateway pattern [12]. A possible
alternative option would be to Directly Connect with Device Pro-
tocol, but this is not recommended to be used in this case. As two
options can use a Device Protocol, a solution (option) from another
decision, we modeled this option-to-option relation here.

MQTT/AMQP or Device-Protocol  
Based Handling of IoT Traffic

: Handling of IoT Traffic in Edge/Cloud

MQTT/AMQP on Device :
Direct Connection with

Messaging

IoT Edge Hub as a
Gateway  

: Messaging Gateway

Protocols used by Downstream 
Devices : Direct Connection 

with Device Protocol

Downstream Device  
: Device

IoT Edge Hub  
: Edge Component

: Device
Protocol

context

context
alternative

option 
chosen
option

chosen
option

can use can use

Figure 4: Example ADD Model Excerpt: Handling of IoT
Traffic in the AIE case

The second excerpt from the THW case in Figure 5 models a
more complex variant of the same decision, representing best prac-
tices documented by the company Thoughtworks. The two chosen
options are a Multi-Protocol Cloud Gateway or the Messaging
Gateway pattern. Both have an is-a relation to the pattern API
Gateway [29], which is an external solution (i.e., a solution that
is not an option in any decision of this design space but is still
modeled to explain the relationship between the two options of this

decision). As alternatives, the Direct Connection with Device Proto-
col (called Private Protocol in this case) and the Direct Connection
with Messaging (called Connection with MQTT in this case) was
considered. Here, the combination of any Device and the Cloud
needs to be considered as the decision context, as this case is about
direct device-to-cloud integration.

Three forces are modeled, which are possible decision drivers
for this decision: Communication Efficiency, Maintainability, and
Development Effort with the respective force impacts. We depicted
them in a separate table instead of drawing the UML relations to
these forces to make the figure readable. Finally, a next decision
relation is modeled: An IoT Data Stream Integration decision using
an IoT SDK is discussed.

Figure 6 shows the guidance model learned from these and the
other cases. As can be seen, all discussed decisions, options, forces,
solutions, contexts, and relations (and a few more) reappear here
as respective types. We show in orange the classes and relations
learned from the AIE case, and in purple, the classes and relations
learned from the THW case. As can be seen, all model elements,
except for two classes and two relations, have already been learned
after only those two cases.

As the learning is based on type names (strings), it is important
that users check the resulting guidance model after each modeling
step for inconsistencies, mistakes, and so on and take refactoring
steps during selective coding if required. A common mistake is that
a user needs to realize that a type is already in use. For instance, sup-
pose that in the THW case, the user has yet to realize that Connect
with Private Device Protocol is an instance of Direct Connection
with Device Protocol. Consequently, this new option would appear
in the guidance model alongside the existing Direct Connection
with Device Protocol. A simple rename option type(Connect with
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Figure 5: Example ADD Model Excerpt: Handling of IoT Traffic in the THW case

Private Device Protocol, Direct Connection with Device Protocol) refac-
toring would solve this issue. Our tool would automatically find the
existing type and update all instance model relations using Connect
with Private Device Protocol to link to the existing option type.

3.5 Relations to Pattern Mining
Our approach generates a guidance model and statistics of the
frequency of use of each model element type in the model. Suppose
an option or solution is not a pattern documented in the literature.
In addition, it is recurring in the design space and is frequently
suggested as a chosen option. In that case, this option is a new
pattern candidate in the domain of the design space.

In our experience, it also makes sense to closely inspect a pat-
tern candidate’s related chosen options, alternative options, and
solutions. Of course, a related frequently used chosen option might
be another pattern candidate in the simplest case. But as patterns
are modeled in more depth than ADD design spaces, related chosen
options might be variants of the same patterns and thus should be-
come part of the newly described pattern. Similarly, related external
solutions might become parts of the pattern’s solution description.
Related alternative options that are never used as a chosen option
might become a section in the pattern describing non-solution or
might be described as anti-patterns. Both require thorough research
in the literature and existing systems to confirm the non-solution
or anti-pattern status.

Typically, the contexts of options and solutions used in a pattern
are candidates to describe the pattern context and the forces for the
pattern forces. The decision with its option relations, as well as the
inter-decision relations, option relations, and solution relations can
either become part of the pattern’s solution or pattern relations.

3.6 Recommendations of Model Element Types
When users of our tool encounter new potential concepts to be
added to an ADD model, it would be helpful for the efficient and
effective creation of the model to recommend the model element
type based on what our tool has learned as a guidance model so far.
Here, for each type of model element (decisions, contexts, options,
solutions, forces), we can encounter essentially two different situ-
ations if the guidance model already contains concepts searched
for by the user: The user has not enough information yet to name
a potential model element and wants a recommendation from the
guidance model. Or the user has a name for a model element, but it
might be differently phrased than the model element type in the
guidance model the user is searching for.

Frequency-based text recommendation is a straightforward recom-
mendation that works even when the user cannot provide any infor-
mation. It is a method of measuring the similarity between two texts
based on the frequency of common words. This approach is simple
to implement and can be effective in certain situations. However, if
the user has some information, such as a keyword phrase (model
element name), frequency-based text recommendation is likely infe-
rior to text similarity recommendation approaches. Text similarity
recommendation is a common task in natural language process-
ing and information retrieval, and there are several approaches to
measure the similarity between two texts. Two commonly used
methods are Levenshtein similarity and Word2Vec-based cosine
similarity.

The Levenshtein similarity [39] is a measure of similarity between
two texts based on the minimum number of single-letter changes
(insertions, deletions, or substitutions) required to transfer one text
to the other. The Levenshtein distance is defined as:

levenshtein_similarity(t1, t2) = min
π ∈AP (t1,t2)

∑
(i, j)∈π

[i , j]
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Figure 6: Example Guidance Model Excerpt: Handling of IoT Traffic at the Edge or in the Cloud

where t1 and t2 are the two texts being compared, AP(t1, t2) is
the set of all possible alignment paths between the two texts, and
the sum is over all pairs (t1, t2) in the alignment path π .

Word2Vec-based cosine similarity [23] is a measure of similarity
between two texts based on the cosine similarity between the word
embeddings of the words in the texts. Word embeddings are vector
representations of words that capture the semantic meaning of the
words. The cosine similarity between two vectors is a measure of
the angle between the vectors, where a value of 1 indicates that the
vectors are perfectly aligned. A value of 0 indicates that the vectors
are orthogonal. In Word2Vec, cosine similarity is calculated as the
dot product of the vectors representing the two words divided by
the product of their magnitudes (L2 norm). The dot product is a mea-
sure of the similarity between two vectors, while the magnitudes
represent the lengths of the vectors.

cosine_similarity(v1, v2) =
v1 · v2

∥v1∥ ∥v2∥

There is a problem with using cosine similarity directly for our
purposes. A cosine similarity of -1 means that the vectors are dia-
metrically opposed (opposite). A value of 0 means that the vectors
are orthogonal (right-angled). However, if a design space contains
opposite and orthogonal values, we want the orthogonal value to
be ranked lowest and the opposite values to be relatively high. For
example, if the design space contains “No Digital Twin” options,
“Digital Twin” options, and numerous unrelated options, both the
correct and negative options should be ranked higher than the
unrelated options when searching for “Digital Twin.” We convert
the cosine similarity to theWord2Vec-based Angular Similarity to
achieve this. The angular similarity is more intuitive in our context
and, like Levenshtein similarity, has values ranging from 0 to 1. This
conversion was also used by Cer et al. [6], who found that using
angular distance-based similarity performed better on average than
raw cosine similarity. The formula for this is:

anдular_similarity(v1, v2) =
arccos(cosine_similarity(v1, v2))

π

We used the Spacy library [13] in Python as Word2Vec imple-
mentation with the medium-sized English model trained on written
Web texts en_core_web_md. Smaller, more efficient models did not
work well in our context, as they contained few specialized soft-
ware engineering terms used in our Cyber-physical Systems design
space.

The Levenshtein similarity and the Word2Vec-based Cosine sim-
ilarity are helpful approaches for measuring the similarity between
texts. Which one is more appropriate will depend on the specific
requirements and goals of the task. In our evaluation, we test and
compare both approaches and the simple frequency-based recom-
mendations for making recommendations in our context. Please
note that the performance Levenshtein similarity vs. Word2Vec is
not apparent because the more sophisticated Word2Vec approach
has some issues in our case: Firstly, sometimes there are relatively
short phrases (like some forces or contexts that are just one word
long) and, secondly, there are phrases that might be missing as a
work embedding in the used pre-trained Word2Vec model-based,
e.g., on English language training data sets. For instance, the force
Configurability appeared in none of the pre-trained models.

4 TOOL ARCHITECTURE
Figure 7 shows the architecture of our prototype tool. The web
frontend of the tool is implemented in React1 as a single-page appli-
cation. The frontend communicates with a RESTful service written
in Python Flask2. This service handles the incoming requests using
the Codeable Models backend3. Codeable Models is a Python tool
for specifying meta-models, models, and model instances in code.

1https://reactjs.org/
2https://flask.palletsprojects.com/en/2.2.x/
3https://github.com/uzdun/CodeableModels

https://reactjs.org/
https://flask.palletsprojects.com/en/2.2.x/
https://github.com/uzdun/CodeableModels
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We used CodeableModels to define meta-models for components
and relationships.We also developed automated constraint checkers
and PlantUML4 code generators to create graphical representations
of all of our meta-models and model instances.

Codeable Models aims to provide an easy-to-use Application
Programming Interface (API) for coding software design models
akin to UML models. This API comprises our Guidance Metamodel,
Visualization Generator, Evaluation scripts, etc. For persistence,
we use MongoDB5 with the PyMongo driver6. Using the Docker
technology7, the tool is containerized into three containers, i.e.,
frontend, backend, and persistence.

Web Frontend RESTful Service Codeable Models
Backend

includes

Codeable Models Guidance
Metamodel

output

Visualization
Generator

React Python
Flask

instance of

Python
Library

Codeable
Models

Frontend Backend

PlantUML
Model

ADDs
Models

Persistence
Using

PyMongo

MongoDB

Figure 7: Tool Architecture Diagram

Figure 8 shows the flow of our tool. A user accesses the frontend
using a Web User Interface (UI). The Web UI communicates to the
backend to create, read, update and delete model elements. Recom-
mendations are provided to the user when creating or updating
elements. The Codeable Models Generator takes the GuidanceMeta-
model as input and creates ADD models. In case the user requests
for visualizations, these ADD models are given to Visualization
Generator that outputs PlantUML models.

5 EVALUATION
To evaluate our research, we studied the following research ques-
tions:

• RQ1: Can theoretical saturation of the guidance model be
achieved after modeling a small number of ADD models? If
so, when can it be expected?

• RQ2: How well does recommendation work a) when the
user provides no data and b) when (parts of) keywords from
the ADDmodel cases are provided? c)Which of the proposed
recommendation approaches delivers the best results?

Please note that RQ1 and RQ2 are linked, as a good recommendation
after a few cases can be seen as an indicator of theoretical saturation.
4https://plantuml.com/
5https://www.mongodb.com/
6https://www.mongodb.com/docs/drivers/pymongo/
7https://www.docker.com/

5.1 Case Selection
The search engines of Google, Bing, and DuckDuckGo served as
the primary source for case studies selection. We followed the rec-
ommendations by Petersen et al. [28] (originally for systematic
mapping studies) for establishing search phrases according to the
PICO principles [17]. We mainly applied two PICO principles, pop-
ulation and intervention. Overall, we considered 45 cases. Then, we
applied inclusion/exclusion rules. In particular, we excluded cases
that were too brief, not written by practitioners, not technically
detailed enough to derive ADDs, or mainly contained biased or
product advertisement information. In the end, we selected the 11
cases in Table 1 to be included in our evaluation. The cases were
chosen independently and in parallel to our approach’s develop-
ment.

5.2 Evaluation Methods
After selecting the cases, we carefully modeled each as an ADD
model in the order in Table 1. The table also summarizes the sizes of
the ADD models we have modeled for each case. We used the terms
from the cases as ADD model element names and derived generic
type names from those model element names. Whenever a new
name emerged, we compared it to existing names and decided if
the type name needed to be refactored. Our tool used new elements
observed in the ADD models to learn the guidance model automat-
ically. In the first five cases, we frequently needed to change the
type names given before; in the following 7 cases, this happened
only rarely. In our evaluation, we used the ADD model element
names as keyword phrases to recommend the type names used in
the guidance model. For each single model element in each of the
twelve cases, we calculated the following recommendations:

(1) A recommendation purely based on the frequency of the
model elements. The model element with the highest fre-
quency is recommended first, then the second highest fre-
quency, then the third, and so on. We used the frequency-
based text recommendation method, as explained in Sec-
tion 3.6.

(2) A recommendation based on the keyword phrase entered by
the user. Here, we use the one used as ADD model element
name.

(3) A recommendation based only on the first word of the key-
word phrase entered by the user to estimate how well the
approach works if only incomplete information is entered
yet.

(4) A recommendation based only on the first three characters
of the keyword phrase entered by the user to estimate how
well the approach works if only very incomplete information
is entered yet.

For the text-based recommendations, we calculated the Leven-
shtein similarity and the angular similarity based on Word2Vec, as
explained in Section 3.6. We evaluated this for each of the 11 cases
consecutively, for each of the model element types listed in Table 1,
i.e., Columns 3-7 and 9 of the table. Please note that Column 8,
i.e., Relations, is not an element type on its own in the evaluation.
Instead, the source and target of each relation must be predicted
(either a solution, option, or decision prediction).

https://plantuml.com/
https://www.mongodb.com/
https://www.mongodb.com/docs/drivers/pymongo/
https://www.docker.com/
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Figure 8: Process flow architecture of the prototype

Table 1: Overview of the Inspected Cases

ID Title/URL (#) (#) (#) (#) (#) (#) (#) Model
Decisions Contexts Options Forces Solutions Relations Elements

CRO How to Build an Industrial IoT Project Without the Cloud. URL: https:
//www.iiot-world.com/industrial-iot/connected-industry/how-to-build-an-
industrial-iot-project-without-the-cloud/

2 1 8 7 0 1 19

AIE Understand the Azure IoT Edge runtime and its architecture.URL: https://docs.microsoft.
com/en-us/azure/iot-edge/iot-edge-runtime?view=iotedge-2020-11

10 5 25 20 0 13 73

THW Connecting IoT devices to the cloud. URL: https://www.thoughtworks.com/insights/
blog/iot/connecting-iot-devices-cloud

3 3 10 27 1 11 55

SOL Real-time Data Streaming in IoT: Why and How. URL: https://solace.com/blog/real-
time-data-streaming-in-iot/

5 3 12 24 0 4 48

AWS Edge to Twin: A scalable edge to cloud architecture for digital twins. URL:
https://aws.amazon.com/de/blogs/iot/edge-to-twin-a-scalable-edge-to-cloud-
architecture-for-digital-twins/

8 5 16 0 0 9 38

RHT Understanding edge computing for manufacturing. URL: https://www.redhat.com/en/
topics/edge-computing/manufacturing

5 3 12 36 0 4 60

HUS Connected Things Without a Cloud. URL: https://husarnet.com/iot 3 3 5 12 0 0 23
TRI How to use Digital Twins for IoT Device Configurations. URL: https://tributech.io/blog/

digital-twins-for-IoT-device-configurations
9 6 16 20 2 12 65

MFL Mainflux 0.11 — Digital Twin, MQTT Proxy And More. URL: https:
//medium.com/mainflux-iot-platform/mainflux-0-11-digital-twin-mqtt-proxy-
and-more-46bde98635fe

7 6 11 0 1 4 29

PRS Connecting OPC UA Publisher to Amazon AWS IoT with MQTT. URL: https://www.
prosysopc.com/blog/aws-iot-mqtt-demo/

5 5 9 8 0 3 30

DAW Dataworks: Internet Of Things. URL: https://www.dataworks.ie/iot-a-step-by-step-
guide-on-how-to-connect-devices-to-the-cloud/

8 5 13 9 0 11 46

In the context of RQ1, we use the number of new model element
types and relation types introduced per case as a measure of the-
oretical saturation. This is a reasonable measure, as theoretical
saturation is achieved when the researcher can no longer identify
new concepts or relationships in the data. Our models represent
new concepts and relationships as new model element types and
relation types.

After each case, we calculated two Error Measures, the Mean
Absolute Error (MAE) and the Mean Squared Error (MSE). Those
are two common error measures used in statistical analysis. The
MAE is defined as:

MAE =
1
n

n∑
i=1

|yi − ŷi |

where yi is the true value of the i-th sample, ŷi is the predicted
value, and n is the total number of samples.

The MSE is defined as:

MSE =
1
n

n∑
i=1

(yi − ŷi )
2

Both the MAE and MSE are used to evaluate the performance of
a model, with the MAE being a measure of the average magnitude
of the error and the MSE being a measure of the average squared
magnitude of the error. The MSE is generally more sensitive to
large errors than the MAE, as the errors are squared in the MSE.

For each recommendation, we measured for each case the errors
of four values:

https://www.iiot-world.com/industrial-iot/connected-industry/how-to-build-an-industrial-iot-project-without-the-cloud/
https://www.iiot-world.com/industrial-iot/connected-industry/how-to-build-an-industrial-iot-project-without-the-cloud/
https://www.iiot-world.com/industrial-iot/connected-industry/how-to-build-an-industrial-iot-project-without-the-cloud/
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime?view=iotedge-2020-11
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime?view=iotedge-2020-11
https://www.thoughtworks.com/insights/blog/iot/connecting-iot-devices-cloud
https://www.thoughtworks.com/insights/blog/iot/connecting-iot-devices-cloud
https://solace.com/blog/real-time-data-streaming-in-iot/
https://solace.com/blog/real-time-data-streaming-in-iot/
https://aws.amazon.com/de/blogs/iot/edge-to-twin-a-scalable-edge-to-cloud-architecture-for-digital-twins/
https://aws.amazon.com/de/blogs/iot/edge-to-twin-a-scalable-edge-to-cloud-architecture-for-digital-twins/
 https://www.redhat.com/en/topics/edge-computing/manufacturing
 https://www.redhat.com/en/topics/edge-computing/manufacturing
https://husarnet.com/iot
https://tributech.io/blog/digital-twins-for-IoT-device-configurations
https://tributech.io/blog/digital-twins-for-IoT-device-configurations
https://medium.com/mainflux-iot-platform/mainflux-0-11-digital-twin-mqtt-proxy-and-more-46bde98635fe
https://medium.com/mainflux-iot-platform/mainflux-0-11-digital-twin-mqtt-proxy-and-more-46bde98635fe
https://medium.com/mainflux-iot-platform/mainflux-0-11-digital-twin-mqtt-proxy-and-more-46bde98635fe
https://www.prosysopc.com/blog/aws-iot-mqtt-demo/
https://www.prosysopc.com/blog/aws-iot-mqtt-demo/
https://www.dataworks.ie/iot-a-step-by-step-guide-on-how-to-connect-devices-to-the-cloud/
https://www.dataworks.ie/iot-a-step-by-step-guide-on-how-to-connect-devices-to-the-cloud/
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Figure 9: Recommendation based only onmodel element fre-
quency for all model elements

• Prediction: The error based on the prediction value is calcu-
lated as the used similarity measure, i.e., the angular simi-
larity based on Word2Vec or the Levenshtein similarity. We
use this prediction value also to create a ranked list of rec-
ommendations (ordered from best prediction to worst one).
This is used in the following three measures.

• Contains Correct Value: This computes the error based on
a boolean value (0 or 1) which is 1 if the ranked list of all
recommendations contains the correct value and 0 if not.

• First Value is Correct: This computes the error based on a
boolean value (0 or 1) which is 1 if the ranked list of all
recommendations contains the correct value in its first place
and 0 if not.

• Correct Value in the First 3: This computes the error based
on a boolean value (0 or 1) which is 1 if the ranked list of all
recommendations contains the correct value in its first three
places, and 0 if not.

Please note that here “correct value” refers to the design con-
cept the user wants to model or the model element type the user
is searching for. The list of recommendations contains all model
element types the system has learned so far. For example, the user
searches for the force “Configuration,” and the correct value is
“Configurability” learned before in the guidance model. Forces are
recommended based on the list of all forces that the system has
learned so far.

5.3 Results and Discussion
We carefully inspected the results for each case and the two errors.
While there are some specific, interesting details, overall, the results
are relatively consistent for both errors and across the different
kinds of model elements (i.e., Columns 3-7 and 9 of Table 1). Thus,
for space reasons, out of our 120 evaluation results investigated,
we only report the 7 evaluation results for all model elements (i.e.,
Column 9 of Table 1) and only the MAE-based ones.

The yellow line “New Elements Count” shown in Figures 9-15
is identical in all figures. The initial cases introduced numerous

Figure 10: Recommendations with Levenshtein similarity
for all model elements after entering the full keyword
phrase

new model element types (roughly 10-50). After that, only a few
new model element types are added per case. There seems to be
yet another drop from the tenth case onwards for the last three
cases, and <4 new model element types are introduced per case.
This indicates that theoretical saturation is likely reached around
5-9 cases, depending on how one likes to set the bound for it. We
can conclude for RQ1 that theoretical saturation can be reached
or approached by modeling a few cases, which indicates that our
approach is applicable in industrial settings, where multiple similar
projects need to be modeled.

The bar chart in Figure 9 shows the recommendation results
MAE for all model elements based only on the frequency of their
previous appearance. As can be expected, frequency alone shows
poor performance for the prediction (blue bars) and recommends
the correct values as the first value (green bars). The correct value
is more likely contained in the first three values (red bars), but still,
the error is high. However, we can see that the correct value is
part of our recommendations (purple bars) with a very low error
from around 8 cases onwards and a reasonably low error after only
modeling 3 cases. This confirms the results on RQ1 that, after a
few cases, it can be expected that our approach has learned the
relevant design concepts in design space (aka theoretical saturation
is reached). It also shows that, for RQ2a, we can conclude that if
the user provides no information on what shall be modeled, the
best we can expect is a long list of all types that at least contains
very likely the correct value.

The bar chart in Figure 10 shows how the MAE changes between
cases when the recommendation is made based on the Levenshtein
similarity and the whole keyword phrase encountered in the source
is entered by the user. As can be seen, all MAE values drop in close
correlation to the New Elements Count. As expected, the MAE for
the correct value being part of our recommendations (purple bars)
drops quickly below an MAE of 0.3 and, after 8 cases, stays below
0.1. The prediction value (blue bars) drops quickly, after 4 cases,
below 0.3 and reaches values below 0.2. After 8 cases, the correct
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Figure 11: Recommendation with Word2Vec-Based angular
similarity for all model elements after entering the full key-
word phrase

Figure 12: Recommendations with Levenshtein similarity
for all model elements after entering the first keyword

values are very likely in the first three recommended values (red
bars, MAE below 0.1) and likely even in the first value (green bars,
MAE below 0.2).

The bar chart in Figure 11 shows the same measurement for
Word2Vec-based angular similarity. Overall it shows a very similar
performance to the Levenshtein similarity. Still, the predictions
(blue bar charts) are a little better, while the other recommendations
seem to be a little worse.

The bar chart in Figure 12 shows how the MAE changes when
prediction is made based on the Levenshtein similarity and only
the first keyword of the keyword phrase encountered in the source
is entered by the user. Here, it can be seen that again the recom-
mendation very likely contains the correct value (purple bars, after
7 cases MAE below 0.1) and likely contains the correct value in
the first three recommendations (red bars, MAE around 0.2 after 8

Figure 13: Recommendation with Word2Vec-Based angular
similarity for allmodel elements after entering the first key-
word

Figure 14: Recommendations with Levenshtein similarity
for all model elements after entering the first 3 characters

cases). But the prediction error (blue bars) and error for a correct
first value (green bars) are relatively high. Interestingly, the same
measures for the Word2Vec-based angular similarity shown in Fig-
ure 13 perform much better for the prediction values, and errors
around 0.2-0.3 can be reached after around 8 cases. The errors in
predicting the correct value as the first value are similar, but even
after 11 cases, the error is still around 0.4.

The bar chart in Figure 14 shows a reasonably low MAE for
Levenshtein similarity when only the first 3 characters of a keyword
phrase, i.e., minimal information, are entered for the correct value
being in the total list of recommendation (purple bars) and also for
predicting the value in the first 3 recommendations (red bars). The
prediction error and error of the correct value being recommended
first (green bar) are both high, but at least there is a chance of about
50% that the correct value is the first recommended. The same
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Figure 15: Recommendation with Word2Vec-Based angular
similarity for all model elements after entering the first 3
characters

Word2Vec-based recommendation offers lower prediction errors
(blue bars) but performs worse in all measures based on the ranked
list.

We can conclude forRQ2b that both text-based recommendation
methods offer excellent performance if the user enters the keyword
phrase in the source and likely deliver the correct value as the first
recommendation. Still, there is an excellent chance of having the
correct value high in the ranked recommendation list if only the
first word of the keyword phrase is entered. Yet, even if only the
first three chars are provided, this is enough to have a reasonable
chance (e.g., around 50%) to have the correct value ranked high.

Finally, for RQ2c, we must assert that frequency-based text
recommendations perform poorly but are helpful when the user
has entered nothing andwants to look at the available options. Then
he gets the most likely options ranked first and can be relatively
sure that the correct result is contained in the recommendations.
Levenshtein similarity and the Word2Vec-based recommendation
perform similarly in the evaluation cases, with the Word2Vec-based
recommendation offering slightly more precise prediction results,
but Levenshtein similarity offers superior ranked recommendations.
As Levenshtein similarity is simpler and less expensive to compute,
unless the precise prediction value is needed for a task, Levenshtein
similarity seems better suited.

5.4 Threats to Validity
Threats to validity refer to factors that may affect the validity or
reliability of the results of a study. In the present study, several
potential threats to validity should be considered. We discuss the
threats to validity based on the threat types by Wohlin et al. [37].

Construct Validity. Construct validity concerns the accurate
representation of the intended construct by a measurement. The ex-
perience and search-based procedure for finding knowledge sources
may have introduced bias. However, this threat is mitigated to a
large extent by the chosen research method, which requires addi-
tional sources corresponding to the inclusion and exclusion criteria,

not a specific distribution of sources. Our procedure is in this re-
gard rather similar to how interview partners are typically found
in qualitative research studies in software engineering. The threat
remains that our procedures introduced unconscious exclusion of
certain sources. We mitigated this threat by assembling an author
team with many years of experience in the field, and performing
very general and broad searches.

Internal Validity. Internal validity concerns factors that affect
the independent variables concerning causality. To increase internal
validity we used practitioner reports produced independently of our
study. The sample size in this study was small, and fewmodels were
used to measure theoretical saturation and to learn the guidance
model. This may limit the generalizability of the results to other
models or contexts. However, it is unlikely that hundreds of cases
can be modeled in an industrial setting such as the one we are
interested in. With this in mind, we evaluated our research in a
realistic setting.

External Validity. External validity concerns threats that limit
the ability to generalize the results beyond the experiment. The
study’s results may not be generalizable to other contexts or pop-
ulations because the study was conducted with a specific set of
models and data.

Conclusion Validity. Conclusion validity concerns factors that
affect the ability to conclude the relations between treatments and
study outcomes. The measurement of theoretical saturation may
be subject to error because it is based on two proxy measures,
the number of new element types in the guidance model and the
improvement in error measures. This may affect the accuracy of the
results, as the actual theoretical saturation may not be accurately
measured.

Because the guidance model was learned from multiple models,
there may be omitted variable bias in this study. This may affect the
accuracy of the model’s recommendations. Overall, it is essential to
consider these potential threats to validity when interpreting this
study’s results and applying the advisorymodel’s recommendations.
Further research is needed to address these threats and confirm the
validity and generalizability of the results. For example, the study
could be replicated for other design spaces.

6 RELATEDWORK
This section discussed relevant related works on AKM history, the
relation to patterns, AKM tools, reusable AK, and machine-learning-
based AK approaches.

6.1 AKM History and Relation to Patterns
This section outlines and compares relevant related works. At the
core, the approach presented in this paper is anArchitectural Knowl-
edge Management (AKM) tool focusing on AKM discovery and
pattern mining. In the 2000s, AKM and ADDs became a hot topic in
software architecture research, and senior architects in the indus-
try began to share their AKM practices with the public. Jansen’s
work [15] set the scene, and Kruchten proposed a taxonomy of
ADDs in software-intensive systems [19]. Tyree and Akerman [36]
took inspiration from the IBM e-business Reference Architecture
(that came with pre-filled ADD records) and motivated why ADDs
matter in an article that also presented a rich ADD template.
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Zimmermann [40] investigated whether ADD issues recur when
similar designs are used on multiple projects and whether decision
trees can be mined from the gained experiences. He suggested
a method to systematically identify the need for ADDs and the
available options in requirements and style definitions. Service-
Oriented Architecture (SOA) served as an exemplary architectural
style. The ISO/IEC/IEEE 42010 standard [14] recommends capturing
decision rationale and gives scoping and filtering advice as well as
clarifies many other concepts.

These concepts are closely related to pattern mining. Harrison,
Avgeriou, and Zdun [10] introduced the notion of using patterns as
options in architectural design decisions, which later was combined
with the approach of Zimmermann [41], introducing the notion
of Reusable ADDs. Since about 2010, ADDs have made it into the
industry project mainstream. For instance, Nygard received a lot
of attention with his Architecture Decisions Records (ADR) blog
post [26]. The architecture documentation template arc42 8 ded-
icates Section 9 to ADDs and gives nine related tips. Kopp [18]
suggested MADR as another ADD template in Markdown 9.

6.2 AKM Tools and Reusable AK
Several scientific studies proposed AKM tools. A survey on early
tools can be found in [34]. PAKME [3] is a knowledge repository al-
lowing architects to register design decisions to prevent architecture
knowledge vaporization. Tofan et al. [35] developed a Web-based
tool 10 to help architects in capturing tacit knowledge and archi-
tectural decisions. The architectural decisions considered by this
tool are related to selecting patterns, technologies, or decomposing
systems. Parmar et al. [27] presents an approach to capture ADDs
based on templates and to make decisions based on scenarios and
non-functional requirements. In these tools, however, no AK reuse
happens, and the authors do not use past AK to recommend ADDs.

Several scientific studies investigated further how to reuse AK.
Lytra et al. [21, 22] proposed a reusable architectural decision meta-
model for quality-driven decision support and the CoCoAdvise tool.
Reusable ADDs need to get documented by users and can then be
reused in the concrete ADDs of many different projects. The sup-
portive effect of the reusable decision models in decision-making
and documentation was tested in two controlled experiments [22].
In [25], the authors reported on an in-depth qualitative study of
existing practices in the industry for data management in microser-
vice architectures. That is, this study mined ADDs and patterns
from the gray literature to create a reusable ADD model.

Many other sources to enhance AKM tools have been proposed
in the scientific literature. Soliman et al. [32] explore the retrieved
architectural knowledge (AK) from the Web, and the effectiveness
of web search engines, when performing three Attribute-Driven
Design architectural steps. To achieve this goal, the authors con-
ducted an exploratory study with software engineers who used
Google to find AK for making design decisions. Ampatzoglou et
al. [2] provide a cost-benefit approach and supporting tooling that
treats architectural decisions like financial investments. In [31],
the authors explore technical debt-incurring architectural design

8https://arc42.de/
9https://adr.github.io/madr/
10https://github.com/danrg/RGT-tool

decisions in practice. In particular, they focus on the main types of
debt-incurring architectural design decisions, why and how they
are incurred in a software system, and how practitioners deal with
these types of design decisions. de Graaf et al. [8] are proposing
ArchiMind and have investigated modified ontologies and have
shown how ontological support can be beneficial for the efficient
retrieval of architecture knowledge. Silva et al. [20] present a Web-
based tool that supports architects by recommending a suitable
architectural style based on the system’s requirements, particu-
larly the system’s quality attributes. The tool encompasses both
trade-off resolution over quality attributes and recommendation
of architectural styles based on quality attributes. While the listed
works follow various approaches to enrich the AKM, so far, all
approaches require gathering additional knowledge or modeling to
improve certain AKM steps, such as search/retrieval of AK or AKM
recommendations.

6.3 Machine-Learning-Based Approaches
Recently, several machine-learning approaches have been proposed
for AKM. Ali et al. [1] proposed a supervised machine learning-
based approach to classifying architectural knowledge into pre-
defined categories: analysis, synthesis, evaluation, and implemen-
tation. In [38], the authors advocate for using machine learning
to refine the approach and reveal new patterns of architectural
integrity violations. Muccini et al. [24] present a machine learning-
based proactive decision-making tool named ArchLearner, for aid-
ing architectural adaptation. In [33], the authors propose that new
architectural design practices might be based on machine learning
approaches to better leverage data-rich environments and work-
flows. Bhat et al. [4] proposes a two-phase supervised machine
learning-based approach to first automatically detect design de-
cisions from issues and then automatically classify the identified
design decisions into different decision categories. In [5] Bhat et.al.
introduced a tool called ADeX that helps automate the process of
curating design decisions and aids architects and developers in the
decision-making process. So far, however, none of these approaches
can learn AKM from past projects, but classification or adaptation
work is supported.

7 CONCLUSION
This work demonstrates that architectural knowledge management
tools can create a reusable ADD design space based on limited data.
The simple learning approach we propose does not require existing
ADD data to work and can improve as more data is available. We
evaluated the approach using 11 cases from the gray literature and
found that our tool can provide appropriate recommendations in
many cases, even after modeling a single case. Our research shows
that AKM tools can help architects create and evolve a common AK
base without investing substantial time into curating and maintain-
ing the AK base. Further, creating and evolving such AK bases could
be seen as a systematic approach to pattern mining in the field. If
our tool proposal would get widely applied in the field, it could
improve the situation that no systematic documentation of ADD
instances exists. The lack of such data of reasonable quality is one
of the main reasons many current machine-learning approaches
cannot be applied in our research context. Thus, in the future, our

https://arc42.de/
https://adr.github.io/madr/
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tool could contribute to changing this situation and creating data
sets that would enable machine learning-based approaches.
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