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Abstract

A new lower bound on minimal singular values of real matrices based
on Frobenius norm and determinant is presented. We show that under
certain assumptions on matrix A is this estimate sharper than a recent
bound from Hong and Pan based on a matrix norm and determinant.
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1 Introduction

The singular values or eigenvalues of real matrices are fundamental quantities
describing the properties of a given matrix. They are however difficult to
evaluate in general. It is useful to know at least approximate values of an
interval of their occurrence. The first bounds for eigenvalues were obtained
more than a hundred years ago. The first paper using traces in eigenvalue
inequalities was from Schur in 1909 [5]. Possibly the best-known inequality
on eigenvalues is from Gerschgorin in 1931 [3]. Recently, several other lower
bounds have been proposed for the smallest singular value of a square matrix,
such as Johnson’s bound, Brauer-type bound, Li’s bound and and Ostrowski-
type bound [6, 7, 1, 9, 12].

In our paper we deal with the interval bound on the minimal singular values
derived by means of a matrix norm or determinant by applying a stronger
version of the so-called Kantorovich inequality from Diaz and Metcalf [2].
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2 Preliminary Notes

Let A be a n×n, n ≥ 2 matrix with real elements. Let ‖A‖E = (
∑n

i,j=1 |aij|2)1/2

be the Frobenius norm of matrix A. Trace of a n × n matrix A denotes
tr(A) =

∑n
i=1 aii. The spectral norm of the matrix A is ‖A‖2 =

√
max1≤i≤n λi,

where λi is eigenvalue of AT A. If λ1, . . . , λn are the eigenvalues of the matrix
A, then detA = λ1λ2 . . . λn. Denote the smallest singular value of A by σn

and its largest singular value by σ1. It holds that ‖A‖2
E =

∑n
i=1 σ2

i = tr(AT A),
where trace tr(AT A) =

∑n
i=1 σ2

i .
Hong and Pan gave in [4] a lower bound for σn for a nonsingular matrix as

σmin > (
n − 1

n
)(n−1)/2|detA|. (1)

In 2007 Turkmen and Civcic in [10] also used matrix norm and determinant
for finding upper bounds for maximal and minimal singular value of positive
definite matrices.
For symmetric positive definite matrix A, one can suppose ‖A‖2 = 1, i.e. that
the matrix A is normalized, where ‖.‖2 is the spectral norm. Consequently for
its condition number is κ(A) = ‖A‖2‖A−1‖2 = 1

σn
. The matrix normalization

can be always achieved by multiplying the set of equations Ax = b by a
suitable constant or for example by the divisive normalization defined by Weiss
[11] or Ng et al. [8], which uses the Laplacian L of the symmetric positive
definite matrix A. The transformation is defined by D−1/2AD−1/2, where D =
{dij}n

i,j=1 and dij = 0 for i �= j and dij =
∑n

j=1 aij for i = j, where A =
{aij}n

i,j=1.

3 Main Results

Theorem 3.1 Let A be a nonsingular matrix with singular values σi so
that σmax = σ1 ≥ . . . ≥ σn = σmin and let σmax �= σmin. Let ‖A‖E =
(
∑n

i,j=1 |aij|2)1/2 be the Frobenius norm of matrix A.

(i) Then for its minimal and maximal singular values holds

0 <

⎛
⎝‖A‖2

E − nσ2
max

n(1 − σ2
max

|detA|2/n )

⎞
⎠

1/2

< σmin. (2)

(ii) For σmax = 1 (supposing that |detA| �= 1) holds

0 <

( |detA|2/n(‖A‖2 − n)

n(|detA|2/n − 1)

)1/2

< σmin.
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Proof:
(i) We will apply the following result of Diaz and Metcalf [2] which is a stronger
form of Pólya-Szegö and Kantorovich’s inequality. Let the real numbers ak �= 0
and bk (k = 1, . . . , n) satisfy m ≤ bk

ak
≤ M . Then

∑m
k=1 b2

k + mM
∑n

k=1 a2
k ≤

(m + M)
∑n

k=1 akbk.
Let bk = σk, ak = 1

σk
, m = σ2

min, M = σ2
max, let m �= M . Then from the Diaz

and Metcalf’s inequality follows, that
∑

σ2
k +mM

∑ 1
σ2

k
≤ (M +m)n. From the

latter inequality and from the relationship of arithmetic and geometric mean

follows ‖A‖2
E < Mn + mn− mMn

|detA|2/n and also
‖A‖2

E

n
−M < m(1− M

|detA|2/n ) and

from that follows
‖A‖2

E−Mn

n(1− M

|detA|2/n
)

< m = σ2
min and the statement of the theorem

follows.

It holds that 0 <
‖A‖2

E−Mn

n(1− M

|detA|2/n
)
, since to be true must hold (‖A‖2

E −Mn > 0 and

1 − M
|detA|2/n > 0) or (‖A‖2

E − Mn < 0 and 1 − M
|detA|2/n < 0). The second case

‖A‖2
E − Mn < 0 and 1 − M

|detA|2/n < 0 holds, since ‖A‖2
E =

∑n
i=1 σ2

i < σ2
maxn

and Πn
i=1σ

2
i = |detA|2 < Mn = (σ2

max)
n. (ii) follows from (i).

4 Comparison with the estimate from Hong

and Pan

We will show that our estimate of minimal singular value is under certain
conditions sharper than the estimate from from Hong and Pan [4].

Theorem 4.1 Let for a n × n- nonsingular matrix A with n > 1 hold for
its singular values σi σmax = σ1 = 1 ≥ . . . ≥ σn = σmin and let σmax �= σmin.
If also 0 < |detA|, ‖A‖E < 1 then

(
n − 1

n
)(n−1)/2|detA| <

( |detA|2/n(‖A‖2 − n)

n(|detA|2/n − 1)

)1/2

(3)

i.e. our estimate is sharper than the estimate (1) from Hong and Pan.

Proof:
Since 0 < |detA|, ‖A‖E < 1, is (3) equivalent to

(
n − 1

n
)(n−1)|detA|2 <

|detA|2/n(‖A‖2 − n)

n(|detA|2/n − 1)
. (4)

Since between arithmetical mean A(σ2
i ) and geometrical mean G(σ2

i ) of σ2
1, . . . , σ

2
n

holds A(σ2
i ) ≥ G(σ2

i ), then is
( 1

n
‖A‖2

E−1)

(|detA|2/n−1)
≥ 1. Assume by contradiction that
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the opposite of (4) holds:

( 1
n
‖A‖2

E − 1)

(|detA|2/n − 1)
≤ (

n − 1

n
)(n−1)|detA|2− 2

n . (5)

Since the right hand side of (5) is smaller than 1 then (5) cannot hold and
brings (5) to a contradiction.
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