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Rates of Approximation in a Feedforward 
Network Depend on the Type of Computational 
Unit 

1 Introduction 

The approximation capabilities of feedforward neural networks with a single 
hidden layer and with various activation functions has been widely studied 
([19], [8], [1], [2], [13]). Mhaskar and Micchelli have shown in [22] that a 
network using any non-polynomial locally Riemann integrable activation can 
approximate any continuous function of any number of variables on a compact 
set to any desired degree of accuracy (i.e. it has the universal approximation 
property). This important result has advanced the investigation of the com­
plexity problem: If one needs to approximate a function from a known class 
of functions within a prescribed accuracy, how many neurons are necessary to 
realize this approximation for all functions in the class? De Vore et a!. ([3]) 
proved the following result: if one approximates continuously a class of func­
tions of d variables with bounded partial derivatives on a compacta, in order 
to accomplish the order of approximation O( ~) it is necessary to use at leastl 

O(nd ) number of neurons, regardless of the activation function. In other words, 
when the class of functions being approximated is defined in terms of bounds 
on the partial derivatives, a dimension independent bound for the degree of 
approximation is not possible. Kurkova studied the relationship between ap­
proximation rates of one-hidden-Iayer neural networks with different types of 
hidden units. She showed in [14J that no sufficiently large class of functions 
can be approximated by one-hid den-layer networks with another type of unit 
than Heaviside perceptrons with a rate of approximation related to the rate of 
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approximation by perceptron networks. 
We present an overview of some known rates of approximation of multivariable 
functions by feedforward neural networks. The paper is organized as follows: 
In chapter 2.1 we present the approximation rate for networks with spline acti­
vation functions by Mhaskar ([19]). Our rate for kernel basis function networks 
and radial basis function networks is in chapter 2.2. Chapter 2.3 examines net­
works with perceptron-type computational units: Barron's rate for sigmoidal 
networks ([1]), our rates for Heaviside activation functions and the class of real 
valued activation functions ([6)) and further Hornik's result on approximation 
rates on networks with activation functions with bounded partial derivatives 
([9)). 	The last two sections (2.3.3 and 2.3.4) consist in Mhaskar and Micchelli's 
results ( [22]) on approximation rates for networks with trigonometric polyno­
mials and sigmoidals of order k and a general perceptron activation function. 
Chapter 3 discusses the approximation error of all the mentioned networks, 
their number of hidden units and the characteristics known about the function 
to be approximated. 

2 	 Feedforward Networks with Various Com­
putational Units 

By n, .AI and Z we denote the set of real numbers, positive integers, and . 
integers respectively; For a bounded function I : nd --.. n the uniform norm 
is defined by 11/1/00 = sUPxEnd I/(x)1 and I//IIA = sUPXEA If(x)1 for some 
A end. Let A be a compact subset of nd. Let [a, b] end. Denote C(A) 
the space of continuous functions on A c nd with the uniform norm and 
corresponding topology. In the paper, we deal only with feed~forward networks 
with one hidden layer. 

2.1 	 Approximation by the Network with Spline Compu­
tational Units 

Let A 	= n1=1[aj,bj]. The modulus of smoothness w~(f,A) of a function 
I : A -+ n is defined by 
w~(f, A) =infmaxXEA I/(x) - P(x)l, where the infimum is taken over all 
polynomials P of degree at most m-l in each of its dvariables. Modulus 016­
smoothness is defined by w~(!, 6, [0, l]d) = sup{w~(!, A) : A subcube of [0, l]d 
diam(A) $ 6}. .. ' 

Mhaskar dealt in [19] with the estimation of the error of approximation 
multivariable spline functions with fixed knots. Let d ~ 2 be the nUloob'eJ 
of input variables. The tensor product quasi-interpolatory spline operator 
defined by Q~(!,x) = :LiAiN~(nx-i), where x = (Xl,X2, ... ,Xd) E 
i = (il"'" id) and the tensor product (cardinal) B-spline of order m 
N~(x) = n1=lNm(Xj). Let I = [O,I]d. We say that interpolating 
are properly spaced if there are some interpolating points between any 
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Theorem 2.1 ([19]) If f : I - n is continuous and m, n ~ 1 are integers, 
there exists a spline Q~ of order k with (n + l)d nodes so that if the 

interpolating points are properly spaced then 

where c is a positive constant depending only on m and d. 

The approximation error depends indirectly on the number of units in the 
hidden layer of the network. However, the modulus of smoothness does not 
provide an explicit formula showing the complexity of the rate and the number 
of nodes of the spline is exponential in d. 
Williamson and Bartlett [27] studied the relationship between spline approx­
imation, approximation with rational functions, and feedforward functions. 
They achieved a lower bound of approximation of rational functions of one 
variable by a feedforward network demonstrating that no great benefit in terms 
of the degree of approximation is to be obtained by using multiple hidden net­
works. Williamson and Bartlett investigated the rate of approximation offunc­
tions from Cp with a feedforward network with spline activation functions and 
n knots. They achieved the rate of complexity O(n-a ) where c¥ is the number 
of continuous derivatives of f. 

2.2 	 Approximation by the Network with a Radial and 
Kernel Basis Units 

The following can be found in more detail in [5]. Let f, g : nd _ n are given 
functions and by f * g = J f(x)g(x - y)dy we denote a convolution of f, g. 

n d 

Denote [a,b] = n1=I[aj,bj ] a given cube in nd. Define U[a,b] = {x; either 
Xi = ai or Xi = b;} and let rex) denote the number of i so that Xi = ai, 
where x = (Xl, ... ,Xd). Denote fl[a,b) = IEXEU[a,b)(-ly(X)f(x)/. Total 

variation of f on [a, b] is defined by V(f) = V(f)lra,b] = suPP{E:=1 fbj }, 

where P = {Jl, ... , JA:} is a partition of [a, bl so that [a, b] = U~=lJi and 
int(Jj) n int(J/) = 0 for all j :f:, I, = 1, ... , k. (int(A) denotes the interior of 
set A.) We say that f is of bounded total variation if V{!) is finite. 
A radial basis function (REF) unit with d inputs is a computational unit com­
puting a function of the form <p(1! x - ell/b), where <p : n - n is an even 
(radial) function, II . II is a norm on n d, and x, c End, bEn, b> O. A radial 
basis function (RBF) network is a neural network with a single linear output 
unit, one hidden layer with RBF units with the same radial function <P and the 
same norm II . II on nd , and d inputs. The most frequent radial function used 
in application is the Gaussian 'Y(t) = exp(_t2). 

Kernel basis function (KBF') unit with d inputs computes a function nd - n 
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of the form kn(ll x- ell), where {kn : n ~ n} is a sequence offunctions, II ·11 
is a norm on nd , and cE nd , n EN are parameters. A kernel basis function 
(KBF) network is a neural network with a single linear output unit, one hidden 
layer with KBF units with the same sequence of functions {kn , n E N} and 
the same norm II . II on nd , and d inputs. By X:u({kn , n EN}, " . II) we 
denote the set of functions computable by KBF networks with {kn , n E N} 
and II . II with any number of hidden units and uniform kn for all hidden units. 
In [13], we obtained the universal approximation property for the class X:u ({kn , 

n EN}, II . II) of continuous kernel functions on C(Jd ) and every norm II . II 
on nd satisfying for every n E N and every x E nd I kn<ll x - y II)dy = 1 

'R,4 

and for every 6 > 0 and every x E nd lim I kn(ll x - y II)dy = 0, where 
n .....oo JB(X) 

l,s(x) = {YI y End, II x - y ,,~ 6}. 
The classical kernels such as the Fejer kernel, the Dirichlet kernel, the Jackson 
kernel, the Abel-Poisson kernel, the Weierstrass kernel, and the Landau kernel 
satisfy this assumption and thus KBF networks with any of these kernels are 
powerful enough to approximate continuous functions. 

Theorem 2.2 ([5]) Let d ~ 0 be a given integer. Let f : nd ~ n be a 
continuous function, kn a kernel function, J = [O,I]d. Let f * kn be of a 
bounded total variation. Then for every mEN there exists a KBF network 
with m hidden units computing a function 9 E X:u({kn}, 11.11) so that 

d 
IIf - gill::; q(J, h) + -V(h), 

m 

where h(x) = f * kn(x) = IH f(t)kn(ll x - t II)dt and q(J, h) = IIf - hilI. 

For some of the above mentioned convolution kernels upper bounds on q(.,.) 

are known. For example, we consider Jackson kernel on the interval 

p = [-'IT, 'IT)d. Define the following operator: 

Ip f(t)Ln(x - t)dt = Ip f(x + t)Ln(t)dt, where Ln is the Jackson kernel. 


4
L (t) - A-I (Sin lln.t/ 211 ) Jp Ln(t)dt = 1, and the last relation defines .. ·.,·.n - n n sinllt/211 ' 
An. It is convenient to normalize the operator in such a way as to uu',cr..u~ .. 
a trigonometric polynomial of degree n. For this purpose, we put Kn(t) 
Lr(t), r = [~] + 1. The operator In(x) = In(J, x) = Ip f(x + t)Kn(t)dt 
called the (multivariable) Jackson operator. wp(J,6) = maxx ,t,lIt ll<olf(x 
t) - f(x) I is called modulus of continuity of f. 

Theorem 2.3 ([5]) There exists a constant M ~ 0 so that/or every f E 
for every n and for every mEN and a function 9 computable by a 
network with m with Jackson kernel hidden units I n such that 

IIf ­ gllp ::; 
1. d 

Mwp(J, -) + -V(Jn ),
r m 

where r = [~] + 1. 

) 
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2.3 	 Approximation by the Network with Perceptron-Type 
Computational Units 

2.3.1 Sigmoidal and Heaviside Activation Functions 

Let u : n -+ n be a bounded measurable function on the real line for which 
liIIl,c.... -oo u(x) = 0, limx _ oo u(x) = 1. We call this function sigmoidal. Feed­
forward neural network models with one layer of sigmoidal units implement 
functions on nd of the form 

n 

fn(x) = L cku(ak.x + bk) + Co (1) 
k=l 

parametrized by ak End and bk, Ck En, where ak.x denotes the inner product 
of vectors in nd • 

Let X be a real vector space with a norm 11.112 which is generated by an inner 
product j. g for any two functions I, g EX. cl conv g means the closure of the 
convex hull of g, where g is a subset of X. The closure is taken with respect 
to the topology generated by the norm ". II 2 ( II· II 2 =VT7). N denotes the 
set of positive integers . 

Theorem 2.4 (Jones-Barron) Let X be a real vector space with a norm 
11.112 generated by an inner product on X, B be a positive real number and 
g be a subset of X such that for every g E g IIgl/2 ~ B. Then for every 
fEci conv g, lor every real number C such that c > B2 - II/II~ and for every 
n EN, there exists In which is a convex combination of n elements of g such 
that IIf - fn 112 ~ Vf· 

Here we mention a result by Barron ([1]) on approximation by sigmoidal 
functions which is a corollary of Theorem 2.4. Barron showed that it is possible 
to approximate any function satisfying certain conditions on its Fourier trans­
form within an £2 error of 0(*) using a feedforward neural network with one 
hidden layer comprising of n neurons, each with a sigmoidal activation func­

tion. The approximation error is measured by the integrated squared error with 

respect to an arbitrary probability measure i' on the ball Br = {x : Ixl ~ r} of 

radius r ~ 0. The function u is an arbitrary fixed sigmoidal function. 

Consider the class of functions I on nd for which there is a Fourier represen­

tation of the form I(x) = fnd eiw .X jew)dw for some complex-valued function 

Jew) for which wj(w) is integrable, and define CJ = I'R. cI Iwllj(w)ldw, where 

Iwl = (w.w)1/2. For each C > 0, let fc be the set of functions f such that 


CJ ~ C. Letllgll.c2(Br) = JfBr g(w)2dw denotes the £2 normofg on Br. 


Theorem 2.5 ([1]) For every function f with CJ finite, and every n ~ 1, 
there exists a linear combination of sigmoidal functions In (x) 01 the form (1), 
so that 
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For functions in re, the coefficients of the linear combination in (1) may be The< 
restricted to satisfy L~=l ICA:1 :::; 2rC and Co = f(O). inner 

ThenKiirkova et al. achieved an £2 error rate of the order O(*) by one hidden 
n fun 

layer networks with n sigmoidals in [12]. They use an integral representation of 
smooth functions of d variables and express the rate of approximation in terms 
of the variation with respect to half spaces, but they do not use a Fourier 
representation of a function to be approximated. 

In [6] we investigated subclasses of the so called real-valued boolean func­If 
tions, i.e. functions f : {O,l}d --+ n. Real-valued functions with multiple only l 
Boolean variables are exactly representable by one-hid den-layer Heaviside per­ the a: 
ceptron networks with an exponential number of hidden units. We derived togetl 
upper bounds on the approximation error of the form -::};: where c depends boun< 
on certain norms of the function being approximated and n is the number by a < 

of hidden units. We gave examples of functions for which these norms grow Tl 
polynornially and exponentially with increasing input dimension. itive i 

If f is a linear but not convex combination of functions from g, then g in Eucli< 
Theorem 2.4 can be replaced by real multiples of functions from g bounded by 
a constant. This leads to the term of variation, first introduced by Barron for a tions 
set of characteristic functions of half-spaces. For a normed vector space (X, 11.11) by ne' 
consisting of real functions on J C n d for an integer d, let the variation of a side f 
function f E X with respect to a subset g of X be V(j, g) = inf{B ~ 0; f E functi 
cI conv g(B)}, where the closure is taken with respect to the topology generated can b, 
by the norm 11.11 and g(B) = {wg; 9 E g, wEn, Iwl :::; B}. This definition was Pd(n) 
introduced by Kiirkova in [16] and is a generalization of Barron's definition DE 
of variation with respect to half-spaces. The following theorem is a corollary :F({O, 
of the Jones-Barron theorem formulated by means of variation. Since in our can b4 
applications set g is finite, we use a stronger. formulation of the theorem for the re 
compact sets g. this y 

A rep
Theorem 2.6 ([6]) Let (X, II.ID be a real vector space with the norm 11.11 gen­Fouri4
erated by an inner product and g be a compact subset of X. Then for every 

conte}f E X such that V(j, g) < 00 and for every n = 1, ... , card g there exists 
Thus·fn which is a linear combination of n elements of g such that IIf - fnll2 :::; 
f(x) = 

B2-IIJII~ (
n ,where B = V f,g)suPgEg IIg1l2. 

by thE 
If g is an orthonormal basis, we can prove a stronger estimate improving f(u) : 

the Mhaskar and Micchelli's result from [24] by a factor of two. For any or­
thonormal basis let A of X denote by 1I.Ih.A the h-norm with respect to A, i.e. 1111h = 
for every f E X IIflh,A = LgeA If· gl· 	 compI 

basis,
Theorem 2.7 ([6» Let X bea finite dimensional real vector space with a units l 
norm 11.112 generated by an inner product and let A be its orthonormal basis. resent. 
Then for every f E X and for every n == 1, .... , dim X there exists fn which is (_1)U' 
a linear combination of n elements of A such that IIf - fn 112 :::; 1I~!!J;t. 

Notet 
fE:FIf IIfll2 is also known, then the bound from Theorem 2.7 can be improved. 
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Theorem 2.8 ([6]) Let X be a finite dimensional real vector space with an 
inner product, let A be its orthonormal basis, let f E X and let 1 ::; n ~ dim X . 
Then, there exists a function 9 expressible as a linear combination of at most 
n functions from A satisfying 

IIf - gl12 < IIflli,A -llfll~ . 
- 2I1flh.Avn=T 

If both IIflh.A and IIflb are known, then Theorem 2.8 yields a good bound 
only if 4n ~ IIfll~,A/llfll~. Otherwise, the trivial bound IIfll2 for the error of 
the approximation by the zero function is better. In fact, these two bounds 
together, i.e. the minimum of IIfll2 and the bound from Theorem 2.8, yield a 
bound that differs from the best possible bound based only on IIflh.A and IIfll2 
by a constant factor. 

The linear space of all real functions of d Boolean variables (where d is a pos­
itive integer) is denoted by .:F({O, 1}d). For any f, g E .:F({O, l}d), the standard 
Euclidean inner product is f· 9 = E f(x)g(x). Here we study represent a­

IIIE{O,l}d 

tions and a.pproximations of functions in .:F({O, 1}d) by functions computable 

by networks with one linear output unit and one hidden layer with the Heavi­

side function fJ defined by fJ(t) =°for t < °and fJ(t) =1 for t ~ 0. The set of 

functions expressible by such networks with a bounded number of hidden units 

can be denoted by; 

Pd(n) = {f E .:F({O, 1}d); f(x) = E~=l wifJ(Vi . x + bi); Wi, bi En, Vi E Rd}. 


Denote by E = {eu; u E {O, 1}d} the Euclidean orthonormal basis of 
.:F({O, 1}d), i.e. eu(u) =1 and eu(x) =°for x =1= u. It is easy to verify that eu 
can be computed by one Heaviside perceptron, i.e. eu E Pd(1). Together with 
the representation of any function f E .:F({O, 1}d) as f(x) = EUE{O,l}d f(u)eu, 

this yields that .:F(O, 1d) =Pd(2d). 
A representation of a different type can be obtained from the orthonormal 
Fourier basis F = {~cos(1I'"u . x); u E {O, 1}d} of .:F({O, 1}d). Since in our 
context both x and u are Boolean vectors, we have cos( 1I'"U . x) = (_1)u.III. 

Thus every function f E .:F({O, 1}d) can be represented as 
f(x) = At E i(u)(-1)u,:c, where the Fourier coefficients j(u) are given 

ue{O,l}d 
by the formula 
j(u) = ~ E f(x)(_1)U o :c. Note that for any f E .:F({0,1}d) IIflh,F = 

IIIE{O,l}d 

lIilh =EUE{O,l}d lj(u)l· Furthermore, all functions from the Fourier basis are 
computable by Heaviside perceptron networks. In contrast to the Euclidean 
basis, where one hidden unit was sufficient for one basis function, d +1 hidden 
units are needed for the members in the Fourier basis. Thus we have a rep­
resentation of any f E .:F({O, 1}d) as an element OfPd«d + 1)2d) if we replace 

o(_1)U by J in the Fourier representation. " 

Note that all norms on n2" are topologically equivalent, in particular for every 
f E .:F({O, 1}d) 11/112 ~ 1I/11t ~ #11/112 and 111112 ~ IIilli ::; #11/112. Since 
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each of these inequalities is tight, the differences between the norms may be 
exponential in dimension d. 

Theorem 2.9 ([6]) Let d be a positive integer and I E :F({O, 1}d) and n 2: 2. 
Then 
(i) there exists a lunction In E Pd(n) such that 

III - "II < 1I/11~ -1I/11~ . 
In 2 - 211/111 vn=T' 

(ii) there exists a lunction In E Pd«d + l)n) such that 

III - "II < lIi~~ - II/II~ . 
In 2 - 211/111 vn=T 

We present two examples of functions for which the upper bounds on the 
approximation error from Theorem 2.9 yield a feasible approximation. The 
bounds are compared with the approximation error by general half-spaces. 
It can be shown that Theorem 2.9 implies III - In 112 ~ 11/112 for a feasible n 
only if min{1I/1I1, lIilld is not much larger than 11/112. In fact, if the equality 
holds, the bound implies an exact representation. For every orthonormal basis 
A, IIIIII,A = 11/112 is satisfied if and only if I is a multiple of just one of 
the elements of the basis. The functions for which this situation occurs for 
the Fourier basis are functions represented by I(x) = (_l)tl.:c, U E {O,l}d. 
These functions correspond to the Boolean functions called parity functions, 
since the value of (-1 )u.:C depends on the parity of the sum LiE! Xi, where 
I={ijui=l}. 
Let I be a function represented by a decision tree of polynomial size and let the 
ratio (max:c I/(x)l)j(min:c I/(x)1) be defined and polynomially bounded. Using 
the method of [17], it can be proven that lIil\1/11/112 is polynomially bounded. 
Using Theorem 2.9, this implies that I can be approximated by a polynomial 
number of hidden units. 
We now turn to the functions for which our two bases do not yield a good 
approximation. A function from :F({O, l}d) is called bent, iffor every x,u E 
{O,l}d I/(x)1 =1 and li(-u)1 =1. Bent functions were introduced by Rothaus 
[25]. Recall that a bent function of d variables exists if and only if d is even. 
For every bent function, 11/111 = lIillt = v'2d1l/1l2 . Thus, Theorem 2.9 does 
not imply a good approximation error. Moreover, it is possible to prove that 
for any bent function, the approximation error cannot be small if we only take 
approximations in the two bases. For any bent function I and any function In, 
which is a linear combination of at most n elements of the Euclidean basis or 
a linear combination of at most n elements of the Fourier basis, 
III - 11'11122: V2d - n holds. 
In the rest of this section, we deal with the approximation where the only 
constraint is a limited number of perceptrons. 

For every even d, let the function tPd: {O, l}d --+ {-I, I} be defined by 

cPd(X) = {-I if Ixl == °(mod 4) or Ixl == 1(mod 4) } 
1 otherwise 
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where Ixl denotes the number of ones in a vector X E to, l}d. This function 
is symmetric, i.e. it does not depend on the order of input variables. In 
other words, it depends only on the number of ones in the input vector x. We 
can easily show that every such function is a linear combination of functions 
gj{x) = '19{2:1=1 Xi - j) for j =0,1, ... , d. Hence, CPd is easily expressible by 
perceptrons, in particular ¢Jd E Pd{d + 1), but as it is bent, Theorem 2.9 does 
not provide a good approximation. 

2.3.2 	 Activation function with Bounded Partial Derivatives 

Hornik at a1. [9] extended Barron's result (Theorem 2.5) to feedforward net­
works with possibly nonsigmoid activation functions approximating mappings 
and their derivatives simultaneously. The error is of order 0("*) and the nu­
merator of the error is a product of constants dependent on the dimension d, 
norm of the activation function and a signed measure on nd x n. 

Let Bd denote the space of all bounded measurable functions on nd that 
have continuous and uniformly bounded (partial) derivatives up through or­
der m, m ~ 1. Denote f.l a probability measure on nd representing the rela­
tive frequency with which input patterns occur. For all I E Bd, define the 
norm 11/11.13;' = maxo~IO!I~m sUP"'E1(.cI IDO! l(x)1 < 00. Denote by sa = BT(J.l) 
the Hilbert space that completes (Bd, II.llm,lI) where lI.llm,1I denotes the norm 
induced by the inner product (Pm,1I denotes the associated metric). Denote 
lal = J(aTa). Let l(a) = max{lal, 1) and for functions 1jJ : n --+ n let 

gT (1jJ , B, n) = {g : nd --+ nj g{x) = E7=1 (3i1i(ai)-m1jJ(a; X + (Ji), (Ji, (3; E 

n,2:7=1 1(3; I ~ B}. We consider the class :F'd of all real valued functions 

on nd represented as I(x) = J1(.cI eiCT"'dpi{a), where Pi is a complex mea­


sure on nd satisfying IIPillm = J1(.d l{ardlpil{a) < 00. Denote Pm,!-,(j, G) = 

infgEG Pm,j.I(j, g). 


Theorem 2.10 ([9]) Suppose that I E :r;r+l, that 1jJ E Br and all the deriva­
tives of 1jJ up to order m are integrable. Let w =f. 0 be chosen in a way that 
~(w) =1= O. Let f.l and 1jJ are compactly supported. Then there exist constants Bo 
and C depending only on m, d, 1', and 1jJ such that 

Pm ,j.I [I, gT(1jJ, B, n)] < Cllpjkm+l 

provided that B ~ BoIIPillm+l. 

2.3.3 	 Trigonometric Polynomial and Sigmoidal of Order k As Acti­
vation functions 

The following theory is adapted from Mhaskar and Micchelli [22]. As pointed 
out by Hecht-Nielsen in [4], the problem of approximating any function on a 
compact set can be reduced to one in which the function being approximated 
is 211'-periodic in each of its variables. 

http:sUP"'E1(.cI
http:11/11.13
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Denote Cd the class of all continuous functions on [-l,l]d and Cd* the 
class of all 21r- periodic functions. Let fin,l,d,w denote the set of all possible 
outputs of feedforward networks consisting of n neurons arranged in 1 hidden 
layers and each neuron evaluating an activation function 1/;, where the input 
of the network is from 'Rd. Let f have continuous derivatives of order r 2: 1 
and let the sum of the norms of all the partial derivatives up to the order r be 
bounded. Without loss of generality, we can assume that the function to be 
approximated is normalized. Denote Yj (yrd* for periodic functions) the class 
of all functions satisfying this condition. We deal with the classes of functions 
that satisfy the universal approximation property. We want to estimate 

sup En,l,d,,,, (f) , where En,l,d,,,,(f) = inf IIf - PII. 
JEYrd PEIIn,I,d,.,., 

En,l,d,w(f) measures the theoretically possible best order of approximation 
of a function f by a network with n neurons. Or we can. have an equivalent 
dual formulation 

- d 1
En,I,d,,,,(Yr ) = min{m E ZjSUpEm,I,d,,,,(f)::; ;;}. 

This quantity measures the minimum number of neurons required to obtain 

accuracy of ~ for all functions in Yj (analogically for yrd*). 

Let T: denote the class of all d-variable trigonometric polynomials of the or­

der at most n and for a continuous function f, 21r- periodic in each of its d 

variables, 


E~(f) = min I~f - PII· 
PET: 

The class T: can be thought of as a subclass of all outputs of networks with 

a single layer consisting of at most (2n + l)d neurons, ,each evaluating the ac­

tivation function sinx. It is well known that sUPJEY:. E~(f) ::; en- r . The 


dual formulation of this estimate gives En ,l,d,sin(yrd*) = O(n~). De Vore et 

al. proved in [3] that any "reasonable" approximation process that aims to 

approximate all functions in yrd* up to an order of accuracy ~ must necessar­
ily depend on at least O(n~) parameters. Thus the activation function sinx 

provides optimal convergence rates for the class yrd* . 

Mhaskar introduced the following generalization of the sigmoidal function. 


-)0Let k 2: O. We say that a function (1' : 'R 'R is sigmoidal of order Ie if 
li111a:-+oo O'£~) = 1, li111a:-+-oo O'£~) = 0 and 1(1'(x)1::; e(l + Ix!)k, x E 'R. A sig., 
moidal function of order 0 is the customary bounded sigmoidal function. It 
was proved in [21] that for any integer r ~ 1 and any sigmoidal function (1' of 
order r - 1, 

- 1 1 - d 4+ (d+;r) 
rEn,l,l,O'(Yr ) =O(nr ) and En,l,d,O'(Yr ) =O(nr ) for d 2: 2. 

Mhaskar showed in [20] that if (1' is a sigmoidal function of order Ie 2: 2 and 
r 2: 1, then with 1= O(:~:~), En,I,dAyrd) = O(n~). Thus an optimal network 
can be constructed using a sigmoidal function of a higher order. 
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2.3.4 A General Perceptron Type Activation Function 

The following results are from Mhaskar and Micchelli [22], They investigated 
the degree of approximation of periodic functions using periodic activation func­
tions. Their general formulation also includes the case of radial basis functions 
and customary sigmoidal neural networks, The approximation of functions in 
Cd. is considered by linear combinations of the form o(Ax + t) where A is a 
s x d matrix, d 2: s 2: 1, cjJ E CS' and tEn'. \Vhen d = s, A is an identity 
matrix and cjJ is a radial function, then a linear combination of n such quantities 
represents the output of a RBF network with n hidden neurons. 
We define the Fourier coefficients of rj; by the formula 

Let S¢ C {m E ZS : J(m) f- O} and assume that there is a set J containing 
s x d matrices with integer entries such that Zd ::: {ATm : m E S¢, A E J}. 
If s = d and if; is a function with none of its Fourier coefficients equal zero (the 
RBF case) then we may choose S¢ = Zd and J = {Idxd}. For m E Zd, we 
let km be the multi-integer with minimum magnitude such that m = ATkm 
for some A = Am E J. Denote mn := min{IJ(klll)1 ; -2n ::; m ::; 2n} 
and N n := max{lkml : -2n::; lll::; 2n} where Ikml is the maximum absolute 

value of the components of km. In the neural network case, we have mn ::: 
IJ(l)1 and Nn ::: 1. In the radial basis case, Nn = 2n. Denote P = [-71", 7I"ls. 

Theorelll 2.11 ([22]) Let d 2: s 2: 1, n 2: 1 and N 2: N n be integers, f E Cd., 
cjJ E cs•. It is possible to construct a network Gn,N,¢(f; x) := Lj dj cjJ(Ajx+tj) 
such that 

Ilf - Gn ,N,¢(f)lIp ::; c{E~(f) + EN~:nd/2I1fll} 
where the constant c depends on r, d, 1j; but not on f and n. In Gn,N,<f;(f; x), 
the sum contains at most O(ndN S ) terms, Aj E J, tj E R S , and dj are linear 

functionals of f, depending upon n, N, cjJ, 

The rate of approximation relates the degree of approximation of f by neu­
ral networks explicitly in terms of the degree of approximation of f and cjJ 
by trigonometric polynomials. Well known estimates from the approximation 
theory, such as sUPfEYrd. E~(f) ::; cn- r provide close connections between the 
smoothness of the functions involved and their degree of trigonometric polyno­
mial approximation. In particular, the rate achieved in Theorem 2.11 indicates 
that the smoother the function ¢ the better the degree of approximation will 
be The explicit constructions of Gn,N,¢ is given in [23]. The network can be 
trained in a very simple manner, given the Fourier coefficients of the target 
function. The weights and thresholds (or the centers for RBF) are determined 
universally for all functions being approximated. Only the coefficients at the 
output layer depend on the function. They are given as linear combinations of 
Fourier coeffidents of the target functions. It is shown in [23] that Gn,N,¢ for 
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a RBF network contains only O(n + N)d summands. The generality of this 
method, however, affects the number of hidden units which is exponential in d. 
If the activation function (j is not periodic, but satisfied certain decay con­
ditions near 00, it is still possible to construct a periodic function for which 
the general theorem can be applied (see [22]). This process was applied on a 
number of functions (j and the results are summarized in the following table 
[22]. 

Table: Order of magnitude of En ,/,6,u(Yrd ) for different (j'S 

Function u 

Sigmoidal, order r - 1 

Sigmoidal, order r - 1 

x", if x ;::: 0, 0, if z < 0. 

(1 + e-zyl 

Sigmoidal, order k 

exp(-lxl2/2) 

Ixl"(log Ix!)" 

3 Discussion 

En ,/,6,U 

nl/r 

n d/ r+(d+2r)/r2 

n d/ r+(2r+d)/2r" 

nd/ r (logn)2 

ndlr 

n 2d/ r 

n 2d/ r )(2+(3d+2r)/" ) 

Remarks 

d =s =1, 1=1 

d;::: 2, s = 1, 1 =1 

k ;::: 2, d ;::: 2, s =1, I =1 

d;::: 2, s =1, 1 =1 

k ;::: 2, d ;::: 1, s = 1, 
1= O(logr/logk) 

d =s;::: 2, / =1 

d =s ;::: 2, k > 0, k + d even 
b =°if dodd, 1 if d even, I = 1 

In this paper, we presented some estimates of the approximation error of a 
multivariable continuous function on a compact set by neural networks with 
various activation functions in the hidden units. Each of the results expresses 
the dependence of the number of hidden units in the neural network on various 
characteristics known about the function to be approximated. For the spline 
activation function the approximation error was derived by means of the mod­
ulus of smoothness of the function f and for (n + l)d hidden units. In the 
case of kernel basis functions, the error depends on the total variation of the 
convolution of the functions f and the kernel functions and on the distance 
between them and the number of hidden units is only n. Barron's approach 
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for sigmoidal activation functions achieves the error in the form ~, where the 
constant Cj depends on the Fourier coefficients of the function /. If continuous 
real functions on a compact set are not examined, but the subclasses of real­
valued boolean functions functions are examined, the network with Heaviside 
activation function and n hidden units achieves the error of the form ";~~l' 
where Cj is a constant depending on It and 12 norms offunction /. Iffunction 
/ is approximated by a network with n(d + 1) hidden units with Heaviside 

activation functions then the approximation error is of the form ";~~1 where 

6 j is a constant depending on II and 12 norms of the Fourier transform of 
function /. These two errors are polynomial in dimension d for some functions 
(for example functions represented by a decision tree of polynomial size) and 
exponential for bent functions. A network having n hidden units and activation 
functions with bounded partial derivatives and having Fourier representation 
approximates a function / within the error of order O(*) and the numerator 
of the error is a product of constants dependent on the dimension d, norm of 
the activation function and signed measure on nd x n. Network with trigono­
metric activation functions with (2n + l)d units have the error of the form 
O(n- r ), where r is the number of bounded partial derivatives bounded. If the 
activation function is a sigmoidal of order k ~ 2 and (2n+ 1)d hidden units, the 
error is of orderO(n-d/ r ) for r ~ 1. A network with a general perceptron type 
function representable by Fourier transform with ndN S (N is defined in section 
2.3.4.) achieves the error exponential in d. Keeping in mind the de Vore et al.'s 
result ([3]), we can see from the above mentioned results that the polynomial 
or quadrati cal approximation errors with respect to dimension d were achieved 
either by increasing the number of hidden units to an exponential number in 
d or by breaking continuity of the approximation or by using some constants 
which are derived from function / and their computation can be exponential in 
d. When such constants are a priori given, then the approximation is polyno­
mial or quadrati cal. To avoid the exponential complexity of the approximation 
(" curse of dimensionality") can be by knowing such characteristics about the 
function or classes of functions to be approximated. 
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