
Tool Support for the Adaptation of Quality of
Service Trade-Offs in Service- and Cloud-Based

Dynamic Routing Architectures∗

Amirali Amiri1,2 and Uwe Zdun1

1 University of Vienna, Software Architecture Group, Vienna, Austria
2 University of Vienna, Doctoral School Computer Science, Vienna, Austria

{firstname.lastname}@univie.ac.at

Abstract. Dynamic routing is an essential part of service- and cloud-
based applications. Routing architectures are based on vastly differ-
ent implementation concepts, such as API Gateways, Enterprise Service
Buses, Message Brokers, or Service Proxies. However, their basic op-
eration is that these technologies dynamically route or block incoming
requests. This paper proposes a new approach that abstracts all these
routing patterns using one adaptive architecture. We hypothesize that a
self-adaptation of the dynamic routing is beneficial over any fixed archi-
tecture selections concerning reliability and performance trade-offs. Our
approach dynamically self-adapts between more central or distributed
routing to optimize system reliability and performance. This adaptation
is calculated based on a multi-criteria optimization analysis. We evaluate
our approach by analyzing our previously-measured data during an ex-
periment of 1200 hours of runtime. Our extensive systematic evaluation
of 4356 cases confirms that our hypothesis holds and our approach is
beneficial regarding reliability and performance. Even on average, where
right and wrong architecture choices are analyzed together, our novel
architecture offers 9.82% reliability and 47.86% performance gains.

Keywords: Self-Adaptive Systems · Dynamic Routing Architectures ·
Service- and Cloud-Based Applications · Reliability and Performance
Trade-Offs · Prototypical Tool Support

1 Introduction

Dynamic routing is common in service- and cloud-based applications, for which
different techniques are available. These techniques range from simple strategies,
e.g., request routing based on load balancing, to more complex routing, such as
checking for compliance with regulations. Assume a company has to comply with
a regulation that the data of European customers have to be stored and pro-
cessed on European servers based on the General Data Protection Regulation3.

∗This work was supported by FWF (Austrian Science Fund), projects IAC2: I 4731-
N, API-ACE: I 4268.

3https://gdpr.eu

https://gdpr.eu

2 Amiri et al.

In such a case, Dynamic Routers [17] can update the data-flow paths at run-
time to ensure compliant data handling. Multiple dynamic-routing architectural
patterns are provided for service- and cloud-based environments. These patterns
include centralized routing, e.g., using an API Gateway [27] or an Enterprise
Service Bus [10], and distributed routing using multiple Dynamic Routers [17]
or Sidecars [20,27] to make local routing decisions.

The dynamic-routing architectures are based on vastly different implementa-
tions. However, they all route or block requests essentially. There is a possibility
to change these patterns, e.g., from centralized to distributed routing, by ad-
justing the number of routers in a service- and cloud-based system. To do so, we
should monitor the quality-of-service measures and make architectural decisions.
So far, the trade-offs of reliability and performance measures in cloud-based dy-
namic routing have not been specifically and extensively studied. Reliability and
performance in relation are essential for designing routing architectures. This
factor must be considered because changing the routing schema to improve per-
formance, e.g., by adding more routers for parallel processing of requests, may
lead to a decrease in system reliability as more points of a crash are introduced
to a system (empirically validated in [3]).

Our study is motivated by example scenarios, such as assuming a sudden
reliability decrease is observed in a software system by adding services to the
system for the parallel processing of requests (increasing the performance). In
such a situation, time is important to reconfigure the system to meet the quality
criteria required for the application. An automatic adaptation can yield benefits
not only in time and effort overheads for the management of the system but also
in reliability and performance trade-offs. Thus, we study the research questions:

RQ1: Can we find an optimal configuration of routers that automatically adapts
the reliability and performance trade-offs in dynamic routing architectures based
on monitored system data at runtime?

RQ2: What is the architecture of a supporting tool that analyses the system
at runtime and facilitates the reconfiguration of a dynamic routing application
using the optimal configuration solution?

RQ3: How do the reliability and performance predictions of the chosen optimal
solution compare with the case where one architecture runs statically?

The contributions of this paper are three-fold. Firstly, we propose an adaptive-
routing architecture that automatically adjusts the quality-of-service trade-offs.
Secondly, we introduce an analytical model of performance that is generalizable
to dynamic-routing applications and analyze the trade-offs of reliability and
performance. Finally, we provide a prototypical tool that generates deployment
artifacts for reconfiguring a dynamic-routing application. Additionally, our tool
provides a visualization environment for users to study different configurations
without generating additional artifacts.

The structure of the paper is as follows: Section 2 presents the overview of
our approach. Section 3 explains the proposed architecture in detail, presenting
our performance model and the trade-off analysis. Section 4 provides the tool

Trade-Offs Adaptation of Dynamic Routing Architectures 3

that supports our architectural concepts. Section 5 presents the evaluation of
the presented approach, and Section 6 discusses the threats to the validity of
our research. We study the related work in Section 7 and conclude in Section 8.

2 Approach Overview

The proposed architecture in this paper is based on Monitor, Analyze, Plan,
Execute, Knowledge (MAPE-K) loops [4,5,19]. Our adaptive architecture auto-
matically changes between different dynamic-routing patterns by reconfiguring
service- and cloud-based applications according to an optimization analysis [2].
We define a router as an abstraction for any controller component that makes
routing decisions, e.g., an API Gateway [27], an Enterprise Service Bus [10],
or Sidecars [20, 27]. Our approach changes the number of routers, i.e., changes
between different configurations moving from a centralized approach with one
router to a distributed system with more routers (or vice versa) to adapt based
on the need of an application.

Metamodel Figure 1 presents the metamodel of our architecture. A Model
describes multiple elements. Host is any execution environment, either physical
or virtual. Each Component is deployed on (up to) one Host at each point in time.
Request models the request flow, linking a source and a destination component.
There are several different component types. Clients send Client Requests to
API Gateways. The gateways send Internal Requests to Routers and Services.

Configurator Components perform the reconfiguration, and Reconfigurable
Components are the adaptation targets of our architecture. Monitor observes
reconfigurable components and the requests that pass the gateways. Manager
manages the control flow of the reconfiguration by calling Infrastructure as Code
(IaC) to update the infrastructure, or Scheduler to reschedule the containers.
Visualizer provides visualizations of the architectural configurations.

Model

Host

Request

Internal Request Client Request

Component

Configurator Component

Monitor Manager IaC Scheduler Visualizer

Reconfigurable Component

ServiceRouter

Client API Gateway

0..1

*

source
1 *

destination1 *

1

*

1

*

Fig. 1: Metamodel of the Adaptive Architecture

4 Amiri et al.

«Visualizer»

visualizer

System

«Client»

client2

«Client»

client1

Services

Routers

Dynamic Configurator

«Scheduler»

scheduler

«API Gateway»

gateway

«Router»

router2

«Router»

router1

«Service»

service3

«Service»

service2

«Service»

service1

«IaC»

IaC component

«Manager»

manager

«Monitor»

QoS monitor

Visualize

Visualize

 Reconfig.
Infra.
Config. Data

Reconfig.

Consume
Monitoring Data

Reconfig.

 Read
 Monitoring

 Data

Fig. 2: Component Diagram of an Example Configuration (dashed lines
represent the data flow and solid lines the reconfiguration control flow.)

Example of a Routing Configuration Figure 2 presents a component dia-
gram of a sample configuration, in which dashed lines represent the data flow
and solid lines the reconfiguration control flow of an application. As shown,
clients access the system via a gateway that publishes monitoring data to the
Quality-of-Service (QoS) monitor component. The configuration manager ob-
serves the monitoring data and triggers a reconfiguration. Moreover, the man-
ager can communicate with the visualizer component to visualize the current
architecture configuration. The manager calls the IaC component if infrastruc-
ture changes are needed. IaC reconfigures the infrastructure and triggers the
scheduler to reschedule the containers. Alternatively, if there is no need for in-
frastructure reconfiguration, the manager directly triggers the scheduler. After
a reconfiguration, the scheduler can call the visualizer.

3 Approach Details

This section introduces the details of our proposed architecture.

3.1 Reconfiguration Activities of the Dynamic Configurator

Figure 3 shows the reconfiguration activities of the dynamic configurator. The
QoS monitor reads monitoring data and checks for reconfiguration, e.g., when
degradation of reliability and performance metrics are observed. Moreover, the

Trade-Offs Adaptation of Dynamic Routing Architectures 5

Schedule Containers

Consume Monitoring Data

Perform a Multi-Criteria Optimization
Analysis (Reliability vs. Performance)

Choose the Final Reconfig. Solution
Based on a Preference Function

Reconfigure the Infrastructure

Dynamic Configurator

Read Monitoring Data

Time-Interval /
Manual Trigger

[No]

 [Yes]

 Infra. Reconfig. Needed?

 Reconfig. Needed?

[Yes]

 [No]

Fig. 3: Reconfiguration Activities of the Dynamic Configurator

reconfiguration can be triggered periodically or manually by an architect. When a
reconfiguration is triggered, the reconfiguration manager consumes the monitor-
ing data, performs a multi-criteria optimization analysis [2], and chooses a final
reconfiguration solution. Either the IaC component is triggered to reconfigure
the infrastructure or the scheduler reschedules the containers. Our architecture
is based on MAPE-K loops [4, 5, 19]. The QoS monitor implements the monitor
and analyze stages, the manager develops the plan step, and the IaC component
and the scheduler realize the execute step. We use our models as knowledge.

3.2 Analytical Models

Reliability Model Based on Bernoulli processes [31], request loss during router
and service crashes can be modeled as follows [3]:

R =
b T
CI c · cf ·

∑
c∈Com CPc · dc
T

(1)

6 Amiri et al.

In this formula, request loss is defined as the number of client requests not
processed due to a failure, such as a component crash. Equation (1) gives the
request loss per second as a metric of reliability by calculating the expected
value of the number of crashes. Having this information, we sum all the requests
received by a system during the downtime of a component and divide them by
the observed system time T . We model the crash interval as CI that is the
interval during which we check for a crash of a component. To clarify, CI is the
time between two consecutive health checks when the heartbeat pattern [18] or
the health check API pattern [26] are used. cf is the incoming call frequency
based on requests per second (r/s). Com is the set of components, i.e., routers
and services. CPc is the crash probability of each component, and dc is the
average downtime of a component after it crashes.

Performance Model We model the average processing time of requests per
router as a performance metric. This metric is important as it allows us to study
the quality of service factors, such as the efficiency of architecture configurations.
The total number of client requests, i.e., Req, is the call frequency cf multiplied
by the observed time T :

Req = cf · T (2)

The number of processed requests is the total number of client requests minus
the request loss. Let P be performance. The average processing time of requests
per router is given as follows:

P =
T

nrout(Req −R)
(3)

Using Equations (1) to (3), the average processing time is the following:

P =
T

nrout · cf
(
T − b T

CI c ·
∑

c∈Com CPc · dc
) (4)

Model Validations To empirically validate our models, we ran an experiment
of 200 runs with a total of 1200 hours of runtime (excluding setup time) [3].
We had a private cloud setting with three physical nodes and installed virtual
machines with eight cores and 60 GB of system memory. Each router or service
was containerized in a Docker4 container. Moreover, to ensure generalizabil-
ity, we duplicated our experiment on Google Cloud Platform5 and empirically
validated our results (see below for experiment cases). We compared our ana-
lytical reliability and performance model with our empirical results using the
mean absolute percentage error [31]. With more experiment runs, we observed
an ever-decreasing error, converging at 7.1%. Our analytical performance model
yielded a low error rate of 0.5%, indicating the very high accuracy of our model.
We also evaluated our models using the mean absolute error, the mean square
error, and the root mean square error, which confirmed our results.

4https://www.docker.com
5https://cloud.google.com/

https://www.docker.com
https://cloud.google.com/

Trade-Offs Adaptation of Dynamic Routing Architectures 7

Parameterization of Model to Experiment Values In our experiment, we
defined nserv and nrout as the number of services and routers to study their
effects. We had three levels for the number of services, i.e., nserv ∈ { 3, 5, 10 }.
Based on our experience and a survey of existing cloud applications in the lit-
erature and industry, the number of cloud services directly dependent on each
other in a call sequence is usually rather low. Moreover, we had four levels for
incoming call frequencies, i.e., cf(r/s) ∈ { 10, 25, 50, 100 }. The call frequency of
cf = 100 r/s, or even lower numbers, is chosen in many studies (see, e.g., [13,30]).
Therefore, we chose different portions between 10 to 100 r/s. We studied three
architecture configurations, i.e., centralized routing (nrout = 1), completely dis-
tributed routing with one router per each service (nrout = nserv), and a middle
ground with three routers (nrout = 3). Therefore, we have nrout ∈ { 1, 3, nserv }.
Overall, we evaluated our model in 36 experiment cases.

We also defined some constants as follows: We observed the system for T =
600 s in each experiment case, had a crash interval of CI = 15 s, and studied
uniform crash probabilities and downtimes for all components as CPc = 0.5%
and dc = 3 s, respectively. These values are system-specific and can be updated
based on different infrastructures. Considering these experiment cases, we can
parameterize our general reliability model in r/s (presented by Equation (1))
and performance model in ms (given by Equation (4)) as follows:

R = cf · 0.001(nserv + nrout) (5)

P =
1000

nrout · cf(1− 0.001(nserv + nrout))
(6)

Multi-Criteria Optimization (MCO) Analysis In our approach, the recon-
figuration between the architecture configurations is performed automatically
based on an MCO analysis [2]. Consider the following optimization problem: An
application using the proposed architecture has nserv services and is under stress
for a period of time with the call frequency of cf . To optimize reliability and per-
formance, the system can change between different architecture configurations
dynamically by adjusting nrout, ranging from a centralized routing (nrout = 1)
and up to the extreme of one router per service (nrout = nserv).

We use the notations Rnrout
and Pnrout

to specify the reliability and perfor-
mance of an architecture configuration by its number of routers. For instance,
only configuring one router R1 indicates the reliability model of centralized rout-
ing, and configuring nserv routers (i.e., R1, . . . , Rnserv

) indicates completely dis-
tributed routing. Let Rth and Pth be the reliability and performance thresholds.
The MCO question is: Given a cf and nserv, what is the optimal number of
routers that minimizes request loss and average processing time for requests per
router without the predicted values violating the respective thresholds?

Minimize

Rnrout
(7)

Pnrout
(8)

8 Amiri et al.

Subject to

Rnrout
≤ Rth (9)

Pnrout
≤ Pth (10)

1 ≤ nrout ≤ nserv (11)

Typically, there is no single answer to an MCO problem. Using the above MCO
analysis, we find a range of nrout configurations that all meet the constraints.
One end of this range optimizes reliability and the other performance. We need a
preference function so our approach can automatically select a final nrout value.

Preference Function An architect defines an importance vector that gives
weights to reliability and performance. The preference function instructs the
proposed architecture to choose a final nrout value in the range found by the
MCO analysis based on this importance vector. Let us consider an example:
When performance is of the highest importance to an application, an architect
gives the highest weight, i.e., 1.0, to performance and the lowest weight, i.e.,
0.0, to reliability. Thus, the preference function chooses the highest value on the
nrout range to choose more distributed routing. This reconfiguration results in
processing client requests in parallel, giving a higher performance.

Algorithm 1: Reconfiguration Algorithm

Input: Rth, Pth, performanceWeight

Rnrout , Pnrout , cf, nserv ← readMonitoringData()

routersRange ← MCO(cf, nserv, Rnrout , Pnrout , Rth, Pth)

reconfigSolution ← preferenceFunction(routersRange, performanceWeight)

reconfigureRouters(reconfigSolution)

function preferenceFunction(range, PW)
begin

length ← max(range) - min(range) +1

floor ← b PW * length c

if floor == max(range) then

return max(range)

else if floor == 0 then

return min(range)

else

return floor + min(range) -1

end

end

Trade-Offs Adaptation of Dynamic Routing Architectures 9

Automatic Reconfiguration As shown in Figure 2, the QoS monitor reads the
monitoring data from the API Gateway and feeds this information to the recon-
figuration manager. This manager reconfigures the infrastructure or reschedules
the containers. Algorithm 1 presents our reconfiguration algorithm. The QoS
monitor triggers the reconfiguration algorithm, e.g., whenever reliability or per-
formance metrics degrade. Time intervals, manual triggering or change in the
incoming load can also be used to trigger the algorithm if more appropriate than
metrics degradation. Note that reconfigureRouters(reconfigSolution) performs
the final reconfiguration based on the chosen solution by either reconfiguring the
infrastructure using the IaC component or rescheduling the containers using the
container scheduler. Our supporting tool provides a simple implementation.

«Docker Container»

«Docker Container»

«Docker Container»

«Docker Container»

«IaC»

IaC component

«Manager»

manager

«Scheduler»

scheduler

«Monitor»

QoS monitor

Web Frontend

RESTful Backend

«Visualizer»

visualizer

«Docker Container»

* Inputs arch. config.
* Inputs model thresholds
* Inputs the importance vector
* Shows the final config.

* Performs MCO
* Chooses the final solution
* Manages backend control flow

* Generates PlantUML visualizations

Consume
Monitoring Data

Final
Config.

Visualizaton

 Final Reconfig. Solution

Final Reconfig.
Solution

Infra.
Config.
DataArch. Config.

Arch. Config.

Fig. 4: Tool Architecture Diagram

4 Tool Overview

We developed a prototypical tool to demonstrate our adaptive architecture,
which is available in our online artifact6. Figure 4 shows the tool architecture.
We provide two modes, i.e., deployment and visualization. In the case of deploy-
ment, our tool generates artifacts in the form of Bash7 scripts and configuration

6The online artifact of our study can be anonymously downloaded from https:

//zenodo.org/record/7944823
7https://www.gnu.org/software/bash/

https://zenodo.org/record/7944823
https://zenodo.org/record/7944823
https://www.gnu.org/software/bash/

10 Amiri et al.

files, e.g., infrastructure configuration data to be used by an IaC tool. These
scripts can schedule containers using the Docker technology8. We also provide a
visualization environment that only generates diagrams using PlantUML9.

The frontend of our application provides the functionalities of the QoS mon-
itor, i.e., to specify architecture configurations as well as model elements such
as reliability and performance thresholds. This information is sent to the man-
ager component in the backend that finds the final reconfiguration solution (see
Algorithm 1). The manager sends this solution to the IaC component and the
scheduler to generate deployment artifacts. A visualization is then created in
the backend and shown in the frontend. The frontend is implemented in React10

and the backend is developed in Node.js11 as a RESTful application.
The tool flow of our application is as follows: An architect gives the ar-

chitecture configuration by entering the number of services and routers. Users
also specify model thresholds, call frequency of client requests, and performance
weight. A reconfiguration is triggered when metrics degradation is observed, ac-
cording to timers or manually. When reconfiguration is triggered, the backend
performs an MCO analysis and chooses a final reconfiguration solution. If the
deployment mode is chosen, deployment artifacts will be generated. The recon-
figuration visualization is then created and shown.

5 Evaluation

In this section, we evaluate our architecture by comparing the reliability and per-
formance predictions to the empirical results of our experiment (see Section 3.2).
The proposed architecture is neither specific to our infrastructure nor our cases.
We use our empirical data set in our online artifact6 to evaluate our approach.

5.1 Evaluation Cases

We systematically evaluate our proposed architecture through various thresholds
and importance weights for reliability and performance. We compare our model
predictions with our 36 experiment cases (see Section 3.2 for the rationale behind
choosing them). That is, we compare with three fixed architecture configurations,
i.e., nrout ∈ { 1, 3, nserv } and three levels of services, i.e., nserv ∈ { 3, 5, 10 }. We
consider four levels of call frequencies, i.e., cf ∈ { 10, 25, 50, 100 } r/s. Regarding
reliability and performance thresholds, we start with very tight reliability and
very loose performance thresholds so that only centralized routing is acceptable.
We increase the reliability and decrease the performance thresholds by 10% in
each step so that distributed routing becomes applicable.

To find the starting points, we consider the worst-case scenario of our empir-
ical data. Equation (1) informs that a higher nserv results in a higher expected

8https://www.docker.com/
9https://plantuml.com/

10https://reactjs.org/
11https://nodejs.org/

https://www.docker.com/
https://plantuml.com/
https://reactjs.org/
https://nodejs.org/

Trade-Offs Adaptation of Dynamic Routing Architectures 11

request loss. In our experiment, the highest number of services is ten. With
nserv = 10, the worst-case reliability for centralized routing and completely dis-
tributed routing (nrout = 10) is 1.1 and 2.0 r/s, respectively. Regarding perfor-
mance, for the case of nserv = 10, we investigate our predictions to find a range
where a reconfiguration is possible. The lowest possible performance prediction
is 33.7 ms, and the highest is 101.1 ms. We adjust these values slightly and take
our boundary thresholds as follows. We analyze step-by-step by increasing the
reliability threshold and decreasing the performance threshold by 10% as before.

1.1 ≤ Rth ≤ 2.0 r/s (12)

35 ≤ Pth ≤ 100 ms (13)

We start with an importance weight of 1.0 for reliability and 0.0 for per-
formance. We decrease the reliability importance and increase the performance
weight by 10% in each iteration. Overall we evaluate 4356 systematic evaluation
cases: 36 experiment cases, 11 importance weight levels, and 11 thresholds. To
support reproducibility, the evaluation script and the evaluation log detailing
information about each case are provided in the online artifact of our study6.

5.2 Results Analysis

We define reliability gain, i.e., RGain, and performance gain, i.e., PGain, as
the average percentage differences of our predictions compared to those of fixed
architectures, i.e., nrout ∈ { 1, 3, nserv }. These formulas are based on the Mean
Absolute Percentage Error (MAPE), widely used in the cloud QoS research [31].

RGain =
100%

n
·
∑

c∈Cases

Rc −Rnrout

Rnrout

(14)

PGain =
100%

n
·
∑

c∈Cases

Pc − Pnrout

Pnrout

(15)

Remember Rnrout
and Pnrout

are reliability and performance predictions (see the
MCO analysis in Section 3.2). Cases are our experiment cases, so n = 36.

Figure 5 shows the reliability and performance gains compared to the predic-
tions of fixed architecture configurations, i.e., without adaptations. Our adaptive
architecture provides improvements in both reliability and performance gains.
As more importance is given to the reliability of a system, i.e., reliability weight
increases, our architecture reconfigures the routers so that the gain in reliability
rises, as shown by Figure 5a. Regarding performance, the same trend can be seen
in Figure 5b. A higher performance weight results in a higher performance gain.
On average, when cases with correct and incorrect architectural choices are ana-
lyzed together, our adaptive architecture provides 9.82% and 47.86% reliability
and performance gains, respectively. A higher gain for performance compared to
reliability is expected. To clarify, studying Equations (5) and (6) informs that
changing the number of routers has a higher effect on the performance than

12 Amiri et al.

(a) Reliability Gain

(b) Performance Gain

Fig. 5: Reliability and Performance Gains of our Adaptive Architecture
Compared to Fixed Architecture Configurations (nrout ∈ { 1, 3, nserv })

a system’s reliability. We define performance as the average processing time of
requests per router. Having a higher number of routers to process the requests
in parallel divides the average processing time by more routers. However, only
the sum of the number of services and routers affects the reliability.

6 Threats to Validity

Regarding construct validity, we used request loss and the average processing
time of requests per router as reliability and performance metrics, respectively.

Trade-Offs Adaptation of Dynamic Routing Architectures 13

While this is a common approach in service- and cloud-based research (see Sec-
tion 7), the threat remains that other metrics might model these quality at-
tributes better, e.g., a cascade of calls beyond a single call sequence for relia-
bility [22], or data transfer rates of messages which are m byte-long for perfor-
mance [21]. More research, probably with real-world systems, is required for this
threat to be excluded.

Regarding Internal validity, our adaptive architecture abstracts the control-
ling logic component in dynamic routing under a router concept to allow interop-
erability between different implementation technologies. In a real-world system,
changing between these technologies is not always an easy task, but it is not
impossible either. In this paper, we provided a scientific proof-of-concept based
on an experiment with the prototypical implementation of these technologies.
The threat remains that changing between these technologies in a real-world ap-
plication might have other impacts on reliability and performance, e.g., network
latency increasing processing time.

Regarding External validity, we designed our novel architecture with general-
ity in mind. However, the threat remains that evaluating our approach based on
another infrastructure may lead to different results. To mitigate this thread, we
systematically evaluated the proposed architecture with 4356 evaluation cases
(see Section 5 for details). Moreover, the results might not be generalizable be-
yond the given experiment cases of 10-100 requests per second and call sequences
of length 3-10. As this covers a wide variety of loads and call sequences in cloud-
based applications, the impact of this threat should be limited.

Regarding Conclusion validity, as the statistical method to evaluate the ac-
curacy of our model’s predictions, we defined reliability and performance gains
based on the Mean Absolute Percentage Error (MAPE) metric [31] as it is widely
used and offers good interpretability in our context.

7 Related Work

Architecture-based approaches [12, 31] employ probabilistic analytical models
such as discrete-time Markov chains (DTMCs) [11] and Queueing Networks
(QNs) [29]. Some papers use high-level architectural models such as profile-
extended UML [23] or Palladio [7, 8] models that are simulated or transformed
into analytical models. These works are based on the observation that a system’s
reliability and performance depend on those of each component, along with the
interplay between them. Pitakrat et al. [24] use architectural knowledge to pre-
dict how a failure propagates to other components based on Bayesian networks.

Other studies introduce service- and cloud-specific reliability models. For in-
stance, Wang et al. [32] propose a DTMC model for analyzing system reliability
based on constituent services. Grassi and Patella [15] propose an approach for
reliability prediction that considers the decentralized and autonomous nature
of services. Zheng and Lyu [34] propose an approach that employs past fail-
ure data to predict a service’s reliability. However, none of these approaches
focuses on major routing architectural patterns in service- and cloud-based ar-

14 Amiri et al.

chitectures; they are rather based on a very generic model concerning the no-
tion of service. Moreover, numerous approaches have been proposed that study
architecture-based performance prediction. Spitznagel and Garlan [29] present a
general architecture-based model for performance analysis based on QNs.

Architecture-based MCO [2] builds on top of these prediction approaches
and the application of architectural tactics to search for optimal architectural
candidates. Example MCO approaches supporting reliability and performance
is ArcheOpterix [1], PerOpteryx [9], and SQuAT [25]. Sharma and Trivedi [28]
present an architecture-based unified hierarchical model for software reliability,
performance, security, and cache behavior prediction. This is one of the few
studies that consider performance and reliability. Like our study, those works
focus on supporting architectural design or decision-making. In contrast to our
work, they do not focus on specific kinds of architecture or architectural patterns.
Our approach focuses on service- and cloud-based dynamic routing.

Finally, our approach is related to self-adaptive systems, which typically use
MAPE-K loops [4, 5, 19] and similar approaches to realize adaptations. Our ap-
proach is based on the MAPE-K loop structure and extends such approaches
with support specific to the cloud- and service-based dynamic routing archi-
tectures. Similarly, auto-scalers for the cloud [6, 33], which promise stable QoS
and cost minimization when facing changing workload intensity, and in general
research on cloud elasticity [14,16] are related to our work. Our approach is sim-
ilar to auto-scaling but performs the adaptation only for the dynamic routers.
Major contributions of our approach are that, in contrast to the existing related
work, it considers reliability and performance trade-offs together and focuses on
specific architectural patterns for dynamic routing in service- and cloud-based
architectures. By focusing on runtime adaptations, we defined a targeted model
and a reconfiguration algorithm, which is hard to consider in the generic case.

8 Conclusions

In this paper, we set out to answer whether we can find an optimal configuration
of routers that automatically adapts the reliability and performance trade-offs
in dynamic routing architectures based on monitored system data at runtime
(RQ1), what the architecture of a supporting tool that analyses the system
at runtime and facilitates the reconfiguration of a dynamic routing application
using the optimal configuration solution is (RQ2), and how the reliability and
performance predictions of the chosen optimal solution compare with the case
where one architecture runs statically (RQ3).

For RQ1, we proposed a routing architecture that dynamically self-adapts
between different routing patterns based on the need of an application. For
RQ2, we provided a prototypical tool that analyzes different inputs and creates
deployment artifacts. This tool also provides visualizations to study different
architecture configurations. For RQ3, we systematically evaluated our approach
using 4356 evaluation cases based on the empirical data of our extensive exper-
iment of 1200 hours of runtime (see Section 5). The results confirms that the

Trade-Offs Adaptation of Dynamic Routing Architectures 15

proposed architecture can adapt the routing pattern in a running system to op-
timize reliability and performance. Even on average, where cases with the right
and the wrong architecture choices are analyzed together, our approach offers a
9.82% reliability gain and a 47.86% performance gain. For our future work, we
plan to apply our novel architecture to real-world applications.

References

1. A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya. Archeopterix: An extend-
able tool for architecture optimization of AADL models. In ICSE 2009 Workshop
on Model-Based Methodologies for Pervasive and Embedded Software, MOMPES
2009, pages 61–71. IEEE, 2009.

2. A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software ar-
chitecture optimization methods: A systematic literature review. IEEE Trans.
Software Eng., 39(5):658–683, 2013.

3. A. Amiri, U. Zdun, and A. van Hoorn. Modeling and empirical validation of
reliability and performance trade-offs of dynamic routing in service- and cloud-
based architectures. In IEEE Transactions on Services Computing (TSC), 2021.

4. P. Arcaini, E. Riccobene, and P. Scandurra. Modeling and analyzing mape-k feed-
back loops for self-adaptation. In IEEE/ACM 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pages 13–23, 2015.

5. P. Arcaini, E. Riccobene, and P. Scandurra. Formal design and verification of self-
adaptive systems with decentralized control. ACM Transactions on Autonomous
and Adaptive Systems (TAAS), 11(4):1–35, 2017.

6. A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev. Chameleon: A hy-
brid, proactive auto-scaling mechanism on a level-playing field. IEEE Transactions
on Parallel and Distributed Systems, 30(4):800–813, 2018.

7. S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with
the palladio component model. In Proceedings of the 6th International Workshop
on Software and Performance, WOSP ’07, page 54–65. ACM, 2007.

8. F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-based reliabil-
ity prediction with the palladio component model. IEEE Transactions on Software
Engineering, 38(6):1319–1339, 2011.

9. A. Busch, D. Fuchss, and A. Koziolek. Peropteryx: Automated improvement of
software architectures. In IEEE International Conference on Software Architecture
ICSA Companion 2019, pages 162–165. IEEE, 2019.

10. D. A. Chappell. Enterprise service bus. O’Reilly, 2004.
11. R. C. Cheung. A user-oriented software reliability model. IEEE transactions on

Software Engineering, pages 118–125, 1980.
12. V. Cortellessa, A. Di Marco, and P. Inverardi. Model-based software performance

analysis. Springer, 2011.
13. D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass: Toward runtime

performance anomaly fault localization for infrastructure-as-a-service clouds. In
6th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14), 2014.

14. G. Galante and L. C. E. de Bona. A survey on cloud computing elasticity. In
2012 IEEE Fifth International Conference on Utility and Cloud Computing, pages
263–270. IEEE, 2012.

15. V. Grassi and S. Patella. Reliability prediction for service-oriented computing
environments. IEEE Internet Computing, 10(3):43–49, 2006.

16 Amiri et al.

16. N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in cloud computing: What it
is, and what it is not. In 10th International Conference on Autonomic Computing
({ICAC} 13), pages 23–27, 2013.

17. G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.
18. A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson. Cloud Design

Patterns. Microsoft Press, 2014.
19. D. G. D. L. Iglesia and D. Weyns. Mape-k formal templates to rigorously de-

sign behaviors for self-adaptive systems. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 10(3):1–31, 2015.

20. P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Microservices: The
journey so far and challenges ahead. IEEE Software, 35(3):24–35, 2018.

21. N. Kratzke. About microservices, containers and their underestimated impact on
network performance. arXiv preprint arXiv:1710.04049, 2017.

22. M. Nygard. Release It!: Design and Deploy Production-Ready Software. Pragmatic
Bookshelf, 2007.

23. D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-based performance anal-
ysis applied to a telecommunication system. IEEE Transactions on Software En-
gineering, 26(11):1049–1065, 2000.

24. T. Pitakrat, D. Okanović, A. van Hoorn, and L. Grunske. Hora: Architecture-aware
online failure prediction. Journal of Systems and Software, 137:669–685, 2018.

25. A. Rago, S. A. Vidal, J. A. Diaz-Pace, S. Frank, and A. van Hoorn. Distributed
quality-attribute optimization of software architectures. In Proceedings of the 11th
Brazilian Symposium on Software Components, Architectures and Reuse, SBCARS
2017, pages 7:1–7:10. ACM, 2017.

26. P. Raj, A. Raman, and H. Subramanian. Architectural Patterns: Uncover essential
patterns in the most indispensable realm. Packt Publishing, December 2017.

27. C. Richardson. Microservice architecture patterns and best practices.
http://microservices.io/index.html, 2019.

28. V. S. Sharma and K. S. Trivedi. Architecture based analysis of performance,
reliability and security of software systems. In Proceedings of the 5th International
Workshop on Software and Performance, WOSP ’05, page 217–227, New York,
NY, USA, 2005. Association for Computing Machinery.

29. B. Spitznagel and D. Garlan. Architecture-based performance analysis. In Proc. the
1998 Conference on Software Engineering and Knowledge Engineering. Carnegie
Mellon University, June 1998.

30. O. Sukwong, A. Sangpetch, and H. S. Kim. Sageshift: managing slas for highly
consolidated cloud. In 2012 Proceedings IEEE INFOCOM, pages 208–216, 2012.

31. K. S. Trivedi and A. Bobbio. Reliability and availability engineering: modeling,
analysis, and applications. Oxford University Press, 2017.

32. L. Wang, X. Bai, L. Zhou, and Y. Chen. A hierarchical reliability model of service-
based software system. In 2009 33rd Annual IEEE International Computer Soft-
ware and Applications Conference, volume 1, pages 199–208, July 2009.

33. F. Zhang, X. Tang, X. Li, S. U. Khan, and Z. Li. Quantifying cloud elasticity with
container-based autoscaling. Future Generation Computer Systems, 98:672–681,
2019.

34. Z. Zheng and M. R. Lyu. Collaborative reliability prediction of service-oriented
systems. In 2010 ACM/IEEE 32nd International Conference on Software Engi-
neering, volume 1, pages 35–44, May 2010.

	Tool Support for the Adaptation of Quality of Service Trade-Offs in Service- and Cloud-Based Dynamic Routing Architectures
	Introduction
	Approach Overview
	Metamodel
	Example of a Routing Configuration

	Approach Details
	Reconfiguration Activities of the Dynamic Configurator
	Analytical Models
	Reliability Model
	Performance Model
	Model Validations
	Parameterization of Model to Experiment Values
	Multi-Criteria Optimization (MCO) Analysis
	Preference Function
	Automatic Reconfiguration

	Tool Overview
	Evaluation
	Evaluation Cases
	Results Analysis

	Threats to Validity
	Related Work
	Conclusions

