
Parallel Neural Networks in Golang

Daniela Kalwarowskyj and Erich Schikuta

University of Vienna
Faculty of Computer Science, RG WST

A-1090 Vienna, Währingerstr. 29, Austria
dkalwarowskyj@yahoo.com

erich.schikuta@univie.ac.at

Abstract. This paper describes the design and implementation of paral-
lel neural networks (PNNs) with the novel programming language Golang.
We follow in our approach the classical Single-Program Multiple-Data
(SPMD) model where a PNN is composed of several sequential neural
networks, which are trained with a proportional share of the training
dataset. We used for this purpose the MNIST dataset, which contains
binary images of handwritten digits. Our analysis focusses on different
activation functions and optimizations in the form of stochastic gradients
and initialization of weights and biases. We conduct a thorough perfor-
mance analysis, where network configurations and different performance
factors are analyzed and interpreted. Golang and its inherent paralleliza-
tion support proved very well for parallel neural network simulation by
considerable decreased processing times compared to sequential variants.

Keywords: Backpropagation Neuronal Network Simulation · Parallel
and Sequential Implementation · MNIST · Golang Programming Lan-
guage

1 Introduction

When reading a letter our trained brain rarely has a problem to understand its
meaning. Inspired by the way our nervous system perceives visual input, the
idea emerged to write a mechanism that could “learn” and furthermore use this
“knowledge” on unknown data. Learning is accomplished by repeating exercises
and comparing results with given solutions. The neural network studied in this
paper uses the MNIST dataset to train and test its capabilities. The actual
learning is achieved by using backpropagation. In the course of our research,
we concentrate on a single sequential feed forward neural network (SNN) and
upgrade it into building multiple, parallel learning SNNs. Those parallel networks
are then fused to one parallel neural network (PNN). These two types of networks
are compared on their accuracy, confidence, computational performance and
learning speed, which it takes those networks to learn the given task.

The specific contribution of the paper is twofold: on the one hand, a thor-
ough analysis of sequential and parallel implementations of feed forward neural

ar
X

iv
:2

30
4.

09
59

0v
1 

 [
cs

.N
E

] 
 1

9 
A

pr
 2

02
3



2 Daniela Kalwarowskyj and Erich Schikuta

network respective time, accuracy and confidence, and on the other hand, a
feasibility study of Golang [9] and its tools for parallel simulation.

The structure of the paper is as follows: In the next section, we give a short
overview of related work. The parallelization approach is laid out in section 4
followed by the description of the Golang implementation. A comprehensive
analysis of the sequential and parallel neural networks respective accuracy, con-
fidence, computational performance and learning speed is presented in section 5.
Finally, the paper closes with a summary of the findings.

2 Related Work and Baseline Research

Artificial neural networks and their parallel simulation gained high attention
in the scientific community. Parallelization is a classic approach for speeding
up execution times and exploiting the full potential of modern processors. Still,
not every algorithm can profit from parallelization, as the concurrent execution
might add a non-negligible overhead. This can also be the case for data parallel
neural networks, where accuracy problems usually occur, as the results have to
be merged.

In the literature a huge number of papers on parallelizing neural networks
can be found. An excellent source of references is the survey by Tal Ben-Nun
and Torsten Hoefler [1]. However, only few research was done on using Golang
in this endeavour.

In the following only specific references are listed, which influenced the pre-
sented approach directly. The authors of [8] presented a parallel backpropagation
algorithm dealing with the accuracy problem only by using a MapReduce and
Cascading model. In the course of our work on parallel and distributed sys-
tems [16,2,14] we developed several approaches for the parallelization of neural
networks. In [6], two novel parallel training approaches were presented for face
recognizing backpropagation neural networks. The authors use the OpenMP en-
vironment for classic CPU multithreading and CUDA for parallelization on GPU
architectures. Aside from that, they differentiated between topological data par-
allelism and structural data parallelism [15], where the latter is focus of the
presented approach here. [10] gave a comparison of different parallelization ap-
proaches on a cluster computer. The results differed depending on the network
size, data set sizes and number of processors. Besides parallelizing the backprop-
agation algorithm for training speed-up, alternative training algorithms like the
Resilient Backpropagation described in [13] might lead to faster convergence.
One major difference to standard backpropagation is that every weight and bias
has a different and variable learning rate. A detailed comparison of both network
training algorithms was given in [12] in the case of spam classification.



Parallel Neural Networks in Golang 3

3 Fundamentals

In the following we present the mathematical fundamentals of neural networks
to allow for easier understanding and better applicability of our implementation
approach described afterwards.

Forwardpropagation To calculate an output in the last layer, the input val-
ues need to get propagated through each layer. This process is called forward
propagation and is done by applying an activation function on each neuron’s
corresponding input sum. The input sum z for a neuron k in the layer l is the
sum of each neuron’s activation a from the last layer multiplied with the weight
w:

zlk =
∑
j

(wl
kja

l−1
j + blk) (1)

The additional term +b stands for the bias value, which allows the activation
function to be shifted to the left or to the right. For better readability, the input
sums for a whole layer can be stored in a vector z and defined by:

zl =W lxl−1 + bl (2)

Here, W l is a weight matrix storing all weights to layer xl. To obtain the output
of a layer, or, in case of the last layer xL, the output of a neural network, an
activation function ϕ needs to be applied:

xl = ϕ(zl) = ϕ(W lxl−1 + bl) (3)

Activation functions do not have to be unique in a network and can be combined.
The implementation presented in this paper uses the rectifier activation function

ϕrectifier(z) =

{
0 if z < 0

z if z ≥ 0
(4)

for hidden neurons and the softmax activation function

ϕsoftmax(zi) =
ezi∑
j e

zj
(5)

for output neurons. For classification, each class is represented by one neuron in
the last layer. Due to the softmax function, the output values of those neurons
sum up to 1 and can therefore be seen as the probabilities of being that class.

Backpropagation For proper classification the network has to be trained be-
forehand. In order to do that, a cost function tells us how well the network
performs, like the cross entropy error with expected outputs e and actual out-
puts x,

C = −
∑
i

eilog(xi) (6)



4 Daniela Kalwarowskyj and Erich Schikuta

The aim is to minimize the cost function by finding the optimal weights and
biases with the gradient descent optimization algorithm. Therefore, a training
instance gets forward propagated through the network to get an output. Subse-
quently, it is necessary to compute the partial derivatives of the cost function
with respect to each weight and bias in the network:

∂C

∂wkj
=
∂C

∂zk

∂zk
∂wkj

(7)

∂C

∂bk
=
∂C

∂zk

∂zk
∂bkj

(8)

As a first step, ∂C
∂zk

needs to be calculated for every neuron k in the last layer L:

δLk =
∂C

∂zLk
=

∂C

∂xLk
ϕ′(zLk ) (9)

In case of the cross entropy error function, the error signal vector δ of the softmax
output layer is simply the actual output vector minus the expected output vector:

δL =
∂C

∂zL
= xL − eL (10)

To obtain the errors for the remaining layers of the network, the output layer’s
error signal vector δL has to be propagated back through the network, hence the
name of the algorithm:

δl = (W l+1)T δl+1 � ϕ′(zl) (11)

(W l+1)T is the transposed weight matrix, � denotes the Hadamard product or
entry-wise product and ϕ′ is the first derivative of the activation function.

Gradient Descent Knowing the error of each neuron, the changes to the
weights and biases can be determined by

∆wl
kj = −η ∂C

∂wl
kj

= −ηδlkxl−1j (12)

∆blk = −η ∂C
∂bk

= −ηδlk (13)

The constant η is used to regulate the strength of the changes applied to the
weights and biases and is also referred to as the learning rate, xl−1j stands for the
output of the jth neuron from layer l−1. The changes are applied by adding them
to the old weights and biases. Depending on the update frequency, a distinction
is made between stochastic gradient descent, batch gradient descent and mini-
batch gradient descent. In the case of the first-mentioned, the weights and biases
are updated after every training instance (by repeating all of the aforementioned
steps instance-wise). In contrast, batch gradient descent stands for updating
only once after accumulating the gradients of all training samples. Mini-batch
gradient descent is a combination of both. The weights and biases are updated
after a specified amount, the mini-batch size, of training instances. As with batch
gradient descent, the gradients of all instances are averaged before the updates.



Parallel Neural Networks in Golang 5

4 Parallel Neuronal Networks

This section describes the technology stack, the parallelization model and im-
plementation details of the provided PNN.

4.1 Technology Stack

Go, often referred to as Golang, is a compiled, statically typed, open source
programming language developed by a team at Google and released in Novem-
ber 2009. It is distributed under a BSD-style license, meaning that copying,
modifying and redistributing is allowed under a few conditions.

As Andrew Gerrand, who works on the project, states in [9], Go grew from
a dissatisfaction with the development environments and languages that they
were using at Google. It is designed to be expressive, concise, clean and efficient.
Hence, Go compiles quickly and is as easy to read as it is to write. This is partly
because of gofmt, the go source code formatter, that gives Go programmes a
single style and relieves the programmers from discussions like where to set
the braces. As uniform presentation makes code easier to read and therefore
to work on, gofmt also saves time and affects the scalability of programming
teams [11]. The integrated garbage collector offers another great convenience and
takes away the time consuming efforts on memory allocation and freeing known
from C/C++. Despite the known overhead and criticism about Java’s garbage
collector, the author of [11] claims that Go is different, more efficient and that it
is almost essential for a concurrent language like Go because of the trickiness that
can result from managing ownership of a piece of memory as it is passed around
among concurrent executions. That being said, built-in support for concurrency
is one of the most interesting aspects of Go, offering a great advantage over
older languages like C++ or Java. One major component of Go’s concurrency
model are goroutines, which can be thought of as lightweight threads with a
negligible overhead, as the cost of managing them is cheap compared to threads.
If a goroutine blocks, the runtime automatically moves any blocking code away
from being executed and executes some code that can run, leading to high-
performance concurrency [9]. Communication between goroutines takes place
over channels, which are derived from "Communicating Sequential Processes"
found in [5]. A Channel can be used to send and receive messages from the type
associated with it. Since receiving can only be done when something is being
sent, channels can be used for synchronization, preventing race conditions by
design.

Another difference to common object oriented programming languages can be
found in Go’s object oriented design. Its approach misses classes and type-based
inheritance like subclassing, meaning that there is no type hierarchy. Instead,
Go features polymorphism with interfaces and struct embedding and therefore
encourages the composition over inheritance principle. An Interface is a set of
methods, which is implemented implicitly by all data types that satisfy the
interface [11].



6 Daniela Kalwarowskyj and Erich Schikuta

For the rest, files are organized in packages, with every source file start-
ing with a package statement. Packages can be used by importing them via
their unique path. If a package path in the form of an URL refers to a remote
repository, the remote package can be fetched with the go get command and
subsequently imported like a local package. Additionally, Go will not compile, if
unused packages are being imported.

4.2 Parallelization Model

For the parallelization of neural network operations we apply the classical Single-
Program Multiple-Data (SPMD) approach well known from high-performance
computing [3]. It is a programming technique, where several tasks execute the
same program but with different input data and the calculated output data is
merged to a common result. Thus, based on the fundamentals of single feed
forward neural network we generate multiple of these networks and set them up
to work together in parallel manner.

Fig. 1. Design of a Parallel Neural Network

The parallel-design is visualized in figure 1. On the bottom it shows the
dataset which is divided into as many slices as there are networks, referred to as
child-networks (CN). Each child-network learns only a slice of the dataset. Ulti-
mately the results of all parallel child-networks are merged to one final parallel



Parallel Neural Networks in Golang 7

neural network (PNN). The combination of those CNs can be done in various
ways. In the presented network the average of all weights, calculated by each
parallel CN by a set number of epochs, is used for the PNNs weights. For the
biases the same procedure is used, e.g. averaging all biases for the combined
biases value.

In Golang it is important to take into consideration that a program, which is
designed parallel does not necessarily work in a parallel manner, as a concurrent
program can be parallel, but doesn’t have to be. This programming language
offers a goroutine, which “is a function executing concurrently with other gor-
outines in the same address space” and processes with Go runtime. To start a
goroutine a gofunc is called. It can an be equipped with a WaitGroup, that en-
sures that the process does not finish until all running processes are done. More
about the implementation is explained in the next section.

4.3 Implementation Details

The main interface to which any trainable network binds is the TrainableNetwork
interface. This interface is used throughout the whole learning and testing pro-
cess. Parallel - as well as simple neural networks implement this interface. This
allows for easy and interchangeable usage of both network types throughout the
code. Due to the fact that a parallel neural network is built from multiple se-
quential neural networks (SNN) we start with the implementation of an SNN.
The provided implementation of an SNN allows for a flexible network struc-
ture. For example, the number of layers and neurons, as well as the activation-
functions used on a layer, can be chosen freely. All information, required for
creating a network is stored within a NeuroConfig struct on a network in-
stance. These settings can easily be adjusted in a configuration file, the default
name is config.yaml, located in the same directory as the executable.

A network is built out of layers. A minimal network is at least composed of
an input layer and an output layer. Beyond this minimum, the hidden depth
of a network can be freely adjusted by providing a desired number of hidden
layers. Internally layers are represented by the NeuroLayer struct. A layer holds
weights and biases which are represented by matrices. The Gonum package is
used to simplify the implementation. It provides a matrix implementation as
well as most necessary linear algebraic operations.

In the implementation, utility functions are provided for a convenient cre-
ation of new layers with initialized weights and biases. The library rand offers a
function NormFloat64, where the variance is set 1 and the mean 0 as default.
Weights are randomly generated using that normal distribution seeded by the
current time in nanoseconds.

The provided network supports several activation functions. The activation
function is defined on a per layer basis which enables the use of several activations
within one network.

A PNN is a combination of at least two SNN. The ParallelNetwork struct
represents the PNN in the implementation. As SNNs are trained individually
before being combined with the output network of a PNN, it is necessary to



8 Daniela Kalwarowskyj and Erich Schikuta

keep the references to the network managed in a slice. In the context of a PNN
the SNNs are referred to as child networks (CN).

In a PNN the training process is executed on all CNs in parallel using gorou-
tines. First, the dataset is split according to the amount of CNs. Afterwards, the
slices of the training dataset and CNs are called with a goroutine. The goroutine
executes minibatches of every CN in parallel. Within those minibatches, another
mutexed concurrent goroutine is started for forwarding and backpropagating. In-
stalling a mutex ensures safe access of the data over multiple goroutines.

The last step of training is to combine those CNs to one PNN. The provided
network uses as combination function the "average" approach. After training the
CNs for a set number of epochs, weights, and biases are added onto the PNN.
Ultimately these weights and biases are scaled by the number of CNs. The result
is the finished PNN.

5 Performance Evaluation

At first a test with one PNN, consisting of 10 CNs, and an SNN are tested using
different activation functions on the hidden layer, while always using the softmax
function on the output layer. After deciding on an activation function, network
configurations are tested. While the number of neurons is only an observation,
but not thoroughly tested, the number of networks is evaluated on different sized
PNNs. Finally, the performance of both types of networks are compared upon
time, accuracy, confidence and costs.

5.1 MNIST Dataset

For our analysis, we use the MNIST dataset which holds handwritten numbers
and allows supervised learning. Using this dataset the network learns to read
handwritten digits. Since learning is achieved by repeating a task, the MNIST
dataset has a “training-set of 60,000 examples, and a test-set of 10,000 exam-
ples” [7] . Each dataset is composed of an image-set and a label-set, which holds
the information for the desired output and makes it possible to verify the net-
works output. All pictures are centered and uniform by 28x28 pixels. First, we
start the training with the training-set. When the learning phase is over the net-
work is supposed to be able to fulfill its task [8]. To evaluate it’s efficiency it is
tested by running the neural network with the test-set since the samples of this
set are still unknown. It is important to use foreign data to test a network since
it is more qualified to show the generalization of a network and therefore its true
efficiency. We are aware that MNIST is a rather small data set. However, it was
chosen on purpose, because it is used in many similar parallelization approaches
and allows therefore for relatively easy comparison of results.

5.2 Activation Functions in Single- and Parallel Neuronal Networks

To elaborate which function performes best in terms of accuracy for the coded
single- and parallel neural network a test using the same network design and



Parallel Neural Networks in Golang 9

settings for each network is performed while changing only the function used on
the hidden layer. Used settings were one hidden layer built out of 256 neurons,
working with a batchsize of 50 and a learningrate η of 0.05 and an output layer
calculated with softmax. This is used on a single FNN and a PNN each consisting
of 10 child-networks. Figure 2 presents the performance results of the activation
functions. Each networks setup is one hidden layer on which either the tangent
hyperbolic-, leaky ReLU-, ReLU- or sigmoid-function was applied.

Fig. 2. Compare Accuracy of a parallel- vs simple-NN with different activation func-
tions and a softmax function for the output layer. The networks have one hidden layer
with 256 neurons and the training was performed with a learningrate of 0.05 and a
batchsize of 50 over 20 epochs.

In this comparison the single neural network that learned using the ReLU-
function, closely followed by TanH-function, has reached the best result within
20 epochs. While testing different configurations it showed that most activation
functions reached higher accuracy when using small learning rates. Sigmoid is
one function that proved itself to be most efficient when the learningrate is not
too small. By raising the learningrate to 0.6 the sigmoid-functions merit grows
significantly on both network types. In the process of testing ReLU on hidden
layers in combination with Softmax for the output layer has proven to reliably
deliver good results. That is why in further sections ReLU has applied on all
networks hidden layers and on the output layer Softmax.

5.3 Network Configurations

Number of Neurons. Choosing an efficient number of neurons is important,
but it is hard to identify. There is no calculation which helps to define an ef-
fectively working number or range of neurons for a certain configuration of a



10 Daniela Kalwarowskyj and Erich Schikuta

neural network. Varying the number of neurons between 20 to 600 delivered
great accuracy. These are only observations and need to be studied with a more
sophisticated approach.

Number of Networks. To evaluate the performance of PNNs in terms of
accuracy, PNNs with different amounts of CNs are composed and trained. The
training runs over 20 epochs with a learning rate of 0.1 and a batchsize of 50. All
CNs are built with one hidden layer consisting of 256 neurons. On the hidden
layer the ReLU-function and on the output layer the Softmax-function is used.
After every epoch, the networks are tested with the test-dataset. The results are
visualized in figure 3.

Fig. 3. Accuracy of PNNs, built with different amount of CNs, over 20 epochs

Figure 3 illustrates a clear loss in accuracy of PNNs with a growing number
of CNs. The 94.5% accuracy, for example, is reached by a PNN with 2 CNs
after only one epoch, while a PNN with 30 CNs achieves that after 12 epochs.
In respect to the number of networks this graph shows that more is not always
better. Considering, that this test was only performed over a small number of
epochs, it is not possible to read the potential of a PNN with more CNs. To find
out how good a PNN can perform, a test was run with three PNNs running 300
epochs:

Table 1 shows a static growth until 200 epochs. After that, there is only a
small fluctuation of accuracy, showing that a local minimum has been reached.
Over the runtime of 300 epochs the difference of the performance regarding the
accuracy of PNNs has been reduced significantly. Still the observation of the
ranking of the PNNs has not been changed. The PNNs built out of a smaller



Parallel Neural Networks in Golang 11

CNs of PNN Accuracy after...
20 Epochs 100 Epochs 150 Epochs 200 Epochs 250 Epochs 300 Epochs

2 97.76 98.08 98.13 98.16 98.14 98.17
10 96.58 97.43 97.96 98.03 98.09 98.05
20 95.69 97.50 97.71 97.92 97.90 97.97

Table 1. Accuracy behaviour for different epochs

number of CNs perform slightly better. Since the provided PNNs are built by
using averaging of weights and biases it also seemed interesting to compare
the average accuracy of the CNs with the resulting PNN, to grade the used
combination function. The results are illustrated in figure 4.

Fig. 4. Compare the average accuracy of all CNs, out of which the final PNN is formed,
with that PNNs accuracy

It shows that the efficiency of an average function grows with the number
of CNs. The first graph drawn with 2 CNs shows, that the resulting PNN is
performing worse than the average of the CNs, it has been built from. By growing
the number of CNs to 10, the average of CNs approximates towards the PNN.
The last graph of this figure shows that a PNN composed of 20 CNs outperforms
the average of its CNs after 200 epochs, and after 300 epochs levels with it. It
has to be noted that the differences in accuracy are very small, as it is only a
range of 0.1 to 0.2 percent. Overall it can be said that this combination function
is working efficiently.

5.4 Comparing the Performances

Time. Time is the main reason to have a network working in parallel. To test the
effect of parallelism on the time required to train a PNN, the provided neuronal



12 Daniela Kalwarowskyj and Erich Schikuta

network is tested on three systems. The first system is equipped with 4 physical
and 4 logical cores, an Intel i7-3635QM processor working with a basic clock rate
of 2.4GHz, the second system holds 6 physical cores and 6 logical cores working
with 2.9GHz and an Intel i9-8950HK processor and last the third system works
with an AMD Ryzen Threadripper 1950X with 16 physical and 16 logical cores,
which work with a clock rate of 3.4GHz. The first, second and third systems are
referred to as 4 core, 6 core and 16 core in the following.

Fig. 5. Time in seconds, that was needed to train a PNN with a limited amount of one
Goroutine per composed CN.

In figure 5 the benefit in terms of time using parallelism is clearly visible.
The results illustrated show the average time in seconds needed by each system
for training a PNN consisting of one CN per goroutine. For the block diagram
in 5 the percental time requirements in comparison with the time needed using
one goroutine are listed in table 2.

The time in figure 5 starts on a high level and decreases with an increasing
amount of goroutines for all three systems. Especially in the range of 1 to 4
goroutines, a formidable decrease in training time is visible and only starts to
level out when reaching a systems physical core limitation. This means that the
4 core starts to level out after 4 goroutines, the 6 core after 6 goroutines and the
16 core after 16 goroutines, even though all systems support hyper threading.
After reaching a systems core number the average time necessary for training
a neural network decreases further with more goroutines. This should be due
to the ability to work in parallel and in concurrency as one slot finishes and a



Parallel Neural Networks in Golang 13

Time required compared to 1 goroutine
System/Goroutines 1 2 4 6 8 12 16 32 64

4 100% 58% 38% 38% 37% 37% 37% 36% 35%
6 100% 61% 31% 24% 24% 23% 23% 23% 22%
16 100% 51% 26% 18% 14% 11% 9% 10% 9%

Table 2. Average time required to train a PNN in comparison to one goroutine, which
represents 100 percent

waiting thread can start running immediately, without waiting for the rest of
the running threads to be finished. All three systems show high time savings by
parallelizing the neural networks. While time requirements decreased in every
system, the actual time savings differ greatly as the 16 core system decreased
91 percent on average from 1 goroutine to 64 goroutines. In comparison, the 4
core system only took 65 percent less time. As the 16 core system is a lot more
powerful than the 4 core system, it can perform an even greater parallel task
and therefore displays a positive effect of parallelism upon time requirements.
Based upon figure 5 and its table 2 parallelism within neural networks can be
seen as a useful feature.

Fig. 6. Compare Accuracy and Confidence of a PNN composed of 10 CNs and an SNN
with one Hidden Layer which holds 256 Neurons

Accuracy and Confidence of Networks. In this section the performance in
terms of accuracy and confidence is compared between a PNNs and an SNN.



14 Daniela Kalwarowskyj and Erich Schikuta

For the test, illustrated by figure 6, both types of networks have been provided
with the same random network to start their training. They have the exact same
built, except that one is trained as SNN and the other is cloned 10 times to build
a PNN with 10 CNs.

In figure 6 the SNN performs better than the PNN in both accuracy and
confidence. While the SNNs accuracy and confidence overlap after 8 epochs, the
PNN has a gap between both lines at all times. This concludes that the SNN
is "sure" about its outputs, while the PNN is more volatile. The SNNs curve of
confidence is a lot steeper than the PNNs and quickly approximates towards the
curve of accuracy. Both curves of accuracy start off almost symmetric upwards
the y-axis, but the PNN levels horizontally after about 90 percent while the SNN
still rises until about 94 percent. After those points both accuracy curves run
almost horizontally and in parallel towards the x-axis. The gap stays constantly
until the end of the test. Even small changes within the range of 90 to 100 percent
are to be interpreted as significant. This makes the SNN perform considerable
more efficient in terms of accuracy and costs than the PNN.

Cost of Networks. To see how successful the training of different PNNs are,
the costs of 3 parallel networks with a varying number of CNs have been recorded
for 300 epochs. The results are illustrated in figure 7.

Fig. 7. Average Costs of PNNs over 300 epochs. The vertical lines show the lowest cost
for each PNN.



Parallel Neural Networks in Golang 15

It shows that the costs of all three PNNs sink rapidly within the first 50
epochs. Afterwards, the error decreases slower, drawing a soft curve that flats
out towards a line, almost stagnating. Apparently, all PNNs training moves
fast towards a minimum at the beginning, then slows down and finally gets
stuck, while only moving slightly up and down the minimums borders. Similar
to earlier tests, a PNN built with less CNs performs better. More CNs leave the
graph further up the y-axis, as the 2-PNN outperforms both the 10- and 20-
PNN. It also reaches its best configuration, e.g. the point where costs are lowest,
significantly earlier than the other tested PNNs. Whereas the 10- and 20-PNNs
work out their best performance regarding the costs at a relatively close range
of epochs, they reach it late compared to the 2-PNN. Figure 7 clearly shows a
decrease in quality with PNNs, formed with more CNs. This indicates that the
combination function needs optimization to achieve a better graph. In the long
term,F costs behave the same as accuracy. After 300 epochs the difference has
almost leveled.

6 Findings and Conclusion

This paper presents and analyses PNNs composed of several sequential neural
networks. The PNNs are tested upon time, accuracy and costs and compared to
an SNN.

The parallelization approach on three different multicore systems show ex-
cellent speedup (the time necessary for training a PNN reduces constantly by
increasing the number of CNs e.g. number of goroutines).

With all three tested systems the time necessary for training a PNN decreased
constantly by increasing the number of CNs e.g. number of goroutines. While the
difference in time was significant within the first few added goroutines it leveled
out after reaching the systems number of cores. A PNN with 2 CNs takes 40%
to 50% less time than a SNN and a PNN with 4 CNs takes 60% to 70% less
time.

While time is a strong point of the PNN, accuracy is also dependent on
the number of CNs a PNN is formed from. While a few CNs resulted in longer
training times it generated better accuracy in fewer epochs. More CNs made
the training time faster but the learning process slower. After 20 epochs a PNN
composed of 2 CNs reached an accuracy of almost 98%, while a PNN composed
of 20 CNs only slightly overcame the 96% line. When both PNNs were trained
for a longer period this difference shrank dramatically. Trained for 300 epochs
the accuracy only differed by 0.2% in favor of the PNN made out of 2 CNs.
While this proved the ability to learn with a small data set it also demonstrated
that bigger data sets deliver a better result faster. the PNNs can improve by
0.41% and 2.28% when training for a longer period. These results were achieved
by using averaging as combination function. The chances of achieving an even
better accuracy by improving the combination function are high. The costs of a
PNN also depends on the number of CNs. It has the same behavior as accuracy
and can also be improved by an optimized combination function. However, a



16 Daniela Kalwarowskyj and Erich Schikuta

thorough analysis on the effects of improved combination functions is planned
for future work and is beyond the scope of this paper.

Summing up, PNNs proved to be very time efficient but are still lacking
in terms of accuracy. As there are plenty of other optimizations, e.g. adjusting
learning rates [4], a PNN proved to be more time efficient than an SNN. However,
until the issue of accuracy has been taken care of, the SNN surpasses the PNN
in practice.

We close the paper with a final word on the feasibility of Golang for parallel
neural network simulation: Data parallelism proved to be an efficient paralleliza-
tion strategy. In combination with the programming language Go, a parallel
neural network implementation is coded as fast as a sequential one, as no special
efforts are necessary for concurrent programming thanks to Go’s concurrency
primitives, which offer a simple solution for multithreading.

References

1. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ACM Computing Surveys (CSUR) 52(4), 1–43
(2019)

2. Brezany, P., Mueck, T.A., Schikuta, E.: A software architecture for massively par-
allel input-output. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.)
Applied Parallel Computing Industrial Computation and Optimization. pp. 85–96.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

3. Darema, F.: The spmd model: Past, present and future. In: European Parallel Vir-
tual Machine/Message Passing Interface Users’ Group Meeting. pp. 1–1. Springer
(2001)

4. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

5. Hoare, C.A.R.: Communicating sequential processes. In: The origin of concurrent
programming, pp. 413–443. Springer (1978)

6. Huqqani, A.A., Schikuta, E., Ye, S., Chen, P.: Multicore and gpu parallelization of
neural networks for face recognition. Procedia Computer Science 18(Supplement
C), 349 – 358 (2013), 2013 International Conference on Computational Science

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

8. Liu, Y., Jing, W., Xu, L.: Parallelizing backpropagation neural network using
mapreduce and cascading model. Computational intelligence and neuroscience
2016 (2016)

9. Meyerson, J.: The go programming language. IEEE Software 31(5), 104–104 (Sept
2014)

10. Pethick, M., Liddle, M., Werstein, P., Huang, Z.: Parallelization of a backpropaga-
tion neural network on a cluster computer. In: International conference on parallel
and distributed computing and systems (PDCS 2003) (2013)

11. Pike, R.: Go at google: Language design in the service of software engineering.
https://talks.golang.org/2012/splash.article (2012), [Online; accessed 06-
January-2018]

https://talks.golang.org/2012/splash.article


Parallel Neural Networks in Golang 17

12. Prasad, N., Singh, R., Lal, S.P.: Comparison of back propagation and resilient
propagation algorithm for spam classification. In: 2013 Fifth International Con-
ference on Computational Intelligence, Modelling and Simulation. pp. 29–34 (Sept
2013)

13. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: The rprop algorithm. In: Neural Networks, 1993., IEEE International
Conference on. pp. 586–591. IEEE (1993)

14. Schikuta, E., Weishaupl, T.: N2grid: neural networks in the grid. In: 2004 IEEE
International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).
vol. 2, pp. 1409–1414 vol.2 (2004)

15. Schikuta, E.: Structural data parallel neural network simulation. In: Proceedings of
11th Annual International Symposium on High Performance Computing Systems
(HPCS’97), Winnipeg, Canada (1997)

16. Schikuta, E., Fuerle, T., Wanek, H.: Vipios: The vienna parallel input/output sys-
tem. In: Pritchard, D., Reeve, J. (eds.) Euro-Par’98 Parallel Processing. pp. 953–
958. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)


	Parallel Neural Networks in Golang

