
Efficient SAGE Estimation via Causal Structure Learning

Christoph Luther* Gunnar König* Moritz Grosse-Wentrup
University of Vienna

UniVie Doctoral School CS
LMU Munich

University of Vienna
Munich Center for ML (MCML)

University of Vienna
Data Science @ Uni Vienna

Vienna CogSciHub

Abstract

The Shapley Additive Global Importance
(SAGE) value is a theoretically appealing inter-
pretability method that fairly attributes global
importance to a model’s features. However, its
exact calculation requires the computation of the
feature’s surplus performance contributions over
an exponential number of feature sets. This is
computationally expensive, particularly because
estimating the surplus contributions requires
sampling from conditional distributions. Thus,
SAGE approximation algorithms only take a
fraction of the feature sets into account. We
propose d-SAGE, a method that accelerates
SAGE approximation. d-SAGE is motivated by
the observation that conditional independencies
(CIs) between a feature and the model target
imply zero surplus contributions, such that their
computation can be skipped. To identify CIs,
we leverage causal structure learning (CSL)
to infer a graph that encodes (conditional)
independencies in the data as d-separations. This
is computationally more efficient because the
expense of the one-time graph inference and the
d-separation queries is negligible compared to
the expense of surplus contribution evaluations.
Empirically we demonstrate that d-SAGE en-
ables the efficient and accurate estimation of
SAGE values.

1 INTRODUCTION

Machine learning (ML) is increasingly deployed in various
fields, ranging from the sciences (Reichstein et al., 2019;
Schmidt et al., 2019; Luan and Tsai, 2021; Farrell et al.,
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2018) to high-stakes decisions about individuals (Ragha-
van et al., 2020; Zeng et al., 2017; Obermeyer and Mul-
lainathan, 2019). Despite impressive successes in predic-
tive performance (Senior et al., 2020; Bhatt et al., 2020),
the complexity of ML models makes it difficult to assess
their trustworthiness or to gain knowledge about the data
generating process. In recent years, the advent of inter-
pretable machine learning has brought about a plethora of
methods that provide insight into model and data (Molnar,
2020). Among those, interpretability methods based on
the Shapley value from game theory (Shapley, 1953) have
gained popularity as they satisfy desirable fairness proper-
ties (Štrumbelj and Kononenko, 2014; Datta et al., 2016;
Lundberg and Lee, 2017; Sundararajan and Najmi, 2020;
Covert et al., 2020).

SAGE values (Covert et al., 2020) apply Shapley values to
fairly attribute the model’s predictive performance to the
features, thereby providing valuable insight into dependen-
cies in the data. They are particularly appealing for scien-
tific inference since they can be linked to properties of the
data generating process (Covert et al., 2020; Freiesleben
et al., 2022). The building blocks for SAGE values are
so-called SAGE value functions ν(XS) that measure the
performance contribution of arbitrary subsets of features
XS . Based on these value functions, a feature’s importance
value ϕ is computed as the average surplus contribution
ν(XS∪j) − ν(XS) of the feature Xj over all possible sub-
sets XS of the remaining features. This is a computation-
ally demanding procedure due to the number of coalitions
XS that grows exponentially with the number of features
(Covert et al., 2020; Van den Broeck et al., 2022) and the
high expense of evaluating ν which stems from the condi-
tional sampling that is required for its estimation. In prac-
tice, (Covert et al., 2020) address the exponential number
of coalitions by only computing the respective surplus con-
tribution for a randomly sampled subset of the coalitions.1

1Furthermore, Covert et al. (2020) avoid conditional sampling
for the evaluation of ν by employing marginal sampling instead.
If features are dependent, this leads to extrapolation and does not
allow linking the SAGE values to properties of the data generating
process (Chen et al., 2020). In this work, we focus on estimating
conditional SAGE values.
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In this work, we suggest exploiting the dependence struc-
ture in the data to speed up the estimation of (conditional
sampling based) SAGE values in an approach we coin d-
SAGE. More specifically, we show that the surplus contri-
bution ν(XS∪j) − ν(XS) is zero for optimal predictors if
the variable of interest is conditionally independent of the
model’s target given the respective subset of remaining fea-
tures (i.e., if Xj ⊥ Y |XS , Theorem 1). As such, if we know
the conditional independencies (CIs) in the data, the re-
spective value function evaluations can be skipped. Since,
in general, the dependence structure is unknown, and con-
ditional independence testing is expensive, we leverage re-
search in causal structure learning (CSL) that allows us to
greedily learn graphical models which encode the depen-
dence structure in the data.

Overall, the approach is based on the following rationale:
The quality of SAGE approximation hinges on the number
of evaluations of ν that each require estimating conditional
expectations and thus are computationally expensive.2 d-
SAGE relies on the one-time estimation of a causal graph,
which in practice can be performed by greedy-search al-
gorithms in polynomial time (Scutari et al., 2019b). The
estimated graph then allows to identify CIs using linear-
time d-separation queries (Hagberg et al., 2008; Darwiche,
2009). Every found d-separation, in turn, warrants to spare
an expensive evaluation of ν(XS∪j)− ν(XS). Since graph
learning has to be performed only once and d-separation
queries are highly efficient, the runtime of SAGE estima-
tion can be reduced significantly by skipping the computa-
tion of ν(XS∪j) − ν(XS) whenever warranted. We show
empirically that the saved runtime is approximately equal
to the share of CIs.

1.1 Contributions

We propose d-SAGE, the first method that exploits the de-
pendence structure in the data to make SAGE estimation
more efficient. More specifically, we find that CIs in the
data imply that the respective (expensive) surplus evalua-
tions can be skipped and suggest leveraging greedy CSL
for their identification (Section 4). To select a suitable CSL
algorithm, we perform a benchmark that, in contrast to pre-
vious work, evaluates the algorithms’ ability to efficiently
identify CIs in the data (Section 5.1). On twelve synthetic
datasets, we demonstrate empirically that d-SAGE and the
approximation algorithm by Covert et al. (2020) converge
towards the same estimates but that d-SAGE is significantly
faster. We find that the computational overhead of learning
the causal structure is negligible compared to the compu-
tational cost of the surplus evaluations, such that the over-
all runtime reduction is approximately equal to the share

2The expense of the computation depends on the type of data
for which the conditional expectation shall be computed. Previous
work in the field assumes polynomial complexity for the operation
(Van den Broeck et al., 2022).

of CIs found in the data (Section 5.2). Consequently, d-
SAGE enables the application of SAGE for larger models,
especially in sparse settings.

2 RELATED WORK

While there are many attempts to tackle the complexity of
Shapley value based methods, most existing work targets
speeding up SHAP (Lundberg and Lee, 2017) estimation
(Jethani et al., 2021; Covert and Lee, 2021; Li et al., 2020)
or is limited to be applied with random forests (Bénard
et al., 2022). In contrast, our work is model-agnostic and
targets improving SAGE estimation. Moreover, none of the
existing work exploits the dependence structure in the data
to yield efficiency gains. As such, we see our work as com-
plementary to the approach of Mitchell et al. (2022), who
suggest to carefully select permutations.

In recent years, concepts from causality have also been
introduced to Shapley value based importance measures
to adapt them to answer specific questions or to improve
model interpretation. Frye et al. (2020b), for example, in-
troduce asymmetric Shapley values that can either shift the
explanatory power of all variables along a causal chain to-
wards the root cause (distal approach) or towards immedi-
ate causes (proximate approach). Moreover, Heskes et al.
(2020) use Pearl’s do-calculus to develop causal Shapley
values and Wang et al. (2021) propose to attach importance
to edges in a causal graph instead of explanatory variables,
i.e., nodes in the graph. In contrast to the literature, we seek
efficiency gains for feature attributions from causal infer-
ence research while retaining the principle of SAGE values
unaltered.

We do, however, make use of CSL. Scutari et al. (2019a)
and Constantinou et al. (2021) provide large-scale bench-
mark studies of structure learning algorithms. In short, both
studies agree on the superiority of score-based structure
learning based on greedy search algorithms over constraint-
based and hybrid methods. These findings motivate our
choice of CSL algorithms for d-separation inference. In
contrast to existing work, our benchmark does not focus on
recovering the causal structure but on detecting CIs in the
data.

3 BACKGROUND

This section serves to familiarise the reader with the basic
concepts required to understand this paper. First, we in-
troduce SAGE values for global feature importance. We
then explain CSL, which we later use to speed up SAGE
estimation.
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3.1 Shapley Additive Global Importance

The Shapley value, which was initially proposed in game
theory (Shapley, 1953), is commonly applied for feature
relevance quantification (Štrumbelj and Kononenko, 2014;
Datta et al., 2016; Lundberg and Lee, 2017; Sundararajan
and Najmi, 2020; Covert et al., 2020). In the study of co-
operative games, it serves to fairly attribute the outcome of
a game to all participating players. The principle can be
applied to assess the relevance of variables for a predictor
f , where the predictive performance is the outcome of the
game and the variables are the players. Covert et al. (2020)
leverage Shapley values to derive a global measure of fea-
ture importance, i.e. SAGE values. Global in this context
means that the importance of a feature across all instances
in a sample is assessed. For an arbitrary model f̂ using in-
puts x1, ..., xd, Covert et al. (2020) define the SAGE value
for the j-th feature as:

ϕj(ν) =
1

d!

∑
π∈Π(d)

(
ν({Xi : π(i) ≤ π(j)})

− ν({Xi : π(i) < π(j)})
) (1)

where Xj is the random variable corresponding to feature
observation xj , Π(d) is the set of all permutations of in-
dices {1, ..., d}, π a specific permutation and π(j) the po-
sition of feature j in permutation π. For the sake of read-
ability, we use the more general notation XS instead of
{Xi : π(i) < π(j)} as input to the value function ν with
XS being any set of features and S the collection of indices
of the contained features, i.e. S ⊆ {1, ..., d} (S̄ is its com-
plementary set). ν(XS) is defined as

ν(XS) = EX,Y [ℓ(f̂∅(X∅), Y )]− EX,Y [ℓ(f̂S(XS), Y )],

where ℓ(·) is any admissible loss function and f̂S(xS) =

EXS̄ |XS
[f̂(X)|XS = xS ]. Thus, ν(XS) is the reduction in

risk induced by adding XS . Consequently, SAGE values
gauge a feature j’s importance using the average over the
additional reduction in risk of the feature compared to any
existing coalition.

SAGE values are particularly appealing as they satisfy six
desirable fairness axioms that set them apart from other
feature importance measures: efficiency, the dummy prop-
erty, symmetry, monotonicity, linearity3 and invariance to
monotone transformations. Despite a thorough mathemat-
ical foundation and the fulfilment of mentioned desider-
ata, SAGE values have a major drawback: They require
the evaluation of an exponential number of surplus evalua-
tions, which is computationally infeasible. In practice, only
a subset of possible coalitions is evaluated (cf. Section 3.2).

3For simplicity we employ the names of these Shapley value
properties for the SAGE properties that are described in Appendix
D.

To estimate SAGE values, access to the conditional fea-
ture distributions is required; More specifically, we need
to sample from P (XS̄ |XS) to estimate the marginalized
prediction f̂S(xS) = EXS̄ |XS

[f̂(X)|XS = xS ]. How-
ever, conditional samplers may not be readily available in
practice. Covert et al. (2020) suggest eluding the prob-
lem by sampling from P (XS̄) instead (marginal sampling).
Albeit easy to implement (and computationally efficient),
marginal sampling may generate unrealistic data points
(xS , xS̄) and thus marginal-sampling based SAGE values
are not suitable for inference about the data generating pro-
cess or to understand the model’s behaviour in the obser-
vational distribution (Frye et al., 2020a; Chen et al., 2020;
Aas et al., 2021; Molnar et al., 2022). Therefore, we focus
on conditional SAGE and estimate the conditional distribu-
tions if they are not known.

For conditional distribution estimation, a variety of
techniques can be employed. For categorical variables,
estimating the conditional reduces to standard supervised
learning with cross-entropy loss. For linear Gaussian data,
it can be estimated analytically from the covariance matrix
(Page Jr, 1984). A range of methods exist for continuous
settings with nonlinearities (Bishop, 1994; Bashtannyk
and Hyndman, 2001; Sohn et al., 2015; Trippe and Turner,
2018; Winkler et al., 2019; Hothorn and Zeileis, 2021). For
mixed data, a sequential design can be employed (Blesch
et al., 2022).

3.2 Intractability of SAGE and Approximation
Algorithm

For the Shapley based interpretability approach SHAP in-
tractability was proven (Van den Broeck et al., 2022). For
the exact computation, the surplus contribution for all pos-
sible subsets of the remaining features must be evaluated.
The number of possible subsets grows exponentially in the
number of features.

Exact SAGE estimation also suffers from the exponential
number of coalitions. To address the issue, Covert et al.
(2020) propose an approximation algorithm that does not
take all possible coalitions into account. More specifically,
the authors propose to repetitively sample permutations π
from the feature indices. Then, for every element of the
current permutation, starting with the first one, they suc-
cessively compute ∆j|S := ν(XS∪j)− ν(XS) with the set
XS being all features that come before the feature of in-
terest j in π. The mean of all ∆j|S values for Xj over
the number of repetitions then is its estimated importance
ϕ̂j(ν). The approximation algorithm is unbiased and the
variance of the estimate reduces in O( 1n ) (Covert et al.,
2020). However, considering the risk evaluation required
for estimating ν, the procedure based on conditional sam-
pling remains computationally demanding.
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3.3 Causal Structure Learning

This section deals with the introduction of CSL used to es-
timate graphs representing d-separations. d-separation is
the graphical equivalent to conditional independence in the
underlying distribution. Both concepts are indeed equiva-
lent under two standard assumptions: (1) that the Markov
property is fulfilled and (2) that the distribution is faith-
ful w.r.t. the graph. Since we merely use graphs to read
off d-separations, we leave out a holistic coverage and re-
fer the reader to Darwiche (2009) and Pearl (2009). Here, it
shall suffice that we refer to a directed acyclic graph (DAG)
whose nodes represent random variables from the underly-
ing distribution and whose edges reflect direct dependen-
cies in the data. Edge directions are further interpreted as
cause-effect relations. We now briefly summarise the infer-
ence of such graphs from data.

Generally, one distinguishes between constraint-based and
score-based methods. The former use CIs inferred from
data as constraints on where to draw edges. The latter ex-
plore the space of all possible DAGs over the given vari-
ables and assign scores to every visited graph. The out-
put of the algorithm is the highest scoring graph. Since the
space of DAGs over a set of variables or nodes grows super-
exponentially in the set’s cardinality, score-based methods
often rely on greedy search techniques. In addition, hy-
brid methods combine both CIs as constraints and scoring
of graphs to assess candidates.

In this work, we focus on greedy structure learning that
performed best in recent benchmarks (Scutari et al., 2019a;
Constantinou et al., 2021). More precisely, we rely on
structure inference based on hill-climbing (HC) and TABU
search (Russell and Norvig, 2009; Scutari et al., 2019b).
Crucially, both algorithms use the Bayesian information
criterion (Schwarz, 1978), which satisfies two key prop-
erties, consistency and local consistency4 (Gámez et al.,
2011; Chickering, 2003). Gámez et al. (2011) show that
for HC for a dataset of size n and iid data, the output graph
is a minimal I-Map of the underlying distribution if n → ∞
and the scoring function satisfies consistency and local con-
sistency. By definition of a minimal I-Map, the set of CIs
represented by d-separation in the graph is a subset of the
CIs in the distribution. Hence, while there might be in-
dependencies in the underlying distribution of the data not
represented by d-separation, there are no instances of d-
separations that do not correspond to independencies. Note
that HC introduces a DAG structure of the output graph but
the assumption on the data is just being an iid sample. The
proof, however, hinges on the assumption of faithfulness.
For linear models, though, the probability of faithfulness
being violated is shown to be zero if model parameters are
randomly drawn from positive densities (cf. Peters et al.

4The Bayesian Dirichlet equivalent uniform (BDeu) score sat-
isfies the properties too and is a valid alternative.

(2017), Spirtes et al. (2000)). While there is no similar the-
oretical result for TABU, the latter is an extension of HC
and exhibits similar behaviour in practice (cf. Section 5.1).

4 CAUSAL STRUCTURE LEARNING
FOR EFFICIENT SAGE ESTIMATION

SAGE estimation is computationally challenging. For an
exact computation, the surplus contribution of the feature
of interest j with respect to every possible coalition XS

of the remaining features must be computed. The surplus
contribution is defined as in Section 3.2

∆j|S = ν(XS∪j)− ν(XS) (2)

The number of possible coalitions grows exponentially in
the number of features, making the exact computation in-
tractable in high-dimensional settings. SAGE values are
therefore estimated by randomly sampling coalitions until
the estimates converge (Section 3.2). Nevertheless, esti-
mation remains challenging since evaluating ∆j|S requires
sampling from conditional distributions, and therefore even
one evaluation is a significant computational challenge.
Thus, in practice, the approximation quality is limited by
the number of surplus contributions that can be computed.

We propose d-SAGE, an approach that can identify and
skip unnecessary surplus evaluations and thereby allows to
improve the approximation quality. The method is based
on the observation that ∆j|S evaluates to zero if Xj is con-
ditionally independent of Y given XS :

Theorem 1. For ℓ being cross-entropy loss or the mean-
squared error, f∗ the respective optimal predictor and νℓ,f∗

the corresponding SAGE value function, it holds that

Xj ⊥ Y |XS ⇒ νℓ,f∗(XS∪j)− νℓ,f∗(XS) = 0.

Proof (sketch, full proof in A): Covert et al. (2020) show
that for the cross entropy loss function with its respective
optimal model, the Bayes classifier, Equation 2 equals the
conditional mutual information of Xj and Y given XS , i.e.
I(Xj ;Y |XS). A similar result holds for optimal regression
models with the mean squared error (MSE) as loss function.
In this case, the surplus contribution is shown to be equal
to EXS

[V ar(E[Y |XS , Xj ]|XS)] (Covert et al., 2020). For
both expressions, one can easily see that they evaluate to
zero when Xj is conditionally independent of Y given XS ,
i.e. Xj ⊥ Y | XS .

As a consequence of Theorem 1, knowledge of the depen-
dence structure in the data allows speeding up the SAGE
estimation procedure: evaluations of ν(XS∪j)−ν(XS) can
be skipped if Xj ⊥ Y | XS .

To identify the CIs in the data, we suggest leveraging
greedy procedures that were originally developed to learn
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Algorithm 1: Sampling-based Approximation of d-
SAGE
Input: Data {xi, yi}ni=1 with xi ∈ Rd, model f̂ , loss

function ℓ, number of permutations nπ

Infer DAG G from data {xi, yi}ni=1 with structure
learning algorithm of choice.

for i in {1, ..., nπ} do
Sample a permutation π
S = ∅
for j in {1, ..., d} do

if Xπj
̸⊥G Y |XS then

Sample xS̄ from p(xS̄ |xS)
Sample xS∪πj

from p(xS∪πj
|xS), where

πj is the j-th element of π
∆̂j|S = ℓ(f̂(xS , xS̄))−ℓ(f̂(xS∪πj

, xS∪πj
))

else
∆̂j|S = 0

end
S = S ∪ πj

end
end
return ϕ̂j =

1
nπ

∑nπ

i=1 ∆̂j|S for j = 1, ..., d

Note that we dropped indices of ∆̂j|S for readability.

the causal structure in the data. CSL algorithms allow the
estimation of a causal graph in polynomial time (Scutari
et al., 2019b). Given that the Markov property and faithful-
ness are fulfilled, the graph allows reading off (conditional)
independencies in the data using linear time d-separation
queries (Hagberg et al., 2008; Darwiche, 2009). Our ratio-
nale is that the one-time effort of learning the causal graph,
as well as the additional linear time d-separation queries,
are negligible in comparison to the computational overhead
of computing the surplus contributions.5

To summarise, d-SAGE estimation introduces two key dif-
ferences to the original SAGE approximation algorithm.
First, a graph G is fitted over all random variables, the fea-
tures, and the target. Second, the estimation of ∆j|S is
skipped if the current feature Xj in permutation π is d-
separated from the target given the set XS = {Xi : π(i) <
π(j)}. The changes are highlighted in blue in Algorithm 1.

5 EXPERIMENTS

The experiment section is divided into three parts. In
the first two parts, we evaluate our method on synthetic
data with known ground truth: As we use d-separation

5In general, the complexity of conditional sampling depends
on the assumptions about the data generating process. In their
tractability analysis for SHAP, Van den Broeck et al. (2022) as-
sume polynomial complexity for computing the conditional ex-
pectations of the form EXS̄ |XS

[f̂(X)|XS = xS ].

queries in estimated graphs for d-SAGE approximation,
we first evaluate the accuracy of d-separations in learned
structures with regard to ground truth CIs in the data
(Section 5.1). Then we compare d-SAGE to ordinary
SAGE value approximation (Section 5.2). In the third
part, we demonstrate the usefulness of the method in a
real-world application (Section 5.3).6

5.1 Benchmark of Causal Structure Learning

Existing structure learning benchmarks evaluate the algo-
rithms regarding how well they can recover the true causal
structure (Constantinou et al., 2021; Scutari et al., 2019a).
For d-SAGE, however, we are only interested in learning
the dependence structure. As such, we assess how well CIs
are inferred as d-separations in the estimated graph.

5.1.1 Setup

We evaluate the greedy search algorithms HC and TABU
(Scutari et al., 2019b; Russell and Norvig, 2009). We se-
lected these methods based on their superior performance
in recent CSL benchmarks (Constantinou et al., 2021; Scu-
tari et al., 2019a). As performance metrics, we employ the
F1 score for the detection of d-separations w.r.t. a randomly
sampled target Y as well as the respective false discovery
rate. More precisely, for every potential d-separation of the
form Xj ⊥G Y |XS , we check whether it had the same sta-
tus in the ground truth and the estimated graph. To cope
with the exponentially large number of d-separations in the
higher dimensional graphs (DAGsm, DAGm and DAGl) we
randomly sampled a node of interest Xj and a condition-
ing set XS one million times instead of iterating over all
potential d-separation statements. For both algorithms, we
relied on their implementation in bnlearn (Scutari, 2010)
for R.7 We consider twelve different synthetic data settings
with known ground truth:

DAGs, DAGsm, DAGm and DAGl We sampled syn-
thetic graphs with a varying number of nodes (s = 10,
sm = 20, m = 50 and l = 100) and three different den-
sities (average adjacency degrees of 2, 3 and 4). Based on
the graphs, we sampled data from the corresponding lin-
ear Gaussian data model, where absolute values of edge
weights are bounded by 0.5 and 2. We standardised vari-
ances to be (approximately) one to avoid that they increase
with the topological ordering and counteract a potential
bias in the benchmark (Reisach et al., 2021). For the sam-
pling itself, we relied on the the pcalg package (Kalisch
et al., 2012) implemented in R (R Core Team, 2022).

6All code is publicly available https://github.
com/gcskoenig/csl-experiments/tree/
camera-ready.

7All graph learning experiments were run on an Intel Core i7-
8700K Desktop CPU.

https://github.com/gcskoenig/csl-experiments/tree/camera-ready
https://github.com/gcskoenig/csl-experiments/tree/camera-ready
https://github.com/gcskoenig/csl-experiments/tree/camera-ready
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5.1.2 Results

First, we observe TABU, while approximately taking dou-
ble the time, either performs equally well as or better than
HC (cf. Figures 1, 2 and Appendix C). Hence, we restrict
this section to results for TABU search, which we also em-
ployed for d-SAGE estimation. Figure 1 shows the run-
time of graph learning depending on sample size and corre-
sponding F1 scores for d-separation inference for all twelve
graphs. The key takeaway is that for the sparsest graph (av-
erage adjacency degree 2) the F1 score is greater than 0.88
if n ≥ 10, 000. For the larger graphs, however, there is
a slight drop-off in performance, which is expected. Only
for the densest graph setting (average adjacency degree 4)
and for 50 and 100 nodes, though, a larger sample size, i.e.
n ≥ 100, 000, is required to infer d-separations at a rea-
sonable rate. As we will see in Section 5.2, the runtime
for graph learning is negligible in the context of d-SAGE
estimation.

Figure 1: F1 scores for d-separation (lines, left y-axes) and
runtime of graph learning (bars, right y-axes) using TABU
search depending on sample size.

We note that there is no well-defined threshold for the min-
imal F1 score that would be required for SAGE estimation
to benefit from causal structure learning because different
error types have distinct consequences. While incorrectly
inferred d-separations may lead to biased estimates, non-
detected d-separations only reduce the benefit of CSL in
terms of reduced runtime. Importantly, our simulation re-
sults in Figure 2 show virtually no false discoveries (cases
where there is no CI in the underlying distribution but a
d-separation is inferred) yet some false-negative instances,
which leads to fewer skipped evaluations of ∆j|S than war-
ranted. This result is in accordance with the reasoning pre-
sented in Section 3.3. As such, the use of CSL is a con-

Figure 2: Confusion matrix for true and predicted d-
connections (̸⊥G) and d-separations (⊥G) based on TABU
search with n = 10, 000 for all twelve graphs.

servative approach to the inference of CIs. Note that for
the data used in the benchmark, the ground-truth graph is
known and the Markov property and faithfulness hold, such
that d-separations indeed coincide with statistical indepen-
dence.

5.2 Evaluating Efficiency and Accuracy of d-SAGE

In the benchmark study in Section 5.1 we highlight the
capability of structure learning to efficiently yet conserva-
tively estimate d-separations as equivalents to CIs. We now
evaluate d-SAGE regarding its efficiency and its accuracy.

5.2.1 Setup

To evaluate d-SAGE in practice, a linear model (LM) and a
random forest (RF) are fitted to each of the twelve datasets
(using the scikit-learn implementation with default set-
tings (Pedregosa et al., 2011)). As loss function, the mean
squared error (MSE) is used for either of them. Hence,
the linear model (LM) falls into the category of optimal
models required for the theoretical justification. The RF
model serves as a sanity check for a high-performing, but
not optimal model (cf. Appendix D for the model perfor-
mances). For a fair comparison, we compare d-SAGE and
SAGE based on the exact same feature orderings. This also
allowed us to compare the skipped evaluations of ∆j|S , that
are set to zero, to their estimated counterparts that should
be very close to zero. Overall, we estimated SAGE and
d-SAGE values five times for each setup (graph + model).
We used the same synthetic datasets for the evaluation as
in Section 5.1.
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Figure 3: Runtime estimates for SAGE and d-SAGE for all twelve graphs and linear models (LM) as well as random forests
(RF) based on n = 10, 000.

(a) SAGE values and difference between SAGE and d-SAGE for the five largest
values.

(b) Boxplots showing the distribution of ∆j|S for
the skipped surplus evaluations.

Figure 4: Results on the approximation quality of d-SAGE based on DAGs with average degree 2 for optimal models (LM).
Based on five (d-)SAGE estimates.

5.2.2 Results

We find that d-SAGE indeed speeds up SAGE approxima-
tion as expected. More specifically, the estimated runtime8

decreases by a rate that is approximately equal to the share
of CIs w.r.t. the model target (cf. Appendix C) for both
model classes across all graphs (cf. Figure 3). Furthermore,
d-SAGE manages this speedup without distorting the esti-
mates. Note that we do not include graph learning runtime
in Figure 3 since it required between 0.06 seconds (DAGs

with average degree 2) and 39.86 seconds (DAGl with av-
erage degree 4) and hence is negligible in this context.

Linear Model Figure 4 (a) displays the five SAGE val-
ues with the largest absolute value for the four graphs with
an average degree of two along with the respective differ-

8The complete SAGE estimation was performed on multiple
different machines. For a fair evaluation of runtime, we relied
on estimates that were performed on the same CPU (Intel Core
i7-8700K Desktop CPU): Either approach was conducted using
100 permutations that were the same for SAGE and d-SAGE and
runtime multiplied by the factor nπ

100
, where nπ is the number of

permutations after which one SAGE run converged. For conver-
gence behaviour see Appendix E.

ence between the SAGE and d-SAGE estimates. Overall,
the differences are about three orders of magnitude smaller
than the original SAGE values, i.e. typically lie beneath
one per cent. Even the most pronounced difference for vari-
able 7 in DAGs only amounts to approximately 2.7 per cent
of the SAGE value of approximately 0.007. We find no
further striking differences in the remaining SAGE values
that identified important features, i.e. those with the largest
absolute SAGE values. Features deemed unimportant by
SAGE values are detected as such by d-SAGE. Notewor-
thy, some d-SAGE estimates are equal to zero if the feature
of interest is conditionally independent of the target given
all (sampled) coalitions. Here, we argue that we bias obser-
vational SAGE values towards zero, which for truly inde-
pendent features is closer (or equal) to the ’true-to-the-data’
measure that would be achieved for the optimal predictor
and infinite data.

Figure 4 (b) displays every ∆j|S value, which was derived
from a conditionally independent feature that was detected
as such and thus set equal to zero in d-SAGE approxima-
tion. We see clearly that most values are very close to zero,
as mirrored by the narrow boxes, which underlines the use-
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fulness of our approach.

Random Forest In order to test the sensitivity of the re-
sults, we replicated the exact same study using a high-
performing but not optimal RF regressor (instead of the
optimal LM). While the runtime savings are the same as
for the LM, deviations of d-SAGE values from the origi-
nal estimates are slightly more pronounced (cf. Appendix
D). The results indicate that our approach is also useful for
close to optimal models.

5.3 Real-world Application

To show the usefulness of d-SAGE in practice, we ap-
plied the approach to drug consumption data from the UCI
ML repository (Dua and Graff, 2017). The target ”Nico-
tine consumption” was predicted using logistic regression
relying on twelve explanatory variables in a dataset with
sample size n = 1885. Graph fitting was conducted
with the TABU search algorithm and took 0.035 seconds.
SAGE estimation for five different runs took approximately
12h14min9. To derive d-SAGE values, we did not rerun the
estimation relying on d-SAGE but simply replaced the re-
spective ∆j|S that pertained to a d-separation in the fitted
graph in the output (that included all such ∆j|S) with zero.
We found approximately 38 per cent such ∆j|S values that
can be skipped which warrants an (almost) equally large
relative speedup.

Figure 5: SAGE values, difference between SAGE and
d-SAGE and d-SAGE values for drug consumption data.
Based on five (d-)SAGE estimates.

Figure 5 shows that d-SAGE values are mostly in accor-
dance with the original SAGE estimate. From the impor-
tant variables, only ’Education’ has a markedly distinct d-
SAGE value as it is reduced by about a third compared to
the SAGE estimate. Yet, it is still assigned relatively high
importance. The efficacy of d-SAGE in practice is further
highlighted by the ∆j|S values that hover around zero, as
shown in Figure 6.

9All calculations were run on an Intel Core i7-8700K Desktop
CPU

Figure 6: Boxplots showing the distribution of ∆j|S for the
skipped surplus evaluations.

6 DISCUSSION

Model optimality and loss Conditional SAGE values
are particularly appealing for scientific inference, i.e. to
learn about the data (Chen et al., 2020; Covert et al.,
2020). Therefore, in general, accurate predictors are re-
quired (Molnar et al., 2022). However, the requirement is
of increased importance for d-SAGE since if the assump-
tion of model optimality is violated the interpretation may
be further biased by skipping the evaluation of non-zero
surplus contributions (Theorem 1).

Assumptions for CSL CSL is enabled by causal suffi-
ciency, the Markov property and faithfulness (Peters et al.,
2017). The assumptions ensure that all relevant variables
are observed, and that CIs in the data coincide with d-
separations in the true causal graph (which we assume to
be a DAG). We conjecture that violations of these assump-
tions are not vital for our approach since learning the true
causal graph is not the goal. Instead, we are only inter-
ested in learning the graph to encode (conditional) indepen-
dencies present in the observational distribution (irrespec-
tive of which causal mechanism they stem from). DAGs
learned by HC being a minimal I-Map of the underlying
distribution makes it suitable for probabilistic inference of
CIs without guarantees of a correct graph or the number of
CIs uncovered.

Nevertheless, practitioners should carefully assess the as-
sumptions before applying d-SAGE. In the presence of la-
tent confounders or cyclic assignment, for example, one
may consider other concepts, such as m-separation and σ-
separation (cf. Bongers et al. (2021)). Moreover, it is advis-
able to perform sanity checks on whether skipped surplus
contributions are actually evaluated to zero.

Use of Score-based CSL The analysis was restricted to
the use of score-based CSL because of its efficiency. HC
is particularly appealing since it infers a minimal I-Map
of the underlying distribution as explained in Section 3.3,
and TABU performed well empirically. However, inference
of CIs is not limited to those techniques. Graph learning
can be performed with an algorithm of choice and under
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consideration of the assumptions employed, as explained
above. Moreover, the rationale behind our approach is
to replace CI testing by CSL. Partial correlation tests, for
example, are considerably less efficient than d-separation
queries (cf. Appendix F) and thus would require a larger
number of CIs to achieve a speedup of SAGE.

7 CONCLUSION

We proposed d-SAGE, a method that exploits the depen-
dence structure in the data to speed up SAGE estimation.
More specifically, we observe that conditional indepen-
dence in the data implies that the corresponding surplus
contribution can be directly evaluated to zero. We modify
the ordering based SAGE approximation algorithm to first
learn the dependence structure in the data using CSL algo-
rithms and to then skip surplus contribution evaluations if
the graph encodes a CI. Errors in the learned graph may ei-
ther slow down convergence (if CIs are not discovered) or
bias the result towards zero (in case of false discoveries).
However, in our experiments, there were nearly no false
discoveries, such that the resulting estimates for features
that were not conditionally independent given every coali-
tion essentially converged to the same values as the origi-
nal SAGE approximation algorithm. Furthermore, the CSL
algorithms were able to uncover most CIs, such that we ob-
serve significant performance gains. As such, given a fixed
computational budget, the efficiency gains of d-SAGE can
enable a more accurate estimation of SAGE values than the
approximation algorithm proposed by Covert et al. (2020).
In future work, it would be interesting to combine d-SAGE
with the permutation sampling by Mitchell et al. (2022)
and to assess whether the results can be translated to other
Shapley based interpretability methods such as SHAP.
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Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H.,
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A PROOF OF THEOREM 1

Theorem 1. For ℓ being cross-entropy loss or the mean-squared error, f∗ the respective optimal predictor and νℓ,f∗ the
corresponding SAGE value function, it holds that

Xj ⊥ Y |XS ⇒ νℓ,f∗(XS∪j)− νℓ,f∗(XS) = 0.

Proof. Mean Squared Error: Covert et al. (2020) show that for ℓ being the mean squared error and f∗ the corresponding
optimal predictor it holds that:

ν(XS∪j)− ν(XS) = E[Var(Y |XS)]− E[Var(Y |XS∪j)]

Under conditional independence Y ⊥ Xj |XS it follows that

E[Var(Y |XS∪j)] = E[E[Var(Y |XS∪j)|XS ]]

= E[Var(Y |XS)]

and consequently Y ⊥ Xj |XS ⇒ ν(XS∪j)− ν(XS) = 0.

Cross Entropy: Covert et al. (2020) show that given cross entropy as loss and the corresponding loss optimal predictor f∗

it holds that:
ν(XS∪j)− ν(XS) = I(Y ;Xj |XS)

Mutual information I(Y ;Xj |XS) is zero if and only if Y ⊥ Xj |XS . Consequently ν(XS∪j)−ν(XS) = 0 ⇔ Xj ⊥ Y |XS .

B SAGE VALUE PROPERTIES

As mentioned in Section 3, SAGE values satisfy certain fairness properties that are deduced from those valid for Shapley
values (Covert et al., 2020). While not explicitly named after the Shapley value properties (efficiency, the dummy property,
symmetry, monotonicity, linearity) we employ these terms for the SAGE properties for simplicity:

1. Efficiency:
∑d

j=1 ϕj(ν) = ν(X), where X is the set of all features.

2. Dummy property: ϕj(ν) = 0 if Xj ⊥ f̂(X)|XS for all S ⊆ {1, ..., d} \ j.

3. Symmetry: ν(XS∪j) = ν(XS∪i) for two variables Xj and Xi with a deterministic relationship.

4. Monotonicity: For two target variables Y , Y ′ and corresponding models f̂ , f̂ ′: ϕj(νf̂ ) ≥ ϕj(νf̂ ′) if νf̂ (XS∪j) −
νf̂ (XS) ≥ νf̂ ′(XS∪j)− νf̂ ′(XS) for all S ⊆ {1, ..., d} \ j.

5. From Linearity: ϕj(ν) = EX,Y [ϕj(νf̂ ,x,y)], where ϕj(νf̂ ,x,y) is the Shapley value of the game νf̂ ,x,y(XS) =

ℓ(f̂∅(X∅), y)− ℓ(f̂S(XS), y)

6. SAGE values are invariant to invertible mappings applied to the input, e.g. they are the same for original input data
and and their log values.
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C GRAPH BENCHMARK

In this section, we provide detailed information about the graphs employed in Section 5, the graph learning algorithms and
the graph benchmark. Additionally, we present results derived from the HC algorithm for CSL.

C.1 Overview of Graphs

In Table 1 we provide an overview of all twelve graphs used in Section 5, the randomly sampled target, the adjacency
degree of the target and the share of d-separations w.r.t. the target. This gives further insight into the relation of graph
sparsity, degree of target and share of d-separations. The latter can be regarded as the potential relative runtime decrease
for SAGE approximation.

Table 1: Overview of all twelve graphs used in Section 5, the randomly sampled target, the adjacency degree of the target
and the share of d-separations w.r.t. the target.

GRAPH (AVG. DEGREE) TARGET DEGREE OF TARGET SHARE OF ⊥G

DAGs(2) 8 2 0.556
DAGs(3) 1 2 0.357
DAGs(4) 1 4 0.283
DAGsm(2) 17 1 0.765
DAGsm(3) 2 1 0.623
DAGsm(4) 16 4 0.185
DAGm(2) 4 1 0.961
DAGm(3) 32 5 0.556
DAGm(4) 2 3 0.274
DAGl(2) 4 3 0.632
DAGl(3) 66 3 0.552
DAGl(4) 66 7 0.151

Table 2 shows the hyperparameter settings used for CSL relying on the bnlearn package (Scutari, 2010) for R (R Core
Team, 2022).

Table 2: Hyperparameters Used for Graph Learning

ALGORITHM HYPERPARAMETERS

HC Max. iterations ∞, max. in-degree: ∞; score: BIC
TABU Size of list: 10; Max. iterations ∞, max. in-degree: ∞; score: BIC

C.2 MC Sampling for d-separation Inference

In Algorithm 2 we explicate how we inferred the number of true positive, false positive, true negative and false negative
d-separations within an estimated graph and especially how we dealt with the exponential number of potential conditioning
sets for the larger graphs.
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Algorithm 2: Monte Carlo Sampling for d-separation Inference
Input: True graph G∗ and estimated graph G over node set {X1, X2, ...Xd, Y } with target node Y ; Number of MC samples nmc

Output: True positives, true negatives, false positives and false negatives for inferred d-separations in G: TP, TN, FP, FN
Set TP = TN = FP = FN = 0
for m = 1, ..., nmc do

Randomly draw a node Xj from {X1, X2, ...Xd}

Randomly draw size ns of conditioning set XS from discrete probability distribution P (ns = i) =
(d−1

i )
2d−1 , i ∈ {0, ..., d− 1}

Randomly draw elements Xi, i = 1, ...ns, from {X1, X2, ...Xd} \Xj without replacement and set XS = {Xi}i=1,...,ns

if Xj ⊥G∗ Y |XS then
if Xj ⊥G Y |XS then

TP = TP+1
else

FN = FN+1
end

else
if Xj ̸⊥G Y |XS then

TN = TN+1
else

FP = FP+1
end

end
end
Return: TP, TN, FP, FN

C.3 Results - HC

In Figure 7 we show the results of the graph learning benchmark for HC in contrast to those from Section 5. As HC never
performed better but for some experiments worse than TABU, we chose the latter for the use in d-SAGE.

(a) F1 scores for d-separation (lines, left y-axes) and runtime
of graph learning (bars, right y-axes) using HC depending
on sample size.

(b) Confusion matrix for true and predicted d-connections ( ̸⊥G) and d-
separations (⊥G) based on HC with n = 10, 000 for all twelve graphs.

Figure 7: Results from graph learning benchmark for HC algorithm.
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D SAGE - EXPERIMENTS

In this section, we briefly explain the experiment setup and afterwards present missing results. For our analysis, we fitted
two models, LM and RF, for every dataset relying on the same targets that were sampled randomly for the analysis of
d-separations in a graph. We relied on ntrain = 8000 for model fitting and ntest = 2000 for model evaluation (the same
n = 10000 data points as used for graph fitting and SAGE inference). We then used the data to estimate SAGE and
d-SAGE five times, i.e. we were provided five approximations of (d-)SAGE for every graph and model, which were then
used to provide error bounds. The ∆j|S plots rely on skipped evaluations of each of these runs.

In Table 3 we provide performance measures of the models and in Appendix D.1 the plots pertaining to experiments not
shown in Section 5 are displayed. Note that Table 3 highlights that RF performs slightly worse than the optimal LM
throughout all settings and with regard to the MSE and R2.

Table 3: Details of Linear Models (LMs) and Random Forests (RF); Random Forests based on 100 Tree Estimators.

DATA (AVERAGE DEGREE) ntrain; ntest MSELM R2
LM MSERF R2

RF

DAGs(2) 8000; 2000 0.541 0.495 0.572 0.466
DAGsm(2) 8000; 2000 0.035 0.963 0.038 0.960
DAGm(2) 8000; 2000 0.474 0.522 0.498 0.498
DAGl(2) 8000; 2000 0.070 0.930 0.103 0.897
DAGs(3) 8000; 2000 0.382 0.616 0.480 0.517
DAGsm(3) 8000; 2000 0.072 0.926 0.078 0.921
DAGm(3) 8000; 2000 0.089 0.914 0.174 0.832
DAGl(3) 8000; 2000 0.065 0.938 0.082 0.922
DAGs(4) 8000; 2000 0.101 0.902 0.161 0.843
DAGsm(4) 8000; 2000 0.075 0.925 0.086 0.914
DAGm(4) 8000; 2000 0.163 0.840 0.194 0.810
DAGl(4) 8000; 2000 0.004 0.996 0.059 0.943

D.1 Results - SAGE and d-SAGE

In this section we provide the same results as in Section 5 for all missing setups and both models, LM and RF as well as
the top fifteen values for the setup presented in Section 5. Overall, we can confirm our findings in the different settings.

Figure 8: SAGE values and difference between SAGE and d-SAGE for the fifteen (all for DAGs) largest values for optimal
models for DAGs with average degree two.
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(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen (all for DAGs) largest values for optimal models.

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 9: Results on the estimation quality for d-SAGE based on each DAG with average degree three and the LM.

(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen largest (all for DAGs) values for optimal models

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 10: Results on the estimation quality for d-SAGE based on each DAG with average degree four and the LM.

(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen (all for DAGs) largest values for optimal models.

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 11: Results on the estimation quality for d-SAGE based on each DAGs with average degree two and the RF.



Christoph Luther*, Gunnar König*, Moritz Grosse-Wentrup

(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen (all for DAGs) largest values for optimal models.

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 12: Results on the estimation quality for d-SAGE based on each DAG with average degree three and the RF.

(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen (all for DAGs) largest values for optimal models.

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 13: Results on the estimation quality for d-SAGE based on each DAG with average degree four and the RF.
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E CONVERGENCE PLOTS

Figure 14: Convergence of largest fifteen SAGE and d-SAGE values for optimal models (LM) for every DAG (average
adjacency degree). Each colour represents the same feature in SAGE and d-SAGE plots for a given graph (if present in
both). Legend omitted for readability.
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Figure 15: Convergence of largest fifteen SAGE and d-SAGE values for random forest models (RF) for every DAG (average
adjacency degree). Each colour represents the same feature in SAGE and d-SAGE plots for a given graph (if present in
both). Legend omitted for readability.
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Figure 16: Convergence of bottom fifteen SAGE and d-SAGE values for optimal models (LM) and random forest models
(RF) for DAGm and DAGl (average adjacency degree). Each colour represents the same feature in SAGE and d-SAGE
plots for a given graph (if present in both). Legend omitted for readability.
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E.1 Convergence of SAGE Values

The approximation algorithm is designed such that convergence for all values is required to stop. Hence, some values
are converged but still computed. However, the benefit of d-SAGE depends on the share of CIs and not the number of
permutations required for convergence, and hence, even a fewer number of permutations would lead to a similar speedup.
Missing lines in the convergence plots belong to conditionally independent features (given every sampled coalition), which
highlights the ability of (d-)SAGE for post-hoc feature selection. An example of faster converging d-SAGE values is
displayed by the comparison of SAGE and d-SAGE for DAGm(2) in Figure 14, where the small values (slightly above
zero) converge faster for d-SAGE.

F PARTIAL CORRELATION TESTS v d-SEPARATION QUERIES

To highlight the benefit of CSL over statistical independence tests, we compared the runtime of linear time d-separation
queries (in graphs inferred by TABU) from the NetworkX package for Python (Hagberg et al., 2008) to that of partial
correlation tests for linear Gaussian data from the Pingouin package (Vallat, 2018). Results are based on 100 permutations.
Table 4 clearly shows that partial correlation tests are typically more accurate at the cost of much higher runtime in
comparison to d-separation queries (+ graph learning).

Table 4: Partial correlation tests v d-separation queries based on n = 10, 000 and 100 permutations; Graph learning based
on TABU; ACC = Accuracy.

DATA TIME (d-separation) TIME (TABU) TIME (CIs) ACC (d-separation) ACC (CIs)

DAGs (2) 0.13s 0.06s 46.82s 1.000 1.000
DAGsm (2) 0.39s 0.22s 166.75s 0.996 0.999
DAGm (2) 1.95s 1.11s 1058.80s 1.000 1.000
DAGl (2) 15.48s 12.02s 4344.81s 0.863 0.934
DAGs (3) 0.13s 0.18s 47.15s 1.0 1.0
DAGsm (3) 0.41s 0.71s 166.28s 0.996 0.992
DAGm (3) 2.12s 2.51s 1089.00s 0.908 0.983
DAGl (3) 16.85s 18.22s 4299.47s 0.857 0.941
DAGs (4) 0.14s 0.09s 47.18s 1.0 0.998
DAGsm (4) 0.42s 1.37s 163.48s 1.0 0.988
DAGm (4) 2.33s 5.65s 1093.50s 0.845 0.940
DAGl (4) 20.74s 39.86s 4312.16s 0.902 0.916
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