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Abstract: In this article, we investigate the applicability of quantum machine learning for classification
tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum
circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of
these classifiers when using a hyperparameter search on six widely known and publicly available
benchmark datasets and analyze how their performance varies with the number of samples on two
artificially generated test classification datasets. As quantum machine learning is based on unitary
transformations, this paper explores data structures and application fields that could be particularly
suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts
from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made
publicly available and contributes a novel contribution to the empirical evaluation of quantum
supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets
to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic
machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do
not match the accuracy and runtime performance of sophisticated modern boosting classifiers such
as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning
algorithms have the potential to surpass classical machine learning methods in the future, especially
when physical quantum infrastructure becomes widely available, they currently lag behind classical
approaches. Our investigations also show that classical machine learning approaches have superior
performance classifying datasets based on group structures, compared to quantum approaches
that particularly use unitary processes. Furthermore, our findings highlight the significant impact
of different quantum simulators, feature maps, and quantum circuits on the performance of the
employed quantum estimators. This observation emphasizes the need for researchers to provide
detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as
this aspect is currently overlooked in many studies within the field. To facilitate further research in
this area and ensure the transparency of our study, we have made the complete code available in a
linked GitHub repository.

Keywords: quantum machine learning; variational quantum circuit; quantum kernel estimator;
Qiskit; Ridge; Lasso; XGBoost; LightGBM; CatBoost; classification; quantum computing; boost
classifiers; neural networks

1. Introduction

Quantum computing has recently gained significant attention due to its potential to
solve complex computational problems exponentially faster than classical computers [1].
Quantum machine learning (QML) is an emerging field that combines the power of quan-
tum computing with traditional machine learning techniques to solve real-world problems
more efficiently [2,3]. Various QML algorithms have been proposed, such as quantum
kernel estimator [4] and variational quantum circuit [5,6], which have shown promising
results in diverse applications, including pattern recognition and classification tasks [7–9].

In this study, we aim to compare QKE (quantum kernel estimator) and VQC
(variational quantum circuit) with powerful classical machine learning methods such
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as XGBoost [10], Ridge [11], Lasso [12], LightGBM [13], CatBoost [14], and MLP (multilayer
perceptron) [15] on six benchmark datasets partially available in the Scikit-learn library [16]
as well as artificially generated datasets. To ensure a fair comparison on the benchmark
datasets, we perform a randomized search to optimize hyperparameters for each algorithm,
thereby providing a comprehensive statistical comparison of their performance. Further-
more, we provide the full program code in a GitHub repository [17] to make our results
reproducible and boost research that can potentially build on our approach.

Since quantum machines are not readily accessible, we can only compare these al-
gorithms’ performance on simulated quantum circuits. Although this approach does not
reveal the full potential of quantum machine learning, it does highlight how the discussed
quantum machine learning methods handle different levels of complexity inherent in the
datasets. For this reason, we also developed a method to generate artificial datasets based
on quantum mechanical concepts to provide a prototype for a particularly well-suited
dataset for quantum machine learning. This will estimate the possible improvements
that quantum machine learning algorithms can offer over classical methods in terms
of accuracy and efficiency, considering the computational resources needed to simulate
quantum circuits.

In this study, we address and partially answer the following research questions:

1. How do QKE and VQC algorithms compare to classical machine learning methods
such as XGBoost, Ridge, Lasso, LightGBM, CatBoost, and MLP regarding accuracy
and efficiency on simulated quantum circuits?

2. To what extent can a randomized search to find a suitable set of hyperparame-
ters make the performance of quantum machine learning algorithms comparable to
classical approaches?

3. What are the limitations and challenges associated with the current state of quantum
machine learning, and how can future research address these challenges to unlock the
full potential of quantum computing in machine learning applications?

4. Do quantum machine learning algorithms outperform regular machine learning
algorithms on datasets constrained by the rules of quantum mechanics? Thus, do they
provide a quantum advantage for datasets that exhibit strong symmetry properties in
terms of adhering to Lie algebras?

The research presented in this article is partially inspired by the work of Zeguendry
et al. [18], which offers an excellent review and introduction to quantum machine learning.
However, their article does not delve into the tuning of hyperparameters for the quantum
machine learning models employed, nor does it provide ideas on creating best-suited
data for quantum machine learning classification tasks. We aim to expand the toolbox of
quantum machine learning, first by discussing the space of Hyperparameters and second
by providing a prototype for generating “quantum data”. Furthermore, this analysis will
help determine the current state of quantum machine learning performance and whether
researchers should employ these algorithms in their studies.

We provide the entire program code of our experiments and all the results in a GitHub
repository, ensuring the integrity of our findings, fostering research in this field, and
offering a comprehensive code for researchers to test quantum machine learning on their
classification problems. Thereby, a key contribution of our research is not only the provision
of a single implementation of a quantum machine learning algorithm, but also the execution
of a randomized search for potential hyperparameters of both classical and quantum
machine learning models and a novel approach for generating artificial classification
problems based on concepts inherent to quantum mechanics, i.e., Lie groups and algebras.

This article is structured as follows: Section 2 discusses relevant and related work.
In Section 3, we describe, reference, and, to some degree, derive all employed techniques.
We will not discuss the mathematical details of all employed algorithms here, but rather
refer the interested reader to the referenced sources. Section 4 describes our performed
experiments in detail, followed by the obtained results in Section 5, which also features a
discussion of our findings. Finally, we conclude our findings in Section 6.

https://github.com/Raubkatz/Quantum_Machine_Learning
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2. Related Work

Considerable research was conducted in recent years to advance quantum machine
learning environments and their application field. This starts in the data encoding process,
in which Schuld and Killoran [3] investigated quantum machine learning in feature Hilbert
spaces theoretically. They proposed a framework for constructing quantum embeddings
of classical data to enable quantum algorithms that learn and classify data in quantum
feature spaces.

Further research was conducted on introducing novel architectural frameworks. For
this, Mitarai et al. [19] presented a method called quantum circuit learning (QCL), which
uses parameterized quantum circuits to approximate classical functions. QCL can be
applied to supervised and unsupervised learning tasks, as well as reinforcement learning.

Havlíček et al. [4] introduced a quantum-enhanced feature space approach using
quantum circuits. This work demonstrated that quantum computers can effectively process
classical data with quantum kernel methods, offering the potential for exponential speedup
in certain applications.

Furthermore, Farhi and Neven [20] explored the use of quantum neural networks for
classification tasks on near-term quantum processors. They showed that quantum neural
networks can achieve good classification performance with shallow circuits, making them
suitable for noisy intermediate-scale quantum (NISQ) devices.

Other research focused on the advancement of applying quantum fundamentals on
classical machine learning applications. Hereby, Rebentrost et al. [21] introduced the
concept of a quantum support vector machine for big data classification. They showed
that the quantum version of the algorithm can offer exponential speedup compared to its
classical counterpart, specifically in the kernel evaluation stage.

To advance the application field of quantum machine learning, Liu and Rebentrost [22]
proposed a quantum machine learning approach for quantum anomaly detection. They
demonstrated that their method can efficiently solve classification problems, even when
the data have a high degree of entanglement.

In this regard, it is worth mentioning the work of Broughton et al. [23] introduced
TensorFlow Quantum, an open-source library for the rapid prototyping of hybrid quantum-
classical models for classical or quantum data. They demonstrated various applications of
TensorFlow Quantum, including supervised learning for quantum classification, quantum
control, simulating noisy quantum circuits, and quantum approximate optimization. More-
over, they showcased how TensorFlow Quantum can be applied to advanced quantum
learning tasks such as meta-learning, layer-wise learning, Hamiltonian learning, sam-
pling thermal states, variational quantum eigensolvers, classification of quantum phase
transitions, generative adversarial networks, and reinforcement learning.

In the review paper by Zeguendry et al. [18], the authors present a comprehensive
overview of quantum machine learning from the perspective of conventional machine learn-
ing techniques. The paper starts by exploring the background of quantum computing, its
architecture, and an introduction to quantum algorithms. It then delves into several funda-
mental algorithms for QML, which form the basis of more complex QML algorithms and
can potentially offer performance improvements over classical machine learning algorithms.
In the study, the authors implement three machine learning algorithms: quanvolutional neural
networks, quantum support vector machines, and variational quantum circuit. They compare
the performance of these quantum algorithms with their classical counterparts on various
datasets. Specifically, they implement quanvolutional neural networks on a quantum com-
puter to recognize handwritten digits and compare its performance to convolutional neural
networks, stating the performance improvements by quantum machine learning.

Despite these advancements, it is important to note that some of the discussed papers
may not have used randomized search CV from Scikit-learn to optimize the classical
machine learning algorithms, thereby overstating the significance of quantum supremacy.
Nevertheless, the above-mentioned works present a comprehensive overview of the state
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of the art in quantum machine learning for classification, highlighting the potential benefits
of using quantum algorithms in various forms and applications.

3. Methodology

This section presents our methodology for comparing the performance of classical and
quantum machine learning techniques for classification tasks. Our approach is designed to
provide a blueprint for future experiments in this area of research. We employ the Scikit-
learn library, focusing on the inbuilt functions to select a good set of hyperparameters,
i.e., RandomizedSearchCV to compare classical and quantum machine learning models.
We also utilize the Qiskit library to incorporate quantum machine learning techniques into
our experiments, [24]. The selected datasets for our study include both real-world and
synthetic data, enabling a comprehensive evaluation of the classifiers’ performance.

3.1. Supervised Machine Learning

Supervised machine learning is a subfield of artificial intelligence that focuses on
developing algorithms and models to learn patterns and make decisions or predictions
based on data [25,26]. The main goal of supervised learning is to predict labels or outputs
of new, unseen data given a set of known input–output pairs (training data). This section
briefly introduces several classical machine learning techniques used for classification tasks,
specifically in the context of supervised learning. These techniques serve as a baseline
to evaluate the applicability of quantum machine learning approaches, which are the
focus of this paper. Furthermore, we will then introduce the employed quantum machine
learning algorithms.

One of the essential aspects of supervised machine learning is the ability to pre-
dict/classify data. The models are trained using a labeled dataset, and then the performance
of the models is evaluated based on their accuracy in predicting the labels of previously un-
seen test samples [27]. This evaluation is crucial to estimate the model’s ability to generalize
the learned information when making predictions on new, real-world data.

Various techniques, such as cross-validation and train-test splits, are often used to
obtain reliable performance estimates of the models [28]. By comparing the performance of
different models, researchers and practitioners can determine which model or algorithm is
better suited for a specific problem domain.

3.2. Classical Supervised Machine Learning Techniques

The following list describes the employed algorithms that serve as a baseline for the
afterwards described and later tested quantum machine learning algorithms.

• Lasso and Ridge Regression/Classification: Lasso (least absolute shrinkage and selec-
tion operator) and Ridge Regression are linear regression techniques that incorporate
regularization to prevent overfitting and improve model generalization [11,12]. Lasso
uses L1 regularization, which tends to produce sparse solutions, while Ridge Regres-
sion uses L2 regularization, which prevents coefficients from becoming too large.
Both of these regression algorithms can also be used for classification tasks.

• Multilayer Perceptron: MLP is a type of feedforward artificial neural network with
multiple layers of neurons, including input, hidden, and output layers [15]. MLPs are
capable of modeling complex non-linear relationships and can be trained
using backpropagation.

• Support Vector Machines (SVM): SVMs are supervised learning models used for
classification and regression tasks [29]. They work by finding the optimal hyperplane
that separates the data into different classes, maximizing the margin between the classes.

• Gradient Boosting Machines: Gradient boosting machines are an ensemble learning
method that builds a series of weak learners, typically decision trees, to form a strong
learner [30]. The weak learners are combined by iteratively adding them to the model
while minimizing a loss function. Notable gradient boosting machines for classification
tasks include XGBoost [10], CatBoost [14], and LightGBM [13]. These three algorithms
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have introduced various improvements and optimizations to the original gradient
boosting framework, such as efficient tree learning algorithms, handling categorical
features, and reducing memory usage.

3.3. Quantum Machine Learning

Quantum machine learning is an emerging interdisciplinary field that leverages the
principles of quantum mechanics and quantum computing to improve or develop novel
algorithms for machine learning tasks [2]. This section introduces two key quantum
machine learning techniques, Variational Quantum Circuit and Quantum Kernel Estimator,
and discusses their connections to classical machine learning techniques. Additionally,
we briefly introduce Qiskit Machine Learning, a Python package developed by IBM for
implementing quantum machine learning algorithms. Furthermore, we want to mention
the work done by [18] for a review of quantum machine learning algorithms and a more
detailed discussion of the employed algorithms.

3.3.1. Variational Quantum Circuit (VQC)

VQC is a hybrid quantum-classical algorithm that can be viewed as a quantum analog
of classical neural networks, specifically the multilayer perceptron [5,6]. VQC employs a
parametrized quantum circuit, which is trained using classical optimization techniques to
find the optimal parameters for classification tasks. The learned quantum circuit can then
be used to classify new data points.

Figure 1 illustrates the schematic depiction of the variational quantum circuit, which
involves preprocessing the data, encoding it onto qubits using a feature map, processing
it through a variational quantum circuit (Ansatz), measuring the final qubit states, and
optimizing the circuit parameters θ, Thus, the main building blocks of the VQC are as follows:

1. Preprocessing: The data are prepared and preprocessed before being encoded
onto qubits.

2. Feature map encoding (yellow in the figure): The preprocessed data are encoded onto
qubits using a feature map.

3. Variational quantum circuit (Ansatz) (steel-blue in the figure): The encoded data
undergo processing through the variational quantum circuit, also known as the
Ansatz, which consists of a series of quantum gates and operations.

4. Measurement (orange in the figure): The final state of the qubits is measured, provid-
ing probabilities for the different quantum states.

5. Parameter optimization (Optimizer): The variational quantum circuit is optimized by
adjusting the parameters θ, such as the rotations of specific quantum gates, to improve
the outcome/classification.

Figure 1. Schematic depiction of the variational quantum circuit. The VQC consists of several steps.
We colored the steps that are similar to classical neural networks in light blue and the other steps in
yellow, steel-blue, and orange.
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3.3.2. Quantum Kernel Estimator

QKE is a technique that leverages the quantum computation of kernel functions to en-
hance the performance of classical kernel methods, such as support vector machines [4,31].
By computing the kernel matrix using quantum circuits, QKE can capture complex data
relationships that may be challenging for classical kernel methods to exploit.

The main building blocks for the employed QKE, which are depicted in Figure 2 are
as follows:

1. Data preprocessing: The input data are preprocessed, which may include tasks such
as data cleaning, feature scaling, or feature extraction. This step ensures that the data
are in an appropriate format for the following quantum feature maps.

2. Feature map encoding (yellow in the figure): The preprocessed data are encoded onto
qubits using a feature map.

3. Kernel computation (steel-blue in the figure): Instead of directly computing the
kernel matrix from the original data, a kernel function is precomputed using the
quantum computing capabilities, meaning that the inner product of two quantum
states is estimated on a quantum simulator/circuit. This kernel function captures the
similarity between pairs of data points in a high-dimensional feature space.

4. SVM training: The precomputed kernel function is then used as input to the SVM
algorithm for model training. The SVM aims to find an optimal hyperplane that
separates the data points into different classes with the maximum margin.

Here, we need to mention that in the documentation of Qiskit machine learning, the
developers provided a full QKE implementation without the need to use, e.g., Scikit-learn’s
SVM-implementation. However, as of the writing of this article, this estimator is no longer
available in Qiskit machine learning. Thus, one needs to use a support vector machine
implementation from other sources after precomputing the kernel on a quantum simulator.

1 
 

 

Figure 2. Schematic depiction of the quantum kernel estimator. The QKE consists of several steps.
We colored the steps that are similar to classical support vector machines in light blue and the other
steps in yellow and steel-blue. The employed QKE algorithm consists of a support vector machine
algorithm with precomputed kernel, i.e., a classical machine learning method that leverages the
power of quantum computing to efficiently compute the kernel matrix.

3.3.3. Qiskit Machine Learning

Qiskit Machine Learning is an open-source Python package developed by IBM for im-
plementing quantum machine learning algorithms [24]. This package enables researchers
and practitioners to develop and test quantum machine learning algorithms, including
VQC and QKE, using IBM’s quantum computing platform. It provides tools for building
and simulating quantum circuits, as well as interfaces to classical optimization and ma-
chine learning libraries. Thus, we used this environment and the corresponding quantum
simulators described in Appendix A for our experiments.

3.4. Accuracy Score for Classification

The accuracy score is a standard metric used to evaluate the performance of classifica-
tion algorithms. We employed the accuracy score to evaluate all presented experiments.
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It is defined as the ratio of correct predictions to the total number of predictions. The
formula for the accuracy score is defined as follows:

Accuracy =
Number of correct predictions

Total number of predictions
(1)

In Scikit-learn, the accuracy score can be computed using the accuracy_score function
from the ‘sklearn.metrics‘ module [16]. For more information on the accuracy score and its
interpretation, refer to the Scikit-learn documentation [16].

3.5. Datasets

In this study, we used six classification datasets from various sources. Two datasets
are part of the Scikit-learn library, while the remaining four are obtained/fetched from
OpenML. The datasets are described below:

1. Iris Dataset: A widely known dataset consisting of 150 samples of iris flowers, each
with four features (sepal length, sepal width, petal length, and petal width) and one
of three species labels (Iris Setosa, Iris Versicolor, or Iris Virginica). This dataset is
included in the Scikit-learn library [16].

2. Wine Dataset: A popular dataset for wine classification, which consists of 178 samples
of wine, each with 13 features (such as alcohol content, color intensity, and hue) and
one of three class labels (class 1, class 2, or class 3). This dataset is also available in the
Scikit-learn library [16].

3. Indian Liver Patient Dataset (LPD): This dataset contains 583 records, with 416 liver
patient records and 167 non-liver patient records [32]. The dataset includes ten
variables: age, gender, total bilirubin, direct bilirubin, total proteins, albumin, A/G
ratio, SGPT, SGOT, and Alkphos. The primary task is to classify patients into liver or
non-liver patient groups.

4. Breast Cancer Coimbra Dataset: This dataset consists of 10 quantitative predictors
and a binary dependent variable, indicating the presence or absence of breast cancer
[33,34]. The predictors are anthropometric data and parameters obtainable from
routine blood analysis. Accurate prediction models based on these predictors can
potentially serve as a biomarker for breast cancer.

5. Teaching Assistant Evaluation Dataset: This dataset includes 151 instances of
teaching-assistant (TA) assignments from the Statistics Department at the University
of Wisconsin-Madison, with evaluations of their teaching performance over three
regular semesters and two summer semesters [35,36]. The class variable is divided
into three roughly equal-sized categories (“low”, “medium”, and “high”). There
are six attributes, including whether the TA is a native English speaker, the course
instructor, the course, the semester type (summer or regular), and the class size.

6. Impedance Spectrum of Breast Tissue Dataset: This dataset contains impedance
measurements of freshly excised breast tissue at the following frequencies: 15.625,
31.25, 62.5, 125, 250, 500, and 1000 KHz [37,38]. The primary task is to predict
the classification of either the original six classes or four classes by merging the
fibro-adenoma, mastopathy, and glandular classes whose discrimination is not crucial.

These datasets were selected for their diverse domains and varied classification tasks,
providing a robust testing ground for the quantum classifiers we employed in our exper-
iments. Furthermore, we used artificially generated datasets to control the number of
samples. Here, Scikit-learn provides a valuable function called make_classification to
generate synthetic classification datasets. This function creates a random n-class classifi-
cation problem, initially creating clusters of points normally distributed about vertices of
an n-informative-dimensional hypercube, and assigns an equal number of clusters to each
class [16]. It introduces interdependence between features and adds further noise to the
data. The generated data are highly customizable, with options for specifying the number
of samples, features, informative features, redundant features, repeated features, classes,
clusters per class, and more. For more details on the make_classification function and its

https://Scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html
https://www.openml.org/search?type=data&status=any&id=1480
https://www.openml.org/search?type=data&status=active&id=42900
https://www.openml.org/search?type=data&status=active&id=48
https://www.openml.org/search?type=data&sort=runs&id=1465&status=active
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parameters, refer to the Scikit-learn documentation available on scikit-learn.org (accessed
on 25 June 2023).

3.5.1. Data Obtained from Lie-Algebras

We construct another artificial dataset final dataset for our final evaluation; however,
this time, we do this by using tools from the theory of Lie groups. The reason for employing
these concepts is that we want to produce data that resembles the complexity inherent to
the Qubit-Vectorspace of quantum machine learning and that, furthermore, is generated
by applying transformations on vectors that are similar to the manipulations present in
quantum machine learning algorithms, e.g., for the VQC, rotations of/around the Bloch-
sphere. Thus, overall, we aim to provide random data for a classification task to show
a case where the authors assume quantum machine learning algorithms can, because
of their inherent structure, outperform classical machine learning algorithms, and thus,
provide a prototype on the type of data specifically tailored to address the inherent structure
of quantum machine learning. The theoretical foundations of this section are obtained
from [39], and thus, the interested reader is referred to this book for a profound introduction
to Lie groups. To further explain the employed ideas, we start by introducing the concept
of a Lie group G and the corresponding Lie-algebra g.

A Lie group is a mathematical structure that captures the essence of continuous sym-
metry. Named after the Norwegian mathematician Sophus Lie, Lie groups are ubiquitous
in many areas of mathematics and physics, including the study of differential equations,
geometry, and quantum mechanics.

A Lie group is a set G that has the structure of both a smooth manifold and a group in
such a way that the group operations (multiplication and inversion) are smooth. That is, a
Lie group is a group that is also a differentiable manifold, such that the group operations
are compatible with the smooth structure.

Thus, a Lie group is a set G equipped with a group structure (i.e., a binary operation
G× G → G, (g, h) 7→ gh that is associative, an identity element e ∈ G, and an inversion
operation G → G, g 7→ g−1) and a smooth manifold structure such that the following
conditions are satisfied:

1. The multiplication map µ : G× G → G defined by µ(g, h) = gh is smooth.
2. The inversion map ι : G → G defined by ι(g) = g−1 is smooth.

Lie algebra is associated with each Lie group, a vector space equipped with a binary
operation called the Lie bracket. The Lie algebra captures the local structure of the Lie
group near the identity element, meaning that the Lie algebra of a Lie group G is the
tangent space at the identity, denoted TeG, equipped with the Lie bracket operation. The
Lie bracket is defined in terms of the group operation and the differential.

There is a map from the Lie algebra to the Lie group called the exponential map,
denoted exp : TeG → G. The exponential map provides a way to generate new group
elements from elements of the Lie algebra. In particular, given an element X of the Lie
algebra, exp(X) is a group element close to the identity if X is ‘small’. We will exploit this
concept to generate random data associated with a specific group:

We start with a set of generators Ta contained within the Lie-algebra g of a Lie group
G, where a = 1, 2, . . . dg, i.e., the dimension of the Lie-algebra. We can then create elements
g ∈ G by employing:

g = ei ∑a θaTa , where θa ∈ [0, 2π] . (2)

We used the condition for our θa-values without loss of generality due to the periodicity
of the exponential function. To generate our random data, we randomly choose our θa and
create an element of our group. We then apply this element to a corresponding base vector
of our vector space.

Specifically, in our example, we use the Lie-group SU(2). The special unitary group of
degree 2, denoted as SU(2), is a Lie group of 2 × 2 unitary matrices with determinant 1.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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SU(2) =
{

U ∈ C2×2 : UU† = I, det(U) = 1
}

(3)

The corresponding Lie algebra, su(2), consists of 2 × 2 Hermitian traceless matrices,
i.e., the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(4)

The commutation relations of the Pauli matrices form the structure of the su(2)
Lie algebra:

[σi, σj] = 2iεijkσk (5)

where [·, ·] denotes the commutator and εijk is the Levi-Civita symbol.
To generate a classification dataset from this algebra, we use the following procedure:

1. Find a set of random parameters θ ∈ (0; π], φ ∈ (0; 2π], λ ∈ (0; 2π];
2. We then create an element U of SU(2) using these these randomly set parameters:

U = ei(θσ1+φσ2+λσ3);
3. Next, we take one of the basevectors from C2, denoted as v̂ to create a new complex

vector ~v using the previously obtained matrix U such that: ~v = U · v̂;
4. This vector is then separated into four features Fj such that:

F1 = Re[v1] (6)

F2 = Im[v1] (7)

F3 = Re[v2] (8)

F4 = Im[v2], (9)

where v1 and v2 denotes the individual components of the vector ~v, and Re[. . . ] and
Im[. . . ] denote their respective real and imaginary parts;

5. Finally, we assign a class label C to this collection of features such that:

C =

{
0 if θ < π

2

1 if θ > π
2

, (10)

and collect the features and the class label into one sample [F1, F2, F3, F4, C]. We repeat
this process NS times, starting with 1, where NS is the number of samples that we
want for our dataset.

Note that this approach can be extended to arbitrary Lie groups, given that one can
construct or obtain a Lie group’s generators.

4. Experimental Design

In this section, we describe our experimental design, which aims to provide a fair
and comprehensive comparison of the performance of classical machine learning (ML)
and quantum machine learning techniques, as discussed in Sections 3.2 and 3.3. Our
experiments involve two main components: Firstly, assessing the algorithms’ performance
on artificially generated datasets with varying parametrizations, and secondly, evaluating
the algorithms’ performance on benchmark datasets using randomized search to optimize
hyperparameters, ensuring a fair comparison. By carefully selecting our experimental
setup, we avoid the issue of “cherry-picking” only a favorable subset of results, a common
problem in machine learning, leading to heavily biased conclusions.
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4.1. Artificially Generated Scikit Datasets

To generate the synthetic classification dataset, we utilized Scikit-learn’s
make_classification function. We employed two features and two classes while vary-
ing the number of samples to obtain a performance curve illustrating how the chosen
algorithms’ performance changes depending on the sample size.

We partitioned each dataset such that 20% of the original data were reserved as
a test set to evaluate the trained algorithm, producing the accuracy score used for our
assessment. Furthermore, each dataset was normalized such that all features are within the
unit interval [0, 1].

As a baseline, we employed the seven classical machine learning algorithms described
in Section 3.2, namely Lasso, Ridge, MLP, SVM, XGBoost, LightGBM, and CatBoost. We
used two different parameterizations for the classical machine learning algorithms for
our comparisons. Firstly, we applied the out-of-the-box implementation without any
hyperparameter optimization. Secondly, we used an optimized version of each algorithm
found through Scikit-learn’s RandomizedSearchCV by testing 20 different models.

We then examined 20 distinct parameter configurations, each for the VQC and QKE
classifiers, randomly selected from a predefined parameter distribution. Appendix A
discusses the parameter grids for all utilized algorithms and all experiments.

4.2. Artificially Generated SU(2) Datasets

For our synthetic SU(2) classification dataset, we used the concepts previously dis-
cussed in Section 3.5.1. We employed two complex features, i.e., resulting in four continuous
real features, and two classes while varying the number of samples to obtain a performance
curve illustrating how the chosen algorithms’ performance changes depending on the
sample size.

We partitioned each dataset such that 20% of the original data were reserved as a test
set to evaluate the trained algorithm, producing the accuracy score used for our assess-
ment. Furthermore, each dataset was normalized such that all features are within the unit
interval [0, 1].

As a baseline, we employed the seven classical machine learning algorithms de-
scribed in Section 3.2, namely Lasso, Ridge, MLP, SVM, XGBoost, LightGBM, and CatBoost.
We used two different parameterizations for the classical machine learning algorithms
for our comparisons. Firstly, we applied the out-of-the-box implementation without any
hyperparameter optimization. Secondly, we used an optimized version of each algorithm
found through Scikit-learn’s RandomizedSearchCV by testing 20 different models.

We then examined 20 distinct parameter configurations, each for the VQC and QKE
classifiers, randomly selected from a predefined parameter distribution. Appendix A
discusses the parameter grids for all utilized algorithms and all experiments.

4.3. Benchmark Datasets and Hyperparameter Optimization

Our last experiment was to test the two employed quantum machine learning al-
gorithms against the classical machine learning algorithms on six benchmark datasets
(Section 3.5). For this reason, we employed Scikit-learn’s RandomizedSearchCV to test
20 randomly parameterized models for each algorithm to report the best of these tests.
Again, we used a train-test-split to keep 20% of the original data to test the trained algo-
rithm. Furthermore, each dataset was normalized such that all features are within the unit
interval [0, 1].

5. Results

In this section, we present the results of our experiments, comparing the performance
of classical machine learning and quantum machine learning techniques on both artificially
generated datasets and benchmark datasets (Section 3.5). By analyzing the results, we
aim to draw meaningful insights into the strengths and weaknesses of each approach and
provide a blueprint for future studies in the area. Everything was calculated on a Lenovo
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ThinkCentre machine using an Intel(R) Core(TM) i7-4770 CPU 3.40GHz and 16GB RAM
and Linux 20.04. We used python 3.6 and the included packages are the following:

• numpy version: 1.18.5
• sklearn version: 0.23.1
• catboost version: 0.26.1
• xgboost version: 1.2.1
• lightgbm version: 3.2.1
• qiskit version: {‘qiskit-terra’: ‘0.19.2’, ‘qiskit-aer’: ‘0.10.3’,

‘qiskit-ignis’: ‘0.7.0’, ‘qiskit-ibmq-provider’: ‘0.18.3’, ‘qiskit-aqua’:
None, ‘qiskit’: ‘0.34.2’, ‘qiskit-nature’: ‘0.3.1’, ‘qiskit-finance’:
None, ‘qiskit-optimization’: None, ‘qiskit-machine-learning’: ‘0.3.1’}

• qiskit_machine_learning version: 0.3.1

5.1. Performance on Artificially Generated Scikit Datasets

In this section, we compare the performance of quantum machine learning algorithms
and classical machine learning algorithms on artificially generated classification datasets.
The comprehensive experimental setup can be found in Section 4.1.

Regarding accuracy and runtime, our findings are presented in Tables 1 and 2 and
Figures 3–5. The measured runtime includes hyperparameter tuning via randomized search
and five-fold cross-validating, training, and testing the model.

While QML algorithms perform reasonably well, we observe that they are not a match
for properly trained and/or sophisticated state-of-the-art classifiers. Even out-of-the-box
implementations of state-of-the-art ML algorithms outperform QML algorithms on these
artificially generated classification datasets.

The accuracy of the algorithms varies depending on the dataset size, with larger
datasets posing more challenges. CatBoost performed best in our experiments, both out-
of-the-box and when optimized in terms of high accuracy over all experiments. The
quantum kernel estimator is the fifth-best algorithm overall in terms of accuracy, though it
outperforms CatBoost regarding the runtime for CatBoost’s optimized version. XGBoost
and support vector classification (SVC) follow closely, with competitive performances in
terms of accuracy. However, variational quantum circuit struggles to achieve high accuracy
compared to sophisticated boosting classifiers or support vector machines. Furthermore,
we observe the best performance in terms of runtime for the two linear models, Lasso and
Ridge. We need to point out that Lasso and Ridge both feature increased runtimes for the
datasets of size 50; this is most likely due to the optimizer needing an increased number of
iterations due to the small number of samples and their relatively scattered distribution of
data points.

Other algorithms, such as multilayer perceptron, Ridge regression, Lasso regression,
and LightGBM, exhibit varying performances depending on dataset size and optimization.
Despite some reasonable results from QKE, we conclude that classical ML algorithms,
particularly sophisticated boosting classifiers, should be chosen to tackle similar problems
due to their ease of implementation, better runtime, and overall superior performance.

In summary, while QML algorithms have shown some promise, they cannot yet
compete with state-of-the-art classical ML algorithms on artificially generated classification
datasets in terms of accuracy and runtime.
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Table 1. This table presents the scores/accuracies of our experiments conducted on artificially
generated classification datasets of varying sizes, e.g., 50 and 100. Given these different dataset sizes,
this table is sorted in decreasing order of the average accuracy over all different sample sizes of each
algorithm. The parametrization for the QKE is as follows: QKE, feature map, quantum simulator,
C-Value for the SVM algorithm. The parametrization for the VQC is as follows: VQC, feature map,
Ansatz, optimizer, quantum simulator. For the classical machine learning algorithms, OutOfTheBox
means that we did not tune the hyperparameters of the employed algorithm and RandomSearch refers
to hyperparameter optimization via a randomized search.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

OutOfTheBox, CatBoost, results 1.0 1.0 0.98 0.97 0.925 0.93 0.9425 0.963929

RandomSearch, CatBoost, results 1.0 1.0 0.96 0.96 0.935 0.936667 0.9425 0.962024

RandomSearch, SVM, results 1.0 1.0 0.94 0.96 0.945 0.93 0.9375 0.958929

RandomSearch, XGBoost, results 1.0 0.95 0.98 0.96 0.93 0.933333 0.9425 0.956548

QKE, PauliFeatureMap, statevector-simulator, 1000.0 1.0 1.0 0.96 0.93 0.93 0.93 0.925 0.953571

OutOfTheBox, XGBoost, results 1.0 0.95 0.94 0.96 0.91 0.936667 0.95 0.949524

OutOfTheBox, SVM, results 1.0 1.0 0.92 0.92 0.94 0.933333 0.93 0.949048

QKE, ZZFeatureMap, statevector-simulator, 177.82794100389228 1.0 1.0 0.94 0.93 0.915 0.926667 0.9225 0.947738

QKE, ZFeatureMap, statevector-simulator, 5.623413251903491 1.0 1.0 0.92 0.91 0.925 0.93 0.9375 0.946071

RandomSearch, MLP, results 1.0 1.0 0.94 0.88 0.905 0.933333 0.94 0.942619

OutOfTheBox, MLP, results 1.0 1.0 0.94 0.89 0.905 0.916667 0.9275 0.939881

OutOfTheBox, Ridge, results 1.0 1.0 0.94 0.88 0.9 0.896667 0.9025 0.93131

QKE, ZFeatureMap, qasm-simulator, 5.623413251903491 1.0 1.0 0.94 0.82 0.91 0.92 0.9025 0.9275

QKE, ZZFeatureMap, statevector-simulator, 31.622776601683793 1.0 0.95 0.92 0.88 0.88 0.926667 0.9175 0.924881

QKE, PauliFeatureMap, statevector-simulator, 5.623413251903491 1.0 0.95 0.92 0.85 0.895 0.93 0.92 0.923571

QKE, ZFeatureMap, statevector-simulator, 0.1778279410038923 1.0 0.95 0.9 0.88 0.9 0.92 0.9125 0.923214

QKE, ZFeatureMap, aer-simulator, 0.1778279410038923 1.0 0.95 0.9 0.87 0.905 0.92 0.9125 0.9225

RandomSearch, Ridge, results 1.0 1.0 0.9 0.88 0.88 0.893333 0.9025 0.922262

QKE, ZZFeatureMap, qasm-simulator, 5.623413251903491 1.0 0.95 0.92 0.86 0.89 0.91 0.9175 0.921071

QKE, PauliFeatureMap, qasm-simulator, 5.623413251903491 1.0 0.95 0.92 0.86 0.89 0.91 0.9175 0.921071

VQC, ZFeatureMap, EfficientSU2, COBYLA, statevector-simulator 1.0 0.95 0.9 0.9 0.92 0.893333 0.88 0.920476

RandomSearch, Lasso, results 1.0 1.0 0.94 0.82 0.895 0.893333 0.89 0.919762

VQC, ZFeatureMap, EfficientSU2, COBYLA, qasm-simulator 1.0 0.95 0.9 0.88 0.92 0.91 0.845 0.915

QKE, PauliFeatureMap, aer-simulator, 1.0 0.9 0.95 0.92 0.89 0.89 0.93 0.91 0.912857

VQC, ZFeatureMap, EfficientSU2, SPSA, qasm-simulator 1.0 0.95 0.9 0.86 0.925 0.91 0.845 0.912857

VQC, ZFeatureMap, EfficientSU2, COBYLA, aer-simulator 1.0 0.95 0.92 0.88 0.9 0.906667 0.8275 0.912024

VQC, ZFeatureMap, EfficientSU2, SPSA, statevector-simulator 1.0 0.95 0.92 0.87 0.89 0.89 0.835 0.907857

VQC, ZFeatureMap, RealAmplitudes, COBYLA, aer-simulator 1.0 0.95 0.9 0.86 0.905 0.85 0.865 0.904286

RandomSearch, LightGBM, results 0.4 1.0 0.98 0.95 0.93 0.933333 0.9475 0.877262

OutOfTheBox, LightGBM, results 0.4 1.0 0.96 0.94 0.925 0.936667 0.9375 0.87131

VQC, PauliFeatureMap, EfficientSU2, SPSA, qasm-simulator 0.9 0.75 0.9 0.84 0.89 0.86 0.8675 0.858214

VQC, ZFeatureMap, EfficientSU2, NFT, statevector-simulator 1.0 0.95 0.86 0.72 0.9 0.776667 0.77 0.85381

QKE, PauliFeatureMap, aer-simulator, 31.622776601683793 1.0 0.85 0.96 0.7 0.875 0.826667 0.735 0.849524

QKE, ZFeatureMap, aer-simulator, 31.622776601683793 1.0 1.0 0.88 0.62 0.835 0.736667 0.7475 0.83131

QKE, PauliFeatureMap, aer-simulator, 1000.0 1.0 0.85 0.96 0.58 0.87 0.826667 0.665 0.821667

VQC, PauliFeatureMap, EfficientSU2, SPSA, aer-simulator 0.8 0.75 0.9 0.73 0.845 0.86 0.8525 0.819643

VQC, PauliFeatureMap, EfficientSU2, NFT, statevector-simulator 0.8 0.65 0.9 0.8 0.84 0.783333 0.8475 0.802976

QKE, ZFeatureMap, qasm-simulator, 177.82794100389228 0.9 1.0 0.88 0.57 0.875 0.73 0.6375 0.798929
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Table 1. Cont.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

VQC, ZZFeatureMap, EfficientSU2, COBYLA, aer-simulator 0.7 0.7 0.9 0.71 0.82 0.826667 0.835 0.784524

VQC, ZZFeatureMap, RealAmplitudes, COBYLA, qasm-simulator 0.8 0.7 0.9 0.62 0.775 0.816667 0.785 0.770952

VQC, ZZFeatureMap, RealAmplitudes, NFT, qasm-simulator 0.7 0.7 0.9 0.86 0.775 0.786667 0.535 0.750952

VQC, PauliFeatureMap, RealAmplitudes, NFT, qasm-simulator 0.6 0.7 0.9 0.49 0.8 0.763333 0.78 0.719048

VQC, ZZFeatureMap, RealAmplitudes, COBYLA, aer-simulator 0.5 0.65 0.84 0.73 0.83 0.83 0.575 0.707857

QKE, PauliFeatureMap, aer-simulator, 0.03162277660168379 0.4 0.35 0.9 0.65 0.86 0.923333 0.8275 0.701548

QKE, PauliFeatureMap, aer-simulator, 0.005623413251903491 0.4 0.35 0.9 0.49 0.75 0.766667 0.8275 0.640595

QKE, PauliFeatureMap, qasm-simulator, 0.005623413251903491 0.4 0.35 0.9 0.49 0.75 0.766667 0.8275 0.640595

QKE, ZFeatureMap, statevector-simulator, 0.005623413251903491 0.4 0.35 0.84 0.49 0.63 0.85 0.83 0.627143

VQC, ZFeatureMap, TwoLocal, SPSA, statevector-simulator 0.7 0.65 0.52 0.51 0.52 0.493333 0.58 0.567619

QKE, PauliFeatureMap, qasm-simulator, 0.001 0.4 0.35 0.9 0.49 0.48 0.753333 0.4975 0.552976

OutOfTheBox, Lasso, results 0.4 0.35 0.5 0.49 0.48 0.506667 0.4975 0.460595

VQC, ZZFeatureMap, TwoLocal, COBYLA, qasm-simulator 0.2 0.35 0.28 0.35 0.225 0.216667 0.3975 0.288452

VQC, PauliFeatureMap, TwoLocal, SPSA, qasm-simulator 0.2 0.35 0.26 0.38 0.185 0.223333 0.4 0.285476

VQC, PauliFeatureMap, TwoLocal, COBYLA, statevector-simulator 0.2 0.35 0.28 0.36 0.19 0.223333 0.39 0.284762

VQC, PauliFeatureMap, TwoLocal, SPSA, statevector-simulator 0.2 0.35 0.28 0.36 0.19 0.223333 0.39 0.284762

Table 2. This table presents the runtimes of our experiments conducted on artificially generated
classification datasets of varying sizes, e.g., 50 and 100. Given these different dataset sizes, this table
is sorted in increasing order of the average runtime over all different sample sizes of each algorithm.
The measured runtime includes hyperparameter tuning via randomized search and five-fold cross-
validating, training, and testing the model. The parametrization for the QKE is as follows: QKE,
feature map, quantum simulator, C-Value for the SVM algorithm. The parametrization for the VQC
is as follows: VQC, feature map, Ansatz, optimizer, quantum simulator. For the classical machine
learning algorithms, OutOfTheBox means that we did not tune the hyperparameters of the employed
algorithm and RandomSearch refers to hyperparameter optimization via a randomized search.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

OutOfTheBox, Lasso, results 0.001473 0.001162 0.001158 0.001123 0.001141 0.001153 0.001159 0.001196

OutOfTheBox, Ridge, results 0.002933 0.001553 0.001433 0.001894 0.002628 0.002575 0.002436 0.002207

OutOfTheBox, SVM, results 0.001021 0.000648 0.001039 0.002457 0.005501 0.017243 0.0295 0.008201

OutOfTheBox, XGBoost, results 0.016881 0.017187 0.022922 0.038751 0.05111 0.151807 0.120973 0.059947

OutOfTheBox, LightGBM, results 0.009655 0.024887 0.104107 0.124862 0.1898 0.489043 0.218343 0.165814

RandomSearch, Lasso, results 1.045328 0.113413 0.102258 0.105736 0.104031 0.120507 0.116006 0.243897

RandomSearch, Ridge, results 1.120708 0.122188 0.114706 0.175996 0.226949 0.255845 0.25067 0.323866

RandomSearch, SVM, results 1.06376 0.135593 0.163875 0.159699 0.203163 0.354172 0.442741 0.360429

OutOfTheBox, MLP, results 0.082953 0.091169 0.121317 0.232771 0.451674 0.947373 1.376965 0.472032

OutOfTheBox, CatBoost, results 0.389826 0.411965 0.654325 0.783825 0.867595 1.085298 1.1931 0.769419

RandomSearch, LightGBM, results 1.711872 0.376494 0.58387 0.704715 0.728305 0.897428 1.000039 0.857532

RandomSearch, XGBoost, results 1.572541 0.399174 0.441059 0.577969 0.99776 1.467667 1.352474 0.972663

VQC, ZFeatureMap, TwoLocal, SPSA,
statevector-simulator 0.502447 0.82391 1.319602 2.9078 6.75953 11.81601 18.064725 6.027718

VQC, PauliFeatureMap, TwoLocal,
COBYLA, statevector-simulator 0.536454 0.886945 1.757877 3.486975 8.137821 14.688881 22.79476 7.469959

VQC, PauliFeatureMap, TwoLocal, SPSA,
statevector-simulator 1.981785 0.715829 1.621059 3.488372 8.517624 15.170185 22.300972 7.685118

VQC, PauliFeatureMap, TwoLocal, SPSA,
qasm-simulator 0.750719 1.154406 2.53449 5.000262 11.265137 19.493945 29.031463 9.89006

VQC, ZZFeatureMap, TwoLocal,
COBYLA, qasm-simulator 0.734865 1.097202 2.514703 4.990832 11.895971 19.283406 29.318269 9.976464

RandomSearch, MLP, results 3.899634 3.298337 5.003618 9.651274 14.729924 20.652249 31.202069 12.633872

QKE, ZFeatureMap,
statevector-simulator, 0.1778279410038923 1.343983 0.802286 2.170829 5.965899 18.504546 36.659922 59.889941 17.905344
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Table 2. Cont.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

QKE, ZFeatureMap, statevector-simulator,
0.005623413251903491 0.411296 0.697461 2.154164 6.122564 19.670819 37.297334 62.1901 18.363391

QKE, PauliFeatureMap,
statevector-simulator, 1000.0 0.470933 0.956269 2.721257 7.2817 21.356298 40.130716 67.422908 20.048583

QKE, PauliFeatureMap,
statevector-simulator, 5.623413251903491 0.501446 0.922237 2.775664 7.454642 21.780637 40.426036 66.758927 20.088513

QKE, ZFeatureMap,
statevector-simulator, 5.623413251903491 0.378018 0.757363 2.141677 4.962464 19.901565 41.913003 71.453831 20.215417

QKE, ZZFeatureMap,
statevector-simulator, 31.622776601683793 0.214386 0.567282 1.650304 5.302437 20.77629 42.614517 72.871078 20.570899

QKE, ZZFeatureMap,
statevector-simulator, 177.82794100389228 0.461093 0.943574 2.780804 7.580857 22.906811 41.955521 68.045553 20.667745

RandomSearch, CatBoost, results 8.627878 10.873142 26.728395 35.20857 36.902272 56.253265 37.994929 30.369779

VQC, ZFeatureMap, RealAmplitudes,
COBYLA, aer-simulator 47.438183 63.446748 192.148143 404.233954 1060.291657 1619.397205 2290.222381 811.025467

VQC, ZZFeatureMap, RealAmplitudes,
COBYLA, qasm-simulator 43.113636 83.175558 166.040938 421.278374 1064.238564 1702.893006 2719.340939 885.725859

VQC, ZZFeatureMap, RealAmplitudes,
COBYLA, aer-simulator 45.909504 83.201411 152.20265 509.1956 1158.902532 1654.065907 2603.942577 886.774312

VQC, ZFeatureMap, EfficientSU2,
COBYLA, statevector-simulator 48.546243 81.030425 190.958188 402.121722 1044.855825 1807.676357 2751.241623 903.775769

VQC, ZFeatureMap, EfficientSU2,
COBYLA, aer-simulator 57.728111 100.590997 240.174666 507.58709 1253.080578 2139.855218 3196.07247 1070.727019

VQC, ZFeatureMap, EfficientSU2,
COBYLA, qasm-simulator 59.058898 100.862056 242.285405 507.171731 1262.650143 2151.503499 3191.745568 1073.611043

VQC, ZZFeatureMap, EfficientSU2,
COBYLA, aer-simulator 59.651649 105.629842 254.918442 601.245125 1335.017904 2260.354294 3366.65501 1140.496038

QKE, ZFeatureMap, qasm-simulator,
177.82794100389228 4.589478 13.184805 82.633779 332.71327 1337.102907 3020.689579 5368.201509 1451.30219

QKE, ZZFeatureMap, qasm-simulator,
5.623413251903491 4.352785 15.921249 97.165028 390.472092 1573.103197 3549.629798 6282.670251 1701.902057

QKE, PauliFeatureMap, aer-simulator,
0.03162277660168379 3.549125 15.094144 98.970568 393.496921 1581.662241 3554.962927 6317.355669 1709.298799

QKE, PauliFeatureMap, aer-simulator,
0.005623413251903491 3.373257 15.311538 99.2351 390.52131 1574.108371 3555.3048 6339.026443 1710.982974

QKE, PauliFeatureMap, qasm-simulator,
0.005623413251903491 3.812115 19.479307 101.289711 404.432384 1636.24686 3642.937393 6307.605039 1730.828973

QKE, PauliFeatureMap, aer-simulator,
31.622776601683793 3.848578 17.062982 101.387533 408.69903 1635.863136 3674.976257 6555.811507 1771.092718

VQC, ZFeatureMap, EfficientSU2, NFT,
statevector-simulator 98.831974 167.48274 394.378037 836.913451 2197.652135 3719.047116 5621.134708 1862.205737

VQC, PauliFeatureMap, EfficientSU2,
NFT, statevector-simulator 103.914165 177.047181 423.423603 1014.963511 2338.078356 3953.861723 5905.433094 1988.10309

VQC, ZZFeatureMap, RealAmplitudes,
NFT, qasm-simulator 105.987181 183.918751 427.016702 1036.605473 2366.463152 4052.521035 6042.538015 2030.721473

VQC, PauliFeatureMap, RealAmplitudes,
NFT, qasm-simulator 103.625823 180.306618 425.488049 1041.160999 2371.366715 4044.856475 6048.573929 2030.768373

VQC, ZFeatureMap, EfficientSU2, SPSA,
statevector-simulator 119.513477 200.101417 474.113288 1008.932874 2601.731917 4505.306268 6781.089745 2241.541284

VQC, ZFeatureMap, EfficientSU2, SPSA,
qasm-simulator 145.295744 256.711762 609.791229 1272.675059 3150.527537 5366.116602 8009.649075 2687.25243

VQC, PauliFeatureMap, EfficientSU2,
SPSA, aer-simulator 144.280811 259.102175 625.193096 1502.476923 3356.340799 5689.827615 8454.144295 2861.623673

VQC, PauliFeatureMap, EfficientSU2,
SPSA, qasm-simulator 152.666649 269.680847 642.400747 1505.762521 3388.662998 5709.505826 8438.957709 2872.519614

QKE, ZFeatureMap, aer-simulator,
31.622776601683793 5.993241 25.852654 166.703792 669.201309 2934.169598 6729.31411 12,037.430687 3224.095056

QKE, PauliFeatureMap, qasm-simulator,
5.623413251903491 8.384715 32.795287 206.595473 890.414904 3753.488868 8537.768589 15,232.745542 4094.599054

QKE, PauliFeatureMap, qasm-simulator,
0.001 7.792093 32.566225 207.832614 896.042249 3778.324351 8610.335147 15,348.810142 4125.957546

QKE, ZFeatureMap, aer-simulator,
0.1778279410038923 10.511296 43.335078 276.810734 1111.545614 4799.032996 10,979.135601 19,768.073574 5284.063556

QKE, ZFeatureMap, qasm-simulator,
5.623413251903491 11.573929 43.186982 277.291314 1113.664313 4842.587094 10,978.908476 19,798.821156 5295.147609

QKE, PauliFeatureMap, aer-simulator,
1000.0 12.596938 51.788837 332.281104 1434.208601 5986.631006 13,592.866065 24,280.544075 6527.273804

QKE, PauliFeatureMap, aer-simulator, 1.0 12.261604 51.508959 332.561822 1423.111135 5984.902587 13,603.956887 24,362.83202 6538.733573
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Figure 3. These figures depict the results from our experiments, comparing the five best QML and classical ML algorithms on artificially generated datasets in terms of accuracy. The
upper part illustrates the accuracy of the algorithms on different sample sizes, while the lower part demonstrates how the runtimes change with increasing size of the test dataset. The
right part contains the legend, indicating which algorithms were used, and more specifically, the different parametrizations of the employed quantum machine learning algorithms.
Furthermore, the legend is sorted in decreasing order of the average accuracy of the employed algorithms. The parametrization for the QKE is as follows: QKE, feature map, quantum
simulator, C-Value for the SVM algorithm.
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Figure 4. These figures depict the results from our experiments, comparing differently parameterized classical machine learning algorithms on artificially generated datasets. The
upper part illustrates the behavior of the accuracies, while the lower part demonstrates how the run times change with the increasing size of the test dataset. The right part contains the
legend, indicating which algorithms were used, and more specifically, the different parametrizations of the employed machine learning algorithms. Furthermore, the legend is sorted in
decreasing order of the average accuracy of the employed algorithms.
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VQC, ZZFeatureMap, EfficientSU2, COBYLA, aer-simulator
VQC, ZZFeatureMap, RealAmplitudes, COBYLA, qasm-simulator
VQC, ZZFeatureMap, RealAmplitudes, NFT, qasm-simulator
VQC, PauliFeatureMap, RealAmplitudes, NFT, qasm-simulator
VQC, ZZFeatureMap, RealAmplitudes, COBYLA, aer-simulator
QKE, PauliFeatureMap, aer-simulator, 0.03162277660168379
QKE, PauliFeatureMap, aer-simulator, 0.005623413251903491
QKE, PauliFeatureMap, qasm-simulator, 0.005623413251903491
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VQC, ZFeatureMap, TwoLocal, SPSA, statevector-simulator
QKE, PauliFeatureMap, qasm-simulator, 0.001
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Figure 5. These figures depict the results from our experiments for the artificially generated datasets, comparing differently parameterized QML algorithms on artificially generated
datasets. The upper part illustrates the behavior of the accuracies, while the lower part demonstrates how the runtimes change with the increasing size of the test datasets. The right part
contains the legend, indicating which algorithms were used, and more specifically, the different parametrizations of the employed quantum machine learning algorithms. Furthermore,
the legend is sorted in decreasing order of the average accuracy of the employed algorithms. The parametrization for the QKE is as follows: QKE, feature map, quantum simulator,
C-Value for the SVM algorithm. The parametrization for the VQC is as follows: VQC, feature map, Ansatz, optimizer, quantum simulator.
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5.2. Performance on Artificially Generated SU2 Datasets

In this section, we compare the performance of quantum machine learning algorithms
and classical machine learning algorithms on artificially generated classification datasets
based on Lie group structures. The detailed experimental setup can be found in Section 4.2.

Regarding accuracy and runtime, our findings are presented in Tables 3 and 4 and
Figures 6–8. While QML algorithms perform reasonably well, we observe that they are not
a match for properly trained and/or sophisticated state-of-the-art classifiers. Even out-of-
the-box implementations of state-of-the-art ML algorithms outperform QML algorithms on
artificially generated classification datasets that are particularly suited for QML.

The accuracy of the algorithms varies depending on the dataset size, with larger
datasets providing increased accuracy for most algorithms. CatBoost performed best
in our experiments, both out-of-the-box and when optimized in terms of high accuracy
over all experiments. The quantum kernel estimator is the fifth-best algorithm overall
in terms of accuracy. However, we observe that, on average, CatBoost with improved
hyperparameters performs best over all experiments, but is outperformed by the best QKE
implementation for 100 and 500 data points. Thus, we conclude that quantum kernel
estimators can capture the complexity of this SU(2)-generated dataset, but overall, one is
better off with an out-of-the-box CatBoost implementation. This means that we do not
observe a quantum advantage for this type of data, but rather that the employed quantum
kernel estimator behaves similarly to classical machine learning algorithms, i.e., it exhibits
reasonable performance but does not perform best for all datasets, even the ones created by
exploiting quantum symmetry properties.

Other algorithms, such as multilayer perceptron, Ridge regression, Lasso regression,
and LightGBM, exhibit varying performances depending on dataset size and optimization.
Despite some reasonable results from QKE, we conclude that classical ML algorithms,
particularly sophisticated boosting classifiers, should be chosen to tackle similar problems
due to their ease of implementation, better runtime, and overall superior performance.
Furthermore, we again observe the best performance in terms of runtime for the two linear
models, Lasso and Ridge. Moreover, again, we observe that Lasso and Ridge both feature
increased runtimes for the datasets of size 50.

In summary, while QML algorithms have shown some promise, they cannot yet
compete with state-of-the-art classical ML algorithms even on these SU(2)-datasets, where
the authors intended to provide evidence for the quantum advantage for datasets generated
from symmetry properties inherent to quantum mechanics.

Table 3. This table presents the scores/accuracies of our experiments conducted on classification
datasets generated via SU(2) generators of varying sizes, e.g., 50 and 100. Given these different dataset
sizes, this table is sorted in decreasing order of the average accuracy over all different sample sizes of
each algorithm. The parametrization for the QKE is as follows: QKE, feature map, quantum simulator,
C-Value for the SVM algorithm. The parametrization for the VQC is as follows: VQC, feature map,
Ansatz, optimizer, quantum simulator. For the classical machine learning algorithms, OutOfTheBox
means that we did not tune the hyperparameters of the employed algorithm and RandomSearch refers
to hyperparameter optimization via a randomized search.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

RandomSearch, CatBoost, results 0.9 0.55 0.78 0.78 0.88 0.906667 0.915 0.815952

OutOfTheBox, CatBoost, results 0.6 0.7 0.76 0.85 0.895 0.906667 0.9375 0.807024

RandomSearch, XGBoost, results 0.6 0.65 0.74 0.84 0.87 0.86 0.9425 0.786071

OutOfTheBox, XGBoost, results 0.4 0.75 0.76 0.86 0.89 0.926667 0.9 0.78381

QKE, ZFeatureMap, statevector-simulator, 1000.0 0.7 0.8 0.74 0.79 0.8 0.806667 0.8475 0.783452

RandomSearch, LightGBM, results 0.3 0.6 0.74 0.87 0.89 0.903333 0.9175 0.745833

OutOfTheBox, LightGBM, results 0.3 0.6 0.74 0.9 0.85 0.923333 0.885 0.742619

QKE, ZZFeatureMap, statevector-simulator, 177.82794100389228 0.8 0.55 0.54 0.71 0.795 0.826667 0.85 0.724524
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Table 3. Cont.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

QKE, PauliFeatureMap, aer-simulator, 5.623413251903491 0.7 0.65 0.44 0.73 0.725 0.683333 0.72 0.664048

QKE, ZZFeatureMap, qasm-simulator, 31.622776601683793 0.7 0.7 0.7 0.59 0.615 0.62 0.665 0.655714

QKE, ZZFeatureMap, statevector-simulator, 0.1778279410038923 0.8 0.5 0.62 0.55 0.645 0.693333 0.7375 0.649405

QKE, ZZFeatureMap, aer-simulator, 0.1778279410038923 0.4 0.6 0.7 0.67 0.625 0.713333 0.7075 0.630833

QKE, PauliFeatureMap, aer-simulator, 0.1778279410038923 0.5 0.65 0.64 0.63 0.615 0.68 0.7 0.630714

QKE, PauliFeatureMap, statevector-simulator, 0.1778279410038923 0.4 0.65 0.6 0.55 0.75 0.666667 0.73 0.620952

OutOfTheBox, MLP, results 0.8 0.55 0.52 0.63 0.555 0.56 0.62 0.605

VQC, ZZFeatureMap, EfficientSU2, SPSA, aer-simulator 0.7 0.5 0.6 0.6 0.605 0.576667 0.645 0.60381

VQC, ZZFeatureMap, EfficientSU2, COBYLA, qasm-simulator 0.6 0.6 0.62 0.54 0.6 0.606667 0.66 0.60381

OutOfTheBox, SVM, results 0.4 0.65 0.44 0.59 0.68 0.676667 0.695 0.590238

RandomSearch, SVM, results 0.2 0.7 0.8 0.65 0.78 0.503333 0.4725 0.586548

VQC, ZZFeatureMap, EfficientSU2, NFT, statevector-simulator 0.5 0.6 0.54 0.56 0.7 0.58 0.61 0.584286

VQC, ZZFeatureMap, RealAmplitudes, COBYLA, statevector-simulator 0.6 0.65 0.6 0.53 0.575 0.543333 0.5775 0.582262

VQC, PauliFeatureMap, EfficientSU2, COBYLA, aer-simulator 0.4 0.75 0.52 0.55 0.56 0.606667 0.6225 0.572738

VQC, PauliFeatureMap, RealAmplitudes, NFT, statevector-simulator 0.3 0.65 0.52 0.69 0.63 0.586667 0.62 0.570952

OutOfTheBox, Ridge, results 0.7 0.55 0.62 0.48 0.575 0.533333 0.525 0.569048

VQC, ZFeatureMap, RealAmplitudes, COBYLA, qasm-simulator 0.7 0.5 0.52 0.57 0.59 0.573333 0.5275 0.56869

VQC, ZZFeatureMap, EfficientSU2, NFT, aer-simulator 0.4 0.7 0.56 0.58 0.575 0.543333 0.6175 0.567976

QKE, ZZFeatureMap, aer-simulator, 31.622776601683793 0.4 0.55 0.6 0.62 0.625 0.596667 0.555 0.56381

QKE, PauliFeatureMap, aer-simulator, 31.622776601683793 0.6 0.45 0.6 0.56 0.57 0.62 0.5425 0.563214

VQC, ZZFeatureMap, RealAmplitudes, COBYLA, aer-simulator 0.6 0.65 0.48 0.55 0.535 0.573333 0.545 0.561905

QKE, ZFeatureMap, qasm-simulator, 177.82794100389228 0.6 0.7 0.5 0.52 0.5 0.556667 0.53 0.558095

VQC, ZFeatureMap, EfficientSU2, COBYLA, aer-simulator 0.7 0.6 0.5 0.48 0.525 0.48 0.615 0.557143

VQC, ZZFeatureMap, RealAmplitudes, NFT, qasm-simulator 0.6 0.4 0.58 0.47 0.66 0.573333 0.61 0.55619

VQC, ZFeatureMap, EfficientSU2, COBYLA, qasm-simulator 0.7 0.5 0.56 0.55 0.51 0.566667 0.505 0.555952

QKE, PauliFeatureMap, qasm-simulator, 0.1778279410038923 0.5 0.35 0.36 0.63 0.655 0.693333 0.7025 0.555833

QKE, ZZFeatureMap, qasm-simulator, 0.001 0.7 0.45 0.66 0.57 0.54 0.466667 0.4725 0.55131

VQC, ZFeatureMap, RealAmplitudes, SPSA, aer-simulator 0.7 0.5 0.5 0.59 0.495 0.516667 0.555 0.550952

VQC, ZFeatureMap, EfficientSU2, SPSA, statevector-simulator 0.3 0.8 0.44 0.59 0.55 0.563333 0.595 0.548333

VQC, PauliFeatureMap, RealAmplitudes, NFT, qasm-simulator 0.4 0.55 0.6 0.54 0.59 0.553333 0.58 0.544762

VQC, ZFeatureMap, RealAmplitudes, COBYLA, aer-simulator 0.8 0.45 0.48 0.48 0.52 0.513333 0.545 0.54119

VQC, ZFeatureMap, EfficientSU2, COBYLA, statevector-simulator 0.5 0.55 0.56 0.56 0.54 0.516667 0.56 0.540952

QKE, ZFeatureMap, aer-simulator, 1000.0 0.6 0.55 0.6 0.52 0.505 0.486667 0.52 0.540238

VQC, PauliFeatureMap, EfficientSU2, SPSA, qasm-simulator 0.4 0.45 0.56 0.64 0.575 0.533333 0.6075 0.537976

VQC, ZFeatureMap, RealAmplitudes, NFT, aer-simulator 0.5 0.4 0.62 0.52 0.58 0.533333 0.5875 0.534405

VQC, PauliFeatureMap, EfficientSU2, SPSA, aer-simulator 0.4 0.45 0.54 0.54 0.64 0.56 0.6 0.532857

QKE, ZFeatureMap, statevector-simulator, 0.1778279410038923 0.5 0.45 0.54 0.54 0.585 0.556667 0.555 0.532381

QKE, ZFeatureMap, aer-simulator, 1.0 0.4 0.5 0.4 0.63 0.56 0.603333 0.575 0.524048

QKE, ZFeatureMap, qasm-simulator, 1000.0 0.6 0.5 0.44 0.59 0.525 0.443333 0.5 0.514048

QKE, PauliFeatureMap, statevector-simulator, 0.03162277660168379 0.5 0.45 0.58 0.56 0.46 0.476667 0.5675 0.513452

RandomSearch, MLP, results 0.3 0.25 0.5 0.6 0.635 0.64 0.6675 0.513214

QKE, ZFeatureMap, aer-simulator, 177.82794100389228 0.4 0.65 0.54 0.46 0.495 0.48 0.565 0.512857

QKE, ZFeatureMap, qasm-simulator, 0.005623413251903491 0.5 0.65 0.48 0.47 0.515 0.48 0.485 0.511429

RandomSearch, Ridge, results 0.4 0.55 0.52 0.46 0.56 0.52 0.5675 0.511071

OutOfTheBox, Lasso, results 0.5 0.7 0.4 0.51 0.495 0.46 0.495 0.508571

RandomSearch, Lasso, results 0.6 0.45 0.44 0.45 0.515 0.533333 0.54 0.504048



Entropy 2023, 25, 992 20 of 32

Table 4. This table presents the scores/accuracies of our experiments conducted on classification
datasets generated via SU(2) generators of varying sizes, e.g., 50 and 100. Given these different dataset
sizes, this table is sorted in increasing order of the average runtime over all different sample sizes of
each algorithm. The measured runtime includes hyperparameter tuning via randomized search and
five-fold cross-validating, training, and testing the model. The parametrization for the QKE is as follows:
QKE, feature map, quantum simulator, C-Value for the SVM algorithm. The parametrization for the
VQC is as follows: VQC, feature map, Ansatz, optimizer, quantum simulator. For the classical machine
learning algorithms, OutOfTheBox means that we did not tune the hyperparameters of the employed
algorithm and RandomSearch refers to hyperparameter optimization via a randomized search.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

OutOfTheBox, Lasso, results 0.004103 0.000646 0.000661 0.001249 0.000804 0.000694 0.000691 0.001264

OutOfTheBox, Ridge, results 0.003733 0.002898 0.002786 0.029688 0.001899 0.001929 0.00178 0.006388

OutOfTheBox, SVM, results 0.00111 0.000919 0.002298 0.006078 0.012139 0.025935 0.04667 0.013593

RandomSearch, Lasso, results 1.055654 0.123047 0.103457 0.104252 0.117591 0.124301 0.115839 0.249163

RandomSearch, Ridge, results 1.084348 0.122741 0.138248 0.145562 0.156783 0.129915 0.14262 0.274317

OutOfTheBox, XGBoost, results 0.026616 0.040969 0.207265 1.348421 0.190274 0.123878 0.205496 0.306131

RandomSearch, SVM, results 1.133957 0.167929 0.131167 0.147877 0.233314 0.444834 0.438209 0.385327

OutOfTheBox, CatBoost, results 1.072432 0.439886 0.68483 0.813699 0.936663 1.13145 1.252242 0.904457

RandomSearch, XGBoost, results 1.555324 0.398761 0.517864 0.817118 1.79372 2.056436 2.289563 1.346969

OutOfTheBox, LightGBM, results 0.134499 0.935128 0.319397 1.125076 5.646488 4.908206 4.312101 2.482985

OutOfTheBox, MLP, results 0.447343 0.385258 0.303056 1.874662 2.165486 5.582801 6.986128 2.534962

RandomSearch, LightGBM, results 3.76752 0.726469 0.892496 1.349411 5.942432 5.569574 3.741842 3.141392

QKE, ZFeatureMap,
statevector-simulator, 1000.0 0.588803 1.105112 3.115228 9.692818 24.488245 46.863381 75.605305 23.065556

QKE, ZZFeatureMap,
statevector-simulator,
177.82794100389228

1.023377 2.014738 6.133744 14.08855 36.209869 63.510698 97.575217 31.508028

QKE, PauliFeatureMap,
statevector-simulator,
0.1778279410038923

1.110054 2.154783 6.591036 14.487802 36.089562 62.912848 97.64273 31.569831

RandomSearch, MLP, results 16.90452 15.129156 5.671446 42.576796 38.564641 70.807035 64.602048 36.322235

QKE, ZFeatureMap,
statevector-simulator,
0.1778279410038923

1.235019 1.984607 5.547594 15.333808 41.977686 79.052726 127.710628 38.977438

QKE, PauliFeatureMap,
statevector-simulator,
0.03162277660168379

1.453579 2.804056 9.085313 19.440721 47.633347 81.740004 128.186636 41.477665

QKE, ZZFeatureMap,
statevector-simulator,
0.1778279410038923

2.194236 4.856549 10.043207 20.391739 57.658834 97.515617 151.070676 49.104408

RandomSearch, CatBoost, results 18.350174 35.654742 40.725868 70.65956 68.788446 68.958949 43.685619 49.546194

VQC, ZFeatureMap,
RealAmplitudes, COBYLA,

qasm-simulator
55.500573 100.423827 241.59017 577.400258 1286.962867 2164.282246 3315.185871 1105.906545

VQC, ZFeatureMap,
RealAmplitudes, COBYLA,

aer-simulator
61.174412 116.296597 274.944359 672.215972 1509.987298 2624.710516 4058.819283 1331.164062

VQC, ZZFeatureMap,
RealAmplitudes, COBYLA,

statevector-simulator
68.600875 123.207802 380.446356 770.716185 1635.89919 2621.242822 3805.021206 1343.590634

VQC, PauliFeatureMap,
EfficientSU2, COBYLA,

aer-simulator
89.832315 163.70887 480.279572 975.291255 2084.174564 3407.844934 5050.433405 1750.223559

VQC, ZZFeatureMap, EfficientSU2,
COBYLA, qasm-simulator 88.21128 163.988243 480.35886 973.614566 2068.950356 3425.564759 5057.849761 1751.219689

VQC, ZFeatureMap, EfficientSU2,
COBYLA, qasm-simulator 85.847133 156.496491 381.392026 888.461174 2300.527629 3878.06995 6136.175247 1975.281379

VQC, ZFeatureMap, EfficientSU2,
COBYLA, statevector-simulator 103.51928 191.066923 456.017277 1079.39181 2305.444005 3940.212229 5958.277453 2004.846997
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Table 4. Cont.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

VQC, ZFeatureMap,
RealAmplitudes, NFT,

aer-simulator
111.03018 203.235006 491.978903 1181.668828 2620.544781 4428.84701 6770.538213 2258.263274

VQC, ZFeatureMap, EfficientSU2,
COBYLA, aer-simulator 113.765615 205.589837 516.289881 1202.288662 2663.121947 4533.378097 6730.84663 2280.754381

VQC, ZZFeatureMap,
RealAmplitudes, COBYLA,

aer-simulator
111.686165 209.034186 638.294179 1296.48554 2869.708946 4781.981067 7074.925479 2426.016509

VQC, PauliFeatureMap,
RealAmplitudes, NFT,

qasm-simulator
163.24924 303.991817 936.898012 1915.698994 4145.466983 6900.43208 10,273.374065 3519.873027

VQC, ZFeatureMap, EfficientSU2,
SPSA, statevector-simulator 190.048137 341.454534 823.875859 1930.637818 4188.237967 6999.258807 10,586.6448 3580.02256

VQC, PauliFeatureMap,
RealAmplitudes, NFT,
statevector-simulator

190.485358 349.906865 1108.180672 2248.345232 4814.143806 7883.610885 11,821.059517 4059.390334

VQC, ZFeatureMap,
RealAmplitudes, SPSA,

aer-simulator
195.45132 357.101921 856.679886 2110.857992 4766.449826 8178.593323 12,549.799371 4144.99052

VQC, ZZFeatureMap,
RealAmplitudes, NFT,

qasm-simulator
224.602174 405.497928 1270.741552 2674.141109 5725.217252 9676.191547 14,306.04881 4897.491482

VQC, ZZFeatureMap, EfficientSU2,
NFT, statevector-simulator 243.54281 457.172266 1372.528644 2784.422174 5896.297166 9666.126191 14,179.331314 4942.774366

QKE, ZFeatureMap, aer-simulator,
1.0 9.847104 40.399745 258.379268 1171.612393 4847.638381 10,994.736629 19,569.132042 5270.249366

VQC, ZZFeatureMap, EfficientSU2,
NFT, aer-simulator 259.240503 473.126474 1408.601057 2903.563737 6301.786963 10,332.959201 15,345.314436 5289.227482

VQC, PauliFeatureMap,
EfficientSU2, SPSA, aer-simulator 316.140029 574.301472 1727.700192 3530.722918 6706.076042 9861.491595 14,726.388476 5348.974389

QKE, ZFeatureMap, aer-simulator,
1000.0 10.898171 46.773357 297.390107 1339.784466 5587.107904 11,607.623344 19,440.97092 5475.79261

VQC, ZZFeatureMap, EfficientSU2,
SPSA, aer-simulator 243.897139 463.586231 1368.88324 2789.133991 6570.676821 11,456.705765 17,726.796588 5802.811396

VQC, PauliFeatureMap,
EfficientSU2, SPSA, qasm-simulator 348.216144 639.131772 1898.469802 3945.807249 8437.848893 13,815.446673 20,511.034176 7085.136387

QKE, ZFeatureMap,
qasm-simulator, 1000.0 11.579451 47.675482 344.543775 1568.903939 6191.830912 14,908.467701 27,002.766078 7153.681048

QKE, ZFeatureMap, aer-simulator,
177.82794100389228 14.163619 56.856619 359.793343 1620.482626 6647.990849 15,084.137764 26,961.326713 7249.250219

QKE, ZFeatureMap,
qasm-simulator,

177.82794100389228
16.35717 77.129608 482.478877 2237.68152 9219.954344 18,899.046552 26,623.312487 8222.28008

QKE, ZFeatureMap,
qasm-simulator,

0.005623413251903491
16.184459 68.030962 439.889123 2003.14586 8339.157072 18,939.866418 33,875.189822 9097.351959

QKE, PauliFeatureMap,
aer-simulator, 31.622776601683793 16.822446 70.391611 549.285996 2267.794391 9148.306499 20,490.131389 36,687.638808 9890.05302

QKE, ZZFeatureMap, aer-simulator,
31.622776601683793 17.382234 70.921393 552.720236 2290.305118 9223.01824 20,681.450668 36,991.554065 9975.335993

QKE, ZZFeatureMap, aer-simulator,
0.1778279410038923 19.618006 80.653612 632.012298 2628.407038 9714.431489 20,666.725844 36,766.378776 10,072.603866

QKE, PauliFeatureMap,
aer-simulator, 5.623413251903491 20.03461 81.805468 657.437384 2646.600018 10,751.043722 24,303.410594 42,050.186601 11,501.502628

QKE, ZZFeatureMap,
qasm-simulator, 0.001 22.474871 94.5939 748.53639 3061.492908 11,095.037557 24,179.108494 42,833.544061 11,719.255454

QKE, PauliFeatureMap,
aer-simulator, 0.1778279410038923 15.70449 64.293166 539.372432 2052.767245 10,360.381735 28,219.134103 53,610.138579 13,551.684536

QKE, PauliFeatureMap,
qasm-simulator,

0.1778279410038923
28.777769 121.675706 961.248534 3951.052992 16,159.343561 35,692.431334 48,691.262451 15,086.541764

QKE, ZZFeatureMap,
qasm-simulator,

31.622776601683793
28.201021 110.795119 877.141222 3647.413017 16,257.207805 38,819.796065 69,300.661749 18,434.459428
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Figure 6. These figures depict the results from our experiments, comparing the five best QML and classical ML algorithms in terms of accuracy on datasets using the exponential map to
create SU(2)-transformations on complex vectors. The upper part illustrates the accuracy of the algorithms on different sample sizes, while the lower part demonstrates how the runtimes
change with the increasing size of the test dataset. The right part contains the legend, indicating which algorithms were used, and, more specifically, the different parametrizations of the
employed quantum machine learning algorithms. Furthermore, the legend is sorted in decreasing order of the average accuracy of the employed algorithms. The parametrization for the
QKE is as follows: QKE, feature map, quantum simulator, C-Value for the SVM algorithm.
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Figure 7. These figures depict the results from our experiments, comparing differently parameterized classical machine learning algorithms on the SU(2)-generated datasets. The upper
part illustrates the behavior of the accuracies, while the lower part demonstrates how the run times change with the increasing size of the test dataset. The right part contains the
legend, indicating which algorithms were used, and more specifically, the different parametrizations of the employed machine learning algorithms. Furthermore, the legend is sorted in
decreasing order of the average accuracy of the employed algorithms.
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Figure 8. These figures depict the results from our experiments for the artificially generated datasets, comparing differently parameterized QML algorithms on the SU(2)-generated
datasets. The upper part illustrates the behavior of the accuracies, while the lower part demonstrates how the runtimes change with the increasing size of the test datasets. The right part
contains the legend, indicating which algorithms were used and, more specifically, the different parametrizations of the employed quantum machine learning algorithms. Furthermore,
the legend is sorted in decreasing order of the average accuracy of the employed algorithms. The parametrization for the QKE is as follows: QKE, feature map, quantum simulator,
C-Value for the SVM algorithm. The parametrization for the VQC is as follows: VQC, feature map, Ansatz, optimizer, quantum simulator.
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5.3. Results on Benchmark Datasets

In this section, we discuss the performance of quantum machine learning and classical
machine learning algorithms on six benchmark datasets described in Section 3.5. We include
results for the quantum classifiers detailed in Section 3.3 and the classical machine learning
classifiers discussed in Section 3.2. The scores/accuracies were obtained using randomized
search cross-validation from Scikit-learn with 20 models and five-fold cross-validation.

Our results, shown in Table 5, display the best five-fold cross-validation scores (upper
table) and the scores of the best model evaluated on an unseen test subset of the original data
(lower table), which makes up 20% of the original data. We observe varying performances
of the algorithms on these benchmark datasets.

Table 5. These tables present the scores/accuracies of our experiments conducted on publicly
available classification datasets. The upper table displays the best five-fold cross-validation scores,
obtained using randomized search cross-validation from Scikit-learn, which were employed to
identify the optimal model. The lower table shows the scores of the best model evaluated on an
unseen test subset of the original data. We include results for the six datasets described in Section 3.5,
the quantum classifiers detailed in Section 3.3, and the classical machine learning classifiers discussed
in Section 3.2.

Classifier\Dataset Iris Wine ILPD BC-Coimbra TAE Breast-Tissue

VQC 0.817 0.817 0.706 0.599 0.417 0.339

QKE 0.908 0.853 0.706 0.620 0.483 0.382

Ridge 0.914 0.875 0.080 0.053 0.053 <0.001

Lasso 0.914 0.870 0.085 0.004 0.004 <0.001

MLP 0.975 0.937 0.712 0.687 0.425 0.406

SVM 0.958 0.759 0.706 0.630 0.450 0.382

XGBoost 0.958 0.986 0.695 0.656 0.533 0.441

LightGBM 0.967 0.986 0.699 0.666 0.475 0.393

CatBoost 0.950 0.979 0.702 0.688 0.525 0.440

Classifier\Dataset Iris Wine ILPD BC-Coimbra TAE Breast-Tissue

VQC 0.767 0.639 0.744 0.541 0.388 0.334

QKE 1.0 0.833 0.744 0.792 0.613 0.409

Ridge 0.947 0.878 0.115 0.234 <0.001 <0.001

Lasso 0.945 0.882 0.115 0.296 <0.001 <0.001

MLP 1.0 1.0 0.769 0.875 0.387 0.455

SVM 1.0 0.972 0.743 0.875 0.355 0.455

XGBoost 1.0 1.0 0.735 0.917 0.533 0.441

LightGBM 1.0 1.0 0.752 0.917 0.419 0.455

CatBoost 1.0 1.0 0.744 0.917 0.645 0.545

Notably, both the variational quantum circuit and the quantum kernel estimator classi-
fier show competitive performance on several datasets but do not consistently outperform
classical ML algorithms. In particular, QKE achieves a perfect score on the Iris dataset, but
its performance varies across the other datasets.

Classical ML algorithms, such as multilayer perceptron, support vector machines,
XGBoost, LightGBM, and CatBoost, exhibit strong performance across all datasets, with
some algorithms achieving perfect scores on multiple datasets. CatBoost consistently
performs well, ranking as the top-performing algorithm on three of the six datasets. Ridge
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and Lasso regression show high accuracy on Iris and Wine datasets but perform poorly on
the others.

When comparing the runtimes of the experiments, as presented in Table 6, it becomes
evident that QML algorithms take substantially longer to execute than their classical
counterparts. For instance, the VQC and QKE classifiers take hours to days to complete
on various datasets, whereas classical ML algorithms such as Ridge, Lasso, MLP, SVM,
XGBoost, LightGBM, and CatBoost typically take seconds to minutes.

This significant difference in runtimes could be attributed to the inherent complexity
and resource requirements of QML algorithms, which generally demand specialized quan-
tum hardware and simulators. On the other hand, classical ML algorithms are optimized
for execution on conventional hardware, making them more efficient and faster to run.

In conclusion, while QML algorithms such as VQC and QKE demonstrate potential
in achieving competitive performance on certain datasets, their relatively longer runtimes
and less consistent performance across the benchmark datasets may limit their practi-
cal applicability compared to classical ML algorithms. Classical ML algorithms, such as
CatBoost, XGBoost, and LightGBM, continue to offer superior and more consistent perfor-
mance with faster execution times, solidifying their place as reliable and powerful tools for
classification tasks.

Table 6. This table presents the combined runtimes of our experiments conducted on well-known
and publicly available classification datasets. The runtimes include both the five-fold randomized
search cross-validation process from Scikit-learn, which was employed to identify the optimal model,
and the evaluation of the best model on an unseen test subset of the original data. We include results
for the six datasets described in Section 3.5, the quantum classifiers detailed in Section 3.3, and the
classical machine learning classifiers discussed in Section 3.2.

Classifier\
Dataset Iris Wine ILPD BC-Coimbra TAE Breast-Tissue

VQC 3:32:16.547605 1 day, 13:56:59.455185 2 days, 23:03:26.398856 9:55:17.907443 2:46:25.921553 9:01:58.623806

QKE 2:03:57.921154 21:41:38.738255 7 days, 6:30:41.179676 5:02:26.430001 1:28:54.069725 3:37:05.655104

Ridge 0:00:00.175009 0:00:00.496771 0:00:00.399229 0:00:00.240857 0:00:00.209600 0:00:00.296966

Lasso 0:00:00.173051 0:00:00.181444 0:00:00.237455 0:00:00.192257 0:00:00.229508 0:00:00.225531

MLP 0:00:16.876288 0:00:10.477420 0:00:26.748907 0:00:10.951229 0:00:08.475263 0:00:13.729790

SVM 0:00:00.143353 0:00:00.165431 0:00:00.484485 0:00:00.180694 0:00:00.228508 0:00:00.226784

XGBoost 0:00:03.809085 0:00:04.030425 0:00:04.752627 0:00:02.744122 0:00:05.820371 0:00:06.864497

LightGBM 0:00:02.971164 0:00:03.180770 0:00:03.062553 0:00:01.462174 0:00:03.056615 0:00:04.540870

CatBoost 0:00:06.465975 0:00:18.511612 0:00:11.352944 0:00:07.460460 0:00:06.964821 0:00:26.639070

5.4. Comparison and Discussion

In this study, we have compared the performance of quantum machine learning and
classical machine learning algorithms on six benchmark datasets and two types of artifi-
cially generated classification datasets. We included results for quantum classifiers, such as
variational quantum circuit and quantum kernel estimator, and classical machine learning
classifiers, such as CatBoost, XGBoost, and LightGBM. Our experiments showed that while
QML algorithms demonstrate potential in achieving competitive performance on certain
datasets, they do not consistently outperform classical ML algorithms. Additionally, their
longer runtimes for the whole process, i.e., hyperparameter tuning via randomized search
and five-fold cross-validation, the corresponding training and testing, and less consistent
performance across the benchmark datasets, may limit their practical applicability com-
pared to classical ML algorithms, which continue to offer superior and more consistent
performance with faster execution times. Furthermore, we constructed artificial datasets
with the structure and rulings of quantum Mechanics in mind, i.e., we used symmetry prop-
erties and unitary transformations to generate a classification dataset from SU(2)-matrices
in order to demonstrate an advantage of quantum machine learning algorithms to tackle
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problems with an inherent structure relatable to that of quantum circuits and quantum
mechanics overall. However, also for these datasets, the employed quantum machine
learning algorithms performed reasonably but did not outperform sophisticated boost
classifiers. Thus, we cannot conclude a quantum advantage for these datasets.

It is essential to highlight that the QML algorithms’ performance in our experiments
was based on simulated quantum infrastructures. This is a significant limitation to consider,
as the specific constraints and characteristics of the simulated hardware may influence the
performance of these algorithms. Furthermore, given the rapid advancement of quantum
technologies and hardware, this constraint might be obsolete in the near future.

The impact of quantum simulators, feature maps, and quantum circuits on the per-
formance of quantum estimators stems from the fact that these components play crucial
roles in shaping the behavior and capabilities of quantum machine learning algorithms.
Quantum simulators, which emulate quantum systems on classical computers, introduce
various levels of approximation and noise, leading to deviations from ideal quantum be-
havior. Different simulators may employ distinct algorithms and techniques, resulting in
variations in performance.

Feature maps, responsible for encoding classical data into quantum states, determine
how effectively the quantum system can capture and process information. The choice of
feature map can greatly influence the ability of quantum algorithms to extract meaningful
features and represent the data in a quantum-mechanical space.

Similarly, quantum circuits, composed of quantum gates and operations, define the
computational steps performed on the encoded data. Different circuit designs and configu-
rations can affect the expressiveness and depth of the quantum computation, potentially
impacting the accuracy and efficiency of the quantum estimators.

Considering the diverse options for quantum simulators, feature maps, and quantum
circuits, it becomes essential for researchers to provide detailed explanations of their hyper-
parameter choices. This entails clarifying the rationale behind selecting a specific simulator,
feature map, or circuit design, as well as the associated parameters and their values. By
providing such explanations, researchers can enhance the reproducibility and compara-
bility of results, enabling the scientific community to better understand the strengths and
limitations of different quantum machine learning algorithms.

Unfortunately, the current state of the field often overlooks the thorough discussion
of hyperparameter choices in many studies. This omission restricts the transparency and
interpretability of research outcomes and hinders the advancement of quantum machine
learning. To address this issue, researchers should embrace a culture of providing com-
prehensive documentation regarding hyperparameter selection, sharing insights into the
decision-making process, and discussing the potential implications of different choices.

By encouraging researchers to provide detailed explanations of hyperparameter
choices and corresponding code, we can foster a more robust and transparent research
environment in quantum machine learning. This approach enables the replication and
comparison of results, promotes knowledge sharing, and ultimately contributes to the
development of reliable and effective quantum machine learning algorithms. Additionally,
our program code serves as introductory material, providing easy-to-use implementations
and a foundation for comparing quantum machine learning and classical machine learning
(CML) algorithms.

One possible direction for future research is exploring quantum ensemble classifiers
and, consequently, quantum boosting classifiers, as suggested by Schuld et al. [40]. This
approach might help in improving the capabilities of QML algorithms and make them
more competitive with state-of-the-art classical ML algorithms in terms of high accuracies.

Finally, the relatively lower performance of the employed quantum machine learning
algorithms compared to, for example, the employed boosting classifiers might be attributed
to quantum machine learning, being constrained by specific rules of quantum mechanics.

In the authors’ opinion, quantum machine learning might be constrained by the uni-
tary transformations inherent in, for example, the variational quantum circuits. These
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transformations are part of the unitary group U(n). Thus, all transformations are con-
strained by symmetry properties. Classical machine learning models are not constrained
by these limitations, meaning that, for instance, different activation functions in neural
networks do not preserve certain distance metrics or probabilities when processing data.
However, expanding the set of transformations of quantum machine learning and getting
rid of possible constraints might improve the capabilities of quantum machine learning
models such that these algorithms might be better capable of capturing the information of
more complex data. However, this needs to be discussed in the context of quantum com-
puters such that one determines what all possible transformations on a quantum computer
are. This means that future research needs to consider the applicability of advanced mathe-
matical frameworks for quantum machine learning regarding the formal requirements of
quantum computers.

Furthermore, another constraint of quantum machine learning is that it, and quantum
mechanics in general, relies on Hermitian matrices, e.g., to provide real-valued eigenvalues
of observables. However, breaking this constraint might be another way to broaden the
capabilities of quantum machine learning to better capture complexity, e.g., by using non-
Hermitian kernels in a quantum kernel estimator. Here, we want to mention the book by
Moiseyev [41], which introduces non-Hermitian quantum mechanics. Furthermore, quan-
tum computers, in general, might provide a testing ground for non-Hermitian quantum
mechanics in comparison to Hermitian quantum mechanics. However, at this point, this is
rather speculative, but given that natural data are nearly always corrupted by noise and
symmetries are never truly perfect in nature, breaking constraints and symmetries might
be ideas to expand the capabilities of QML.

6. Conclusions

In this research, we have explored the applicability of quantum machine learning
for classification tasks by examining the performance of variational quantum circuit and
quantum kernel estimator algorithms. Our comparison of these quantum classifiers with
classical machine learning algorithms, such as XGBoost, Ridge, Lasso, LightGBM, CatBoost,
and MLP, on six benchmark datasets and artificially generated classification datasets demon-
strated that QML algorithms can achieve competitive performance on certain datasets.
However, they do not consistently outperform their classical ML counterparts, partic-
ularly with regard to runtime performance and accuracy. Quite the contrary, classical
machine learning algorithms still demonstrate superior performance, especially in terms
of increased accuracy, in most of our experiments. Furthermore, we cannot conclude
a quantum advantage even for artificial data built by data manipulations inherent to
quantum mechanics.

As our study’s performance comparison relied on simulated quantum circuits, it is
important to consider the limitations and characteristics of simulated hardware, which may
affect the true potential of quantum machine learning. Given the rapid advancement of
quantum technologies and hardware, these constraints may become less relevant in the future.

Quantum simulators, feature maps, and quantum circuits significantly influence quan-
tum estimator performance; hence, a detailed discussion of the chosen hyperparameters is
essential. The absence of such a discussion in current research limits the interpretation and
replication of experiments. Thus, we aim to encourage transparency in decision-making
processes to promote a robust research environment, aiding in knowledge sharing and the
creation of reliable quantum machine learning algorithms.

Despite the current limitations, this study has shed light on the potential and chal-
lenges of quantum machine learning compared to classical approaches. Thus, by providing
our complete code in a GitHub repository, we hope to foster transparency, encourage
further research in this field, and offer a foundation for other researchers to build upon
as they explore the world of quantum machine learning. Furthermore, the developed
SU(2)-data creation might serve as a quantum data prototype for future experiments, and

https://github.com/Raubkatz/Quantum_Machine_Learning
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both quantum and regular machine learning algorithms can be tested for their accuracy on
datasets like these.

Future research should also consider exploring quantum ensemble classifiers and
quantum boosting classifiers, as well as addressing the limitations imposed by the specific
rules of quantum mechanics. By breaking constraints and symmetries and expanding the
set of transformations in quantum machine learning, researchers may be able to unlock its
full potential.
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Appendix A. Parametrization

This Appendix lists the parameter grids for all employed algorithms per the imple-
mentations from Scikit-learn and Qiskit [16,24]. Thus, for further explanations on the
parameters and how they influence the discussed algorithm, the reader is referred to the
respective sources, which we linked in Sections 3.2 and 3.3.

Appendix A.1. Ridge
param_grid = {
’alpha’: [0.001, 0.01, 0.1, 1, 10, 100],
’fit_intercept’: [True, False],
’normalize’: [True, False],
’copy_X’: [True, False],
’max_iter’: [100, 500, 1000],
’tol’: [1e-4, 1e-3, 1e-2],
’solver’: [’auto’, ’svd’, ’cholesky’, ’lsqr’, ’sparse_cg’, ’sag’, ’saga’],
’random_state’: [42]
}

Appendix A.2. Lasso

param_grid = {
’alpha’: [0.001, 0.01, 0.1, 1, 10, 100],
’fit_intercept’: [True, False],
’normalize’: [True, False],
’precompute’: [True, False],
’copy_X’: [True, False],
’max_iter’: [100, 500, 1000],
’tol’: [1e-4, 1e-3, 1e-2],
’warm_start’: [True, False],
’positive’: [True, False],
’random_state’: [42],
’selection’: [’cyclic’, ’random’]
}
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Appendix A.3. SVM

param_grid = {
’C’: [0.1, 1, 10, 100],
’kernel’: [’linear’, ’poly’, ’rbf’, ’sigmoid’],
’degree’: [2, 3, 4],
’gamma’: [’scale’, ’auto’],
’coef0’: [0.0, 1.0, 2.0],
’shrinking’: [True, False],
’probability’: [False],
’tol’: [1e-4, 1e-3, 1e-2],
’cache_size’: [200],
’class_weight’: [None, ’balanced’],
’verbose’: [False],
’max_iter’: [200, 300, 400],
’decision_function_shape’: [’ovr’, ’ovo’],
’break_ties’: [False],
’random_state’: [42]
}

Appendix A.4. MLP

param_grid = {
’hidden_layer_sizes’: [(50,), (100,), (150,)],
’activation’: [’relu’, ’tanh’],
’solver’: [’adam’, ’sgd’],
’alpha’: [0.0001, 0.001, 0.01],
’learning_rate’: [’constant’, ’invscaling’, ’adaptive’],
’max_iter’: [200, 300, 400]
}

Appendix A.5. XGBoost

param_grid = {
’max_depth’: [3, 5, 7, 10],
’learning_rate’: [0.01, 0.05, 0.1, 0.2],
’n_estimators’: [50, 100, 150, 200],
’subsample’: [0.5, 0.8, 1],
’colsample_bytree’: [0.5, 0.8, 1]
}

Appendix A.6. LightGBM

param_grid = {
’max_depth’: [3, 5, 7, 10],
’learning_rate’: [0.01, 0.05, 0.1, 0.2],
’n_estimators’: [50, 100, 150, 200],
’subsample’: [0.5, 0.8, 1],
’colsample_bytree’: [0.5, 0.8, 1]
}

Appendix A.7. CatBoost
param_grid = {
’iterations’: [50, 100, 150, 200],
’learning_rate’: [0.01, 0.05, 0.1, 0.2],
’depth’: [3, 5, 7, 10],
’l2_leaf_reg’: [1, 3, 5, 7, 9],
}
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Appendix A.8. QKE
For this Algorithm, we precomputed the kernel matrix using Qiskit and then per-

formed the support vector classification via the vanilla SVM algorithm from Scikit-learn.

param_grid = {
’feature_map’: [PauliFeatureMap, ZFeatureMap, ZZFeatureMap],
’quantum_instance’: [
QuantumInstance(Aer.get_backend(’aer_simulator’), shots=1024),
QuantumInstance(Aer.get_backend(’qasm_simulator’), shots=1024),
QuantumInstance(Aer.get_backend(’statevector_simulator’), shots=1024)
],
’C’ : np.logspace(-3, 3, 9),
}

Appendix A.9. VQC
param_grid = {
’feature_map’: [PauliFeatureMap, ZFeatureMap, ZZFeatureMap],
’ansatz’: [EfficientSU2, TwoLocal, RealAmplitudes],
’optimizer’: [
COBYLA(maxiter=max_iter),
SPSA(maxiter=max_iter),
NFT(maxiter=max_iter),
],
’quantum_instance’: [
QuantumInstance(Aer.get_backend(’aer_simulator’), shots=1024),
QuantumInstance(Aer.get_backend(’qasm_simulator’), shots=1024),
QuantumInstance(Aer.get_backend(’statevector_simulator’), shots=1024)
],
}
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