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Editorial

Causal Inference for Heterogeneous Data and Information Theory

Kateřina Hlaváčková-Schindler 1,2

1 Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria; katerina.schindlerova@univie.ac.at
2 Institute of Computer Science of the Czech Academy of Sciences, 182 00 Prague, Czech Republic

The present Special Issue of Entropy, entitled "Causal Inference for Heterogeneous
Data and Information Theory", covers various aspects of causal inference. The issue
presents thirteen original contributions that span various topics, namely the role of instru-
mental variables in causal inference, the estimation of average treatment effects and the
temporal causal models. Four papers are devoted to the design of novel causal models
using interventions. The contributions use approaches of information theory, probability,
algebraic structures, neural networks and with them related machine learning tools. The
papers range from the theoretical ones, the paper applying the models, to the papers pro-
viding software tools for causal inference. All papers were peer-reviewed and accepted for
publication due to their highest quality contribution. Here, we shortly preview the topics
of the contributions.

Instrumental variable in causal inference. Papers [1–3] investigate models using
instrumental variable in causal inference. Paper [1] deals with the challenge to reconcile
the approaches to causal inference based on independence of cause and mechanism, and
approaches based on conditional independence. It is shown that methods based on the
independence of cause and mechanism indirectly contain traces of the existence of hidden
instrumental variables (IV). Paper [2] investigates the problem of selecting instrumental
variables relative to a target causal influence X → Y from observational data generated by
linear non-Gaussian acyclic causal models in the presence of unmeasured confounders. A
necessary condition for detecting variables that cannot serve as instrumental variables is
proposed. Paper [3] used the piecewise linear model to fit the relationship between the
continuous instrumental variable and the continuous explanatory variable, as well as the
relationship between the continuous explanatory variable and the outcome variable, which
generalizes the traditional linear instrumental variable models.

Estimating average treatment effect. Papers [4–7] deal with the estimation of the
Average Treatment Effect (ATE). Papers [4,5] approach the estimation of ATE using neural
networks. The estimation of ATE as a causal parameter is carried out in two steps [4].
In the first step, the treatment and outcome are modeled to incorporate the potential
confounders, and in the second step, the predictions are inserted into the ATE estimators
such as the Augmented Inverse Probability Weighting (AIPW) estimator, based on neural
networks (NN). Paper [4] proposed the normalization of AIPW (referred to as nAIPW) to
overcome the drawbacks of AIPW. Paper [5] builds on [4] and uses architectures with an
L1-regularization on specific NN parameters and investigates how certain hyperparameters
should be tuned in the presence of confounders and IVs to achieve a low bias-variance
tradeoff for AIPW estimator.

Paper [6] contributes with the novel econometric software to the community dealing
with causal inference and heterogeneous treatment effects estimation. The mcf package
is an open-source Python package implementing Modified Causal Forest (MCF), a causal
machine learner. For all resolutions of treatment effects estimation, which can be identified,
the mcf package provides inference and novel insights on causal effect heterogeneity.
The mcf constitutes a practical and extensive tool for a modern causal heterogeneous
effects analysis.

Entropy 2023, 25, 910. https://doi.org/10.3390/e25060910 https://www.mdpi.com/journal/entropy
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Paper [7] investigates causal inference for heterogeneous treatment effects. The estima-
tion of both overall and heterogeneous treatment effects can be hampered when data are
structured within groups if one fails to correctly model the dependence between observa-
tions. Most machine learning (ML) methods do not readily accommodate such structures.
Paper [7] introduces a new algorithm, stan4bart, that combines the flexibility of Bayesian
Additive Regression Trees (BART) for fitting nonlinear response surfaces with the com-
putational and statistical efficiencies of using Stan for the parametric components of the
model. It is demonstrated how stan4bart can be used to estimate average, subgroup, and
individual-level treatment effects with stronger performance than other flexible approaches.

Temporal causal models. Papers [8,9] consider causal models using time. Paper [8]
investigates causal discovery in high-dimensional point process networks with hidden
nodes. A big challenge in the multivariate causal discovery is the confounding problem.
Paper [8] proposes a deconfounding procedure to estimate high-dimensional point process
networks with only a subset of the nodes being observed. The method allows flexible
connections between the observed and unobserved processes.

Paper [9] deals with the paradox of time in dynamic causal systems. It investigates the
role of time in dynamic systems, where causes take continuous values and also continually
influence their effects. A question is posed whether interacting with systems that unfold
more slowly might reduce the systematic errors that result from these strategies. It is found
that slowing the task indeed reduced the frequency of one type of error, albeit at the cost of
increasing the overall error rate.

Causal models and modeling under interventions. Paper [10] examines the so-called
interventional fairness with indirect knowledge of unobserved protected attributes. Often,
the protected attribute is absent from the training dataset for legal reasons. However,
datasets still contain proxy attributes that capture protected information and can inject
unfairness in the ML model. Paper [10] examines systems flagging individual samples and
considers a feedback-based framework where the protected attribute is unavailable and
the flagged samples are indirect knowledge. The reported samples are used as guidance
to identify the proxy attributes that are causally dependent on the (unknown) protected
attribute. The work is done under the causal interventional fairness paradigm. Without
requiring the underlying structural causal model a priori, an approach is proposed that
performs conditional independence tests on observed data to identify such proxy attributes.

Paper [11] studies causal algebras on Chain Event Graphs (CEG). One popular causal
analysis following Pearl [12] and Spirtes et al. [13] to study causal relationships embedded
in a system is to use a Bayesian Network (BN). However, certain causal constructions that
are particularly pertinent to the study of reliability are difficult to express fully through
a BN. The previous work of the authors of [11] demonstrated that an event tree rather
than a BN could provide an alternative framework that could capture most of the causal
concepts needed within this domain. A causal calculus for a specific type of intervention,
called a remedial intervention, was devised on this tree-like graph. Paper [11] builds on
their previous work and shows that remedial maintenance interventions but as well as
interventions associated with routine maintenance can be well-defined using this alternative
class of graphical model.

Universal Causality is a mathematical framework introduced in [14]. This work is
based on higher-order category theory, which generalizes previous approaches based on
directed graphs and regular categories. The paper presents a hierarchical framework called
Universal Causality Layered Architecture (UCLA), where at the top-most level, causal
interventions are modeled as a higher-order category over simplicial sets and objects.
Causal inference between layers is defined as a lifting problem, a commutative diagram
whose objects are categories, and whose morphisms are functors that are characterized
as different types of fibrations. UCLA is illustrated using a variety of representations,
including causal relational models and other models.

Paper [15] develops a probabilistic theory of causation using measure-theoretical con-
cepts and information-theoretic functionals and suggests practical routines for conducting
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causal inference. The theory is applicable to both linear and high-dimensional nonlinear
models. It is shown that the suggested measure-theoretic approaches do not only lead to
better predictive models, but also to more plausible parsimonious descriptions of possible
causal flows.

We are convinced that this heterogeneous collection of outstanding papers on causal
inference extends the knowledge of the community working in causal inference both in
theory and practical applications. We wish the readers a lot of joy by reading.
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Abstract: Causal inference methods based on conditional independence construct Markov equivalent
graphs and cannot be applied to bivariate cases. The approaches based on independence of cause
and mechanism state, on the contrary, that causal discovery can be inferred for two observations. In
our contribution, we pose a challenge to reconcile these two research directions. We study the role
of latent variables such as latent instrumental variables and hidden common causes in the causal
graphical structures. We show that methods based on the independence of cause and mechanism
indirectly contain traces of the existence of the hidden instrumental variables. We derive a novel
algorithm to infer causal relationships between two variables, and we validate the proposed method
on simulated data and on a benchmark of cause-effect pairs. We illustrate by our experiments that
the proposed approach is simple and extremely competitive in terms of empirical accuracy compared
to the state-of-the-art methods.

Keywords: common hidden cause; graphical models; probabilistic models

1. Introduction

Causal inference purely from non-temporal observational data is challenging. In-
stead of learning the causal structure of an entire dataset, some researchers focus on the
analysis of causal relations between two variables only. The state-of-the-art conditional
independence-based causal discovery methods (see, e.g., [1,2]) construct graphs that are
Markov equivalent, but these methods are not applicable in the case of two variables, since
X → Y and Y → X are Markov equivalent.

The statistical and probabilistic causal inference methods based on assumptions of
independence of cause and mechanism (see [3] for a general overview) appeared relatively
recently and achieve very reasonable empirical results. The main idea behind these methods
is as follows: if a simple function that fits data exists, then it is likely that it also describes a
causal relation in the data.

The main goal of our paper is to try to reconcile two modern viewpoints on causal
inference: the research direction initiated by [1,2], which is based on the assumption of
conditional independencies, and the more recent research avenue where the main claim is
that causal inference between two observations only is feasible [4–10], the theory of which
relies on the independence of cause and mechanism.

To illustrate the intuition behind our approach, let us consider an example from [3]
with altitude and temperature, where A is altitude, T is temperature, P(A) are city locations,
and P(T|A) is the physical mechanism of temperature given altitude, and it can be shown
that changing the city locations P(A) does not change the conditional probability P(T|A).
The postulate of independence of cause and mechanism allows the causal direction A → T
to be inferred. Any latent variables are ignored in this case. However, the city locations
depend on a country, since each country has its own urban policy, population density, etc.
Thus, in this example, P(A) has at least one latent variable which is county C. However,

Entropy 2021, 23, 928. https://doi.org/10.3390/e23080928 https://www.mdpi.com/journal/entropy
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no matter what country is chosen, the physical mechanism P(T|A) holds, and the true
underlying causal structure is C → A → T. A country defines the distribution of cities.
Having two or more countries leads to a family of distributions. This mixture of probability
distributions is independent from P(T|A). Thus, this example also explains what is meant
under the independence between probability distributions.

To our knowledge, ref. [11] is the most related recent work to our contribution;
however, they consider the case of the pseudo-confounders, where all variables, even
confounders, are observed. Our contribution is multi-fold:

• Our main theoretical result is an alternative viewpoint on the recently appeared causal
inference algorithms that are based on the independence of cause and mechanism.
Here, we follow the simplification used by [3]; however, we are aware that the
independence of our interest is between the prior of the cause and the mechanism.

• Our main theoretical results are formulated as Theorems 1 and 2.
• Assuming the existence of the hidden instrumental variables, we propose a novel

method of causal inference. Since we consider a bivariate causal inference case
where only X and Y are observed, we also propose an approach to estimate the
latent instrumental variables for cases where the cluster assumption for the observed
data holds.

• We propose a simple and original method to identify latent confounders.
• We validate our method on a synthetic dataset on which we perform extensive nu-

merical experiments and on the cause-effect benchmark, which is widely used by the
causal inference community.

The paper is organized as follows. Section 2 discusses the state-of-the-art methods
of bivariate causal inference. Preliminaries on the instrumental variables are provided in
Section 3. We consider the role of the instrumental variables for causal inference, and we
introduce our approach in Section 4. In Section 5, we discuss the results of our numerical
experiments on synthetic and standard challenges. Concluding remarks and perspectives
close the paper.

2. Related Work

In this section, we discuss the state-of-the-art methods of bivariate causal inference
and the corresponding assumptions. In the current work, we focus on a family of causal
inference methods which are based on a postulate stating that if X → Y, then the marginal
distribution P(X) and the conditional distribution P(Y|X) are independent [8,12,13]. These
approaches provide causal directions based on the estimated conditional and marginal
probability distributions from observed non-temporal data. One of the oldest and most
well-studied types of models describing causal relations that is necessary to mention is
structural causal models (SCM). An SCM where X → Y is defined as follows:

X = NX , Y = fY(X, NY), (1)

where NX and NY are independent. Given fY and the noise distributions PNY and PNX , we
can sample data following an SCM.

A recently proposed but already often used postulate of independence of cause
and mechanism is formulated as follows (see, e.g., [8,12,13]). If X causes Y, then P(X)
and P(Y|X) estimated from observational data contain no information about each other.
Looking for a parallel between the postulate and the SCM, we assume that in an SCM,
fY and PNY contain no information about PX, and vice versa. The postulate describes
the independence of mechanisms and states that a causal direction can be inferred from
estimated marginal and conditional probabilities (considered as random variables) from a
dataset. In the following, we investigate this research direction.

It is not obvious how to formalise the independence of the marginal and conditional
probabilities. A reasonable claim [3] is that an optimal measure of dependence is the
algorithmic mutual information that relies on the description length in the sense of Kol-
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mogorov complexity. Since the exact computations are not feasible, there is a need for
a practical and reliable approximation. Such an approximation encodes that P(X) and
P(Y|X) require more compact models in a causal direction and more complex models in
an anticausal direction.

Two families of methods of causal inference dealing with bivariate relations are often
discussed. For a more general overview of causal structure learning see [3,14]. Additive
noise models (ANM) introduced by [15,16] are an attempt to describe causal relations
between two variables. The ANMs assume that if there is a function f and some noise E,
such that Y = f (X) + E, where E and X are independent, then the direction is inferred
to be X → Y. A generalised extension of the ANM, called post-nonlinear models, was
introduced by [17]. However, the known drawback of the ANM is that the model is not
always suitable for inference on discrete tasks [18].

Another research avenue exploiting the asymmetry between cause and effect is the
linear trace (LTr) method [19] and information-geometric causal inference (IGCI) [13]. If the
true model is X → Y, and if P(X) is independent from P(Y|X), then the trace condition
is fulfilled in the causal direction and violated in the anticausal one. The IGCI method
exploits the fact that the density of the cause and the log slope of the function transforming
cause to effect are uncorrelated. However, for the opposite direction, the density of the
effect and the log slope of the inverse of the function are positively correlated. The trace
condition is proved under the assumption that the covariance matrix is drawn from a
rotation invariant prior [12]. The method was generalized for non-linear cases [20], and it
was shown that the covariance matrix of the mean embedding of the cause in reproducing
kernel Hilbert space is free independent with the covariance matrix of the conditional
embedding of the effect given cause. The application of the IGCI to high-dimensional
variables is considered in [19,21]. Here, the independence between probability distributions
is based on the trace condition. The identifiability via the trace condition is proved [3,21]
for deterministic relations, and no theory exists for noisy cases, which are much more
relevant for real-life applications.

Origo [22] is a causal discovery method based on the Kolmogorov complexity. The
minimum description length (MDL) principle can be used to approximate the Kolmogorov
complexity for real tasks. Namely, from an algorithmic information viewpoint, if X → Y,
then the shortest program that computes Y from X is more compact than the shortest pro-
gram computing X from Y. The obvious weakness of methods based on the Kolmogorov
complexity, and also of Origo, is that the MDL only approximates Kolmogorov complexity
and involves unknown metric errors that are difficult to control. The empirical perfor-
mance is highly dependent on a dataset, and Origo was reported to reach state-of-the-art
performance on the multivariate benchmarks (acute inflammation, ICDM abstracts, adult
dataset); however, it performs less accurately than the ANM on the bivariate benchmark of
cause-effect pairs with known ground truth (the Tübingen data set) [23]. We also use this
benchmark for our experiments.

There exist various applications of causal inference. Thus, [24] provides a geometric
interpretation of information flow as a causal inference. Speaking of probabilistic causal
inference approaches, we would like to mention [25], which is a survey considering
probabilistic causal dependencies among variables. Information theory is used in [26] to
apply bivariate analysis to discover the causal skeleton for multivariate systems. Note that
the method which is proposed in our contribution can also be extended to a multivariate
case in a similar way.

The most studied causal inference case is probably the case of time series [27], where
the Granger causality can be applied. We would like to underline that we consider the case
of observational non-temporal data in the current contribution, and the results on the time
series are beyond the scope of our paper.

We would like to underline the differences between [11] and our results. The re-
searchers consider a surrogate variable related to a distribution shift that characterises
hidden quantities that imply changes across domains and/or time. It is reported that it is
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possible to find causal models in each domain or for each time point for non-stationary
data, but they propose using the information on the distribution shift to identify one causal
model across domains and/or time. This surrogate variable can be seen as a confounder;
however, it is assumed that the values of these confounders are fixed and always observed
(Assumption 1 and Section 3.2 of [11]). Thus, they are pseudo-confounders. We, on the
contrary, assume that the surrogate variable is not observed, and we do not assume that
the confounders exist. We pose a challenge to identify their existence and to approximate
latent instrumental variables.

3. Independence of Probability Distributions and Instrumental Variables

Let X and Y be two correlated variables. In the settings considered by [3], in order
to decide whether X → Y or Y → X, it is proposed to check if the distributions P(X) and
P(Y|X) are independent. As far as we know, this independence between distributions (and
not between random variables) does not have any formal definition. However, some useful
properties can be derived, and various criteria were constructed for different cases [4–9]. In
this paper, we adopt the following definition. Let P(X, Y) be the joint distribution of X, Y
in a population P ; let Q(X, Y) be the joint distribution of X, Y in another population Q. If
X is the cause of Y, the causal mechanism should be the same in the two distributions:

P(X, Y) = P(X) · P(Y|X), (2)

Q(X, Y) = Q(X) · P(Y|X), (3)

i.e., P(Y|X) = Q(Y|X), and on the contrary, P(X|Y) �= Q(X|Y). More generally, for all
mixed populations between P and Q, and for all mixtures Qλ = λP + (1− λ)Q with
λ ∈ [0, 1]:

∀λ ∈ [0, 1], Qλ(X) ⊥⊥ Qλ(Y|X) (4)

⇐⇒ Qλ(Y|X) = P(Y|X). (5)

Now, we consider λ as a hyper-parameter for a (latent) prior IX that allows the
population (P(X|IX = 0) = P(X), P(X|IX = 1) = Q(X)) to be selected. In this meta-
model, IX and X are dependent, and X and Y are dependent. However, IX and Y are
independent conditionally to X. On the contrary, if we consider λ as a hyper-parameter for
a (latent) prior IY, this allows the population (P(Y|IY = 0) = P(Y), P(Y|IY = 1) = Q(Y))
to be selected. In this meta-model, IY and Y are dependent, and X and Y are dependent.
However, since P(X|Y) �= Q(X|Y), IY and X are not independent, even conditionally to Y.

To provide some intuition behind such a mixture model, let P(X) and Q(X) be the
distributions of city locations in two different countries and P(Y|X) be a physical mecha-
nism predicting weather in a given location. Then λ is the hyper-parameter controlling the
proportion of observations in each country, and note that λ, P(X), and Q(X) are indepen-
dent from P(Y|X). Such a representation of the problem as a mixture model with latent
priors motivates our proposition to use models with instrumental latent variables.

The aim of models with instrumental variables [28–30] where X, Y, and IX are ob-
served, and U is an unobserved confounder, is to identify the causal effect of X on Y.
Assuming that the relationships are linear, and applying a linear Gaussian structural causal
model, one can write

X = α0 + αIX + δU + εX , (6)

Y = β0 + βX + γU + εY, (7)

where εX and εY are noise terms, independent of each other. It is assumed, without loss
of generality, that U, εX, and εY have mean zero. Note that the common cause U can
be absent, and we are not going to assume that U exists when modelling dependencies
between X and Y. The instrumental variable IX is uncorrelated with ancestors of X and Y.
The instrumental variable is a source of variation for X, and it only influences Y through
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X. Studying how X and Y respond to perturbations of IX can help one deduce how X
influences Y. A two-stage least squares [31] can be used to solve the problem.

Probability distributions as random variables

Similar to [3,21], we consider probability distributions as random variables. P(X) is a
function of X ∈ [0, 1], and thus, they are random variables distributed in [0, 1]. Note that a
model where a probability is randomly generated is an example of a hierarchical model, or
of a model with priors, where some parameters are treated as random variables.

4. Latent Instrumental Variables for Causal Discovery

In this section, we show that the methods based on the independence of cause and
mechanism, introduced by [4–9], indirectly contain traces of the existence of the hidden
instrumental variable. This can be seen as follows. P(X) generates X in the approaches
proposed and investigated by the scientists mentioned above. In our method, we assume
that X are generated by IX . Therefore, there is a strong parallel between P(X) and IX , which
are both priors for the observations. Thus, our method described below also provides
some intuition and interpretation of the recently proposed algorithms based on the inde-
pendence between the “cause and the mechanism”. We provide some theoretical results
on the independence of the causal mechanisms in terms of probability distributions and
information theory. These results allow us to derive a novel algorithm of causal inference
which is presented in the section below.

Our observations are X and Y, two one-dimensional vectors of the same length N,
and these variables are correlated. Here, we suppose that either causality between these
variables exists, and either X → Y, Y → X, or a common latent cause X ← U → Y can be
identified, where U is a hidden variable that can impact X and/or Y. Let IX and IY denote
latent instrumental variables of X and Y, respectively. In the current contribution, we do
not observe the instrumental variables; we assume that they exist and can be approximated.
We do not assume that the common cause U exists; however, we show how its existence
can be deduced, if this is the case.

There are three graphical structures that are of particular interest for us. They are
shown on Figure 1: the dark nodes are observed, and the instrumental variables and the
common latent cause are not observed from data.

Figure 1. The models of our interest. The dark nodes are observed from data, and the light coloured
nodes are latent.

Assumption 1. In the case of observational non-temporal data, if IX exists such that IX → X, and
if IY exists such that IY → Y, and if the random variables X and Y are correlated, then we assume
that it is impossible that both IX ⊥⊥ Y|X and IY ⊥⊥ X|Y hold.

Theorem 1. Let X and Y be two correlated random variables, and they do not have any common
cause. We assume that either X causes Y, or vice versa. If there exists a random variable IX such
that IX → X, and if IX ⊥⊥ Y|X, then we are able to infer causality and decide that X → Y.

Proof. Several directed acyclic graphs (DAGs) may be Markov equivalent [1,2]. We assume
that once an essential graph is found, the directed arcs of this graph are interpreted causally.

Under the assumption that IX → X, and if IX ⊥⊥ Y|X, the only possible directed graph
is IX → X → Y. In the case where IX �⊥⊥ Y|X, we obtain IX → X ← Y.

9
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Theorem 2. If the true causal structure is IX → X → Y, and X and Y do not have any common
cause, then P(Y|X) does not contain any information about P(X), and vice versa; however, P(X|Y)
and P(Y) are not independent.

Proof. Assume that IX ⊥⊥ Y|X. Let us consider the relation between P(Y|X) and P(X). In
the following, we treat P(Y|X), P(X|Y), P(X), and P(Y) as random variables. We can write

P(Y|IX , X) = P(Y|X). (8)

Note that we do not have P(X) in Equation (8) when we express P(Y|X) for IX →
X → Y. Let us consider the relation between P(X|Y) and P(Y) for the same graphical
structure. We obtain

P(X|Y) = P(Y|X)P(X|IX)

P(Y)
, (9)

where the form of the nominator is due to the fixed dependencies IX ⊥⊥ Y|X. From
Equation (9), we clearly see that P(X|Y) is not independent from P(Y) for this graphical
structure.

Table 1 provides the state-of-the-art methods of the bivariate causal inference (left
column) and the corresponding equivalent models with the latent instrumental variables
IY and IX , if they can be reconstructed (right column).

Table 1. Some state-of-the-art methods for causal discovery for the ground truth X → Y, under the
assumption that IX �⊥⊥ Y|X, and the corresponding models with the latent instrumental variables.

The state-of-the-art methods of bivariate causal Existence of hidden instrumental variables,
inference and their main ideas an equivalent model with the latent IV

CURE (unsupervised inverse regression) [8]: This implies directly that P(X|IY , Y),
X �⊥⊥ IY |Y,

It is possible to recover P(X|Y) from P(Y), and therefore, IY is needed to recover
it is not possible to recover P(Y|X) from P(X) the conditional probability

Information-geometric approach [13]: cov
(

P(Y|IX , X), P(X)
)
= 0

cov
(

log f ′, P(X)
)
= 0, cov

(
log f−1′ , P(Y)

)
≥ 0, cov

(
P(X|IY , Y), P(Y)

)
≥ 0

f ′ is log slope of the func. transform. cov
(

P(Y|X), P(X)
)
= 0

cause to effect cov
(

P(X|IY , Y), P(Y)
)
≥ 0

Comparing regression errors [32]: E[var(Y|IX , X)] ≤ E[var(X|IY , Y)]
E[(Y−E[Y|X])2] ≤ E[(X−E[X|Y])2] E[var(Y|X)] ≤ E[var(X|IY , Y)]

Using the distance correlation [9]:
D(P(X), P(Y|X)) ≤ D

(
P(Y), P(X|Y)

)
, D

(
P(X), P(Y|IX , X)

)
≤ D

(
P(Y), P(X|IY , Y)

)
where D is distance correlation D

(
P(X), P(Y|X)

)
≤ D

(
P(Y), P(X|IY , Y)

)
Via kernel deviance measures [10]: SX→Y = Compare (μ is cond. mean embedding)

1
N ∑N

i=1
(
‖μY|X=xi

‖Hy − 1
N ∑N

j=1 ‖μY|X=xj
‖Hy

)2
1
N ∑N

i=1
(
‖μY|IX ,X=xi

‖Hy −
1
N ∑N

j=1 ‖μY|IX ,X=xj
‖Hy

)2 vs.

Hy – RKHS, SY→X analogously,
SX→Y ≤ SY→X

1
N ∑N

i=1
(
‖μX|IY ,Y=yi

‖Hx −
1
N ∑N

j=1 ‖μX|IY ,Y=yj
‖Hx

)2

Construction of the Instrumental Variables

Assumption 2. (Cluster assumption. [33]) If points are in the same cluster, they are likely to be in
the same class.

In some tasks, the instrumental variables (IV) are observed, and their application is
straightforward. In a number of applications, they are not provided. Here, we discuss how
the instrumental variables can be approximated, and we draft a procedure to estimate them.

10
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In our experiments, in Section 5, we apply the proposed method for the IV construction.
Note that the identification and characterisation of latent variables is a challenge in itself.
Our work is slightly similar to [34,35] in that we apply clustering methods to create the
latent variables. Taking into account that only X and Y are observed, the instrumental
variables can be constructed using either X, Y, or both, and an optimal choice of the
variables (X, Y, or both) that are related to the IV is in its turn related to a graphical structure
that we try to identify and to orient. Thus, for a structure IX → X → Y, IX does not contain
information about Y, and IX has to be constructed from X only. On the contrary, in the case
of X → Y ← IY, IY is not independent from X, and IY has to contain information about
both X and Y.

We rely on clustering methods for the instrumental variables estimation. In our
experiments, we apply the k-means clustering; however, other clustering approaches can
be used. Algorithm 1 drafts the procedure to approximate the candidates for the IV. We
developed a method—Algorithm 2—that makes the decision of whether IX and IY are to
be constructed from one or two observed variables. The proposed algorithm constructs
the instrumental variables separately from X, Y ( IXX , IYY ), and from both (IXXY , IYYX ), and
tests which instrumental variables are more relevant. Algorithm 2 compares the distance
(we considered the Euclidean distance in our experiments; however, another measure,
e.g., the Kullback–Leibler, can be used) between IXX and IXXY , and between IYY and IYYX .
The intuition behind the proposed criterion is as follows. If Y influences clustering of X
less than X impacts clustering of Y (the condition i f (dist(IXX , IXXY) < dist(IYY , IYY X)) in
Algorithm 2), then we apply IX constructed from X only, and IY is constructed from X and
Y. Furthermore, vice versa. An important remark is that this criterion has a lot in common
with the causal discovery methods based on the Kolmogorov complexity and the MDL: to
infer causality, our criterion choses a simpler model.

A Symmetric Causal Inference Algorithm

We introduce a simple symmetric algorithm based on the conditional (in)dependence
tests to infer causality. It relies on the theoretical foundations provided above. Our
algorithm is sketched as a decision tree in Figure 2. It takes IX, IY, X, and Y and returns
a causal direction. Precisely, if a conditional independence test states that Y ⊥⊥ IX |X is
true, then X → Y is inferred; otherwise, we test whether X ⊥⊥ IY|Y, and if it is true, then Y
causes X. The last case where X and Y are correlated but both Y ⊥⊥ IX |X and X ⊥⊥ IY|Y
are false, let us conclude that there is a common hidden cause U, and Y ← U → X.

Y ⊥⊥ IX |X?

X → Y X ⊥⊥ IY|Y?

Y → X X ← U → Y

yes no

yes no

Figure 2. A symmetric causal inference algorithm.
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Algorithm 1 Construction of IV Candidates

IXX (IV variable of X from X)
Fix a number of clusters K
Cluster {Xi}N

i=1 into K clusters
for i = 1 : N do

Ii,XX is the centre of the cluster where Xi belongs
end for

IXXY (IV variable of X from X and Y)
Fix a number of clusters K
Cluster {Xi, Yi}N

i=1 into K clusters
for i = 1 : N do

Ii,XXY is the 1st coordinate (corresponding to X) of the clusters centres where (Xi, Yi)
belongs

end for

IYY (IV variable of Y from Y)
is constructed similarly to the IV variable of X from X

IYYX (IV variable of Y from X and Y)
is constructed similarly to the IV variable of X from (X, Y)
(Take the 2nd coordinate of the clusters centres)

Algorithm 2 Approximation of the Instrumental Variables (IV) IX and IY from X and Y.
Input: Observations X and Y, a clustering algorithm
Output: Instrumental variables IX and IY

// Construct instrumental variables to be tested
Construct IV of X, IXX using X only
Construct IV of X, IXXY using X and Y
Construct IV of Y, IYY using Y only
Construct IV of Y, IYYX using X and Y

// Take the decision which IV to use

if (dist(IXX , IXXY ) < dist(IYY , IYYX )) then
// the IV of X is constructed from X only
IX = IXX
// the IV of Y is constructed from both X and Y
IY = IYYX

else
// the IV of Y is constructed from Y
IY = IYY
// the IV of X is constructed from X and Y
IX = IXXY

end if

5. Experiments

In this section, we illustrate the predictive efficiency of the proposed method on both
artificial and real datasets. We run the numerical experiments on a recent MacBook Pro,
2.6GHz 6-core Intel Core i7, 16GB memory. We use the R language and environment for
our experiments, in particular the bnlearn R package.

Simulated Data

We consider simple discrete and continuous scenarios. In the discrete case, we fix the
structures and the probability distributions on the graphs and generate binary variables.
In the continuous case, we use a Gaussian distribution. We generate the instrumental
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variables IX and IY, X and Y, and the hidden variable U. We use the bnlearn R pack-
age to construct the synthetic datasets, and we also use the conditional independence
tests from the same package. For our discrete setting with binary variables, we apply
an asymptotic mutual information independence test ci.test(test=’mi’), and for the
continuous setting with Gaussian variables, we apply the exact t-test for Pearson’s correla-
tion ci.test(test=’cor’). Note that the abovementioned conditional independence tests
from the bnlearn R package return “big” p-values if the variables are conditionally indepen-
dent, and the p-values are small (with an arbitrary threshold 0.05) for dependent variables.

We consider and simulate discrete and continuous data for two following scenarios:
(1) X → Y, and (2) X ← U → Y. We test a various number of observations, from 10 to
10,000, and we observe that in the discrete case, even for such a simple problem as one
with variables taking binary values, a large number of observations is needed to obtain a
reasonable performance. Figure 3 illustrates the p-values of the conditional independence
tests for the discrete (two plots above) and continuous (two plots below) settings. We show
the results for both cases X ⊥⊥ IY|Y and Y ⊥⊥ IX |X. We observe that for the ground truth
X → Y, X ⊥⊥ IY|Y asymptotically converges to small p-values (close to 0), and Y ⊥⊥ IX |X
returns large p-values, even for a large number of observations.

Figure 3. Simulated data. Ground truth: X → Y. Two plots above: discrete data; two plots below:
continuous data. The p-values of an asymptotic mutual information test (for the discrete case) and an
exact t-test for Pearson’s correlation (the continuous case) as a function of the number of observations
(x-axis).

Figure 4 shows our results for the scenario X ← U → Y. For the discrete and
continuous experiments, we test whether Y ⊥⊥ IX |X and whether X ⊥⊥ IY|Y. We see
that the variables are not independent. In Figure 5, we demonstrate the p-values of the
conditional independence test Y ⊥⊥ X|U, which is a sanity check, and we observe that
in this case where the ground truth is X ← U → Y, the p-values are far from 0 for both
continuous and discrete scenarios. In the experiments on the simulated data, our aim is
to show that the p-values are reasonable indicators of the conditional independence. We
do not report the accuracy values, since it is straightforward according to the proposed
algorithm (Figure 2).
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Figure 4. Simulated data. Ground truth: X ⊥⊥ Y|U. Above: two plots for the discrete setting; below:
two plots for the continuous setting. The p-values as a function of the number of observations
(x-axis).

Figure 5. Simulated data. Ground truth: X ⊥⊥ Y|U. The results of the conditional independence tests
for X ⊥⊥ Y|U for continuous (on the left) and discrete (on the right) data. On the x-axis: the number
of observations.

Cause-Effect Pairs

We tested the proposed algorithm on the benchmark collection of the cause-effect pairs,
obtained from http://webdav.tuebingen.mpg.de/cause-effect (accessed on 15 January
2021), version 1.0. The data set contains 100 pairs from different domains, and the ground
truth is provided. The goal is to infer which variable is the cause and which is the effect. The
pairs 52–55, 70–71, and 81–83 are excluded from the analysis, since they are multivariate
problems. Note that each pair has an associated weight, provided with the data set, since
several cause-effect pairs can come from the same scientific problem. In a number of
publications reporting results on this dataset, the accuracy is a weighted average. We apply
the proposed method, described in Section 4, to infer causality on the cause-effect pairs. In
Figure 6, we show the standard (unweighted) accuracy and the weighted accuracy, where
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the weights for each observation pair are given in the dataset. To increase the stability
and also the accuracy, we propose a scenario where we split the data into k-folds, carry
out causal inference on each fold separately, and take an ensemble decision on the causal
direction. The accuracy for such an ensemble approach is also shown in Figure 6 for
both weighted and not weighted performance. The number of folds in our experiments
is 10. Speaking of state-of-the-art results on the cause-effect pairs, it was reported that
Origo [22] achieves (weighted) accuracy of 58%, and the ANM [16] reaches 72 ± 6%.
Figure 6 illustrates that the proposed method outperforms the state-of-the-art algorithms:
our weighted accuracy is 83.2%. Note that the ensemble method reduces the variance
significantly. We do not provide the results of the extensive numerical comparisons of the
state-of-the-art methods on the cause-effect pairs, since these results can be easily found in
the original papers (cited in the Related Work section). Moreover, the goal of the current
work is not only to achieve state-of-the-art results and to outperform them, which we do,
but also to focus on an alternative formulation of the independence of the cause and the
causal mechanism, as well as to consider a reasonable method for the identification and
construction of the hidden instrumental variables.

Figure 6. On the left: accuracy on the cause-effect benchmark. On the right: the difference between
the test statistics X ⊥⊥ IY |Y and Y ⊥⊥ IX |X.

What is central and what is interesting to look at are the p-values of the conditional
independence tests (here, the exact t-test for Pearson’s correlation from bnlearn R package)
X ⊥⊥ IY|Y and Y ⊥⊥ IX |X. In Figure 6 (on the right), we show their difference. If the
p-values of the test X ⊥⊥ IY|Y are small (that is, X and IY are not independent, given Y)
and the results of Y ⊥⊥ IX |X are relatively large (or larger than ones of X ⊥⊥ IY|Y), stating
that Y and IX are independent, given X, then the plotted difference is negative. This is
exactly what is observed for almost all cause-effect pairs.

Figure 6 (on the right) shows our results for the case where the number of clusters,
i.e., modalities of the hidden instrumental variables, is set to 15 for both IX and IY. We
tested different numbers, K, of clusters for the construction of instrumental variables (see
Section 4 for details). For the current task, we did not notice any important impact on
the result; however, taking extremely small (2–3) and large (70–100) numbers of clusters
degrades the performance. In practical real applications, an optimal K can be fixed using a
grid search.

6. Conclusions, Limitations, and Future Research

We posed a challenge to bring together two principle research avenues in causal
inference: causal inference using conditional independence and methods based on the
postulate of independence of cause and mechanism. We focused on the methods of causal
inference based on the independence of cause and mechanism, and we provided some
theoretical foundations for this family of algorithms. Our main message is that the role of
the hidden instrumental variables cannot be neglected.
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The implications of our study are twofold. First, the proposed method will motivate
the development of novel theoretical (probabilistic) approaches to recover hidden common
causes. Second, our method can already be tested and studied for some real biological and
medical applications. However, the application to real problems, especially to medical and
biological tasks, should be done in tight collaboration with human experts.

We propose an algorithm to estimate the latent instrumental variables efficiently.
We also introduce a simple (and symmetric) algorithm to perform causal inference for
the case of two observed variables only, where the corresponding instrumental variables
are approximated. Our original approach is simple to implement, since it is based on
a clustering algorithm (we used the k-means; however, any other clustering method
can be tested) and on conditional independence tests. The introduced approach can be
applied to both discrete and continuous data, and we have shown that it is extremely
competitive compared to the state-of-the-art methods on a real benchmark, where a cluster
assumption holds.

The main limitation of our work is that it is focused on the bivariate case; however, in
a number of real applications, there is a need to infer causality between several variables.

Currently, we consider an extension of the proposed algorithm to more complex
graphs and potentially huge applications, such as modelling gene interactions. Another
avenue of research is novel metrics to measure the conditional independence of variables.
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Abstract: This paper investigates the problem of selecting instrumental variables relative to a
target causal influence X → Y from observational data generated by linear non-Gaussian acyclic
causal models in the presence of unmeasured confounders. We propose a necessary condition for
detecting variables that cannot serve as instrumental variables. Unlike many existing conditions
for continuous variables, i.e., that at least two or more valid instrumental variables are present in
the system, our condition is designed with a single instrumental variable. We then characterize the
graphical implications of our condition in linear non-Gaussian acyclic causal models. Given that the
existing graphical criteria for the instrument validity are not directly testable given observational
data, we further show whether and how such graphical criteria can be checked by exploiting our
condition. Finally, we develop a method to select the set of candidate instrumental variables given
observational data. Experimental results on both synthetic and real-world data show the effectiveness
of the proposed method.

Keywords: instrumental variable; causal graph; non-Gaussianity; causal discovery

1. Introduction

Estimating causal effects from observational data is an important problem, especially
in the presence of unmeasured confounding. The instrumental variable (IV or instrument)
model is a general approach to estimate causal effect in the presence of unobserved vari-
ables [1–4] and is used in a wide range of literature, such as economics [5,6], sociology [4,7],
and epidemiology [8,9].

A major challenging problem in an instrumental variable model is how to select a
valid IV to infer the causal effect of one variable X on another variable Y. In general,
IVs need to be chosen based on domain knowledge or expert experience. However, it is
sometimes difficult to select a valid IV without precise prior knowledge of causal structure,
and an invalid IV may cause a biased estimation of the effect of X on Y [10]. Therefore, it is
desirable to investigate ways of selecting IVs only from observed variables.

Although it is not possible to test whether a variable is a valid IV only from the
joint distribution of observed variables, there exist several methods for testing whether a
variable of interest is an invalid IV. Pearl [11] provided a necessary condition, called the
instrumental inequality,for a general instrument model, which can be used to test whether a
variable is a candidate IV for discrete variables. Inspired by instrumental inequality, vari-
ous contributions were made towards discovering the testability of IV validity in different
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scenarios [12–15]. More recently, Kédagni and Mourifié [16] considered a more general case
where treatment is discrete and there are no restrictions on IV and outcome and proposed
generalized instrumental inequalities to test the IV independence assumption. However,
those approaches fail to work when treatment is a continuous variable. Pearl [11] conjec-
tured that instrument validity cannot be tested in the case where treatment is a continuous
variable without any further assumption, which was recently proved by Gunsilius [17].

There exist works in the literature that address the continuous variable setting. Kuroki
and Cai [18] utilized vanishing Tetrad conditions [19] and proposed a new necessary
condition to solve this problem in the linear structural causal model. However, their
method needs at least three valid IVs in the observed variables. Kang et al. [20] proposed
the sisVIVE algorithm to estimate the causal effect in the case where more than half of the
variables are valid IVs in the observed variables. Later, Silva and Shimizu [21] appear to
be the first to exploit the non-Gaussianity property in the linear structural causal model.
They utilized the generalized Tetrad conditions (t-separation) [22,23] and designed a IV-
TETRAD algorithm to select IVs. Unfortunately, their conditions still require two or more
IVs as a prerequisite for instrument testing and may rule out some correct IVs. For instance,
consider the causal graph in Figure 1. Assume the causal relationships between variables
are linear and that the noise terms follow non-Gaussian distributions. Then, the IV-TETRAD
returns an empty set of candidate IVs though Z is a valid IV relative to X → Y.

U2 U1

Z X Y

Figure 1. A simple instrumental variable example where X is treatment, Y is outcome, and Z is an IV
relative to X → Y.

In this paper, we show that, for continuous data, a single variable Z being a valid
IV relative to X → Y imposes certain constraints in a linear non-Gaussian acyclic causal
model. Specifically, we make the following contributions:

1. We propose a necessary condition for detecting variables that cannot serve as (condi-
tional) IVs by the so-called generalized independent noise (GIN) condition [24], which
is called instrumental variable generalized independent noise (IV-GIN) condition.
We characterize the graphical implications of IV-GIN condition in linear non-Gaussian
acyclic causal models.

2. We then further show whether and how the graphical criteria of an instrumental
variable can be checked by exploiting the IV-GIN conditions.

3. We develop a method to select the set of candidate IVs for the target causal influence
X → Y from the observational data by IV-GIN conditions.

4. We demonstrate the efficacy of our algorithm on both synthetic and real-word data.

2. Related Work

In this section, we review some of the key works that are most closely related to ours.

2.1. Instrument Variable Models

The instrumental variable (IV) model is a general approach to estimate the causal
effect of a treatment X on an outcome Y of interest in presence of unobserved variables
[1–3]. That is to say, the IV model is an unbiased estimator of the causal effect of X on
Y of interest [4,6]. In practice, one can obtain IVs based on domain knowledge or expert
experience. However, it is sometimes difficult to select the valid IV without precise prior
knowledge of causal structure, and an invalid IV may cause a biased estimation of the
effect of X on Y [10]. In this paper, we investigate data-driven ways of selecting IVs only
from observed variables. The current methods for selecting IVs can be roughly divided
into the following two settings.
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In the literature of the discrete variable setting, Pearl [11] provided a necessary condi-
tion, called instrumental inequality, which can be used to test whether a variable is an invalid
IV. Inspired by instrumental inequality, various contributions were made to discover IV
validity’s testability in different scenarios. For instance, Manski [12] showed the same
instrumental inequality in the missing data model. Palmer et al. [13] and Wang et al. [15]
considered useful tests of the instrumental inequality in the binary instrumental variable
model. Kitagawa [14] introduced another test of the instrument in the case where the
outcome is continuous. More recently, Kédagni and Mourifié [16] proposed generalized
instrumental inequalities to test the IV independence assumption in the case where treat-
ment is discrete and there are no restrictions on IV and outcome. Gunsilius [17] recently
proved the Pearl’s conjecture that instrument validity cannot be tested in the case where
treatment is a continuous variable without any further assumption[11].

There exist works in the literature that address the continuous variable setting. For in-
stance, Kuroki and Cai [18] proposed a new necessary condition to resolve this problem in the
linear structural causal model using the so-called Tetrad conditions [19]. Later, Kang et al. [20]
proposed the sisVIVE algorithm to estimate the causal effect in the case where more than
half of the candidate instruments are valid (majority rule). Recently, Silva and Shimizu [21]
appear to be the first to exploit the non-Gaussianity property in the linear structural causal
model. They designed an IV-TETRAD algorithm to select IVs using the generalized Tetrad
conditions (t-separation) [22,23]. Unfortunately, the above methods require two or more
IVs as a prerequisite for instrument testing, and some methods (e.g., IV-TETRAD approach)
may rule out some correct IVs.

Our work focuses on the continuous setting. Unlike the existing works, we show that
a single variable Z, being a valid IV relative to X → Y, imposes certain constraints in a
linear non-Gaussian acyclic causal model.

2.2. Causal Graphical Models

Graphical models with latent variables are extensively studied in the literature. Unlike
the existing methods of learning the undirected graphical model [25–33], here, we focus
only on the most closely related work on causal graphical models, i.e., a directed acyclic
graph (DAG) G representing the relations of causation among the variables [4,7]. Within
the space of discovering a causal graphical model on observed data, the commonly used
strategies are as follows.

One typical strategy for handling this problem is using conditional independence tests
to learn the causal graph over the observed variables [4,7]. Well-known algorithms along
this line include Fast Causal Inference (FCI) [34], Really Fast Causal Inference (RFCI) [35],
and their variants [36]. These methods learn the equivalence class of maximal ancestral
graphs (MAGs), as represented by PAG (partial ancestral graph). However, these works
focus on estimating the causal structure over only observed variables and can not recover
the precise causal graph. In our work, we try to discover the set of candidate IVs from
observational variables without prior knowledge of causal graphs.

Another strategy is functional causal model-based approaches. For instance, Hoyer
et al. [37] showed that the causal order between any two observed variables is identifiable
in the linear non-Gaussian causal model. Later, more efficient methods were proposed
to learn the causal graph over observed variables [38,39]. Recently, Salehkaleybar et al.
Salehkaleybar et al. [40] showed that the set of all possible causal effects between any
two observed variables is identifiable in the same setting. Unfortunately, the size of the
equivalence class of the identified causal effects could be very large, and their method
requires specifying the number of latent variables a priori [21].

There is also an interesting strategy based on the “Sparse plus Low Rank Matrix
Decomposition”. Many methods are proposed to address the challenge of learning a latent
Gaussian graph model. For instance, Chandrasekaran et al. [26] formulated a convex
objective involving nuclear norm penalization maximum likelihood for Gaussian graphical
model estimation with a few latent confounders. Zorzi and Sepulchre [28] presented a two-
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step procedure for estimating autoregressive (AR) latent variable graphical models. Later,
Ciccone et al. [41] reformulated this decomposition problem for the setting where only the
sample covariance is available, and the difference between the sample covariance and the
actual one is non-negligible. Alpago et al. [42] proposed an identification procedure for a
sparse graphical model associated with a reciprocal process. However, these methods focus
on the undirected graphical model. In the field of a causal graphical model, Frot et al. [43]
introduced the LRpSC+GES algorithm to learn the causal structure with some hidden
variables. Agrawal et al. [44] proposed a practical algorithm, the DeCAMFounder, to
consistently estimate causal relationships in the nonlinear, pervasive confounding setting.
Although these methods are used in a range of fields, they usually assume that the under-
lying graph among the observed variables is sparse, and there are a few hidden variables
that have a direct effect on many of the observed variables. The modeling of our paper
does not restrict those assumptions and allows arbitrary hidden structures.

In summary, unlike the existing methods of recovering causal graphical models, our
goal is to select the set of candidate IVs from observational variables without precise prior
knowledge of causal graph.

3. Preliminaries

3.1. Notation and Graph Terminology

We follow the notational conventions used in [7]. Let G be a directed acyclic graph
(DAG) with the nodes (or vertex) set V and the directed edges set E. Here, we use “variable”
and “node” interchangeably. A path is a sequence of nodes {V1, . . . , Vr} such that Vi and
Vi+1 are adjacent in G, where 1 ≤ i < r. Furthermore, if the edge between Vi and Vi+1 has
its arrow pointing to Vi+1 for i = 1, 2, . . . , r− 1, we say that the path is directed from V1 to
Vr. A collider on a path {V1, . . . , Vp} is a node Vi , 1 < i < p, such that Vi−1 and Vi+1 are
parents of Vi. We say a path is active if this path can be traced without traversing a collider.
A trek between Vi and Vj is a path that does not contain any colliders in G. The set of all
parents and children of Vi are denoted by Pa(Vi) and Ch(Vi), respectively. Besides, for a
set O, |O| denotes the number of elements of set O. Other commonly used concepts in
graphical models, such as d-separation, can be found in [4,7].

3.2. Instrumental Variable Model

Here, we follow the notational conventions and definitions used in [45]. Let X be
the treatment (exposure), Y be the outcome, and U be the set of unmeasured confounders
between X and Y.

Definition 1 ((Conditional) Instrumental Variable Criteria). Given the causal graph G, a vari-
able Z is a (conditional) instrumental variable to a target causal effect X → Y given W, if and only
if it satisfies the following conditions:

1. W contains only nondescendants of Y in G;
2. W d-separates Z from Y in the graph obtained by removing the edge X → Y from G;
3. W does not d-separates Z from X in G.

For simplicity, we call these three conditions instrument criteria.

Definition 2 (IV Estimator). Suppose variable Z is a (conditional) IV for X → Y given W,
the causal effect of X on Y, denoted by bYX, is identified in a linear model and given by

bYX =
σZY·W
σZX·W

, (1)

where σZY·W denotes the partial covariance between Z and Y given the set W, and σZX·W denotes
the partial covariance between Z and X given the set W.
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Figure 2 illustrates a simple instrumental variable model, where Z is an IV conditioning
on {W1, W2} for the relation X → Y. The causal effect bYX is

σZY·{W1,W2}
σZX·{W1,W2}

.

UW1

W2

Z X YbYX

Figure 2. A typical instrumental variable model where X is treatment, Y is outcome, and Z is an IV
conditioning on {W1, W2} relative to X → Y.

3.3. Problem Setup

In this paper, we assume that the system of interest is a linear non-Gaussian acyclic
causal model with variables in V = {X, Y} ∪U ∪O, where X is the treatment, Y is the
outcome, U is the set of unmeasured (latent or hidden) variables, and O is the set of other
measured variables. In particular, without loss of generality, we assume that all variables
in V have a zero mean. Each variable Vi ∈ V is generated according to the following linear
structural equation model (SEM):

Vi = ∑
Vj∈Pa(Vi)

bijVj + εVi (2)

where bij is the causal strength from Vj to Vi. All noise terms εVi are continuous random
variables following non-Gaussian distributions with nonzero variances and are indepen-
dent of each other. We restrict our attention to the recursive model [46]. That is to say,
the causal relationships among variables can be represented by a DAG [4,7]. This model is
also known as linear, non-Gaussian, acyclic model (LiNGAM) when all variables in V are
observed [47].

Our problem of interest is to study the testability of IV validity for the relation X → Y
in a linear non-Gaussian acyclic causal model. To this end, theoretically, we need to
investigate the testability of instrument criteria from observational variables.

4. Necessary Condition for Instrumental Variable

In this section, we first give a simple example to show that a valid IV imposes some
constraints with the help of non-Gaussianity. Then, we give our necessary condition for
(conditional) IVs by using generalized independent noise (GIN) conditions [24]. Finally,
we present the graphical implications of the proposed condition in linear non-Gaussian
causal models. To improve readability, we defer all proofs to the Appendix A.

4.1. A Motivating Example

Before showing the theoretical results, let us look at two simple graphs shown in
Figure 3. Suppose the generating mechanisms of two subgraphs are as follows:

• Subgraph (a): U1 = εU1 , Z = εZ, X = 2Z + 0.5U1 + εX , and Y = 1X + 2U1 + εY;
• Subgraph (b): U1 = εU1 , Z = 1U1 + εZ, X = 2Z + 0.5U1 + εX , and Y = 1X + 2U1 + εY.

U1

Z X Y

0.
5 2

2 1

(a)

U1

Z X Y

1 0.
5 2

2 1

(b)

Figure 3. (a) Z is a valid IV for the relation X → Y and (b) Z is an invalid IV for the relation X → Y.

Here, we consider two cases, namely Gaussian and uniform cases:
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• Gaussian Case: All noise terms in subgraphs (a) and (b) are generated from the standard
Gaussian distributions.

• Uniform Case: All noise terms in subgraphs (a) and (b) are generated from the uniform
distributions over the interval [0, 1].

Let Y − σYZ
σXZ

X be the surrogate-variable of {Y, X} relative to Z. Figure 4 shows the
scatter plots of Z and Y− σYZ

σXZ
X for two cases. Interestingly, in the Gaussian case, we find

that no matter whether Z is an IV or not, Z and Y − σYZ
σXZ

X are statistically independent,
while in the uniform case, Z and Y− σYZ

σXZ
X are statistically dependent if Z is an invalid IV.

These observations imply that the non-Gaussianity (as indicated by the uniform distribu-
tion) is beneficial to find out whether a continuous variable is a candidate IV relative to
X → Y.
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Figure 4. Illustration on the fact that non-Gaussianity leads to dependence between invalid IV Z
and surrogate-variable Y − σYZ

σXZ
X. (a) Scatter plot of valid IV Z and surrogate-variable Y − σYZ

σXZ
X.

(b) Scatter plot of invalid IV Z and surrogate-variable Y− σYZ
σXZ

X.

4.2. IV-GIN Condition for Instrumental Variable

Below, we give mathematical characterizations of the above observation by using the
GIN condition. Before that, we first review the GIN condition formulated by Xie et al. [24]
and the Darmois–Skitovitch theorem that characterizes the independence of two linear
statistics given in [48].

Definition 3 (GIN condition). Let P and Q be two observed random vectors. Suppose the variables
follow the linear non-Gaussian acyclic causal model. Define the surrogate-variable of P relative to
Q as EP||Q := ωᵀP, where ω satisfies ωᵀE[PQᵀ] = 0 and ω �= 0. We say that (Q, P) follows the
GIN condition if and only if EP||Q is statistically independent from Q.

Theorem 1 (Darmois–Skitovitch Theorem). Define two random variables V1 and V2 as linear
combinations of independent random variables n1, . . . , np:

V1 =
p

∑
i=1

αini, V2 =
q

∑
i=1

βini, (3)

where the αi, βi are constant coefficients. If V1 and V2 are independent, then the random variables
nj for which αjβ j �= 0 are Gaussian.
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The above theorem states that if there exists a non-Gaussian nj for which αjβ j �= 0, V1
and V2 are dependent.

We now give the necessary condition of valid IVs by using GIN conditions.

Theorem 2 (Necessary Condition for IV). Let G be a linear non-Gaussian acyclic causal model.
Let treatment X, outcome Y, Z, and W be correlated random variables in G. Assume faithfulness
holds. If Z is a valid IV conditioning on W relative to X → Y in G, then ({Z, W}, {X, Y, W})
follows the GIN condition.

We term this necessary condition the IV-GIN (instrumental variable-generalized inde-
pendent noise) condition. For the rest of the paper, we say that [Z||W] follows the IV-GIN
condition relative to X → Y if and only if ({Z, W}, {X, Y, W}) follows the GIN condition.
Theorem 2 indicates that one may test whether a variable Z is an invalid IV conditioning
on W relative to X → Y by just testing the IV-GIN condition.

Example 1 (Motivating example, continued). Let us continue to consider the two causal graphs
in Figure 3. Assume that all noise terms follow non-Gaussian distributions. According to the linear
generating mechanism and IV-GIN condition, for subgraph (a),

Z = εZ (4)

E{Y,X}||Z = Y− σYZ
σXZ

X = 2U1 + εy. (5)

We find that there is no common non-Gaussian independent component shared by E{Y,X}||Z and Z.
Thus, we have E{Y,X}||Z as independent from Z due to the Darmois–Skitovitch Theorem.

However, for subgraph (b),

Z = εU1 + εZ (6)

E{Y,X}||Z = Y− σYZ
σXZ

X

= (2− 2.5t)U1 + εy − 2tεZ − tεX , (7)

where t =
2Var(εU1 )

2.5Var(εU1 )+2Var(εZ)
. We find that there is one common, non-Gaussian independent

component shared by E{Y,X}||Z and Z, i.e., εZ because 2t �= 0. Thus, we have E{Y,X}||Z and Z as
dependent due to the Darmois–Skitovitch theorem. These facts theoretically verify the results shown
in Figure 4.

4.3. Graphical Implications of IV-GIN Condition in Linear non-Gaussian causal Models

In this section, we characterize the graphical implications of the IV-GIN condition in
linear non-Gaussian causal models. The following theorem shows the connection between
IV-GIN condition and the graphical properties of the variables, and an illustrative example
is given accordingly.

Theorem 3. Suppose all variables V follow the linear non-Gaussian acyclic causal model and that
faithfulness holds. Let treatment X, outcome Y, Z, and W be correlated random variables in V.
Then, [Z||W] follows the IV-GIN condition relative to X → Y and there is no proper subset W̃ of
W such that [Z||W̃] follows the IV-GIN condition relative to X → Y if and only if the following
three conditions hold:

1. There exists a node C ∈ V, C /∈ W, such that for every trek π between a node Vp ∈ {X, Y, W}
and a node Vq ∈ {Z, W}, (a) π goes through at least one node in {C, W}, denoted by Vk, and
(b) Vk has its arrow pointing to Vp in π. (In other words, Vk is causally earlier (according to
the causal order) than Vp on π.)

2. There is at least one directed path between any one node in {C, W} and any one node in {X, Y}.
3. There is no proper subset W̃ of W to satisfy conditions 1 and 2.

25



Entropy 2022, 24, 512

Example 2. Consider the causal graphs shown in Figure 3 again. For subgraph (a), there exists
a node X, and W = ∅ such that (1) every trek between Z and {X, Y}, e.g., Z → X → Y,
goes through X and that (2) X has its arrow pointing to Y. Besides, there is at least one directed path
between X and any one node in {X, Y}. According to Theorem 3, we know that [Z||∅] follows the
IV-GIN condition relative to X → Y in subgraph (a). However, for subgraph (b), we can not find a
node C such that every trek between {Z} and a node in {X, Y} goes through C and C is causally
earlier than {X, Y}, e.g., treks Z → X and Z ← U1 → Y. This implies that [Z||∅] violates the
IV-GIN condition in subgraph (b) according to Theorem 3.

5. Testability of Instrument Criteria Validity in Terms of IV-GIN Conditions

In this section, we investigate the testability of instrument criteria by exploiting our
IV-GIN condition. Note that the last condition of instrument criteria, i.e., that W does not
d-separate Z from X in G, can be easily checked by the d-separation criterion because W,
Z, and X are observed variables [4]. Therefore, we focus next on the first two conditions of
instrument criteria.

5.1. Condition 1 of Instrument Criteria

Below, we first show that the first condition, i.e., that W contains only nondescendants
of Y in G, is testable by using IV-GIN conditions.

Proposition 1. Let G be a linear non-Gaussian acyclic causal model. Let treatment X, outcome
Y, Z, and W be correlated random variables in G. Assume faithfulness holds, conditions 2 ∼ 3
of instrument criteria hold, and there is no proper subset W̃ of W such that [Z||W̃] follows the
IV-GIN condition. If {Z, W} contains at least one descendant of Y in G, then [Z||W] must violate
the IV-GIN condition.

Proposition 1 ensures that the IV-GIN condition rules out the invalid IVs that do not
satisfy condition 1 of instrument criteria, and an illustrative example is given in Example 3.

Example 3. Let us consider the causal graph in Figure 5. We find that [Z||W1] follows the IV-GIN
condition because Z is a valid IV conditioning on W1. However, we find that [Z||W2] violates the
IV-GIN condition because W2 is the descendant of Y.

U1W1

W2

Z X Y

Figure 5. Causal graph where Z is a valid IV conditioning on W1 relative to X → Y but an invalid IV
conditioning on W2 relative to X → Y.

5.2. Condition 2 of Instrument Criteria

Now, we study the second condition, i.e., that W d-separates Z from Y in the graph
obtained by removing the edge X → Y from G. Given the conditional set W, the condition
2 can be phrased as follows:

2a. There is no active nondirected path between Z and Y that does not include X;
2b. There is no active directed path from Z to Y that does not include X.

In the remainder of this subsection, we discuss these two subconditions separately.

5.2.1. Subcondition 2a

It was shown that one can verify the validity of condition 2a in the case where at
least two IVs are present in the ground-truth graph [21]. However, their condition is too
restricted and rules out some valid IVs. (A similar conclusion is reported in Proposition 17
of [21].) Figure 1 shows an example that their method outputs an empty set of candidate
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IVs, though Z is a valid IV. In contrast, our IV-GIN condition is relatively mild and is able to
avoid ruling out the valid IVs. Although one might not fully verify the validity of condition
2a using the IV-GIN condition, most invalid IVs that do not satisfy condition 2a are ruled
out, as shown in the following theorem.

Proposition 2. Let G be a linear non-Gaussian acyclic causal model. Let treatment X, outcome Y,
Z, and W be correlated random variables in G. Assume faithfulness holds, conditions 1 and 3 of
instrument criteria hold, and there is no proper subset W̃ of W such that [Z||W̃] follows the IV-GIN
condition. Furthermore, given W, assume there is at least one active nondirected path between
Z and Y that does not include X. If given W, there is no node C ∈ V such that all active paths
between Z and Y go through C and C has its arrow pointing to Y, then [Z||W] must violate the
IV-GIN condition.

Below, we give an example to illustrate Proposition 2.

Example 4. Consider the causal diagram shown in Figure 6. Given W1, there is one active
nondirected path between Z and Y, i.e., Z ← U2 → Y, and all active paths between Z and Y are
Z → X → Y, and Z → U2 → Y. Thus, we can not find a node C such that all active paths between
Z and Y go through C, and C has its arrow pointing to Y. This fact implies that [Z||W1] violates
the IV-GIN condition. That is to say, Z is an invalid IV conditioning on W1 relative to X → Y.

U2 U1

W1

Z X Y

Figure 6. Causal graph where Z is an invalid IV conditioning on W1 relative to X → Y due to the
nondirected path Z ← U2 → Y.

Now, we give a simple example to show that though the IV-GIN condition holds, the
condition 2a of instrument criteria is violated.

Example 5. Consider the causal diagram shown in Figure 7. We can find a node U2 such that all
active paths between Z and Y go through U2 and U2 has its arrow pointing to Y. This implies that
[Z||∅] follows the IV-GIN condition according to Proposition 2. This example tells us the IV-GIN
condition is necessary, but not sufficient, to test condition 2a.

U2 U1

Z X Y

Figure 7. Causal graph where Z is a invalid IV conditioning on an empty set relative to X → Y but
({Z}, {Y, X}) follows the GIN condition.

5.2.2. Subcondition 2b

We now show that it is hard to verify the validity of condition 2b, even under the
non-Gaussian assumption, through the following simple example.

Let us look at the following graph in Figure 8, where Z is a invalid IV conditioning on
an empty set relative to X → Y.
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U1

Z X Y

γ δ

α β

λ

Figure 8. Causal graph where Z is an invalid IV conditioning on an empty set relative to X → Y due
to the directed path Z → Y.

Suppose the generating mechanism of the graph is as follows:

U1 = εU1 , Z = εZ, (8)

X = αZ + γU1 + εX (9)

Y = βX + δU1 + λZ + εY (10)

According to the definition of GIN condition, we have

E{Y,X}||Z = Y− σYZ
σXZ

X (11)

= (δ− λ/α)U1 − (λ/α)εx + εY), (12)

Based on the above equation, the component of εZ is successfully removed from E{Y,X}||Z
although Y is generated by {Z, X, U1}. This implies that E{Y,X}||Z is independent from Z
according to the Darmois–Skitovitch theorem. That is to say, [Z||W1] follows the IV-GIN
condition whatever the value of λ (note that there is no directed edge between Z and Y
when λ = 0).

6. Algorithm for Selecting the Candidate IVs

In this section, we leverage the above results and propose a sequential algorithm to
select the set of candidate IVs for the target relationship X → Y without prior knowledge
of the causal structure. Notice that the validity of a variable as an IV is dependent on which
set W we condition on. To identify candidate IV efficiently, given an observed variable Zi,
we start with finding IV with an empty conditional set and then increase the number of
conditional variables until the IV-GIN condition is satisfied or the length of conditional set
equals |O| − 1 (Lines 2∼14 of Algorithm 1). The details of the above process are given in
Algorithm 1.

Algorithm 1 IV-GIN

Input: Treatment X, outcome Y, and set of observed variables O.
Output: Set of candidate IVs C and its corresponding conditional set Conset.
1: Initialize the set of candidate IVs: C = ∅, the conditional set: Conset = ∅, the length

of conditional set: ConsetLen = 0, and Tag = O;
2: while ConsetLen < |Tag| do
3: for each variable Zi ∈ C do
4: repeat
5: Select a subset W from O \ Zi such that W = ConsetLen;
6: if [Z||W] follows the IV-GIN condition then
7: Add Zi into C, and delete Zi from Tag;
8: Set Conset(Zi) = W;
9: Break the repeat loop of line 4;

10: end if
11: until all subsets with length ConsetLen in O \ Zi are selected;
12: end for
13: ConsetLen = ConsetLen + 1;
14: end while
15: Return: C and Conset
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In practice, the main issue is how to test IV-GIN conditions, i.e., for any two sets of vari-
ables P and Q, we need to test the independence between EP||Q and Q. To do so, we check
for pairwise independence with Fisher’s method [49] instead of testing for the indepen-
dence between EP||Q and Q directly. In particular, denote by pk, with k = 1, 2, . . . , |Q|, all re-
sulting p-values from pairwise independence between variables use the Hilbert–Schmidt
independence criterion (HSIC)-based independence tests [50] due to the non-Gaussianity
of the data. We compute the test statistic as −2 ∑

|Q|
k=1 log pk, which follows the chi-square

distribution with 2|Q| degrees of freedom when all the pairs are independent.

Theorem 4 (Completeness of IV-GIN). Suppose that the data V = {X, Y} ∪U ∪O strictly
follows the linear non-Gaussian acyclic causal model, that is, all the model assumptions are met, and
the sample size is infinite. Furthermore, assume that there exists at least one valid IV Z conditioning
on W for the relation X → Y, where Z ∪W ⊂ V. Then, the output C of IV-GIN method must
contain all valid IVs.

7. Experiments on Synthetic Data

In this section, we evaluate the IV selection performance on synthetic data and demon-
strate the correctness of proposed theories.

Comparisons: We make comparisons with two state-of-the-art methods: the sisVIVE
algorithm [20] that needs more than half of the variables to be valid IVs, and the IV-TETRAD
algorithm [21] that needs two or more variables to be valid IVs. (Here, we adopt the two
functions, TestTetrad and TestResiuals, to select IVs in the IV-TETRAD algorithm.) The
source codes of sisVIVE and IV-TETRAD are available from https://mirrors.sjtug.sjtu.
edu.cn/cran/web/packages/sisVIVE/index.html (accessed on 20 January =2022) and
http://www.homepages.ucl.ac.uk/~ucgtrbd/code/iv_discovery/ (accessed on 20 January
2022), respectively.

Scenarios: We designed three scenarios, as shown in Figure 9, where X is treatment,
Y is outcome, the variables Ui (i = 1, 2) are unobserved, and Zj (j = 1, . . . , 4) are potential
IVs. For scenarios S1 and S2, nodes Z2 and Z3 both are valid IVs conditioning on an empty
set relative to X → Y, and node Z1 is an invalid IV due to the path Z1 ← U1 → Y. The key
difference between scenarios S1 and S2 is that there is an active nondirected path between
Z3 and X in S2 while not in S1. For scenario S3, Z1 is a valid IV conditioning on Z3 relative
to X → Y, Z2 is a valid IV conditioning on an empty set relative to X → Y, Z3 is an invalid
IV due to the paths Z3 → Y and Z3 ← U1 → Y, and Z4 is an invalid IV due to the path
X → Z4 ← Y.

U2

U1Z1

Z2

Z3

X Y

(S1)

U2

U1Z1

Z2

Z3

X Y

(S2)

U1Z3

Z4

Z1

Z2

X Y

(S3)

Figure 9. Three different scenarios used in our simulation studies.

Metrics: To evaluate the accuracy of the selected IVs, we used the following two metrics:

• Correct-selecting rate: The number of correctly selected valid IVs divided by the total
number of valid IVs in the ground-truth graph.

• Selection commission: The number of falsely detected IVs divided by the total number
of selected IVs in the output C of the current algorithm.

Experimental setup: We generated data by a linear non-Gaussian causal acyclic model
according to the above three scenarios. In detail, the causal strength bij was generated
uniformly in [−2,−0.5] ∪ [0.5, 2] and the non-Gaussian noise terms were generated from
exponential distributions to the second power. Here, we conducted experiments with the
following tasks:
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T1. Sensitivity on the effect of sample size. We considered different sample sizes N = 1k, 3k, 5k,
where k = 1000.

T2. Sensitivity on the effect of unmeasured confounders between X and Y. The coefficients
between {X, Y} and U1 are set such that bXU1 = bYU1 = λ, at two levels, (0.125, 0.25),
as that in [21]. The sample size N is 5000.

We used HSIC-based independence tests [50] for the IV-GIN condition due to the non-
Gaussianity of the data. Each experiment was repeated 50 times with randomly generated
data, and the results were averaged.

Results on Task T1: The experimental results are reported in Table 1. From the table,
we can see that our proposed IV-GIN outperforms other methods with both evaluation
metrics in all there scenarios and in all sample sizes, indicating that our IV-GIN condi-
tion’s testability is wider than other algorithms’ in the linear non-Gaussian causal models.
We found that the IV-TETRAD algorithm does not perform well, especially in scenarios S2
and S3, indicating that it is not capable when there is an active nondirected path between
valid IV and treatment X (scenario S2) and a single IV is present (scenario S3). We further
noticed that the sisVIVE algorithm does not perform well in scenario S3. This is because
fewer than half of the variables are valid IV conditioning on the same set in scenario S3.

Table 1. Performance of IV-GIN, sisVIVE, and IV-TETRAD on selecting valid IVs with different
sample sizes.

Correct-Selecting Rate ↑ Selection Commission ↓
Algorithm IV-GIN (Ours) sisVIVE IV-TETRAD IV-GIN (Ours) sisVIVE IV-TETRAD

1k 0.92 0.76 0.84 0.12 0.0 0.16
Scenario S1 3k 0.95 0.81 0.96 0.03 0.0 0.04

5k 0.97 0.85 0.96 0.0 0.0 0.04
1k 0.9 0.92 0.03 0.03 0.08 0.0

Scenario S2 3k 0.95 0.93 0.02 0.0 0.02 0.0
5k 1.0 0.94 0.0 0.0 0.0 0.0
1k 0.75 0.29 0.05 0.1 0.59 0.1

Scenario S3 3k 0.86 0.2 0.02 0.05 0.7 0.05
5k 0.93 0.24 0.02 0.02 0.63 0.0

Note: ↑means a higher value is better and ↓means a lower value is better.

Results on Task T2: The experimental results are reported in Table 2. It is worth
noting that stronger confounding makes it more difficult to select valid IVs. From the table,
we found IV-GIN gives better performances than other methods with different confounding
coefficients in almost all scenarios, indicating that our IV-GIN condition is more efficient
than other algorithms. We noticed that although the Correct-selecting rate of sisVIVE is
higher than IV-GIN in scenario S1 when λ = 0.25, the selection commission of IV-GIN is
lower than sisVIVE (lower is better for selection commission).

Table 2. Performance of IV-GIN, sisVIVE, and IV-TETRAD on selecting valid IVs with different effect
of unmeasured confounders between treatment and outcome.

Correct-Selecting Rate ↑ Selection Commission ↓
Algorithm IV-GIN (Ours) sisVIVE IV-TETRAD IV-GIN (Ours) sisVIVE IV-TETRAD

λ = 0.125 0.96 0.83 0.92 0.06 0.01 0.08
Scenario S1 λ = 0.25 0.85 0.72 0.86 0.01 0.0 0.01

λ = 0.125 0.98 0.93 0.02 0.04 0.06 0.0
Scenario S2 λ = 0.25 0.92 0.91 0.0 0.08 0.1 0.0

λ = 0.125 0.89 0.22 0.05 0.03 0.58 0.02
Scenario S3 λ = 0.25 0.85 0.2 0.03 0.07 0.61 0.0
Note: ↑means a higher value is better and ↓means a lower value is better.

To conclude, these above findings show a clear advantage of our method over the
compared algorithms.
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8. Application to Vitamin D Data

In this section, we apply our algorithm to the Vitamin D data set described by
Skaaby et al. [51], where the data we analyze are the population-based study Monica10.
The data we use are collected from 2571 individuals between 40–71 years, as reported in [52].
In detail, these data contain 5 variables, including treatment Vitamin D status (continuous
variable), outcome mortality, filaggrin genotype, age, and time (follow-up time). As argued
by Martinussen et al. [52], unmeasured confounding may arise between Vitamin D status
and mortality due to behavioral and environmental factors. To estimate the causal effect of
Vitamin D status on mortality, one may use the filaggrin genotype as instrumental variable,
as reported by Martinussen et al. [52]. In our setup, the problem of interest is to verify that
filaggrin genotype is a valid IV while age and time are not without the prior knowledge of
causal structure.

Here, we also make comparisons with the sisVIVE algorithm and the IV-TETRAD
algorithm. In the implementation, the significance level of all methods were set to 0.01.
We have the following findings: (1) The output of IV-GIN is that filaggrin genotype is a
valid IV while age and time are invalid, which indicates the effectiveness of our method.
(2) The output of IV-TETRAD is an empty set. This is because there is only one valid IV,
which violates the basic assumption (two or more variables are valid IVs in the system).
(3) The output of sisVIVE is that age is a valid IV while filaggrin genotype and time are invalid.
This implies that sisVIVE fails to find the valid IV, i.e., filaggrin genotype. One reason is that
fewer than half of the variables are valid IVs in this dataset. These results again indicate
that our algorithm has better performance than the other algorithms for selecting valid IVs.

9. Discussion

The preceding sections presented how to use IV-GIN conditions to select the set of
candidate IVs relative a target causal influence X → Y from observed variables with-
out prior knowledge of causal structure. In this section, we discuss the following two
practical questions.

Is it possible to select IVs by learning the whole causal graph? In fact, it is challenging
to discover the precise causal graph in the presence of arbitrary hidden variables. To show
this fact, we apply the LRpSC+GES algorithm introduced by [43] to learn the diagrams
of three scenarios in Section 7, respectively. For simplicity, we set sample size N = 5k.
We identify the IVs according to the instrument criteria given the learned graph. In detail, if
there is a direct edge between candidate variables Z and treatment X and there is no direct
edge between candidate variables Z and outcome Y, we think variable Z is a candidate IV.
(Note that this selection is relatively loose and not rigorous.) The results are given in the
following Table 3. From the table, we can see that the correct-selecting rate is close to 0.1,
which indicates that almost all valid IVs have been incorrectly removed from the candidate
set of IVs. We note that the selection commissions are small in the three scenarios. The reason
is that in most cases, a valid IV Z has a direct edge to both treatment X and outcome Y in
the learned graph by LRpSC+GES algorithm. These findings show that given the learned
graph by the LRpSC+GES algorithm, one can not correctly select the set of candidate IVs.

Table 3. Performance of LRpSC+GES on selecting valid IVs with 5k sample sizes.

Metrics Scenario S1 Scenario S2 Scenario S3

Correct-selecting rate ↑ 0.1 0.1 0.09
Selection commission ↓ 0.0 0.12 0.3

What happens if we have no background knowledge about X → Y? Theoretically
speaking, the IV-GIN algorithm does not need to restrict the relation between X and Y, and
the output C of the IV-GIN algorithm contains all valid IVs for the ground-truth relation,
e.g., X → Y or Y → X. This is because we do not restrict the order of X and Y when we
test whether ({Z, W}, {X, Y, W}) satisfies the GIN condition in Theorem 2. To show this
fact, for the three scenarios in Section 7, we reverse the order of X and Y to make it be
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Y → X and run our method in these graphs. For simplicity, we set sample size N = 5k.
The results are shown in Table 4. From this table, we can see that two metrics are almost
close to the original graph having the causal influence X → Y in Table 1, indicating that
our method does not rule out the valid IVs relative to the ground-truth one relationship. It
is noteworthy that if one needs to calculate the causal effect between X and Y, the causal
order of X and Y must be given in advance. This is because the IV estimator is based on
the order of X and Y (see Equation (1)).

Table 4. Performance of IV-GIN on selecting valid IVs with 5k sample sizes where the locations of
nodes X and Y are swapped.

Metrics Scenario S1 Scenario S2 Scenario S3

Correct-selecting rate ↑ 0.96 1.0 0.92
Selection commission ↓ 0.01 0.0 0.04

10. Conclusions and Further Work

In this paper, we investigated the problem of testability of instrumental variables in
linear non-Gaussian acyclic causal models. In particular, we proposed a necessary condition
for detecting valid IVs relative to a target causal influence X → Y, which is called the
IV-GIN condition. We then gave the graphical implications of the IV-GIN condition in
linear non-Gaussian acyclic causal models. We showed how the conditions of instrument
criteria can be checked by exploiting the IV-GIN conditions. Moreover, we proposed a
sequential method, which selected the set of candidate IVs for the target causal influence
X → Y from the observational data without precise prior knowledge of causal structure.

The key difference from the existing research considering the testability of IV in a linear
non-Gaussian acyclic causal model, such as IV-TETRAD [21,53], is that: (1) we studied
the testability of both conditions 1 and 2 while IV-TETRAD only studies the testability of
condition 2 (condition 1 as the prior knowledge), and that (2) we investigated the case
where a single IV is present in the ground-truth graph while IV-TETRAD needs at least two
IVs present. It is worth noting that one can verify the validity of condition 2a using the IV-
GIN method in cases where at least two instruments are present in the ground-truth graph.
However, the IV-TETRAD condition is too restrictive and rules out some valid IVs. Table 5
summarizes the testability results using the IV-GIN conditions and IV-TETRAD conditions.

Table 5. Summary of the testability results using the IV-GIN conditions presented in our paper and
IV-TETRAD conditions presented in [21].

Testability of Instrument Criteria

Method Scenario S1 Scenario S1 Scenario S1

IV-GIN (ours) Fully Partially None
IV-TETRAD None Fully None

There is another way of estimating the causal effect X on Y in a linear non-Gaussian
acyclic causal model. For instance, Refs. [37,40] show that the causal effect between any two
observed variables is partially identifiable (output the equivalence class of causal effects)
by using overcomplete independent component analysis (O-ICA) [54]. One may naturally
have the following question: is it necessary to select the IV for estimating the causal effect
X on Y? In fact, as stated in [21], for O-ICA based methods, the size of the equivalence
class of the identified causal effects could be very large, and the number of unmeasured
confounders between X and Y is not clear. Therefore, it is necessary to select the valid IV
relative to a target causal influence X → Y when there exist latent confounders between X
and Y without prior knowledge of the number of latent confounders.

One direction of future work is to extend the IV-GIN condition to the case of a nonlinear
additive noise model, and existing techniques [55–57] may help to address this issue.
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Appendix A. Proofs

Before we present the proofs of our results, we need an important theorem, which
gives mathematical characterizations of the GIN condition [24]. For simplicity, the notation
P ⊥⊥ Q denotes that P is independent of Q, and the notation P �⊥⊥ Q denotes that P is not
independent of Q.

Theorem A1. Suppose that random vectors S, P, and Q are related in the following way:

P = AS + EP, (A1)

Q = BS + EQ. (A2)

Denote by l the dimensionality of S. Assume A is of full column rank. Then, if (1) Dim(P) > l, (2)
EP ⊥⊥ S, (3) EP ⊥⊥ EQ, and (4) the cross-covariance matrix of S and Q, ΣLZ = E[SQᵀ] has rank
l, then EP||Q ⊥⊥ Q, i.e., (Q, P) satisfies the GIN condition.

Proof. The proof was given by Xie et al. [24].

Appendix A.1. Proof of Theorem 3

Proof. The “if” part: First, suppose that there exists a node C ∈ V, C /∈ W, such that
for every trek π between a node Vp ∈ {X, Y, W} and a node Vq ∈ {Z, W}, (a) π goes
through at least one node in {C, W}, denoted by Vk, and (b) Vk has its arrow pointing to
Vp in π. Because of subconditions (a) and (b), and according to the linear acyclic model,
each Vp ∈ {X, Y, W} is a linear function of Pa(Vp) plus independent noise. We know that
Vk can be written as a linear function of {C, W} and independent error ε′Vp

, where ε′Vp
is

independent from {C, W}, that is,

Vp = Ap

[
C
W

]
+ ε′Vp

(A3)
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We write {X, Y, W} in a matrix form⎡⎣X
Y
W

⎤⎦ = A
[

C
W

]
+ E′P, (A4)

where A is an appropriate linear transformation, E′P is independent of {C, W}, but its
components are not necessarily independent of each other. Note that, in equation (A4),
{C, W} and E′P are linear combinations of disjoint sets of the noise terms, implied by the
directed acyclic structure over all variables.

We now write {Z, W} as linear combinations of the noise terms. Because of subcon-
dition (a), i.e., every trek π between a node Vq ∈ {Z, W} and a node Vp ∈ {X, Y, W} goes
through at least one node in {C, W}, and according to the definition of trek, i.e., every
trek does not contain any colliders, we have {C, W} d-separates {X, Y, W} from {Z, W}.
If any noise term εi is present in E′P, it is not among the noise terms in the expression of
{Z, W}. Otherwise, if Vj also involves εi, then the direct effect of εi, among all variables
V, is a common cause of Zj and some component of {X, Y, W}. This implies that this path
between Zj and that component of {X, Y, W} cannot be d-separated by {C, W} because no
component of {C, W} is on the path, as implied by the fact that when {C, W} is written as a
linear combination of the underlying noise terms, εi is not among them. Consequently, any
noise term in E′P does not contribute to {C, W} or {Z, W}. Hence, {Z, W} can be expressed
as [

Z
W

]
= B

[
C
W

]
+ E′Q, (A5)

where E′Q, which is determined by {C, W} and {Z, W}, is independent of E′P.
Moreover, because of condition (2), i.e., there is at least one directed path between

any one node in {C, W} and any one node in {X, Y}, we know that the cross-covariance
matrix of {C, W} and {Z, W}, Σ{C,W}{Z,W} = E[{C, W}{Z, W}ᵀ] has rank k, and that A
is of full column rank. Based on the above analysis, we immediately know that the four
conditions in Theorem A1 are satisfied. This implies that ({Z, W}, {X, Y, W}) satisfies the
GIN condition, i.e., [Z||W] follows the IV-GIN condition relative to X → Y.

Now, consider any one subset W̃ in W. Because of condition 3, i.e., there is no proper
subset W̃ of W to satisfy condition 2 and 3, we know ({Z, W̃}, {X, Y, W̃}) violates the GIN
condition for any subset W̃ of W. Therefore, we have that there is no proper subset W̃ of W

such that [Z||W̃] follows the IV-GIN condition relative to X → Y.
The "only-if" part: We suppose [Z||W] follows the IV-GIN condition relative to X → Y

and there is no proper subset W̃ of W such that [Z||W̃] follows the IV-GIN condition relative
to X → Y. That is to say, ({Z, W}, {X, Y, W}) satisfies the GIN condition while there is no
proper subset of W such that ({Z, W̃}, {X, Y, W̃}) follows the GIN condition. Consider all
nodes C ∈ V, C /∈ W such that C is causally earlier than {X, Y}, and we show that at least
one of them satisfies conditions (1) and (2).

First, if condition (1) is violated, then there is a trek τ between some leaf node in
Pa({X, Y, W}), denoted by Pa(Vz) (Vz ∈ {X, Y, W}), and some component of {Z, W},
denoted by Zj, and this trek does not go through any common cause of the variables in
Pa({X, Y, W}). Then, they have some common cause that does not cause any other variable
in Pa({X, Y, W}). Consequently, there exists at least one noise term, denoted by εi, that
contributes to both Pa(Vz) (and hence Vz) and Zj but not any other variables in {X, Y, W}.
Because of the non-Gaussianity of the noise terms and the Darmois–Skitovitch theorem,
if any linear projection of {X, Y, W}, ωᵀ{X, Y, W} is independent of {Z, W}, the linear
coefficient for Vz must be zero. Hence, {(Z, W}, {X, Y, W} \ {Vz}) satisfies GIN, which
contradicts the assumption in the theorem. Therefore, there must exist some {C, W} such
that condition (1) holds.
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Next, if condition (2) is violated, i.e., there exist one node in {C, W} and one node in
{X, Y} such that there is no trek between {C, W} and {X, Y, W}. This implies that at least
one of the following cases holds: (a) the column rank of the covariance matrix of {C, W}
and {X, Y, W} is smaller than |{C, W}| and (b) the rank of the covariance matrix of {C, W}
and {Z, W} is smaller than |{C, W}|. Then, the condition ωᵀE[{X, Y, W}{Z, W}ᵀ] = 0
does not guarantee that ωᵀA = 0. Under the faithfulness assumption, we then do not have
that ωᵀ{X, Y, W} is independent of {Z, W}. Hence, condition (2) also needs to hold.

Because there is no proper subset W̃ of W such that ({Z, W̃}, {X, Y, W̃}) follows the
GIN condition, one can immediately see that condition (3) holds.

Appendix A.2. Proof of Theorem 2

Proof. We prove this result by Theorem 3. To this end, we need to show that the three
conditions of Theorem 3 hold.

Because Z is a valid IV conditioning on W relative to X → Y, then the instrument
criteria hold. Consider the node C in Theorem 3 as X, and we show that for every trek π
between a node Vp ∈ {X, Y, W} and a node Vq ∈ {X, W} satisfies subconditions (a) and
(b). First, because of condition 2 of instrument criteria, i.e., W d-separates Z from Y in the
graph obtained by removing the edge X → Y from G, we have that π goes through at least
one node in {X, W}, denoted by Vk. That is to say, subcondition (a) holds. Next, because of
condition 1 of instrument criteria, i.e., W contains only nondescendants of Y in G, we have
that Vk is causally earlier than Y on π. Besides, because of X → Y, we further know that Vk
is causally earlier than Vp on π, i.e., subcondition (b) holds.

Moreover, because of condition 3 of instrument criteria, i.e., W does not d-separates Z
from X in G, and X → Y, we have that there is at least one directed path between any one
node in {X, W} and any one node in {X, Y}, i.e., condition (2) holds.

Appendix A.3. Proof of Proposition 1

Proof. Without loss of generality, assume node Vr in {Z, W} is descendant of Y in G and
there exists a node C ∈ V, C /∈ W satisfying conditions in Theorem 3. We show that
subcondition (b) in Theorem 3 is violated.

Because of conditions 2 ∼ 3 of instrument criteria, for every trek π between a node
Vp ∈ {X, Y, W} and a node Vq ∈ {Z, W} goes through at least one node in {C, W}, denoted
by Vk. Because node Vr is descendant of Y and Vr ∈ {Z, W}, there must exist a trek τ
between {X, Y, W} and {Z, W} such that Y has its arrow pointing to Vk, which contradicts
the subcondition (b) in Theorem 3 (Vk has its arrow pointing to Y).

Appendix A.4. Proof of Proposition 2

Proof. Because there is no node C ∈ V such that all active paths between Z and Y go
through C and C has its arrow pointing to Y, there must exist a trek τ between between Z
and Y such that τ does not go through C, or τ goes through C but Y has its arrow pointing
to C in τ. This implies that the condition 1 of Theorem 3, i.e., there exists a node C ∈ V,
C /∈ W, such that for every trek π between a node Vp ∈ {X, Y, W} and a node Vq ∈ {Z, W},
(a) π goes through at least one node in {C, W}, denoted by Vk, and (b) Vk has its arrow
pointing to Vp in π, is violated. Thus, [Z||W] violates the IV-GIN condition.

Appendix A.5. Proof of Theorem 4

Proof. The validity of a variable as an IV is dependent on which set W we condition on. If
a node Zi is a valid IV conditioning on W, it is not necessary to verify whether Zi is a valid
IV conditioning on W′, where W′ contains W. Therefore, given an observed variable Zi, one
needs to find IV with an empty conditional set and then increase the number of conditional
variables until the IV-GIN condition is satisfied or the length of the conditional set equals
|O| − 1. The process in the Lines 2 ∼ 14 of the IV-GIN algorithm is consistent with the
above process. Besides, by Theorem 2, one can not remove the valid IVs, which ensures
that the output C of the IV-GIN method must contain all valid IVs relative to X → Y.
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Abstract: Analysis of instrumental variables is an effective approach to dealing with endogenous
variables and unmeasured confounding issue in causal inference. We propose using the piecewise
linear model to fit the relationship between the continuous instrumental variable and the continuous
explanatory variable, as well as the relationship between the continuous explanatory variable and
the outcome variable, which generalizes the traditional linear instrumental variable models. The
two-stage least square and limited information maximum likelihood methods are used for the
simultaneous estimation of the regression coefficients and the threshold parameters. Furthermore,
we study the limiting distribution of the estimators in the correctly specified and misspecified models
and provide a robust estimation of the variance-covariance matrix. We illustrate the finite sample
properties of the estimation in terms of the Monte Carlo biases, standard errors, and coverage
probabilities via the simulated data. Our proposed model is applied to an education-salary data,
which investigates the causal effect of children’s years of schooling on estimated hourly wage with
father’s years of schooling as the instrumental variable.

Keywords: causal inference; instrumental variables; piecewise linear; thresholds model

1. Introduction

In observational studies, the measured confounders can be controlled by a variety of
methods such as propensity score based matching and regression adjustment. However,
when the confounding variable is unmeasured, the traditional causal inference methods
usually lead to biased estimators since changes in the unmeasured confounder will lead to
changes in the explanatory variable, both of which will result in changes in the response
variable. Failing to adjust such a confounder will lead to spurious association between the
explanatory variable and the outcome. Analysis of instrumental variables (IV) has gained
popularity in causal inference, such as investigating causal graphical structures [1,2] and
controlling for unmeasured confounding [3,4]. An instrument is a variable that is correlated
with the explanatory variable but not associated with any unmeasured confounders. In
addition, the instrumental variable is supposed to have influence on the response variable
only through the explanatory variable, i.e., there is no direct effect of this variable on the
response. Instrumental variable analysis can be applied to many areas and disciplines, such
as economics and epidemiology. For example, causality between the years of schooling
and earnings in economics has been studied in the literature [5]. This example exploits
the college proximity as the instrumental variable because it is revealed that those living
near college or university usually have significantly higher level of education than others.
On the other hand, it is believed that college proximity may improve earnings only by
increasing the subject’s years of schooling. Both indicate that college proximity is a useful
instrumental variable. In biomedical and epidemiological research, the main interest is to
investigate the causal effect of an exposure variable on a certain disease outcome. A gene
can be assumed as a good instrument if it is closely linked to the exposure but has no direct
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effect on the disease [6]. The study of genetic variants as instrumental variables is known as
Mendelian randomization, which is discussed extensively in the literature (e.g., [7,8]). For
instance, a set of 32 recently identified genetic variants are used as instrumental variables to
study whether child fat mass causally affects academic achievement and blood pressure [9].

1.1. Related Work

Since the development of instrumental variables, a plenty of instrumental variable
estimation methods have been proposed for the causal effect estimation. Two-stage least
squares (2SLS) [10] is one of the most commonly used methods for the instrumental variable
estimation. Theoretical analyses such as consistency and asymptotic normality also exist
in the literature. When the response variable is binary, the second stage can be modified
with logistic regression in mendelian randomization studies [11]. Another method is
the likelihood-based method, particularly the limited information maximum likelihood
(LIML) [12]. It is proved that the LIML method is more effective in dealing with the weak
instruments [13]. The phenomenon of weak instruments occurs when the correlation
between the instrument(s) and the explanatory variable is close to zero. When there are
weak instruments, 2SLS is generally unstable and the causal effect estimators are badly
biased. The typical rule of thumb to detect weak instruments is the F-statistic, which states
that an instrument may be weak if the first-stage F-statistic is less than 10 [14].

Most of the IV approaches impose linear assumptions among the instrument, explana-
tory and response variables. However, this is not always the case. For example, a subject’s
years of schooling may only have a positive effect on subsequent earnings if the subject
obtained at least a high-school degree. There would be no difference in the earnings if the
subject obtained either an elementary or middle school degree. In this hypothetical sce-
nario, a linear regression model between the explanatory and response variables is clearly
misspecified. When the null hypothesis of linearity relationship is rejected, one strategy
could be to develop piecewise linear models, which is more interpretable compared to the
completely nonlinear models.

In this paper, we propose a piecewise linear instrumental variable (PLIV) model for
estimating the causal effect via a continuous threshold function. The continuous threshold
function assumes that both the explanatory variable and the instrumental variable are
continuous. Instrumental variable models with continuous variables have been studied
extensively in the literature. For example, continuous instruments have been used in
the classical IV models, developed in a structural equation modeling framework [15]. A
recent paper proposes semiparametric doubly robust estimators of causal effects with the
continuous instruments [16]. Moreover, some discussions about continuous exposure and
a continuous response for Mendelian randomization can be found in a review paper [8] .

A threshold in a variable occurs when there is a sudden change in the values of this
variable. We call the point where the change happens as a cut-off point or a threshold.
The subset causal effect exists when there is a threshold in the explanatory variable. The
proposed PLIV model is useful because it can study the subset causal effect when the true
model is not linear and it can also degenerate to a linear instrumental variable model when
the relationship among the variables is indeed linear. In other words, by using piecewise
linear functions, we can quantitatively find the subset effects of the explanatory and the
instrumental variables.

We use the Rectified Linear Unit (ReLU) function, mathematically defined in Equa-
tion (1), to incorporate the piecewise relationships. Utilization of ReLU function for defining
the subset effects have been studied in the literature, such as a regression kink model that
tests the presence of the threshold [17] and the segmented and hinge models to study the
subset effects in logistic regression [18]. Besides, the continuous threshold models via the
ReLU function with two-way interactions is considered in the Cox’s proportional hazards
model, where the asymptotic normality under mild conditions is established [19]. In this
paper, we use a continuous threshold function with multiple thresholds to formulate the
piecewise linear instrumental variable models. A similar study of the piecewise linear
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instrumental variable model through the random slope approach is studied in the litera-
ture [20]. It divides the data into a few segments and analyzes the data in each segment
individually. However, this method suffers from huge efficiency and accuracy loss.

1.2. Contribution of This Article

In this paper, we consider a piecewise linear model when the linearity assumption of
the data is inappropriate and provide a rigorous treatment of the statistical properties of
the model. Our contributions can be summarized as follows.

• We simultaneously estimate the coefficients and thresholds of the piecewise linear
instrumental variable model by the limited information maximum likelihood (LIML)
method, assuming the number of thresholds is known.

• The proposed piecewise linear instrumental variable model will degenerate to the
linear instrumental variable model if there are no thresholds. Therefore, it provides a
generalization to the linear instrumental variable model. To our best knowledge, this
is the first work on the piecewise linear extension to the traditional linear instrumental
variable models.

• We also study the theoretical properties of the PLIV model, including the consistency
and asymptotic normality of the estimators.

2. Piecewise Linear Instrumental Variable Model

Notations: we denote scalars by unbolded lowercase letters (e.g., sample size n and
the i-th observation of outcome variable yi), random variable by unbolded capital letter
(e.g., X), random vectors by boldface lowercase letters (e.g., xi and β), and matrices with
boldface capital letters (e.g., X ).

In the ordinary linear regression model yi = x�i β + εi, there is an assumption that the
explanatory variables are uncorrelated with the error term, i.e., cov(xi,εi) = 0. However,
there are some situations where the covariance between the explanatory variables and
error term exists. This leads to inconsistent estimation of ordinary least squares due to
the phenomenon of endogeneity in x. One way to deal with this issue is to introduce an
instrument variable, whose changes are related to changes in the explanatory variable but
do not lead to the change in the response variable directly.

Let (xi, yi, zi), i = 1, . . . , n, denotes the observed data for (X, Y, Z), where X is the
explanatory variable, Y is the response variable, and Z is the instrumental variable. To
estimate the subset causal effect and establish the piecewise linear relationship, for any
threshold parameter t ∈ R, we use a continuous threshold function which is defined as:

ϕ(xi, t) = (xi − t)I(xi > t) = (xi − t)+, (1)

where I(·) is an indicator function. ReLU function, commonly used as an activation
function in deep learning, is a special case with t = 0 such that ϕ(xi, 0) = (xi − 0)I(xi >
0) = (xi − 0)+.

The proposed model provides sparsity and computational efficiency compared to the
smoothing or approximation approach in the literature. The estimation stage involves
indicator functions but it does not require an approximation of the indicator function. Let
K and J denote the number of thresholds in Z and X, respectively. Denote c = (c1, . . . , cK)

T

as the vector of thresholds in Z and denote t = (t1, . . . , tJ)
T as the vector of thresholds in X.

We propose the following piecewise linear instrumental variable model:

xi = α0 + α1 ϕ(zi, c1) + · · ·+ αK ϕ(zi, cK) + αK+1zi + vi (2)

yi = β0 + β1 ϕ(xi, t1) + · · ·+ β J ϕ(xi, tJ) + β J+1xi + ui, (3)

where β = (β0, . . . , β J+1)
T is the vector of coefficients representing the causal effect of X on

Y; α = (α0, . . . , αK+1)
T is the vector of coefficients representing the instrumental effect of Z

on X; ui and vi are the error terms for the ith observation. In the context of causal inference,
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we interpret β as the causal effect of x on y. More specifically, for tj < x ≤ tj+1, 1 ≤ j ≤ J

with tJ+1 denoting the maximum value of x, one unit increase in x leads to β J+1 + ∑
j
j′=1 β j′

units change in y. Besides, β J+1 represents the change in y that is caused by one unit
increase in x for t0 < x ≤ t1 where t0 is the minimum value of x. To better understand this,
in Figure 1, we plot the function y = ϕ(x, 2) + 3× ϕ(x, 3) + 2x where β1 = 1, β2 = 3, β3 = 2
as an example. When 2 < x ≤ 3, the slope is β1 + β3 = 3. When 3 < x ≤ 4, the slope is
β1 + β2 + β3 = 6.

Figure 1. Plot of the function y = ϕ(x, 2) + 3× ϕ(x, 3) + 2x.

Here, we assume K and J are prespecified according to some prior knowledge or
theoretical justifications. Practically, we may use the Akaike information criterion (AIC) or
the Bayesian information criterion (BIC) [21] to select them. A more elegant examination
of the condition for the number of thresholds can be found in Newey [22]. In particular,
when α1 = · · · = αK = 0 and β1 = · · · = β J = 0, our proposed model degenerates to the
traditional linear instrumental variable model.

For instrumental variable analysis, an instrumental variable is correlated with the
explanatory variable but not correlated with the error term. In our model, (Z− c)+ = {(Z−
c1)

+, · · · , (Z− cK)
+} is the vector of instrumental variables with the following properties:

• Instrument relevance: cov{(Z− c)+, X} �= 0: (Z− c)+ is correlated with the explana-
tory variable X.

• Instrument exogeneity: cov{(Z− c)+, U} = 0: (Z− c)+ is uncorrelated with the error
term U.

We assume K ≥ J for identifiability, i.e., the number of instruments should be larger
than or equal to the number of endogenous variables.

Remark 1. Note that intensive research about nonlinear instrumental variable models has been
conducted in the literature, such as the nonparametric instrumental regression [23–25]. We point
out that the target of our method is to quantitatively find the thresholds and estimate the subset
causal effects. We aim to generalize the traditional linear IV model and fit an interpretable model
rather than approximate the data by a nonlinear function.

To estimate the unknown parameters in (2) and (3), we utilize the two-stage least
square (2SLS) method and the limited information maximum likelihood (LIML) method.
Details about the proposed estimation methods are discussed below.
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3. Simultaneous Maximum Likelihood Estimation

We first introduce how the LIML method is used in our model and initialize the naive
estimators by the 2SLS method.

3.1. Limited Information Maximum Likelihood

As discussed in the introduction about the advantages, limited information maximum
likelihood is another popular approach for estimation in the instrumental variable models.
Here, we assume the error terms (U, V) are jointly normally distributed and correlated to
some extent due to the unmeasured confounding effect. Let 0 be the zero-mean vector and
ρ be the correlation of (U, V). Denote σ2

u and σ2
v as the variance of the error terms U and

V, respectively. Then the probability density function of the bivariate normal (U,V) can be
written as:

f (U, V) =
1

2πσuσv
√

1− ρ2
exp

[
− 1

2(1− ρ2)
Q(U, V)

]
,

where the quadratic form Q(U, V) = UTU
σ2

u
− 2ρUTV

σvσu
+ VTV

σ2
v

. For a single observation, the
log-likelihood is

�(ui, vi; θ) ∝ − log(σuσv)−
1
2

log(1− ρ2)− 1
2(1− ρ2)

(
u2

i
σ2

u
− 2ρuivi

σuσv
+

v2
i

σ2
v

)
,

where θ = (αT , βT , cT , tT , ρ, σu, σv)T denote all the model parameters and

vi = xi − α0 − α1 ϕ(zi, c1)− · · · − αK ϕ(zi, cK)− αK+1zi

ui = yi − β0 − β1 ϕ(xi, t1)− · · · − β J ϕ(xi, tJ)− β J+1xi.

To simplify notations, we let �(θ) = �(ui, vi; θ) denote the log-likelihood. The maxi-
mum likelihood estimates for θ is obtained by maximizing the log-likelihood within the
compact set Θ ⊂ RD(θ) such that θ̂n = arg maxθ∈Θ �n(θ), where �n(θ) = 1/n ∑n

i=1 �(θ).
However, there is no closed-form solution for θ, so we take the gradient-based algorithm
for estimation. This yields approximate M-estimators. To speed up estimation, we use the
two-stage least square method to initialize the estimators.

3.2. Initialization: Two-Stage Least Square

The traditional two-stage least squares method regresses the explanatory variable on
the instrumental variable and computes the predictions x̂ in the first stage. In the second
stage, it regresses the response variable on the predictions x̂. The causal effect of interest
is estimated from the second stage. In our method, we employ 2SLS to obtain the initial
values of the parameters of the piecewise linear instrumental variable model. Below we
describe the 2SLS procedures for initializations:

Stage 1: First, we regress x on {(z− c)+, z} and then obtain the fitted values x̂, where
(z− c)+ = {(z− c1)

+, · · · , (z− cK)
+}.

Stage 2: We regress y on {(x̂− t)+, x̂}, where (x̂− t)+ = {(x̂− t1)
+, · · · , (x̂− tJ)

+}.
Thus, in the second stage, we fit the following regression model:

yi = β0 + β1 ϕ(x̂i, t1) + · · ·+ β J ϕ(x̂i, tJ) + β J+1 x̂i + ui.

For each combination of the number of thresholds in X and Z, we could pick c, t and
the regression coefficients simultaneously through grid search when the sum of squared
errors (SSE) of Y is minimized. However, for J ≥ 2 or K ≥ 2, it is slightly computationally
expensive to conduct grid search. Since we only need 2SLS to provide the initialization
of the parameters in our method, we choose c to be a vector of the points that are evenly
spaced between the 5% to 95% quantiles of Z. Similarly, we choose t to be a vector of the
points that are evenly spaced between the 5% to 95% quantiles of X. We ignore points
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below and above the 5% to 95% quantiles in order to avoid boundary effects. The regression
coefficients are obtained accordingly.

3.3. Theoretical Analysis

Under mild conditions, we study the statistical properties of the proposed model and
establish the robust variance-covariance estimators for the estimated parameters under
the correctly specified and misspecified models, separately. To investigate the theoretical
properties, we consider the following regularity conditions:

• C1. Observations (Xi, Yi, Zi), i = 1, . . . , n are independently and identically distributed on
a compact set X ⊗Y ⊗Z ⊂ R1 ⊗R1 ⊗R1. Furthermore, E(‖X‖2) < ∞, E(‖Y‖2) < ∞,
and E(‖Z‖2) < ∞.

• C2. The explanatory variable X and the instrumental variable Z are continuous in the
parameter space, i.e., they have continuous probability density functions fX(·) and
fZ(·). The density functions are uniformly bounded, that is, there exist constants c1,
c2, c̄1, and c̄2 such that

c1 ≤ inf
Z∈Z

fZ(·) ≤ sup
Z∈Z

fZ(·) ≤ c̄1 and c2 ≤ inf
X∈X

fX(·) ≤ sup
X∈X

fX(·) ≤ c̄2.

Furthermore, the true value of the coefficients for the threshold effects satisfy α−0 �= 0

and β−0 �= 0, where α−0 = (α20, . . . , α(K−1)0) and β−0 = (β20, . . . , β(J−1)0).
• C3. �(θ) is upper-semicontinuous for almost all (X, Y, Z), that is, for every θ,

lim sup
θn→θ

�(X, Y, Z; θn) ≤ �(X, Y, Z; θ), a.s.

Remark 2. Condition C1 is commonly used in regression models. Condition C2 is used for esti-
mating the unknown thresholds and ensures the model is identifiable. The continuity requirements
of X and Z are used to estimate the thresholds. Condition C3 is used to establish the consistency
and the asymptotic normality of the maximum likelihood estimator.

In terms of estimation, we take the gradient-based method which depends on the first
order derivative �̇(θ) = ∂�(θ)/∂θ (details can be found in Appendix A) with the initialized
estimators by 2SLS. In this paper, we do not approximate the indicator function by the
logistic function as some researchers do (e.g., [18,26,27]). The gradient-based algorithm for
the ReLU function has shown success in the context of deep learning and machine learning.
Compared to the approximation techniques as discussed in Section 1, model estimation
with the ReLU function is computationally cheaper since no approximation of the indicator
function is required. In fact, as long as Condition C2 is satisfied which requires variables X
and Z to be continuous, the gradients composed of the indicator functions converge to a
continuous function of the threshold parameters as n → ∞, for example,

1
n

n

∑
i=1

I(zi > ck)
P→ E{I(zi > ck)} = P(zi > ck),

for k = 1, . . . , K by the law of large numbers. Therefore, the second order derivative of
the ReLU function with respect to the thresholds can be derived based on the resulting
continuous probability function. More specifically, the second order derivative with respect
to ck is simply − fZ(ck).

To prove the asymptotic normality, we first need to show the consistency of the
proposed estimators.

Theorem 1. Under conditions C1–C4, assume that Θ is compact and the true parameter vector
θ0 = arg maxθ∈Θ E{�(θ)} is unique. Furthermore, for every sufficiently small ball B ⊂ Θ,

supθ∈B �(θ) is measurable with E supθ∈B �(θ) < ∞, then θ̂n
p→ θ0.
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Proof. The proof follows the Theorem 5.7 of van der Vaart [28]. For completeness, we
include it as Theorem A1 in Appendix B. To utilize Theorem 5.7, we need to check the con-
dition that �(θ̂n) ≥ �(θ0)− oP(1) for some θ0 ∈ Θ0. This is true since �n(θ) is continuous
in θ, �n(θ) converges to �(θ) uniformly, and θ̂n (approximately) maximizes �n(θ). Thus, all
the conditions are satisfied and the result follows.

Theorem 2. Under conditions C1–C4, let θ0 be the true value of θ. Let �̇(θ) be a measurable
function with E

[{
�̇(θ)�̇(θ)T}

(i,j)

]
< ∞ for i, j = 1, . . . , |θ|∗, where |θ|∗ denotes the number of

elements in θ, then √
n
(
θ̂n − θ0

) d→ N
(

0, V−1
θ0

Mθ0 V−1
θ0

)
,

where Mθ0 = E
{
�̇(θ0)�̇(θ0)

T} and �̇(θ0) is the first order derivative of �(θ) with respect to θ
evaluated at θ0 and Vθ0 is the second order derivative of E{�(θ)} with respect to θ evaluated at θ0
(derivations in Appendix A). Vθ has the form

Vθ = V(1)
θ + V(2)

θ = V(1)
θ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 V(2)
αc 0 0 0 0

0 0 V(2)
βt 0 0 0

V(2)
cc 0 0 0 0

V(2)
tt 0 0 0

0 0 0
0 0

sym. 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 0 denotes a zero vector or a zero matrix and 0 denotes a scalar. Details of V(1)
θ and V(2)

θ are
given in the Appendix A.

Proof. First, note that �(θ) is Lipschitz continuous in θ. Moreover, the fact that Vθ is
continuous in θ admits the Taylor expansion of EXYZ�(θ):

E(X,Y,Z)�(θ) = E(X,Y,Z)�(θ0) +
1
2
(θ− θ0)Vθ0(θ− θ0)

T + op

(
‖θ− θ0‖2

)
.

Since θ̂ is the maximum likelihood estimate of θ, 1
n ∑n

i=1 �(θ̂) ≥ supθ
1
n ∑n

i=1 �(θ)− oP(
1
n ).

Plus the result from Theorem 1 that θ̂n
p→ θ0, we conclude from Theorem 5.14 of van der

Vaart [28] that:
√

n
(
θ̂n − θ0

)
= −V−1

θ0

1√
n

n

∑
i=1

�̇i(θ0) + oP(1),

which implies an asymptotic normal distribution with mean 0 and variance-covariance
matrix V−1

θ0
Mθ0 V−1

θ0
.

For completeness, we include Theorem 5.14 of van der Vaart [28] (2000) as Theorem
A2 in Appendix B. When the model is correctly specified, Vθ0 = −Mθ0 , the asymptotic
variance is the inverse of Fisher information. Matrices Vθ0 and Mθ0 are estimated through
the replacement of θ0 by the MLE θ̂n. Thus, for the correctly specified model, the variance-
covariance matrix is estimated by the inverse of Mθ̂n

. For the misspecified model, the
variance-covariance matrix is estimated by V−1

θ̂n
Mθ̂n

V−1
θ̂n

. Let us define Vn as the second
derivative of �n(θ) with respect to θ, then we can decompose Vn the same way as Vθ into

two matrices V(1)
n and V(2)

n . Note that Vn is the empirical process of Vθ and Vn
p→ Vθ by the

law of large numbers, so we use the estimated probability densities f̂Z(ĉk) and f̂X(t̂j) for
fZ(ck) and fX(tj) for k = 1, . . . , K and j = 1, . . . , J, respectively.
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4. Simulation Studies

In this section, we evaluate the performance of the proposed model using simulated
datasets. We consider two scenarios with the same sample size n = 500. We let error terms
U and V be jointly normally distributed with mean 0 and correlation ρ ∈ {0.2, 0.5, 0.8}.
Here, we consider a common standard deviation σu = σv =

√
0.3. Besides, we simulate

the instrumental variable Z ∼ N(0, 1). The first scenario has one threshold in X and one
threshold in z, and it takes the following form:

xi = −1 + 0.5× (zi − 0.5)+ + zi + vi

yi = −0.2 + (xi − 0)+ + 0.5× xi + ui.

The true values of the parameters in PLIV models are α = (−1, 0.5, 1), β = (−0.2, 1, 0.5),
c = 0.5, and t = 0. The second scenario has two thresholds in x and two thresholds in z,
and it takes the following form:

xi = −1 + 0.5× (zi + 1)+ + (zi − 1)+ + zi + vi

yi = −1 + 1.2× (xi + 1)+ + (xi − 2)+ + 0.5× xi + ui.

The true parameters are α = (−1, 0.5, 1, 1), β = (−1, 1.2, 1, 0.5), c = (−1, 1), and t = (−1, 2).
We show the simulated piecewise linear instrumental variable models for scenario 1 and
scenario 2 in Figure 2. We replicate the simulation 1000 times to evaluate the finite sample
properties of the proposed model by the PLIV method.

Figure 2. Piecewise linear instrumental variable models with simulated data for scenario 1 and
scenario 2. The upper panel plots the simulated X versus Z, Y versus X for scenario 1, respectively.
The lower panel plots the simulated X versus Z, Y versus X for scenario 2, respectively.

Table 1 summarizes the biases, standard errors of θ̂ and coverage probabilities of θ by
the proposed PLIV method for scenario 1, where tse is the theoretical standard error and
ese is the empirical standard error. As we can see in the table, all the biases of θ̂ are close
to zero. We also find that the theoretical standard error and the empirical standard error
are close enough, which confirms the validity of our theoretical results in Section 3. The
results show that our model estimation is quite accurate and therefore provides unbiased
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and consistent estimators. Besides, we notice that the coverage probabilities are around
95% under different values of ρ. Moreover, biases and the standard errors decrease as we
increase ρ because the instrumental variables becomes stronger.

Table 1. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of θ̂, as
well as 95% coverage probabilities (cp) on θ for scenario 1.

ρ = 0.2 ρ = 0.5 ρ = 0.8

bias tse ese cp bias tse ese cp bias tse ese cp

α0 −19.25 41.25 45.80 937 −16.43 38.26 41.56 939 −9.10 32.08 33.78 940
α1 7.65 98.27 102.66 927 6.36 93.13 97.02 924 4.10 77.32 81.80 919
α2 −16.95 46.20 47.71 931 −14.79 42.82 43.64 933 −8.28 33.52 34.34 943
β0 −7.86 55.41 54.87 950 −6.88 52.37 52.74 944 −4.28 43.92 44.80 945
β1 0.48 80.58 77.07 955 −0.35 75.48 74.69 942 −0.58 60.37 62.50 940
β2 −4.35 34.57 34.06 947 −3.84 32.49 32.60 945 −2.38 26.21 26.57 933
c −95.15 178.21 247.82 839 −82.89 159.34 224.83 846 −46.25 113.96 165.49 864
t −14.88 97.77 108.77 922 −12.71 87.80 101.10 908 −6.76 62.69 71.68 908
ρ 2.82 48.99 47.54 951 2.67 37.91 36.81 947 1.62 17.70 17.22 941
σ2 −2.32 14.00 13.72 954 −1.85 15.65 15.40 953 −1.10 18.12 17.82 956

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

Table 2 summarizes the biases, standard errors of θ̂ and 95% coverage probabilities of
θ by the PLIV method for scenario 2, where tse is the theoretical standard error and ese is
the empirical standard error. We find the similar patterns as in Table 1 from scenario 1. For
instance, all the biases are small. Theoretical standard errors and the empirical standard
errors are close to each other. Most coverage probabilities are around 95% when ρ = 0.2
and ρ = 0.5. We also observe that the coverage probabilities of the thresholds are slightly
low when ρ = 0.8. The reason might be due to the high correlation between errors. With
multiple thresholds and high correlation, it poses challenges to estimate the exact locations.

Table 2. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of θ̂, as
well as 95% coverage probabilities (cp) on θ for scenario 2.

ρ = 0.2 ρ = 0.5 ρ = 0.8

bias tse ese cp bias tse ese cp bias tse ese cp

α0 −51.88 268.22 247.08 946 −38.92 232.37 226.53 939 −20.83 158.06 169.46 921
α1 29.20 176.58 157.46 966 24.67 157.87 143.26 965 13.44 110.56 107.65 949
α2 15.11 172.47 166.40 943 11.80 178.03 163.63 949 11.40 146.19 143.76 955
α3 −26.32 164.95 147.35 945 −19.39 144.98 135.53 931 −9.21 101.13 101.32 934
β0 −8.36 120.42 116.63 944 −8.23 111.05 108.00 950 −0.84 85.31 82.56 958
β1 6.61 71.82 71.49 947 6.57 66.84 66.57 948 3.39 52.07 52.12 950
β2 6.44 115.13 99.07 966 5.38 106.29 90.78 969 3.30 83.05 75.06 962
β3 −4.14 57.89 56.20 947 −4.33 53.69 52.40 950 −1.10 41.80 40.31 955
c1 −3.01 253.38 246.83 930 9.41 221.21 257.36 924 6.90 152.06 218.68 898
c2 2.15 120.17 138.80 913 5.07 139.96 140.17 901 9.10 84.42 134.44 880
t1 0.79 76.25 79.60 944 1.04 68.31 72.98 939 4.57 48.70 49.52 935
t2 18.65 168.54 189.81 926 17.60 149.74 174.54 911 16.26 104.90 158.56 922
ρ 2.87 47.44 45.58 950 3.40 36.81 35.35 953 2.14 17.37 16.77 948
σ2 −3.64 14.00 13.64 939 −2.99 15.55 15.21 946 −1.84 17.99 17.63 955

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

We include results with a sample size of 1000 in Appendix C, while fixing ρ = 0.5.
Overall, as n increases, we observe that both biases and standard errors drop.

5. Application

In this section, we revisit the Card’s education data [5]. We apply the proposed model
to study the causal effect of years of schooling on hourly wage in cents with father’s years
of schooling as the instrumental variable. The interest here is to find a threshold and study
the threshold effect of the years of schooling. It is generally believed that a child’s years
of schooling has a direct effect on the child’s wage and parents’ education only affects the
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child’s income by affecting the child’s education level. In other words, parents’ education
level has no direct effect on child’s wage. Therefore, the father’s years of schooling can be
treated as a valid instrumental variable.

In Card’s data, we remove the missing values and include a total of n = 2657 obser-
vations. The explanatory variable X (child’s years of education) is between 1 and 18 with
median 13, and the instrumental variable Z (father’s years of education) has minimum 0,
maximum 18, and median 12. Figure 3 indicates that variables X and Y are skewed and
have heavy tails so transformations are needed before the analysis. A log transformation is
applied to both.

Figure 3. Histogram plots of the raw data X, Y, and Z.

Table 3 shows the point estimate, standard error, and associated 95% confidence
interval of θ by the proposed model with K = 1 and J = 0, which are selected by BIC.
In the table, α1 and c are the coefficient and threshold for the transformed father’s years
of schooling, respectively. β1 is the causal effect of years of schooling on earnings. The
estimated causal effect of interest β̂1 is 0.87, which results in a difference of exp(0.87× a)
units increase in wage if there are a units increase in the log of years of schooling. In
economics, β̂1 is interpreted as “elasticity". That is, if years of education increases by 1%,
the person’s income will increase by 0.87% by our estimation. In terms of the instrumental
variable, we notice that the threshold c is estimated to be 7.86. The corresponding p-value
is not calculated since testing c = 0 is meaningless in this context. It shows that there exists
a threshold at around 8 in the father’s years of schooling. That is, the father’s years of
schooling only has a positive effect on the child’s years of schooling if father receives at
least 8 years of education. This information can not be observed if the traditional 2SLS
method or nonparametric approaches are applied to analyze the data. The threshold effect
as well as the thresholds are all statistically significant since their corresponding p-values
are far less than 0.05.

Table 3. Summary table of θ by the SML-PLIV model.

Parameter Estimate Std. Error z Value 95% C.I. p-Value

α0: intercept 2.25 0.013 168.8 (2.222, 2.274) ≈0
α1: (Z− c)+ −0.02 0.003 −4.8 (−0.023, −0.009) ≈0
α2: Z 0.04 0.003 14.3 (0.033, 0.043) ≈0
β0: intercept 4.04 0.217 18.6 (3.613, 4.464) ≈0
β1: log X 0.87 0.084 10.4 (0.705, 1.033) ≈0
c 7.86 0.939 8.4 (6.016, 9.696) -

6. Discussion, Limitations, and Future Research

In this paper, we propose a simultaneous maximum likelihood estimation for a piece-
wise linear instrumental variable model. We use the two-stage least square estimators as
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the initial values and the limited information maximum likelihood methods to estimate
the regression coefficients and the threshold parameters simultaneously. We also provide a
robust inference of the proposed model. The proposed model with the piecewise linear
functions allows us to find the thresholds for both the explanatory and the instrumental
variables, which generalizes the traditional linear instrumental variable models. In the sim-
ulation study, we evaluate the performance of the proposed model and find that it behaves
well in terms of the biases, standard errors, and coverage probabilities in different settings.

In our model, we include a single continuous explanatory variable and a single con-
tinuous instrumental variable. We assume the explanatory variable and the instrumental
variable are continuous. More complicated cases can be considered. For example, devel-
oping a piecewise linear model with count data might be interesting. However, finding
the optimal number of thresholds as well as the locations is challenging from the theo-
retical side. Furthermore, we assume the number of thresholds K and J are prespecified.
Treating the numbers of thresholds as random variables, finding the optimal values, and
investigating the theoretical properties can be future research.
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Appendix A. Derivation of the Information and Hessian Matrices

The likelihood to be minimized is

�θ =
1
n

n

∑
i=1

{
− log(σuσv)−

1
2

log(1− ρ2)− 1
2(1− ρ2)

(
u2

i
σ2

u
− 2ρuivi

σuσv
+

v2
i

σ2
v

)}
.

When the model is specified,

EXYZ�θ = − log(σuσv)−
1
2

log(1− ρ2)− 1
2(1− ρ2)

EXYZ

(
UTU

σ2
u
− 2ρUTV

σvσu
+

VTV
σ2

v

)
.

To write out the first order derivative �̇(θ) of �θ with respect to θ, we define the
following notations. ∂�θ/∂αc is the row concatenation of the first order derivative of �θ

with respect to α and c. ∂�θ/∂βt is the row concatenation of the first order derivative of �θ

with respect to β and t. For notation simplicity, we drop the subscription i. Let αI(z > c) =
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{α1 I(z > c1), . . . , αk I(z > cK)} and βI(x > t) = {β1 I(x > t1), . . . , β j I(x > tJ)}. Then we
can divide the first order derivative �̇(θ) as following

∂�θ
∂αc = 1

n ∑n
i=1

[
{1, (z− c)+, z,−αI(z > c)}T 1

(1−ρ2)
( v

σ2
v
− ρu

σuσv
)
]

∂�θ
∂βt = 1

n ∑n
i=1

[
{1, (x− t)+, x,−βI(x > t)}T 1

(1−ρ2)
( u

σ2
u
− ρv

σuσv
)
]

∂�θ
∂ρ = 1

n ∑n
i=1

[
ρ

1−ρ2 − ρ
(1−ρ2)2

(
u2

σ2
u
− 2ρuv

σuσv
+ v2

σ2
v

)
+ uv

σvσu(1−ρ2)

]
∂�θ
∂σu

= u2

(1−ρ2)σ3
u
− ρuv

(1−ρ2)σvσ2
u
− 1

σu
∂�θ
∂σv

= v2

(1−ρ2)σ3
v
− ρuv

(1−ρ2)σuσ2
v
− 1

σv

. (A1)

The interchangeability of expectation and differentiation is satisfied here and it implies
∂EXYZ�(θ)/∂θ = EXYZ

{
�̇(θ)

}
. It is easy to check ∂EXYZ�θ/∂θ = 0 at θ0 as it should be.

We next derive the second order derivative Vθ of EXYZ�θ when the model is specified. We
partition the symmetric matrix Vθ as two symmetric matrices V1,θ and V2,θ such that

Vθ = V(1)
θ + V(2)

θ = V(1)
θ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 V(2)
αc 0 0 0 0

0 0 V(2)
βt 0 0 0

V(2)
cc 0 0 0 0

V(2)
tt 0 0 0

0 0 0
0 0

sym. 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For the derivation of V(1)
θ , let zc = {1, (z− c)+, z} and xt = {1, (x− t)+, x}. Since the

matrix V(1)
θ is symmetric, we only need to derive the upper diagonal elements. The first row

of V(1)
θ is is the row concatenation of ∂2EXYZ�(θ)/∂α2, ∂2EXYZ�(θ)/∂α∂β, ∂2EXYZ�(θ)/

∂α∂c, ∂2EXYZ�(θ)/∂α∂t, ∂2EXYZ�(θ)/∂α∂ρ, ∂2EXYZ�(θ)/∂α∂σu, and ∂2EXYZ�(θ)/∂α∂σv,
such that

V(1)
1,θ = 1

(1−ρ2)
EXYZ

[
(zc)T

{
− zc

σ2
v

, ρxt
σvσu

, αI(z>c)
σ2

v
, −ρβI(x>t)

σvσu
, 2ρv

σ2
v (1−ρ2)

− u(1+ρ2)
(1−ρ2)σvσu

, ρu
σvσ2

u
, ρu

σ2
v σu
− 2v

σ3
v

}]
.

The second row of V(1)
θ is the row concatenation of ∂2EXYZ�(θ)/∂β2, ∂2EXYZ�(θ)/∂β∂c,

∂2EXYZ�(θ)/∂β∂t, ∂2EXYZ�(θ)/∂β∂ρ, ∂2EXYZ�(θ)/∂β∂σu, and ∂2EXYZ�(θ)/∂β∂σv such
that

V(1)
2,θ = 1

(1−ρ2)
EXYZ

[
(xt)T

{
− xt

σ2
u

,− ραI(z>c)
σuσv

, βI(x>t)
σ2

v
, 2ρu

σ2
u(1−ρ2)

− v(1+ρ2)
(1−ρ2)σvσu

, ρv
σ3

v
− 2u

σ3
u

, ρv
σuσ2

v

}]
.

The third row of V(1)
θ is the row concatenation of ∂2EXYZ�(θ)/∂c2, ∂2EXYZ�(θ)/∂c∂t,

∂2EXYZ�(θ)/∂c∂ρ, ∂2EXYZ�(θ)/∂c∂σu, and ∂2EXYZ�(θ)/∂c∂σv such that

V(1)
3,θ = 1

(1−ρ2)
EXYZ

[
{αI(z > c)}T

{
αI(z>c)

σvσu
, βI(x>t)

σ2
u

, v(ρ2+1)
σuσv(1−ρ2)

− 2ρv
σ2

v (1−ρ2)
,− ρu

σvσ2
u

, 2v
σ3

v
− ρu

σuσ2
v

}]
.

The fourth row of V(1)
θ is the row concatenation of ∂2EXYZ�(θ)/∂t2, ∂2EXYZ�(θ)/∂t∂ρ,

∂2EXYZ�(θ)/∂t∂σu, and ∂2EXYZ�(θ)/∂t∂σv such that

V(1)
4,θ = 1

(1−ρ2)
EXYZ

[
{βI(x > t)}T

{
− βI(x>t)

σ2
v

, v(1+ρ2)
σvσu(1−ρ2)

− 2ρu
(1−ρ2)σ2

u
, 2u

σ3
v
− ρv

σvσ2
u

,− ρv
σuσ2

v

}]
.

The remaining terms in V(1)
θ is given by

∂2EXYZ�(θ)/∂ρ2 =
1 + ρ2

(1− ρ2)2 −
4uvρ(ρ2 + 1)
σuσv(ρ2 − 1)3 +

2ρuv
σuσv(ρ2 − 1)2 ,
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∂2EXYZ�(θ)/∂ρ∂σu =
2ρu2

(1− ρ2)2σ3
u
− 2uvρ2

σ2
uσv(ρ2 − 1)2 −

uv
σ2

uσv(1− ρ2)
,

∂2EXYZ�(θ)/∂ρ∂σv =
2ρv2

(1− ρ2)2σ3
v
− 2uvρ2

σuσ2
v (ρ

2 − 1)2 −
uv

σuσ2
v (1− ρ2)

,

∂2EXYZ�(θ)/∂σ2
u =

2ρuv
(1− ρ2)σvσ3

u
− 3u2

σ4
u(1− ρ2)

+
1
σ2

u
,

∂2EXYZ�(θ)/∂σuσv =
ρuv

(1− ρ2)σ2
v σ2

u
,

∂2EXYZ�(θ)/∂σ2
v =

2ρuv
(1− ρ2)σuσ3

v
− 3v2

σ4
v (1− ρ2)

+
1
σ2

v
.

In terms of the matrix V(2)
θ , we decompose the following elements

V(2)
αc = EXYZ

⎡⎢⎢⎢⎢⎢⎣ v
σ2

v (1−ρ2)
− ρu

σuσv(1−ρ2)
×

⎛⎜⎜⎜⎜⎜⎝
0 . . . . . . 0

−I(z > c1) 0 . . . 0
...

...
0 · · · · · · −I(z > cK)
0 . . . . . . 0

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦,

V(2)
βt = EXYZ

⎡⎢⎢⎢⎢⎢⎣ u
σ2

u(1−ρ2)
− ρv

σuσv(1−ρ2)
×

⎛⎜⎜⎜⎜⎜⎝
0 . . . . . . 0

−I(x > t1) 0 . . . 0
...

...
0 · · · · · · −I(x > tJ)
0 . . . . . . 0

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦,

V(2)
cc = EXYZ

[
1

σuσv(1−ρ2)

]
×

⎛⎜⎝−α1 fZ(c1) 0 . . . 0
...

...
0 . . . . . . −αK fZ(cK)

⎞⎟⎠,

V(2)
tt = EXYZ

[
1

σ2
v (ρ2−1)

]
×

⎛⎜⎝β1 fX(t1) 0 . . . 0
...

...
0 . . . . . . β J fX(tJ)

⎞⎟⎠.

It is easy to check that when the model is correctly specified, V(2)
θ = 0 and

Vθ = −EXYZ
{
�̇(θ)�̇(θ)T}.

Appendix B. Theorems

Define P f as the expectation E f (X) =
∫

f dP and abbreviate the average n−1 ∑n
i=1 f (Xi)

to Pn f , an empirical distribution. Furthermore, we define

Mn(θ) = 1/n
n

∑
i=1

mθ(Xi) = Pnmθ and Ψn(θ) = 1/n
n

∑
i=1

ψθ(Xi) = Pnψθ .

Theorem A1 (Theorem 5.7 of van der Vaart [28]). Let Mn be random functions and let M be a
fixed function of θ such that for every ε > 0

sup
θ∈Θ
|Mn(θ)−M(θ)| P→ 0,

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0).
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Then every sequence of estimators θ̂n with Mn(θ̂n) ≥ Mn(θ0)− oP(1) converges in probability to
θ0.

Theorem A2 (Theorem 5.14 of van der Vaart [28]). For each θ in an open subset of Euclidean
space, let θ �→ ψθ(x) be twice continuously differentiable for every x. Suppose that Pψθ0 = 0, that
P‖ψθ0‖2 < ∞ and that the matrix Pψ̇θ0 exists and is nonsingular. Assume that the second-order
partial derivatives are dominated by a fixed integrable function ψ̈(x) for every θ in a neighborhood
of θ0. Then every consistent estimator sequence θ̂n such that Ψn(θ̂n) = 0 for every n satisfies

√
n
(
θ̂n − θ0

)
= −

(
Pψ̇θ0

)−1 1√
n

n

∑
i=1

ψθ0(Xi) + oP(1).

In particular, the sequence
√

n
(
θ̂n − θ0

)
is asymptotically normal with mean zero and covariance

matrix
(

Pψ̇θ0

)−1Pψθ0 ψT
θ0

(
Pψ̇θ0

)−1.

Appendix C. Additional Simulation Results

Table A1. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of θ̂,
as well as 95% coverage probabilities (cp) on θ for scenario 1 with sample size 1000.

ρ = 0.2 ρ = 0.5 ρ = 0.8

bias tse ese cp bias tse ese cp bias tse ese cp

α0 −8.30 27.04 29.78 928 −6.48 25.41 27.35 933 −3.28 22.00 22.78 942
α1 3.08 68.29 70.76 950 2.96 64.99 67.54 932 2.46 53.88 55.17 949
α2 −7.90 30.92 32.50 936 −6.05 28.90 30.11 938 −2.79 23.05 23.46 955
β0 −3.61 38.76 39.70 949 −2.80 36.66 37.62 938 −1.77 30.74 31.19 945
β1 −0.46 55.44 54.45 956 −0.18 52.00 51.80 948 0.65 41.79 42.11 939
β2 −1.21 24.18 24.78 938 −0.88 22.76 23.35 928 −0.43 18.38 18.42 949
c −41.08 123.92 167.07 873 −31.07 111.23 148.14 873 −12.70 79.47 98.09 886
t −7.63 68.18 76.36 919 −4.90 61.13 66.47 920 −1.50 43.69 46.31 935
ρ 1.08 34.23 34.63 948 1.08 26.53 26.77 948 0.72 12.41 12.49 946
σ2 −0.86 9.82 9.68 949 −0.64 10.96 10.75 949 −0.26 12.68 12.42 946

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

Table A2. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of θ̂,
as well as 95% coverage probabilities (cp) on θ for scenario 2 with sample size 1000.

ρ = 0.2 ρ = 0.5 ρ = 0.8

bias tse ese cp bias tse ese cp bias tse ese cp

α0 −25.84 176.86 168.03 943 −15.74 155.65 161.09 929 −7.23 104.42 114.68 927
α1 8.53 115.79 106.55 956 7.00 103.98 101.28 947 4.01 73.82 75.63 944
α2 8.49 112.53 105.08 964 5.55 108.98 107.91 958 3.31 98.38 93.69 957
α3 −11.29 108.14 99.84 951 −5.51 95.98 95.87 934 −1.84 67.37 71.38 935
β0 −2.87 83.31 84.73 942 −2.03 77.04 78.41 945 −1.09 59.84 62.78 929
β1 3.86 49.69 50.23 945 2.72 46.32 46.96 942 2.34 36.27 37.33 941
β2 5.77 72.64 67.82 960 3.88 67.56 63.16 963 2.32 53.65 52.82 939
β3 −0.69 39.92 40.14 940 -0.48 37.14 37.55 943 −0.11 29.14 31.00 944
c1 −16.09 171.89 185.99 923 0.96 152.10 212.49 907 2.67 103.26 158.39 891
c2 −2.69 81.76 95.51 912 4.37 75.10 125.84 903 7.86 56.60 131.88 894
t1 2.18 53.28 57.74 933 2.08 47.82 52.28 921 2.33 34.17 38.55 921
t2 20.13 111.57 136.46 925 13.61 99.30 108.45 930 13.30 70.22 85.85 927
ρ 1.21 32.96 33.18 953 1.52 25.63 25.73 950 0.93 12.14 12.31 942
σ2 −1.41 9.81 9.64 948 −1.17 10.88 10.59 951 −0.58 12.57 12.27 948

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

52



Entropy 2022, 24, 1235

References

1. Sokolovska, N.; Wuillemin, P.H. The Role of Instrumental Variables in Causal Inference Based on Independence of Cause and
Mechanism. Entropy 2021, 23, 928. [CrossRef]
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Abstract: The estimation of average treatment effect (ATE) as a causal parameter is carried out in
two steps, where in the first step, the treatment and outcome are modeled to incorporate the potential
confounders, and in the second step, the predictions are inserted into the ATE estimators such as
the augmented inverse probability weighting (AIPW) estimator. Due to the concerns regarding the
non-linear or unknown relationships between confounders and the treatment and outcome, there
has been interest in applying non-parametric methods such as machine learning (ML) algorithms
instead. Some of the literature proposes to use two separate neural networks (NNs) where there
is no regularization on the network’s parameters except the stochastic gradient descent (SGD) in
the NN’s optimization. Our simulations indicate that the AIPW estimator suffers extensively if no
regularization is utilized. We propose the normalization of AIPW (referred to as nAIPW) which
can be helpful in some scenarios. nAIPW, provably, has the same properties as AIPW, that is, the
double-robustness and orthogonality properties. Further, if the first-step algorithms converge fast
enough, under regulatory conditions, nAIPW will be asymptotically normal. We also compare the
performance of AIPW and nAIPW in terms of the bias and variance when small to moderate L1

regularization is imposed on the NNs.

Keywords: causal inference; instrumental variables; neural networks; doubly robust estimation;
semi-parametric theory

1. Introduction

Estimation of causal parameters such as the average treatment effect (ATE) in observa-
tional data requires confounder adjustment. The estimation and inference are carried out
in two steps: In step 1, the treatment and outcome are predicted by a statistical models or
machine learning (ML) algorithm, and in the second step the predictions are inserted into
the causal effect estimator. If ML algorithms are employed in step 1, the non-linear rela-
tionships can potentially be taken into account. The relationship between the confounders
and the treatment and outcome can be non-linear which make the application of machine
learning (ML) algorithms, which are non-parametric models, appealing. Farrell et al. [1]
proposed to use two separate neural networks (double NNs or dNNs) where there is no
regularization on the network’s parameters except the stochastic gradient descent (SGD)
in the NN’s optimization [2–5]. They derive the generalization bounds and prove that
the NN’s algorithms are fast enough so that the asymptotic distribution of causal estima-
tors such as the augmented inverse probability weighting (AIPW) estimator [6–8] will be
asymptotically linear, under regulatory conditions and the utilization of cross-fitting [9].

Farrell et al. [1] argue that the fact that SGD-type algorithms control the complexity of
the NN algorithm to some extent [2,10] is sufficient for the first step. Our initial simulations
and analyses, however, contradict this claim in scenarios where strong confounders and
instrumental variables (IVs) exist in the data.

Conditioning on IVs is harmful to the performance of the causal effect estimators such
as ATE (Myers et al. [11]) but there may be no prior knowledge about which covariates

Entropy 2022, 24, 179. https://doi.org/10.3390/e24020179 https://www.mdpi.com/journal/entropy
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are IVs, confounders or otherwise. The harm comes from the fact that the complex NNs
can provide near-perfect prediction in the treatment model which violates the empirical
positivity assumption [12].

The positivity assumption (Section 2) is fundamental to hold to have an identifiable
causal parameter in a population. However, in a finite sample, although the parameter is
identifiable by making the positivity assumption, the bias and variance of the estimator can
be inflated if the estimated propensity scores are close to zero or one bounds (or become
zero or one by rounding errors). This is referred to as the empirical positivity assumption
which is closely related to the concept of sparsity studied in Chapter 10 of Van der Laan and
Rose [8]. The violation of the empirical positivity assumption can cause the inflation of the
bias and variance of inverse probability weighting (IPW)-type and AIPW-type estimators.

The inverse probability weighting method dates at least back to Horvitz and Thompson [13]
in the literature of sampling with unequal selection probabilities in sub-populations. IPW-
type and matching methods have been extensively studied Lunceford and Davidian [7],
Rubin [14], Rosenbaum and Rubin [15,16], Busso et al. [17]. IPW is proven to be a consistent
estimator of ATE if the propensity scores (that are the conditional probability of treatment
assignments) are estimated by a consistent parameter or non-parametric model. The other
set of ATE estimators include those involving the modeling of the outcome and inserting
the predictions directly into the ATE estimator (Section 2). They are referred to as single
robust (SR) estimators as they provide

√
n−consistent estimators for ATE if the outcome

model is
√

n−consistent. In this sense, IPW is also single robust as it is consistent if the
treatment (or the propensity score) model is

√
n−consistent. The focus of this work is to

study the augmented IPW-type methods as they involve modeling both treatment and
outcome and can be

√
n−consistent estimators of ATE if either of the models is consistent.

We propose and study a simple potential remedy to the empirical positivity violation
issue by studying the normalization of the AIPW estimator (similar to the normalization of
IPW [7]), here referred to as nAIPW. In fact, both AIPW and nAIPW can be viewed as a
more general estimator which is derived via the efficient influence function of ATE [18,19].

A general framework of estimators that includes nAIPW as a special case was pro-
posed by [20]. In their work, the authors did not consider machine learning algorithms for
the first-step estimation, but rather assumed parametric statistical models estimated by
likelihood-based approaches. They focused on how to consistently estimate ATE within
different sub-populations imposed by the covariates. There is a lack of numerical experi-
mentation on these estimators especially when IVs and strong confounders exist in the set
of candidate covariates.

To the best of our knowledge, the performance of nAIPW has not been previously
studied in the machine learning context, with the assumption that strong confounders and
IVs exist in the data. We will prove that this estimator has the doubly robust [6] and the
rate doubly robust [19] property, and illustrate that it is robust against extreme propensity
score values. Further, nAIPW (similar to AIPW), has the orthogonality property [9] which
means that it is robust against small variations in the predictions of the outcome and
treatment assignment predictions. One theoretical difference is that AIPW is the most
efficient estimator among all the double robust estimators of ATE given both treatment
and outcome models are correctly specified [21]. In practice, however, often there is no a
priori knowledge about the true outcome and propensity score relationships with the input
covariates and thus this feature of AIPW is probably of less practical use.

We argue that for causal parameter estimation, dNN with no regularization may lead
to high variance for the causal estimator used in the second step. We compare AIPW and
nAIPW through a simulation study where we allow for moderate to strong confounding
and instrumental variable effects, that is, we allow for possible violation of the empirical
positivity assumption. Further, a comparison between AIPW and nAIPW is made on the
Canadian Community Health Survey (CCHS) dataset where the intervention/treatment is
the food security vs. food insecurity and the outcome is individuals’ body mass index (BMI).
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Our contributions include presenting the proof for the orthogonality, doubly robust
and rate doubly robust property of nAIPW. Further, it is proven that, under certain assump-
tions, nAIPW is asymptotically normal and we provide its consistent variance estimator.
We analyze the estimation of ATE in the presence of not only confounders, but also IVs, y-
predictors and noise variables. We demonstrate that in the presence of strong confounders
and IVs, if complex neural networks without L1 regularizations are used in the step 1
estimation, both AIPW and nAIPW estimators and their asymptotic variances perform
poorly, but, relatively speaking, nAIPW performs better. In this paper, the NNs are mostly
used as means of estimating the outcome and treatment predictions.

Organization of the article is as follows. In Section 2 we will formally introduce the
nAIPW estimator to the readers and state its double robustness property, and in Section 3
we present the first-step prediction model, double neural networks. In Sections 4 and 5 we
will present the theoretical aspects of the paper, including the asymptotic normality, doubly
robustness and rate doubly robustness orthogonality of the proposed estimator (nAIPW)
and the asymptotic normality. We will present the simulation scenarios and results of
comparing the nAIPW estimator with other conventional estimators in Section 6. We apply
the estimators on a real dataset in Section 7. The article will be concluded with a short
discussion on the findings in Section 8. The proofs are straightforward but long and thus
are included in Appendix A.

2. Normalized Doubly Robust Estimator

Let data O = (O1, O2, ..., On) be generated by a data generating process P, where Oi is a
finite dimensional vector Oi = (Yi, Ai, Wi), with W being the adjusting factors. P is the true
observed data distribution, P̂n is the distribution of O such that its marginal distribution
with respect to W is its empirical distribution and the expectation of the conditional
distribution Y|A = a, W, for a = 0, 1, can be estimated. We denote the prediction function
of the observed outcome given explanatory variables in the treated group Q1 := Q(1, W) =
E[Y|A = 1, W], and that in the untreated group Q0 := Q(0, W) = E[Y|A = 0, W], and the
propensity score as g(W) = E[A|W]. Throughout, the expectations E are with respect to P.
The symbol ˆ on the population-level quantities indicates the corresponding finite sample
estimator, and P is replaced by P̂n.

Let the causal parameter of interest be the average treatment effect (ATE)

βATE = E[Y1 −Y0] = E
[
E[Y1 −Y0|W]

]
=

E
[
E[Y|A = 1, W]

]
−E

[
E[Y|A = 0, W]

]
, (1)

where Y1 and Y0 are the potential outcomes of the treatment and controls [6].
For identifiablity of the parameter, the following assumptions must hold true. The

first assumption is the conditional independence, or unconfoundedness stating that, given
the confounders, the potential outcomes are independent of the treatment assignments
(Y0, Y1 ⊥ A|W). The second assumption is positivity which entails that the assignment
of treatment groups is not deterministic (0 < Pr(A = 1|W) < 1). The third assump-
tion is consistency which states that the observed outcomes equal their corresponding
potential outcomes (YA = y). There are other modeling assumptions made such as time
order (i.e., the covariates W are measured before the treatment), IID subjects and a linear
causal effect.

57



Entropy 2022, 24, 179

A list of first candidates to estimate ATE are

naive ATE β̂naiveATE =
1
n1

∑
i∈A1

Q̂1
i −

1
n0

∑
i∈A0

Q̂0
i ,

SR β̂SR = Ê
[
Ê[Y1 −Y0|W]

]
=

1
n

n

∑
i=1

Q̂1
i − Q̂0

i ,

IPW β IPW = Ê
[ Y1

Ê[A|W]
− Y0

1− Ê[A|W]

]
=

1
n

n

∑
i=1

(Aiyi
ĝi

− (1− Ai)yi
1− ĝi

)
,

nIPW β̂nIPW =
n

∑
i=1

( Aiw
(1)
i yi

∑n
j=1 Ajw

(1)
j

− (1− Ai)w
(0)
i yi

∑n
j=1(1− Aj)w

(0)
j

)
.

(2)

The naive average treatment effect (naive ATE) is a biased (due to the selection bias)
estimator of ATE [22] and is the poorest estimator among all the candidates. The single
robust (SR) is not an orthogonal estimator [9] and if ML algorithms which do not belong to
the Donsker class ([23], Section 19.2) or have entropy that grows with the sample size are
used, this estimator also becomes biased and is not asymptotically normal. The inverse
probability weighting (IPW) [13] and its normalization versions adjust (or weight) the
observations in the treatment and control groups. IPW and nIPW are also not orthogonal
estimators and are similar to SR in this respect. In addition, both β̂SR and β̂ IPW (and β̂nIPW)
are single robust, that is, they are consistent estimators of ATE if the models used are√

n-consistent [7]. IPW is an unbiased estimator of ATE if g is correctly specified, but
nIPW is not unbiased, but is less sensitive to extreme predictions. The augmented inverse
probability weighting (AIPW) estimator [21] is an improvement over SR, IPW and nIPW,
which involves the predictions for both treatment (the propensity score), and the causal
parameter can be expressed as:

β = E

[(AY−Q(1, W)(A−E[A|W])

E[A|W]

)
−

( (1− A)Y + Q(0, W)(A−E[A|W])

1−E[A|W]

)]
, (3)

and the sample version estimator of (3) is

β̂AIPW =
1
n

n

∑
i=1

[(AiYi − Q̂(1, Wi)(Ai − Ê[Ai|Wi])

Ê[Ai|Wi]

)
−

( (1− Ai)Yi + Q̂(0, Wi)(Ai − ĝi)

1− Ê[Ai|Wi]

)]
=

1
n

n

∑
i=1

(Ai(yi − Q̂1
i )

ĝi
− (1− Ai)(yi − Q̂0

i )

1− ĝi

)
+ β̂SR, (4)

where Q̂k
i = Q̂(k, Wi) = Ê[Yi|Ai = k, Wi] and ĝi = Ê[Ai|Wi].

Among all the doubly robust estimators of ATE, AIPW is the most efficient estimator if
both of the propensity score or outcome models are correctly specified, but is not necessarily
efficient under incorrect model specification. In fact, this nice feature of AIPW may be less
relevant in real-life problems as we might not have a priori knowledge about the predictors
of the propensity score and outcome and we cannot correctly model them. Further, in
practice, perfect or near-perfect prediction of the treatment assignment can inflate the
variance of the AIPW estimator [8]. As a remedy, similar to the normalization of the
IPW estimator, we can define a normalized version of the AIPW estimator which is less
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sensitive to extreme values of the predicted propensity score, referred to as the normalized
augmented inverse probability weighting (nAIPW) estimator:

β̂nAIPW =
n

∑
i=1

(Ai(yi − Q̂1
i )w

(1)
i

∑n
j=1 Ajw

(1)
j

− (1− Ai)(yi − Q̂0
i )w

(0)
i

∑n
j=1(1− Aj)w

(0)
j

)
+ β̂SR, (5)

where w(1)
k = 1

ĝk
and w(0)

k = 1
1−ĝk

. Both AIPW and nAIPW estimators add adjustment
factors to the SR estimator which involve both models of the treatment and the outcome.

Both AIPW and nAIPW are examples of a class of estimators where

β̂GDR =
1
n

n

∑
i=1

(Ai(yi − Q̂1
i )

ĥ1
i

− (1− Ai)(yi − Q̂0
i )

ĥ0
i

)
+ β̂SR, (6)

where we refer to this general class as the general doubly robust (GDR) estimator. Let-
ting ĥ1 = ĝ and ĥ0 = 1 − ĝ gives the AIPW estimators and letting ĥ1 = ĝÊ A

ĝ and

ĥ0 = (1− ĝ)Ê 1−A
1−ĝ gives the nAIPW estimator.

The GDR estimator can also be written as

β̂GDR = Ê
([ A

ĥ1
− 1− A

ĥ0

]
y−

(
A− ĥ1)Q̂1 +

(
1− A− ĥ0)Q̂0

)
, (7)

If h1 and h0 are chosen so that

E
[
A− h1] = 0, E

[
1− A− h0] = 0, (8)

by the total law of expectation β̂GDR is an unbiased estimator of β.

3. Outcome and Treatment Predictions

The causal estimation and inference when utilizing the AIPW and nAIPW is carried
out in two steps. In step 1, the treatment and outcome are predicted by a statistical or
machine learning (ML) algorithm, and in the second step the predictions are inserted
into the estimator. The ML algorithms in step 1 can capture the linear and non-linear
relationships between the confounders and the treatment and the outcome.

Neural networks (NNs) [2–4] are a class of non-linear and non-parametric complex
algorithms that can be employed to model the relationship between any set of inputs and
some outcome. There has been a tendency to use NNs as they have achieved great success
in the most complex artificial intelligence (AI) tasks such as computer vision and natural
language understanding [2].

Farrell et al. [1] used two independent NNs for modeling the propensity score model
and the outcome with the rectified linear unit (RELU) activation function [2], here referred
to as the double NN or dNN:

E[Y|A, W] = β0 + βA + Wα + HΓY

E[A|W] = β′0 + W′α′ + H′ΓA,
(9)

where two separate neural nets model y and A (no parameter sharing). Farrell et al. [1]
proved that dNN algorithms almost attain n

1
4 -rates. By employing the cross-fitting method

and theory developed by Chernozhukov et al. [9], an orthogonal causal estimator is asymp-
totically normal, under some regularity and smoothing conditions, if the dNN is used in
the first step (see Theorem 1 in [1]).

These results assume no regularizations imposed on the NNs’ weights, and only the
stochastic gradient descent (SGD) is used. Farrell et al. claim that the fact that SGD controls
the complexity of the NN algorithm to some extent [2,10] is sufficient for the first step.
Our initial simulations, however, contradict this claim and we hypothesize that for causal
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parameter estimation, a dNN with no regularization leads to high variance for the causal
estimator used in the second step. Our initial experiments indicate that L2 regularization
and dropout do not perform well in terms of the mean square error (MSE) of AIPW. The loss
functions we use contain L1 regularization (in addition to SGD during the optimization):

Ly(Py, β, α) =
n

∑
i=1

[
yi − α′ − βAi −Wiα− HT

i ΓY

]2
+ CL1 ∑

ω∈P
|ω|,

LA(PA, α′) =
n

∑
i=1

[
Ai log

(
g
(

HT
i ΓA

))
+ (1− Ai) log

(
1− g

(
HT

i ΓA
))]

+

C′L1 ∑
ω∈P

|ω|,

(10)

where CL1 , C′L1
are hyperparameters that can be set before training or be determined by

cross-validation, that can cause the training to pay more attention to one part of the output
layer. The dNN can have an arbitrary number of hidden layers, or the width of the network
(HL) can be another hyperparameter. For a three-layer network,HL = [l1, l2, ..., lh], where
lj is the number neurons in layer j, j = 1, 2, ..., h. Py,PA are the connection parameters
in the non-linear part of the networks, with Ωs being shared for the two outcome and
propensity models. Note that the gradient descent-type optimizations in the deep learning
platforms (such as pytorch in our case) do not cause the NN parameters to shrink to zero.

4. GDR Estimator Properties

In this section we will see that nAIPW (5) is doubly robust, that is, if either of the
outcome or propensity score models are

√
n-consistent, nAIPW will be consistent. Further,

nAIPW is orthogonal [9] and is asymptotically linear under certain assumptions and we
calculate its asymptotic variance.

4.1. Consistency and Asymptotic Distribution of nAIPW

In causal inference, estimating the causal parameter and drawing inference on the
parameter are two major tasks. Employing a machine learning algorithm to estimate Q and
g in (5) is a means to estimate and draw inference on the causal parameter; the ultimate
goal is the relationship between the treatment and the outcome. This allows people to
use blackbox ML models with no explanation how these models have learned from the
explanatory features. The question is if the consistency and asymptotic normality of the
second step causal estimator are preserved if complex ML algorithms are utilized twice
for the treatment and outcome models, each with a convergence rate smaller than

√
n, and

entropy that grows with n.
Chernozhukov et al. [24] provide numerical experiments illustrating that some estima-

tors are not consistent or asymptotically normal if complex ML models are used that do
not belong to the Donsker class and have entropy that grows with n. They further provide
a solution by introducing “orthogonal” estimators that, under some regulatory conditions
and cross-fitting, are asymptotically normal even if complex ML models can be used as
long as their rates of convergence are as small as n

1
4 .

The next two subsections provide an overview of the general theory and prove that
nAIPW is asymptotically normal.

4.2. The Efficient Influence Function

Hahn [18] derives the efficient influence function (EIF) of β = β1 − β0 as

φ(O, P) =
(A

g
(Y−Q1) + Q1 − β1

)
−
(1− A

1− g
(Y−Q0) + Q0 − β0

)
(11)
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To study the asymptotic behaviour of nAIPW, we write the scaled difference

√
n(β̂− β) =

1√
n

n

∑
i=1

φ(Oi, P)− 1√
n

n

∑
i=1

φ(Oi, P̂n)+

√
n(Pn − P)[φ(Oi, P̂n)− φ(Oi, P)]−

√
nR(P, P̂n), (12)

where the first term is a normal distribution by the central limit theorem, and the third and
fourth terms are controlled if the class of functions are Donsker and standard smoothing
conditions are satisfied ([9,23], Theorem 19.26). If the nuisance parameters are not Donsker,
data splitting and cross-fitting guarantees plus the regulatory conditions are needed to
control these two terms [1,9]. It is unclear, however, how the second term behaves, i.e.,

− 1√
n

φ(O, P̂n) =

− 1√
n

n

∑
i=1

[Ai
gi

(Yi − Q̂1
i )−

1− Ai
1− gi

(Yi − Q̂0
i ) + Q̂1

i − Q̂0
i

]
− β̂, (13)

where β̂ = β(P̂n), as it contains data-adaptive nuisance parameter estimations. There are
different tricks to get rid of this term. One method is the one-step method in which we
move this term to the left to create a new estimator which is exactly the same as the AIPW
estimator with known propensity scores:

√
n(β̂ +

1
n

φ(O, P̂n)− β) =

√
n
( 1

n

n

∑
i=1

[Ai
gi

(Yi − Q̂1
i )−

1− Ai
1− gi

(Yi − Q̂0
i ) + Q̂1

i − Q̂0
i

]
− β

)
. (14)

Another trick is to let this term vanish which results in estimating equations whose
solution is exactly the same as the one-step estimator. The targetted learning strategy is to
manipulate the data generating process which results in a different estimator [8,19] (which
we do not study here).

The requirement in the above estimator is that the propensity score is known, which is
unrealistic. In reality, this quantity should be estimated using the data. However, replacing
g with a data-adaptive estimator changes the remainder term in (12) that needs certain
assumptions to achieve asymptotic properties such as consistency. We replace g and 1− g
in (14) by ĥ1 and ĥ0, respectively, which provides a more general view of the above one-step
estimator.

4.3. Doubly Robustness and Rate Doubly Robustness Properties of GDR

One of the appealing properties of AIPW is its doubly robust property which partially
relaxes the restrictions of IPW and SR which require the consistency of the treatment and
outcome models, respectively. This property is helpful when the first-step algorithms
are

√
n-consistent. The following theorem states that the nAIPW estimator (5) actually

possesses the doubly robustness property.

Theorem 1 (nAIPW Double Robustness). The DR estimator (5) is consistent if Q̂k p−→ Qk,
k = 0, 1 or ĝ

p−→ g.

The proof is left to the appendix. Theorem 1 is useful when we a priori knowledge about
the propensity scores (such as in the experimental studies) or we estimate the propensity
scores with

√
n-rate converging algorithms. In practice, however, the correct specification

is infeasible in the observational data, but
√

n-rate algorithms such as parametric models,
generalized additive models (GAMs) or the models that assume sparsity might be used [25].
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This is restrictive and these model assumptions might not hold in practice which is why
non-parametric ML algorithms such as NNs are used. As mentioned before, the NN
we utilize here does not offer a

√
n-consistent prediction model in the first step of the

estimation [1]. This reduces the usefulness of the double robustness property of the GDR
estimator when using complex ML algorithms. A more useful property when using complex
ML algorithms is the rate double robustness (RDR) property [26]. RDR does not require either
of the prediction models to be

√
n-consistent; it suffices that they are consistent at any rate

but together become
√

n-consistent; that is, if the propensity score and outcome model are
consistent at nrA and nrY , respectively (rY, rA < 0), we must have rA + rY = 1

2 . To see that
the DR has this property (as does DR [25]), note that the remainder (12) can be written as

−
√

nR(P, P̂n) =

√
nE
[( g

ĥ1
− 1

)(
Q1 − Q̂1)]+√nE

[(1− g
ĥ0

− 1
)(

Q0 − Q̂0)], (15)

which, by the Hölder inequality, is upper bounded:

−
√

nR(P, P̂n) ≤
[
E
[ g

ĥ1
− 1

]2
] 1

2
[
E
[

Q1 − Q̂1
]2
] 1

2

+

[
E
[1− g

ĥ0
− 1

]2
] 1

2
[
E
[

Q0 − Q̂0
]2
] 1

2

(16)

Making the standard assumptions that

[
E
[

g− ĥk
]2
] 1

2
[
E
[

Qk − Q̂k
]2
] 1

2

= o(n−
1
2 ), k = 0, 1,

E
[

g− ĥk
]2

= o(1), E
[

Qk − Q̂k
]2

= o(1), k = 0, 1,

Empirical Positivity c1 < ĥk < 1− c2, for some c1, c2 > 0,

(17)

implies
−
√

nR(P, P̂n) = o(n−
1
2 ), (18)

that is, the GDR has the rate double robustness property.
The assumptions in (17) are less restrictive than needing at least one of the prediction

models to be
√

n-consistent for the double robust property [19,25]. This means that the
outcome and propensity score models can be at least as fast as o(n−

1
4 ) (which is an attainable

generalization bound for many complex machine learning algorithms [9]), and the GDR
estimator is still consistent. Farrell et al. [1] proves that two neural networks without
regularization (except the one imposed by the stochastic gradient descent optimization) satisfy
such bounds and can provide a convenient first-step prediction algorithm (when they utilize
the AIPW estimator and the cross-fitting strategy proposed by Chernozhukov et al. [9]).

In order for a special case of GDR estimator to outperform the AIPW estimator, we
must have Ah1 ≥ Ag and (1− A)h0 ≥ (1− A)(1− g), in addition to conditions in (17).
Note that these two conditions are satisfied for nAIPW; replacing h1 and h0 with ĝÊ A

ĝ

and (1− ĝ)Ê 1−A
1−ĝ can help stabilize the bias and variance magnitude and help shrink the

remainder (15) to zero. The scenario analysis performed in Section 4.4 provides an insight
about the reduction in the sensitivity to the violation of the empirical positivity assumption.
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4.4. Robustness of nAIPW against Extreme Propensity Scores

There are two scenarios in which the empirical positivity is violated, where the prob-
ability of receiving the treatment for the people who are treated is 1, that is, Ak = 1 and
P(Ak = 1|W) = 1 (or vice versa for the untreated group Ak = 0 and P(Ak = 0|W) = 0),
and where there are a handful of treated subjects whose probability of receiving the treat-
ment is 0, that is, Ak = 1 and P(Ak = 1|W) = 0 (and vice versa for the untreated group,
that is, Ak = 0 and P(Ak = 0|W) = 1). Although the identifiability assumptions guarantee
that such scenarios do not occur, in practice, extremely small or large probabilities similar
to the second scenario above, that is, where there exists a treated individual who has a
near-zero probability of receiving the treatment, can impact the performance of the estima-
tors that involve propensity score weighting. For example, replacing h1 with ĝ and h0 with
1− ĝ in practice can increase both the bias and variance of AIPW [8]. This can be seen by
viewing the bias and variance of these weighting terms. As noted before, the AIPW and
nAIPW add adjustments to the single robust estimator EQ1 −Q0. The adjustments involve
weightings A

g or A
gE A

g
to the residuals of Y and Qk, k = 0, 1. Under a correct specification

of the propensity score g, these weights have the same expectations. The difference is in
their variances:

Var(
A
g
) =

1
g
− 1,

Var
( A

gE A
g

)
=

1
E2 A

g
(

1
g
− 1),

(19)

under the correct specification of the propensity score g. By letting g tend to zero in violation
of the empirical positivity assumption, it can be seen that the nAIPW is less volatile than
the AIPW estimator. That is, the weights in AIPW might have a larger variance than those
in nAIPW.

4.5. Scenario Analysis

A scenario analysis is performed to see how nAIPW stabilizes the estimator: Assume
that the empirical positivity is violated, that is, there is at least an observation k where
Ak = 1 where ĝk is extremely close to zero, such as ĝk = 10−s for s � 0. AIPW will blow
up in this case:

β1,AIPW =
1
n

(
10s(Y1

k −Q1
k) + ∑

i∈I1
−k

Y1
i −Q1

i
gi

)
+

1
n

n

∑
i=1

Q1
i ,

β0,AIPW =
1
n

(
∑

i∈I0

Y0
i −Q0

i
1− gi

)
+

1
n

n

∑
i=1

Q0
i ,

(20)

where Ia = {j : Aj = a}, Ia
−k = {j : Aj = a}, and subscripts a = 1 and a = 0 refer to the

estimators of the first and the second components in ATE (1). However, nAIPW is robust
against this empirical positivity violation:

β1,nAIPW =
( Y1

k −Q1
k

10−s(10s + ∑j �=k
Aj
gj
)
+ ∑

i∈I1
−k

Y1
i −Q1

i

gi(10s + ∑j �=k
Aj
gj
)

)
+

1
n

n

∑
i=1

Q1
i , (21)

and

β0,nAIPW =
(0× (Y1

k −Q0
k)

�
+ ∑

i∈I0
−k

Y0
i −Q0

i

(1− gi)(∑n
j=1

1−Aj
1−gj

)

)
+

1
n

n

∑
i=1

Q0
i . (22)
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Thus

β1,nAIPW ≈
( Y1

k −Q1
k

1 + 10−s(n− 1)
+ ∑

i∈I1
−k

Y1
i −Q1

i
gi10s + gi(n− 1)

)
+

1
n

n

∑
i=1

Q1
i , (23)

The factor 10s in (20) can blow up the AIPW if 10s � n (and the outcome estimation is
not close enough to the observer outcome), but this factor does not appear in the numerator
of the nAIPW estimator. For such large factors, (23) can be simplified to

β1,nAIPW ≈ Y1
k −Q1

k +
1
n

n

∑
i=1

Q1
i . (24)

Thus, the extreme probability does not make β1,nAIPW blow up, but the adjustment to the
β1,SR that accounts for confounding effects. The second factor β0,nAIPW is not impacted in
this scenario.

Considering a scenario that there is another treated individual with extremely small
probability, such as ĝl = 10−t, such that, without loss of generality, t > s � 0, we will have:

β1,nAIPW ≈ Y1
k −Q1

k
1 + 10t−s + 10−s(n− 2)

+
Y1

l −Q1
l

1 + 10s−t + 10−t(n− 2)
+

1
n

n

∑
i=1

Q1
i . (25)

Depending on the values s and t, one of the first two terms in (25) might vanish, but the
estimator does not blow up. There is at most only a handful of treated individuals with ex-
tremely small probabilities and, based on the above observation, the nAIPW estimator does
not blow up. That said, nAIPW might not sufficiently correct the βSR for the confounding
effects, although confounders have been taken into account in the calculation of βSR to
some extent.

The same observation can be made in the asymptotic variance of these estimators.
This shows how extremely small probabilities for treated individuals (or extremely large
probabilities for untreated individuals) can result in a biased and unstable estimator, while
neither of the bias or variance of nAIPW suffer as much. Although not performed, the same
observation can be made for the untreated individuals with extremely large probabilities.

The above scenario analysis indicates the bias and variance of nAIPW might go up in
cases of the violation of empirical positivity, but it still is less biased and more stable than
AIPW. The remainder term (15) is also more likely to be o(n−

1
2 ) in nAIPW versus AIPW as

it contains k’s where Ak = 1, gkEn
Ak
gk
≥ gk.

5. Asymptotic Sampling Distribution of nAIPW

Replacing g in the denominator of the von Mises expansion (12) with the normalizing
terms is enough to achieve the asymptotic distribution of the nAIPW and its asymptotic
standard error. However, we can see that nAIPW is also the solution to (extended) esti-
mating equations. The solution to the estimating equations is important as van der Vaart
(Chapters 19 and 25) proves that under certain regulatory conditions, if the prediction
models belong to the Donsker class, the solutions to Z-estimators are consistent and asymp-
totically normal ([23], Theorem 19.26). Thus, nAIPW that is the solution to a Z-estimator
(also referred to an M-estimator) will inherit the consistency and asymptotic normality,
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assuming certain regulatory conditions and that the first-step prediction models belong to
the Donsker class:

E

[
A(Y1 −Q1)

γg
− (1− A)(Y0 −Q0)

λ(1− g)
+ (Q1 −Q0 − β)

]
= 0,

E
[A

g
− γ

]
= 0,

E
[1− A

1− g
− λ

]
= 0.

(26)

The Donsker class assumption prevents too complex algorithms in the first step, algo-
rithms such as tree-based models, NNs, cross-hybrid algorithms or their aggregations [19,27].
The Donsker class assumption can be relaxed if sample splitting (or cross-fitting) is utilized
and the target parameter is orthogonal [9]. In the next section we see that nAIPW is or-
thogonal and, thus, theoretically, we can relax the Donsker class assumption under certain
smoothing regulatory conditions. Before seeing the orthogonality property of nAIPW, let
us review the smoothing regularity conditions necessary for asymptotic normality. Let β
be the causal parameter, η ∈ T be the infinite dimensional nuisance parameters where T
is a convex set with a norm. Additionally, let the score function φ : O×B × T → R be a
measurable function, O be the measurable space of all random variables O with probability
distribution P ∈ Pn and B be an open subset of R containing the true causal parameter.
Let the sample O = (O1, O2, ..., On) be observed and the set of probability measures Pn
expand with sample size n. In addition, let β ∈ B be the solution to the estimating equation
Eφ(O, β, η) = 0. The assumptions that guarantee that the second-step orthogonal estimator
β̂ is asymptotically normal are [9]: (1) β does not fall on the boundary of B; (2) the map
(β, η)→ EPφ

(
O, β, η

)
is twice Gateauax differentiable (this holds by the positivity assump-

tion). β is identifiable; (3) EPφ
(
O, β, η

)
is smooth enough; (4) η̂ ∈ T with high probability

and η ∈ T . η̂ converges to η0 at least as fast as n−
1
4 (similar but slightly stronger than first

two assumptions in (17)); (5) score function(s) φ(., β, η) has finite second moment for all
β ∈ B and all nuisance parameters η ∈ T ; (6) the score function(s) φ(., β, η) is measurable;
(7) the number of folds increases by sample size.

5.1. Orthogonality and the Regulatory Conditions

The orthogonality condition [9] is a property related to the estimating equations

Eφ(O, β, η) = 0. (27)

We refer to an estimator drawn from the estimating Equation (27) as an orthogonal estimator.
Let η ∈ T, where T is a convex set with a norm. Additionally, let the score functions

φ : O×B× T → R be a measurable function, O is measurable space of all random variables
O with probability distribution P ∈ Pn and B is an open subset of R containing the true
causal parameter. Let the sample O = (O1, O2, ..., On) be observed and the set of probability
measures Pn can expand with sample size n. The score function φ follows the Neyman
orthogonality condition with respect to T ⊆ T, if the Gateauax derivative operator exists
for all ε ∈ [0, 1):

∂η̃EPφ
(
O, β0, η̃

)∣∣∣
η̃=η

[η̃ − η] := ∂εEPφ
(
O, β0, η + ε(η̃ − η)

)∣∣∣
ε=0

= 0. (28)

Chernozhukov et al. [24] presents a few examples of orthogonal estimating equations
including the AIPW estimator (4). Utilizing cross-fitting, under standard regulatory con-
ditions, the asymptotic normality of estimators with orthogonal estimating equations is
guaranteed even if the nuisance parameters are estimated by ML algorithms not belonging
to the Donsker class and without finite entropy conditions [24]. The regulatory conditions to
be satisfied are (1) β does not fall on the boundary of B; (2) the map (β, η)→ EPφ

(
O, β, η

)
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is twice Gateauax differentiable. β is identifiable; (3) EPφ
(
O, β, η

)
is smooth enough;

(4) η̂ ∈ T with high probability and η ∈ T . η̂ converges to η0 at least as fast as n−
1
4 ;

(5) score function(s) φ(., β, η) has finite second moment for all β ∈ B and all nuisance
parameters η ∈ T ; (6) the score function(s) φ(., β, η) is measurable; (7) the number of folds
increases by sample size.

By replacing λ and γ in the first line of (26) with their solutions in the second and
third equations:

EPφ
(
O, β, Q1, Q0, g

)
=

E

[
A(Y1 −Q1)

gE A
g

− (1− A)(Y0 −Q0)

(1− g)E 1−A
1−g

+ (Q1 −Q0 − β)

]
= 0, (29)

Implementing the orthogonality condition (28), it can be verified that nAIPW (5) is also an
example of an orthogonal estimator. To see this, we apply the definition of orthogonality [9]:

∂ηEPφ
(
O, β, η

)∣∣∣
η=η0

[η − η0] =

∂ηEP

(
Q1 +

A(Y1 −Q1)

gE A
g

−Q0 − (1− A)(Y0 −Q0)

(1− g)E 1−A
1−g

− β
)
|η=η0 [η − η0]

∝ ∂εEP

(
Q1

ε +
A(Y1 −Q1

ε)

gεE A
gε

−Q0
ε −

(1− A)(Y0 −Q0
ε)

(1− gε)E 1−A
1−gε

− β
)
|ε=0 =

E
(
(Q̃1 −Q1) +

A
gE A

g

(
− (Q̃1 −Q1)

)
+ A(Y−Q1)a(g, g̃− g)

)
−

E
(
(Q̃0 −Q0) +

1− A
(1− g)E 1−A

1−g

(
− (Q̃0 −Q0)

)
+

(1− A)(Y−Q0)b(g, g̃− g)
)
= 0, (30)

where Qk
ε = εQ̃k + (1− ε)Qk, k = 0, 1, and gε = εg̃ + (1− ε)g, and for some functions a

and b. The last equality is because EA(Y − Q1) = 0, E(1− A)(Y − Q0) = 0, E A
gE A

g
= 1

and E 1−A
(1−g)E 1−A

1−g
= 1, under correct specification of the propensity score g.

Thus, nAIPW is orthogonal, and by utilizing cross-fitting for the estimation, nAIPW is
consistent and asymptotically normal, under certain regulatory conditions.

5.2. Asymptotic Variance of nAIPW

To evaluate the asymptotic variance of nAIPW, we employ the M-estimation theory [23,28].
For causal inference for M-estimators, the bootstrap for the estimation of causal estimator
variance is not generally valid even if the nuisance parameter estimators are

√
n-convergent.

However, sub-sampling m out of n observations [29] can be shown to be universally valid,
provided m → ∞ and m

n → 0. In practice, however, we can face computational issues since
nuisance parameters must be separately estimated (possibly with ML models) for each
subsample/bootstrap sample.

The variance estimator of AIPW (4) is [7]

σ̂2
AIPW =

1
n2

n

∑
i=1

(AiYi − Q̂1
i (Ai − ĝi)

ĝi
− (1− Ai)Yi + Q̂0

i (Ai − ĝi)

1− ĝi
− β̂AIPW

)2
=

1
n2

n

∑
i=1

(Ai(yi − Q̂1
i )

ĝi
− (1− Ai)(yi − Q̂0

i )

1− ĝi
+ β̂SR − β̂AIPW

)2
. (31)
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The theorem below states that the variance estimator of AIPW (31) can intuitively
extend to calculate the variance estimator of nAIPW (5) by moving the denominator n2 to
the square term in the summation and replacing it with ĝÊ

( A
ĝ
)

or (1− ĝ)Ê
( 1−A

1−ĝ
)

in the
terms containing g and 1− g in the denominator, respectively.

Theorem 2. The asymptotic variance of the nAIPW (5) is

σ̂2
nAIPW =

n

∑
i=1

(Ai(yi − Q̂1
i )w

(1)
i

∑n
j=1 Ajw

(1)
j

− (1− Ai)(yi − Q̂0
i )w

(0)
i

∑n
j=1(1− Aj)w

(0)
j

+
1
n
(

β̂SR − β̂nAIPW
))2

, (32)

where Q̂k
i = Q̂(k, Wi) and ĝi = Ê[Ai|Wi].

The proof utilizing the estimating equation technique is straightforward and is left
to Appendix A. The same result can be seen when deriving the estimator in the one-step
method (see (12) and (14)). Since nAIPW is orthogonal, σ̂2

nAIPW is consistent by applying
the theories of [1,9], if the assumptions are met, cross-fitting is used, and the step 1 ML
algorithms have the required convergence rates.

The above theorem states that the variance estimator of AIPW (31) can intuitively
extend to calculate the variance estimator of nAIPW (5) by moving the denominator n2 to
the square term in the summation and replacing it with ĝÊ

( A
ĝ
)

or (1− ĝ)Ê
( 1−A

1−ĝ
)

in the
terms containing g and 1− g in the denominator, respectively. This is intuitive because, by
the law of total probability, E the first two terms is n.

6. Monte Carlo Experiments

A Monte Carlo simulation study (with 100 iterations) was performed to compare AIPW
and nAIPW estimators, where the dNN is used for the first-step prediction. There are a total
of 2 case scenarios according to the size of the data. We fixed the sample sizes to be n = 750
and n = 7500, with the number of covariates being p = 32 and p = 300, respectively. The
predictors include four types of covariates: The confounders, Xc, instrumental variables,
Xiv, the outcome predictors, Xy, and the noise or irrelevant covariates, Xirr. Their sizes for
the scenarios are #Xc = #Xiv = #Xy = #Xirr = 8, 75 and they are independent from each
other and drawn from the multivariate normal (MVN) distribution as X ∼ N (0, Σ), with
Σkj = ρj−k and ρ = 0.5. The models to generate the treatment assignment and outcome
were specified as

A ∼ Ber(
1

1 + e−η ), with η = fa(Xc)γc + ga(Xiv)γiv,

y = 3 + A + fy(Xc)γ
′
c + gy(Xy)γy + ε,

(33)

and β = 1. The functions fa, ga, fy, gy select 20% of the columns and apply interactions
and non-linear functions listed below (35). The strength of the instrumental variable and
confounding effects were chosen as γc, γ′c, γy ∼ Uni f (r1, r2) where (r1 = r2 = 0.25), and
γiv ∼ Uni f (r3, r4) where (r3 = r4 = 0.25).

The non-linearities are randomly selected from among the following functions:

l(x1, x2) = e
x1x2

2

l(x1, x2) =
x1

1 + ex2

l(x1, x2) =
( x1x2

10
+ 2

)3

l(x1, x2) =
(
x1 + x2 + 3

)2

l(x1, x2) = g(x1)× h(x2)

(34)
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where g(x) = −2I(x ≤ −1)− I(−1 ≤ x ≤ 0) + I(0 ≤ x ≤ 2) + 3I(x ≥ 2), and h(x) =
−5I(x ≤ 0)− 2I(0 ≤ x ≤ 1) + 3I(x ≥ 1), or g(x) = I(x ≥ 0) and h(x) = I(x ≥ 1).

The networks’ activation function is rectified linear unit (ReLU), with 3 hidden layers
as large as the input size (p), with L1 regularization and batch size equal to 3 ∗ p and
200 epochs. The adaptive moment estimation (Adam) optimizer [30] with learning rate 0.01
and momentum 0.95 was used to estimate the network’s parameters, including the causal
parameter (ATE).

Simulation Results

The oracle estimations are plotted in all the graphs to compare the real-life situations
with the truth. In almost all the scenarios we cannot obtain perfect causal effect estimation
and inference.

Figure 1 shows the distribution of AIPW and nAIPW for different hyperparameter
settings of NNs. The nAIPW estimator outperforms AIPW in almost all the scenarios. As
the AIPW gives huge values in some simulation iterations, the log of the estimation is taken
in Figure 1.

Figure 1. The distribution of log of the estimated AIPW and nAIPW in the 100 simulated iterations.
The performance of nAIPW is clearly superior to the performance of AIPW as it is less dispersed and
is more stable in terms of different hyperparameter settings. p is either 32 or 300 for the small or large
datasets and q ≈ p

10 , that is, 3 or 30.
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We also compare the estimators in different scenarios with bias, variance and their
tradeoff measures:

Bias δ̂ = β− 1
m

m

∑
j=1

β̂ j

MC std σ̂MC =

√√√√ 1
m

m

∑
j=1

(β̂ j − μ̂)2

MC RMSE RMSE =
√

σ̂2
MC + δ̂2

Asymptotic StdErr σ̂SE =
1
m

m

∑
j=1

σ̂j,

(35)

where β = 1, with β̂ js being the AIPW or nAIPW estimations in the jth simulation round,
μ̂ = 1

m ∑m
j=1 β̂ j and m = 100 being the number of simulation rounds and σ̂ being the square

root of (31) or (32).
Figure 2 demonstrates the bias, MC standard deviation (MC std) and the root mean

square error (RMSE) of AIPW and nAIPW estimators for the scenarios where n = 750
and n = 7500, and for four hyperparameter sets (L1 regularization and width of the
dNN). In general, in each figure of the panel, the hyperparameter scenarios in the left
imply a more complex model (with less regularization or a narrower network). In these
graphs, the lower the values, the better the estimator. For the smaller data size n = 750
in the left three panels, the worst results are attributed to AIPW when there is the least
regularization and the hidden layers are as wide as the number of inputs. To have more clear
plots for comparison, we skipped plotting the upper bounds as they were large numbers;
the lower bounds are enough to show the significance of the results. In the scenarios
where there are smaller numbers of hidden neurons with 0.01 L1 regularization, the bias,
variance and their tradeoff (here measured by RMSE) are more stable. By increasing the L1
regularization, these measures go down which indicates the usefulness of regularization
and AIPW normalization for causal estimation and inference. Almost the same pattern is
seen for the larger size (n = 7500) scenario, except for the bump in all the three measures in
the hyperparameter scenario where regularization remains the same (L1 = 0.01) and the
numbers of neurons in the first and last hidden layers are small too. In all three measures
of bias, standard deviation and RMSE, nAIPW is superior to AIPW, or at least there is no
statistically significant difference between AIPW and nAIPW.

We have noted that the results of the step 1 NN architecture without L1 regularization
are too unstable and cannot be visually presented in the graphs. To avoid that, we have
allowed a span of values for the L1 regularization strengths: L1 = 0.01 and L1 = 0.1. The
former case is close to no regularization. So, if the results of the latter are better than the
former’s, this is evidence that enough L1 must be imposed.

Figure 3 illustrates how the theoretical standard error formulas perform in MC experi-
ments, and how accurately they estimate the MC standard deviations. In these two graphs,
smaller does not necessarily imply superiority. In fact, the best results will be achieved
as long as the confidence intervals of asymptotic SEs and MC SDs intersect. In the left
two scenarios where the NN’s complexity is high, the MC std and SE are far from each
other. Additionally, in the hyperparameter scenarios where both the width of the NNs is
small and regularization is higher, the MC std and SE are well separated. The scenario
with largest regularization and wide NN architecture seems to the best scenario. That said,
none of the scenarios confirm the consistency of SEs, which would likely also result in low
coverage probability of the resulting confidence intervals.
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Figure 2. The bias, MC standard error and the root mean square error of the AIPW and nAIPW
estimators for different data sizes and NN hyperparameters (L1 regularization and width of the
network). p is either 32 or 300 for the small or large datasets and q ≈ p

10 , that is, 3 or 30. The estimates
are capped at −10 and 10.

Figure 3. The MC standard deviation and the standard error of the AIPW and nAIPW estimators for
different data sizes and NN hyperparameters (L1 regularization and width of the network).
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7. Application: Food Insecurity and BMI

The Canadian Community Health Survey (CCHS) is a cross-sectional survey that
collects data related to health status, health care utilization and health determinants for the
Canadian population in multiple cycles. The 2021 CCHS covers the population 12 years of
age and over living in the ten provinces and the three territorial capitals. Excluded from
the survey’s coverage are: Persons living on reserves and other Aboriginal settlements in
the provinces and some other sub-populations that altogether represent less than 3% of
the Canadian population aged 12 and over. Examples of modules asked in most cycles are:
General health, chronic conditions, smoking and alcohol use. For the 2021 cycle, thematic
content on food security, home care, sedentary behavior and depression, among many
others, was included. In addition to the health component of the survey are questions about
respondent characteristics such as labor market activities, income and socio-demographics.

In this article, we use the CCHS dataset to investigate the causal relationship of food
insecurity and body mass index (BMI). Other gathered information in the CCHS is used
which might contain potential confounders, y-predictors and instrumental variables. The
data are from a survey and need special methods such as the resampling or bootstrap
methods to estimate the standard errors. However, here, we use the data to illustrate the
utilization of a dNN on the causal parameters in the case of empirical positivity violation. In
order to reduce the amount of variability in the data, we have focused on the sub-population
18–65 years of age.

Figure 4 shows the ATE estimates and their 95% asymptotic confidence intervals with
nIPW, DR and nDR methods, with four different neural networks which vary in terms of
width and strength of L1 regularization. The scenario that results in the largest R2 (as a
measure of outcome prediction performance) outperforms the other scenarios. The scenario
that results in the largest AUC (as a measure of treatment model performance) results in
the largest confidence intervals. This is because of more extreme propensity scores in this
scenario. It is worth noting that the normalized IPW has smaller confidence intervals as
compared to AIPW. However, as we do not know the truth about the ATE in this dataset,
we can never know which estimator outperforms the other. To gain insight about this using
the input matrix of this data, we simulated multiple treatments and outcomes with small
to strong confounders and IVs and compared AIPW and nAIPW. In virtually all of them,
the nAIPW is the best one. We do not present these results in this paper, but they can be
provided to readers upon request.

Figure 4. The ATE estimates and their asymptotically calculated 95% confidence intervals with NIPW,
AIPW and nAIPW methods.
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8. Discussion

Utilizing machine learning algorithms such as NNs in the first-step estimation process
is comforting as the concerns with regard to the non-linear relationships between the
confounders and the treatment and outcome are addressed. However, there is no free
lunch, and using NNs has its own caveats including theoretical as well as numerical
challenges. Farrell et al. [1] addressed the theoretical concerns where they calculated the
generalization bounds when two separate NNs are used to model the treatment and the
outcome. However, they did not use or take into account regularization techniques such as
L1 or L2 regularization. As NNs are complex algorithms, they provide perfect prediction
for the treatment when the predictors are strong enough (or might overfit). Through
Monte Carlo (MC) simulations, we illustrated that causal estimation and inference with
double NNs can fail without the usage of regularization techniques such as L1 and/or
extreme propensity scores are not taken care of. If L1 regularization is not used, the
normalization of the AIPW estimator (i.e., nAIPW) is advised to be employed as it dilutes
the extreme predictions of the propensity score model and provides better bias, variance
and RMSE. Our scenario analysis also showed that in the case of violation of the empirical
positivity assumption in AIPW, normalization helps avoid blowing up the estimator (and
standard error), but might be ineffective in taking into account confounding effects for
some observations.

We note that the nAIPW estimator cannot perform better when the empirical positivity
is violated as compared to when it is not. However, when the empirical positivity is
violated, nAIPW can perform better than AIPW. If the empirical positivity is not violated,
our results indicated that AIPW outperforms nAIPW.

An alternative estimator might be trimming the propensity scores to avoid extreme
values. However, the causal effect estimator will no longer be consistent and there is no
determined method for where to trim. We hypothesize that ĥ1 = ĝÊ A

ĝ × I
(

ĝ ∈ (0, ε)
)
+

ĝ× I
(

ĝ ∈ (ε, 1)
)

and ĥ0 = (1− ĝ)Ê 1−A
1−ĝ × I

(
ĝ ∈ (1− ε, 1)

)
+ (1− ĝ)× I

(
ĝ ∈ (0, 1− ε)

)
where ε = 1

n will result in a consistent estimator, making the right assumptions, and will
outperform both AIPW and nAIPW in the case of the empirical positivity violation. We
will study this hypothesis in a future article.

Another reason why NNs without regularization fail in the causal estimation and
inference is that the networks are not targeted, and are not directly designed for these tasks.
NNs are complex algorithms with strong predictive powers. This does not accurately serve
the purpose of causal parameter estimation, where the empirical positivity assumption
can be violated if strong confounders and/or instrumental variables [22] exist in the data.
Ideally, the network should target the confounders and should be able to automatically
limit the strength of predictors so that the propensity scores are not extremely close to 1 or
0. This was not investigated in this article and a solution to this problem is postponed to
another study.

In Section 7, we applied the asymptotic standard errors of both AIPW and nAIPW,
where the latter achieves smaller standard errors. That said, we acknowledge the fact that
the asymptotic standard errors when using complex ML are not reliable and, in fact, they
underestimate the calculated MC standard deviations, as illustrated in the simulations
Section 6. This is partly because of the usage of complex algorithms such as NNs for
estimation of the nuisance parameters in the first step. Further, the asymptotic distributions
of the estimators are not symmetric (and thus are not normal). However, nAIPW is more
symmetric than AIPW, according to the simulations, while both estimators suffer from
outliers. We will investigate the reasons and possible remedies for both the asymptotic
distribution and standard errors of the estimators in a future paper. The consistency of the
variance of nAIPW (and AIPW) relies on meeting the assumptions. More investigations
are needed on how to achieve consistent and asymptotically normal estimators for ATE
with a consistent variance estimator. Potential avenues can include proposing alternative
estimators or improving the step 1 ML algorithms.
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Appendix A

First, let us review the proof sketch of the AIPW double robustness:
(3) can be consistently estimated by

β̂AIPW =
1
n

n

∑
i=1

[(AiYi − Q̂(1, Wi)(Ai − Ê[Ai|Wi])

Ê[Ai|Wi]

)
−

( (1− Ai)Yi + Q̂(0, Wi)(Ai − ĝi)

1− Ê[Ai|Wi]

)]
=

1
n

n

∑
i=1

([Ai
ĝi
− 1− Ai

1− ĝi

]
yi −

Ai − ĝi
ĝi(1− ĝi)

[
(1− ĝi)Q̂1

i + ĝiQ̂0
i
])

=

1
n

n

∑
i=1

(Ai(yi − Q̂1
i )

ĝi
− (1− Ai)(yi − Q̂0

i )

1− ĝi

)
+

1
n

n

∑
i=1

(
Q̂1

i − Q̂0
i
)

(A1)

The second formula guarantees the consistency of AIPW if ĝ is consistent, and the
third expression shows that the consistency of Q̂0

i and Q̂1
i is consistent.

Theorem A1 (nAIPW double robustness). Let the nAIPW estimator of risk difference be

β̂nAIPW = Ê(Q̂1 − Q̂0) + Ê
(A(Y− Q̂1)

ĝÊ[ A
ĝ ]

− (1− A)(Y− Q̂0)

(1− ĝ)Ê[ 1−A
1−ĝ ]

)
. (A2)

Then, β̂nAIPW is a consistent estimator of β if ĝ
p−→ g or Q̂k p−→ Qk, k = 0, 1.

Proof. From (A2), β̂nAIPW is a consistent estimator of β if Q̂0
i and Q̂1

i are consistent. This is
because the first term Ê(Q̂1 − Q̂0) converges to β, while the second term tends to zero.

By re-expressing (A2), the other argument is clear. Letting ŵ1 = Ê[ A
ĝ ] and ŵ0 = Ê[ 1−A

1−ĝ ],
we have:

β̂nAIPW =
1
n

n

∑
i=1

([ Ai

ĝiŵ1
i
− 1− Ai

(1− ĝi)ŵ0
i

]
yi

)
+

Ê
(

Q̂1 − Q̂0 − AiQ̂1

ĝŵ1 +
(1− Ai)Q̂0

(1− ĝ)ŵ0

)
=

1
n

n

∑
i=1

([ Ai

ĝiŵ1
i
− 1− Ai

(1− ĝi)ŵ0
i

]
yi−

Q̂1
i
(

Ai − ĝiŵ1
i
)
+ Q̂0

i
(
1− Ai − (1− ĝi)ŵ0

i
))

(A3)

The first expression in (A3) is the same as the nIPW estimator which is a consistent
estimator of β [7]. Now, under the consistency of ĝ, the second term tends to zero, as

ŵ1
p−→ 1 and ŵ0

p−→ 1.
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In the theorem below, it is shown that there is an M-estimation equivalent to βnAIPW

and w1 and w0. This, plus the continuous mapping theorem, proves that ∑n
i=1

Ai
ĝi

converges

in probability to n if ĝ
p−→ g.

Theorem A2. The asymptotic variance of the nAIPW (5) is

σ̂2
nAIPW =

n

∑
i=1

(Ai(yi − Q̂1
i )w

(1)
i

∑n
j=1 Ajw

(1)
j

− (1− Ai)(yi − Q̂0
i )w

(0)
i

∑n
j=1(1− Aj)w

(0)
j

+
1
n
(

β̂SR − β̂nAIPW
))2

, (A4)

where Q̂k
i = Q̂(k, Wi) and ĝi = Ê[Ai|Wi].

Proof. Let us define a few notations first:

q = Q1 −Q0,

g = E[A|W],

f = y−Q1,

h = y−Q0,

v =
A
g

,

u =
1− A
1− g

.

(A5)

With this set of notations, the nAIPW estimator (5) can be written as

β̂nAIPW =
n

∑
i=1

( vi fi

∑n
j=1 vj

− uihi

∑n
j=1 uj

+
qi
n

)
, (A6)

Following the methods in [28], to find an estimating equation whose solution is
β̂nAIPW , we introduce two more estimating equations. Employing the M-estimation theory,
we will prove that nAIPW is asymptotically normal, and we will calculate its standard error.

It can be seen that (A6) is not a solution to an M-estimator directly. However, by
defining two more parameters and concatenating their estimating equations, we obtain
3-dim multivariate estimating equations:

n

∑
i=1

(vi fi
γ
− uihi

λ
+

1
n
(qi − β)

)
= 0,

n

∑
i=1

(
vi −

γ

n

)
= 0,

n

∑
i=1

(
ui −

λ

n

)
= 0.

(A7)

To ease the calculations, we modify the first estimating equation with an equivalent
one, but the results will not differ:
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n

∑
i=1

λvi fi − γuihi +
γλ

n
(qi − β) = 0,

n

∑
i=1

vi −
γ

n
= 0,

n

∑
i=1

ui −
λ

n
= 0.

(A8)

By defining the following notations,

ψ =

⎛⎝φ
η
Ω

⎞⎠ =

⎛⎝λv f − γuh + γλ
n (q− β)

v− γ
n

u− λ
n

⎞⎠,

we have ∑n
i=1 ψi = 0, or

n

∑
i=1

φi, = 0,

n

∑
i=1

ηi = 0,

n

∑
i=1

Ωi = 0.

(A9)

The M-estimation theory implies that under regulatory conditions, the solutions to
these estimating equations converge in distribution to a multivariate normal distribution:

√
n

⎛⎝β̂nAIPW
γ̂

λ̂

⎞⎠ ∼ MVN
(
θ , I−1(θ)B(θ)I−1(θ)T)

where

θ =

⎛⎝β
γ
λ

⎞⎠,

I(θ) = −E ∂ψ

∂θT =
1
n

⎛⎜⎝ λγ
n E(uh− λ

n (q− β)) −E(v f + γ
n (q− β))

0 1
n 0

0 0 1
n

⎞⎟⎠, (A10)

whose inverse is

I−1(θ) =
n

γλ

⎛⎝1 −nE(uh− λ(q− β)) nE(v f + γ
n (q− β))

0 γλ 0
0 0 γλ

⎞⎠, (A11)

and,

B(θ) = EψψT =

⎛⎝ Eφ2 Eφη EφΩ
Eφη Eη2 EηΩ
EφΩ EηΩ EΩ2

⎞⎠. (A12)

In order to estimate the variance of β̂nAIPW , we do not need to calculate all entries of
the variance–covariance matrix, only the first entry:
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1
n
(

n2

(γλ)2 )

⎛⎝Eφ2 + ε � �
� � �
� � �

⎞⎠. (A13)

The � entries are irrelevant to the calculation of variance of nAIPW and the term ε
is a very long expression which involves terms converging to zero faster than the actual
estimating Equation (A9) [19] (also verified by simulations):

ε = −Eφη(nEuh + λ(β− q)) +EφΩ(nEv f − γ(β− q))−
(nEuh + λ(β− q))(−Eη2(nEuh + λ(β− q)) +EηΩ(nEv f − γ(β− q))+

Eφη) + (nEv f − γ(β− q))(−EηΩ(nEuh + λ(β− q))+

EΩ2(nEv f − γ(β− q)) +EφΩ). (A14)

Further,

√
n

⎛⎝β̂nAIPW
γ̂

Ω̂

⎞⎠ ∼ MVN
(
θ , Î−1(θ̂)B̂(θ̂)Î−1(θ̂)T) (A15)

where we replace E with sample averages in Expressions (A10)–(A12) and θ with their
corresponding solutions to Equation (A8). Following this recipe, we obtain

σ̂2
nAIPW =

1
n
(

n2

(γλ)2 )Êφ2 + ε̂ ≈
n

∑
i=1

(vi fi
γ̂
− uihi

λ̂
+

1
n

qi − β̂nAIPW)
)2

, (A16)

which is the same as (A4).
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Abstract: The calculation of the Augmented Inverse Probability Weighting (AIPW) estimator of the
Average Treatment Effect (ATE) is carried out in two steps, where in the first step, the treatment and
outcome are modeled, and in the second step, the predictions are inserted into the AIPW estimator.
The model misspecification in the first step has led researchers to utilize Machine Learning algorithms
instead of parametric algorithms. However, the existence of strong confounders and/or Instrumental
Variables (IVs) can lead the complex ML algorithms to provide perfect predictions for the treatment
model which can violate the positivity assumption and elevate the variance of AIPW estimators. Thus
the complexity of ML algorithms must be controlled to avoid perfect predictions for the treatment
model while still learning the relationship between the confounders and the treatment and outcome.
We use two NN architectures with an L1-regularization on specific NN parameters and investigate
how their certain hyperparameters should be tuned in the presence of confounders and IVs to achieve
a low bias-variance tradeoff for ATE estimators such as AIPW estimator. Through simulation results,
we will provide recommendations as to how NNs can be employed for ATE estimation.

Keywords: causal Inference; instrumental variables; neural networks; doubly robust estimation;
regularization

1. Introduction

There are generally two approaches to address causal inference in observational
studies. The first one is to draw population-level causal inference which goes back at least
to the 1970s [1]. The second is to draw conditional causal inference which has received
attention more recently [2,3]. An example of a population-level causal parameter the
average treatment effect (ATE),

βATE = E[Y1 −Y0] = E
[
E[Y1 −Y0|W]

]
. (1)

The quantity E[Y1 −Y0|W] is referred to as the conditional average treatment effect
(CATE) [4–10]. CATE is NOT an individual-level causal parameter. The latter is impossible
to estimate accurately unless both potential outcomes are observed for each individual (un-
der parallel worlds!), or W contains all the varying factors that make the causal relationship
deterministic, which are unlikely to hold in practice. That said, under certain assumptions,
the counterfactual loss, the loss due to the absence of counterfactual outcome, can be upper
bounded [11]. The present article focuses on the estimation of ATE which does not require
those assumptions.

Through a number of attempts, researchers have utilized ML models for the causal
parameter estimation [12–17]. While the ultimate goal of a ML algorithm is to predict the
outcome of interest as accurately as possible, it does not optimally serve the main purpose
of the causal parameter estimation. In fact, ML algorithms minimize some prediction loss
containing the treatment or the observed outcome (and not counterfactual outcome) and
without targeting any relevant predictor(s) such as confounding variables [18].

Including confounders for the estimation of ATE in observational studies avoids
potential selection bias [19], however, in practice, we do not have a priori knowledge about
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the confounders and the ML algorithm minimizes the loss function without discriminating
between the input covariates. In fact, the ML algorithm can successfully learn the linear
and non-linear relationships between the confounders and the treatment and outcome,
but at the same time, might learn from potential Instrumental Variables (IVs) present in
the data as well (the variables that predict the treatment, but not the outcome). If there
are strong confounders or IVs among the covariates, the predictions of treatments (i.e.,
the propensity scores) can become extreme (near zero or one) which in turn can make the
estimates unstable. While possibly reducing the bias, the variance gets elevated at the
same time. Less complex models, on the other hand, may suffer from large bias (under-
fitting) but can obtain more stable causal parameter estimation. This conflict between the
necessary complexity in the model(s) and the bias-variance tradeoff motivates to develop
ML algorithms for step 1 that provide a compromise between learning from confounders
and IVs to entail a balance between the bias and variance of the causal parameter in step 2.
In addition to a low bias-variance tradeoff, the asymptotic normality of the causal effect
estimator is wanted for inferential statistics.

Chernozhukov et al. [16] investigated the asymptotic normality of orthogonal esti-
mators of ATE (including Augmented Inverse Probability Weighting (AIPW)) when two
separate ML algorithms model the treatment and outcome, referred to as the Double Ma-
chine Learning (DML). With the same objective, Farrell et al. [17] utilized two separate
neural networks (we refer to as the double NN or dNN), without the usage of any regu-
larization other than using the Stochastic Gradient Descent (SGD) for model optimization.
SGD does impose some regularization but is insufficient to control the complexity of NN
algorithms where strong predictors exist in the data [20]. Rostami and Saarela [20] experi-
mentally showed that when AIPW is utilized, dNN performs poorly. The normalization of
AIPW helps control both the bias and variance of the estimator. Further, they illustrated
that imposing the L1 regularization on all of the parameters (without targeting a specific
set of input features) helps reduce the bias, variance, and Mean Square Error (MSE) of
the ATE estimators up to some extent. Simulations indicated that when dNN is used,
with or without regularization, the normalized AIPW (nAIPW) outperforms AIPW. For a
comprehensive literature review on the doubly robust estimators (including AIPW) see
Moosavi et al. [21].

The strategy of targeting a specific type of features can be designed in NN architec-
tures along with the necessary optimization and regularization techniques. Flexible NN
structures, optimizations and regularization techniques are easily programmed in deep
learning platforms such as pytorch.

Shi et al. [22] proposes a neural network architecture, referred to as the DragonNet,
that jointly models the treatment and outcome, in which a multi-tasking optimization
technique is employed. In the DragonNet architecture, the interaction of the treatment and
non-linear transformations of the input variables are considered. Chernozhukov et al. [23]
uses the Riesz Representer [16] as the minimizer of a stochastic loss, which provides
an alternative for the propensity score estimation, and aims to prevent the empirical
consistency assumption violation issue [20]. Chernozhukov et al. [23] also use the joint
modeling of the Riesz Representer and the outcome through multi-tasking, and they
call their method auto Double Machine Learning (Auto-DML). Chernozhukov et al. [24]
optimized an L1 regularized loss function to estimate weights rather than estimating
propensity scores and plugging them into the AIPW estimator. Chernozhukov et al. [25]
proposed optimizing a minimax loss function for the same purpose. In this body of work, it
is still unclear how to hyperparameter tune the chosen NN architecture for causal inference,
especially for the ATE estimation.

Other techniques of feature selection before propensity score estimation have been
proposed in the literature [26]. However, hard thresholding might ignore important infor-
mation hidden in the features.

The objective of this research is to experimentally investigate how NN-type methods
can be utilized for ATE estimation, and how the hyperparameters can be tuned to achieve
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the best bias-variance tradeoff for the ATE estimators. This is done in the presence of strong
IVs and confounders. The papers cited above do not consider this general scenario.

In this research our goal is not any of the following: 1. We do not aim to compare NNs
with other ML algorithms to see which ones outperform the others. By the no-free-lunch
theorem, [27], there is no specific algorithm that can learn all relationships sufficiently
well. Thus, it is expected that some ML algorithms are better in some scenarios and
other algorithms in other scenarios. 2. We do not aim to study different types of causal
parameters. 3. We do not aim to study different estimators of the Average Treatment Effect.
4. We do not aim to study feature selection or other types of methods that can prevent IVs
to feed into the model of the treatment in the first step inference.

Throughout this research, we utilize nAIPW as it outperforms AIPW estimator in the
presence of strong confounders and IVs [20]. To target the relevant inputs, we propose
two methods. First, employing a type of L1 regularization on top of the common L1
regularization on all the network parameters. Second, we propose a joint model of the
treatment and outcome in a Neural Network (jNN) architecture where we place both the
treatment and outcome on the output layer of a multi-layer perceptron [28]. This NN
architecture is appealing as it models the treatment and outcome simultaneously which can
potentially target the relevant covariates that are predictive of both treatment and outcome
(or confounder) and can mitigate or ignore the IVs’ effects on the predictions. We will
investigate if both or either of these ideas improves the bias-variance tradeoff of the causal
effect estimator as compared to a dNN model.

In this research, the NN architecture that jointly models the treatment and outcome
here referred to as jNN. The parameters or weights are estimated by minimizing a regu-
larized multi-task loss which is the summation of the Cross-Entropy (for modeling the
binary treatment) and MSE loss (for modeling the continuous outcome) [29]. Multi-task
learning can help target the predictors of both treatment and outcome that are placed in
the output layer, and also it helps to resist against over-fitting in case of many irrelevant
inputs [30]. Other benefits of multi-task learning are listed in Section 2.2. Also, two types
of L1 regularization terms are used in order to dampen the instrumental variables and
strong confounders.

To show the effectiveness of jNN and dNN, a thorough simulation study is performed
and these methods are compared in terms of the number of confounders and IVs that
are captured in each scenario, the prediction measures, and the bias and variance of
causal estimators. To investigate whether our network targets confounders rather than
IVs and also dampens the impact of strong confounders on the propensity scores, we
calculate the bias-variance tradeoff of causal estimators (i.e., minimal MSE) utilizing the
NN predictions; Low bias means the model has mildly learned from confounders and other
types of covariates for the outcome, and low variance means the model has ignored IVs
and has dampened strong confounders in the treatment model. Further, a comparison
between the methods is made on the Canadian Community Health Survey (CCHS) dataset
where the intervention/treatment is food security versus food insecurity and the outcome
is individuals’ body mass index (BMI).

The organization of this paper is as follows. In Section 1.2 we define the problem
setting and the causal parameter to be estimated. In Section 2 we introduce the NN-type
methods, their loss functions, and hyperparameters. Section 3 provides a quick review of
the ATE estimators. In Section 4 our simulation scenarios are stated along with their results
in Section 4.2. The results of the application of our methods on a real dataset are presented
in Section 5. We conclude the paper in Section 6 with some discussion on the results and
future work.

1.1. Notation

Let data O = (O1, O2, ..., On) be generated by a data generating process F, where Oi is
a finite dimensional vector Oi = (Yi, Ai, Wi), with Y as the outcome, A as the treatment and
W = (Xc, Xy, Xiv, Xirr), where we assumes A = f1(Xc, Xiv) + ε1, and Y = f2(A, Xc, Xy) +
ε2, for some functions f1, f2. Xc is the set of confounders, Xiv is the set of instrumental
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variables, Xy is the set of y-predictors (independent of the treatment), and Xirr is a set of
given noise or irrelevant inputs (Figure 1). P is the true observed data distribution, P̂n is
the distribution of O such that its marginal distribution with respect to W is its empirical
distribution, and the expectation of the conditional distribution Y|A = a, W, for a = 0, 1,
can be estimated. We denote the prediction function of observed outcome given covariates
in the treated group q1 := q(1, W) = E[Y|A = 1, W], and that in the untreated group
q0 := q(0, W) = E[Y|A = 0, W], and the propensity score as g(W) = E[A|W]. Throughout,
the expectations E are with respect to P. The symbol ˆ on the population-level quantities
indicates the corresponding finite sample estimator, and P is replaced by P̂n.

Figure 1. The causal relationship between A and y in the presence of other factors in an
observational setting.

1.2. Problem Setup and Assumptions

The fundamental problem of causal inference states that individual-level causality
cannot be exactly determined since each person can experience only one value of A. Thus, it
is customary to only estimate a population-level causal parameter, in this research Average
Treatment Effect (ATE) (1).

For identifiablity of the parameter, the following assumptions must hold true. The first
assumption is the Conditional Independence, Ignorability or Unconfoundedness stating
that, given the confoudners, the potential outcomes are independent of the treatment
assignments (Y0, Y1 ⊥ A|W). The second assumption is Positivity which entails that the
assignment of treatment groups is not deterministic (0 < Pr(A = 1|W) < 1) ([18], page
344). The third assumption is Consistency which states that the observed outcomes equal
their corresponding potential outcomes (YA = y). There are other modeling assumptions
made such as time order (i.e., the covariates W are measured before the treatment), IID
subjects, and a linear causal effect.

2. Prediction Models

Neural Networks (NNs) are complex nonparametric models that approximate the
underlying relationship between inputs and the outcome. The objective in causal inference,
however, is not necessarily to leverage the maximum prediction strength of NNs and in
fact, the NN architecture should be designed and tuned so that it pays more attention to
the confounders.

The most important requirement of ML models such as NNs in causal inference is
that although the outcome prediction model should minimize the corresponding loss (fit
to get the best outcome prediction possible), given all of the covariates, the loss function
associated with the propensity score model should not necessarily be minimized. Ideally,
the instrumental variables or strong confounders which can give extreme fitted probability
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values (near zero or one) should be controlled when minimizing the loss. This can help
prevent the elevation of the variance of the causal estimator (i.e., prevent the violation/near
violation of the positivity assumption [18,31]). In summary, the prediction models should be
strong enough to learn the linear and non-linear relationships between the confounders and
treatment, but should not provide perfect predictions. We hypothesize that the employed
NNs methods with the regularization techniques have the property of ignoring or damping
strong confouders and/or instrumental variables.

2.1. Joint Neural Network

The joint Neural Network (jNN) architecture is a combination of multiple ideas (see
Sections 2.2–2.4) for causal parameter estimation purposes mentioned above.

The jNN models are:[
E[Y|A, W]
E[A|W]

]
=

[
α0 + βA + Wα + HΓY

g(γ0 + Wγ + HΓA)

]
(2)

where H = f ( f (...( f (WΩ1)Ω2)...)ΩL) is the last hidden layer matrix which is a non-linear
representation of the inputs (L is the number of hidden layers), g is the logistic link function,
and ΓA and ΓY are the parameters that regress H to the log-odds of the treatment assignment
or to the outcome in the output layer. The large square brackets around the equations
above is meant to emphasize that both treatment and outcome models are trained jointly.
The non-linear relationships between the inputs and the treatment and outcome can have
arbitrary forms (which might not be the same for the treatment and outcome). The NNs
can approximate such non-linear relationships even though one activation function is used.
In fact, this property of NNs frees us from pre-specifying basis functions [26] as they can be
estimated automatically.

The jNN architecture minimizes a multi-task loss Section 2.2 to estimate the networks
parameters:

L(P , β, α) = a
n

∑
i=1

[
Yi − α′ − βAi −Wiα− HT

i ΓY

]2
+

b
n

∑
i=1

[
Ai log

(
g
(

HT
i ΓA

))
+ (1− Ai) log

(
1− g

(
HT

i ΓA
))]

+

CL1 ∑
ω∈P

|ω|+ CL1TG

(
∑

ω∈ΓA

|ω|+ ∑
ω∈Ω1

|ω|
)
, (3)

where a, b, CL1 , CL1TG are hyperparameters, that can be set before training or be determined
by Cross-Validation, that can convey the training to pay more attention to one part of the
output layer.

The jNN can have an arbitrary number of hidden layers, or the width of the network
(H) is another hyperparameter. For a 3-layer network, H = [l1, l2, ..., lh], where lj is the
number neurons in layer j, j = 1, 2, ..., h. P = {ω ∈ Ω1 ∪Ω2 ∪Ω3 ∪ ΓY ∪ ΓA}, are the
connection parameters in the nonlinear part of the network, with Ω’s being shared for
the two outcome and propensity models. Noted that the number of parameters with L1
regularization (third term on (3)) is |P| = (p + 1)× l1 + (l1 + 1)× l2 + ... + (lh−1 + 1)×
lh + (lh + 1)× 2, including the intercepts in each layer.

The following subsections list the potential benefits and the rationale behind the
proposed network (Equations (2) and (3)).

2.2. Bivariate Prediction, Parameters Sharing, and Multi-Task Learning

One of the main components of the jNN architecture is that both treatment and
outcome are placed and modeled in the output layer simultaneously. The hypothesis here
is that the network learns to get information from the inputs that predict both treatment
and outcome, i.e., the confounders. This bivariate structure is intertwined with a multi-task
learning or optimization. Ruder [30] reviews the multi-tasking in machine learning and
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lists its benefits such as implicit data augmentation, regularization, attention focusing,
Eavesdropping and Representation bias. Caruana [32] showed that overfitting declines by
adding more nodes to the output layer as compared to modeling each output separately
Baxter [33]. The multi-task is used when more than one output is used. Multi-task learning
is common in the field of Artificial Intelligence and Computer Vision, for example, for the
object detection task where the neural network predicts the coordinates of the box around
objects and also classifies the object(s) inside the box (see for example [34]). Multi-task
learning is used in jNN in order to investigate if the model pays more attention to the
confounders than other types of inputs.

2.3. Regularization

The jNN will be resistant to overfitting by adding regularization to the network. Pre-
liminary simulations revealed that L2, and the Dropout Goodfellow et al. [35] regularization
techniques do not result in satisfactory causal effect estimation, and the inherent regulariza-
tion in the Stochastic Gradient Descent Goodfellow et al. [35] is also insufficient, while L1
regularization is effective. We did not use the early-stopping as a regularization technique.

The L1 regularization, third summation in (3), shrinks the magnitude of the parameter
estimates of the non-linear part of the architecture which, in effect, limits the influence of
Xirr and Xiv, Xy, and Xc on both treatment and the outcome. The motivation behind the L1
regularization is to avoid overfitting for better generalization.

The ideal situation for causal parameter estimation is to damp the instrumental vari-
ables and learn from confounders and y-predictors only. Henceforth another version of the
L1 regularization is introduced here, referred to as the targeted L1 regularization, or L1TG,
to potentially reduce the impact of instrumental variables on the outcome and more im-
portantly on the propensity scores. The motivation is that by introducing shrinkage on the
connections between the last hidden layer and the treatment, the neural network is trained
to learn more about confounders than IVs in the last hidden layer as the outcome model is
free to learn as much as possible from confounders. The caveat here might be that if the last
hidden layer is large enough, some of the neurons can learn confounders while other learn
from IVs, thus motivating to consider limiting the number of neurons in the last hidden
layer. These hypotheses and ideas are considered in the simulation studies.

2.4. Linear Effects and Skip Connections

The terms βA + Wα and Wγ in (2) are responsible for potential linear effects. Theoret-
ically, the non-linear parts of the NNs can estimate linear effects, but it is preferable to use
linear terms if the relationship between the some of the inputs and the outcome/treatment
are linear for more accurate linear effect estimation. The benefit of including linear terms in
the equations has been verified in our preliminary simulation studies.

These linear terms are referred to the skip-connections in ML literature He et al. [36]
which connect some layers to two or more layers forward. In ML literature, they are
primarily used in very deep neural networks to facilitate optimizations. But they are used
in jNN to model the linear effects directly. More specifically, skip connections connect the
covariates to both treatment and outcome in the output layers and connect the treatment in
the input layer to the outcome in the output layer. The latter skip connection is shown in
Figure 2. It should be noted that this skip connection in particular is independent of the
treatment in the output layer to avoid perfect prediction of the propensity scores.
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Figure 2. A Joint Neural Network architecture that incorporates linear effect of the treatment on the
outcome, and the nonlinear relationship between the covariates and the treatment assignment and
the outcome, all three tasks at the same time.

2.5. Double Neural Networks

In order to study the significance of the proposed method through simulations, we
compare jNN with the double Neural Networks (dNN) Chernozhukov et al. [37] method.
dNN is generally referred to the strategy of modeling the treatment and outcome separately
utilizing two different models:

E[Y|A, W] = β0 + βA + Wα + HΓY

E[A|W] = α0 + Uα + KΓA,
(4)

where two separate neural nets model y and A (no parameter sharing). In this paper,
the dNN algorithm refers to two neural networks to model the treatment and outcome
separately. To make the two jNN and dNN models comparable, we let the NN architectures
to be as similar as possible in terms of skip connections and regularization techniques.
The loss functions in dNN to be optimized are:

Ly(Py, β, α) =
n

∑
i=1

[
Yi − α′ − βai −Wiα−HT

i ΓY

]2
+ C′L1 ∑

ω∈P
|ω|,

LA(PA) =
n

∑
i=1

[
ai log

(
g
(
KT

i ΓA
))

+ (1− ai) log
(

1− g
(
KT

i ΓA
))]

+ C′′L1 ∑
ω∈P

|ω|+

CL1TG

(
∑

ω∈ΓA

|ω|+ ∑
ω∈Ω1

|ω|
)
,

(5)

3. ATE Estimation

The Causal Parameter Estimation algorithm is a two stage process. The regression
functions E[A|W], E[Y|A = 1, W]), E[Y|A = 0, W] are estimated using the ML algorithms
such as jNN or dNN in step 1. And in step 2, the predictions are inserted into the causal
estimators such as (6), below.

85



Entropy 2022, 24, 1290

ATE Estimators

There is a wealth of literature on how to estimate the ATE and there are various
versions of estimators including the Augmented Inverse Probability Weighting (AIPW),
Normalized Augmented Inverse Probability Weighting (nAIPW):

β̂AIPW =
1
n

n

∑
i=1

(Ai(Yi − q̂1
i )

ĝi
− (1− Ai)(Yi − q̂0

i )

1− ĝi

)
+

1
n

n

∑
i=1

q̂1
i − q̂0

i ,

β̂nAIPW =
n

∑
i=1

(Ai(Yi − q̂1
i )w

(1)
i

∑n
j=1 Ajw

(1)
j

− (1− Ai)(Yi − q̂0
i )w

(0)
i

∑n
j=1(1− Aj)w

(0)
j

)
+

1
n

n

∑
i=1

q̂1
i − q̂0

i .
(6)

where q̂k
i = q̂(k, Wi) = Ê[Yi|Ai = k, Wi] and ĝi = Ê[Ai|Wi], and A1 is the treatment group

with size n1 and A0 is the treatment group with size n1.
In the second step of estimation procedure, the predictions of the treatment (i.e.,

propensity score, PS) and/or the outcome Ê[Yi|Ai = k, Wi], k = 0, 1, can be inserted in
these estimators (6). Generalized Linear Models (GLM), any relevant Machine Learn-
ing algorithm such as tree-based algorithms and their ensemble Friedman et al. [28],
SuperLearner Van der Laan et al. [38], or Neural Network-based models (such as ours) can
be applied as prediction models for the first step prediction task. We will use jNN and
dNN in this article.

4. Simulations

A simulation study (with 100 iterations) was performed to compare the prediction
methods jNN, and dNN by inserting their predictions in the nAIPW (causal) estimators (6).
There are a total of 8 scenarios according to the size of the data (i.e., the number of subjects
and number of covariates), and the confounding and instrumental variables strengths. We
fixed the sample sizes to be n = 750 and n = 7500 , with the number of covariates p = 32
and p = 300, respectively. The four sets of covariates had the same sizes #Xc = #Xiv =
#Xy = #Xirr = 8.75 and independent from each other were drawn from the Multivariate
Normal (MVN) Distribution as X ∼ N (0, Σ), with Σkj = ρj−k and ρ = 0.5. Let β = 1.
The models to generate the treatment assignment and outcome were specified as

A ∼ Ber
( 1

1 + e−η

)
, with η = fa(Xc)γc + ga(Xiv)γiv,

Y = 3 + A + fy(Xc)γ
′
c + gy(Xy)γy + ε,

(7)

The functions fa, ga, fy, gy select 30% of the columns and apply interactions and non-
linear functions listed below (8). The strength of instrumental variable and confounding
effects were chosen as γc, γ′c, γy ∼ Uni f (r1, r2) where (r1 = r2 = 0.1) or (r1 = 0.1, r2 = 1),
and γiv ∼ Uni f (r3, r4) where (r3 = r4 = 0.1) or (r3 = 0.1, r4 = 1).

The non-linearities for each pair of covariates are randomly selected among the fol-
lowing functions:

l(x1, x2) = e
x1x2

2

l(x1, x2) =
x1

1 + ex2

l(x1, x2) =
( x1x2

10
+ 2

)3

l(x1, x2) =
(
x1 + x2 + 3

)2

l(x1, x2) = g(x1)× h(x2)

(8)

where g(x) = −2I(x ≤ −1)− I(−1 ≤ x ≤ 0) + I(0 ≤ x ≤ 2) + 3I(x ≥ 2), and h(x) =
−5I(x ≤ 0)− 2I(0 ≤ x ≤ 1) + 3I(x ≥ 1), or g(x) = I(x ≥ 0), and h(x) = I(x ≥ 1).
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In order to find the best set of hyperparameter values for the NN architectures, we
ran an initial series of simulations to find the best set of hyperparameters for all scenarios,
presented here. The networks’ activation function is Rectified Linear Unit (ReLU), with 3
hidden layers as large as the input size (p), with L1 regularization and batch size equal to
3 ∗ p and 200 epochs. The Adaptive Moment Estimation (Adam) optimizer Kingma and
Ba [39] with learning rate 0.01 and momentum 0.95 were used to estimate the network’s
parameters, including the causal parameter (ATE).

As in practice the RMSE and covariate types are unknown, prediction measures of the
outcome and treatment should be used to choose the best model in a K-fold cross-validation.
R2 and AUC each provide insight about the outcome and treatment models, respectively,
but in our framework, both models should be satisfactory. To measure the goodness of the
prediction models (jNN and dNN) for causal inference purposes, we define and utilize a
statistic which is a compromise (geometric average) between R2 and AUC, here referred to
as geo,

geo(R, D) = 3
√

R2 × D× (1− D), (9)

where D = 2(AUC − 0.5), the Somers’ D index. This measure was not utilized in the
optimization process (i.e., training the neural networks), and is rather introduced here to
observe if the compromise between R2 and AUC agrees with the models that capture more
confounders than IVs. We will refer to geo(R, D) simply as geo.

4.1. Selected Covariate Types

In order to identify which types of covariates (confounders, IVs, y-predictors, and ir-
relevant covariates) the prediction methods have learned from, we calculate the association
between the inputs and the predicted values (Ê[Y|A, W] and Ê[A|W]), and after sorting the
inputs (from large to small values) based on the association values, we count the number
of different types of covariates within top 15 inputs. The association between two vari-
ables here is estimated using the distance correlation statistic [40] whose zero values entail
independence and non-zero values entail statistical dependence between the two variables.

4.2. Results

Figures 3–8 present the overall comparison of different hyperparameter settings of
jNN and dNN architectures in terms of five different measures, respectively: (1) The
average number of captured confounders/IVs/y-predictors, (2) Average Root Mean Square
Error (RMSE) of causal estimators, (3) Average R2, AUC and their mixture measure geo (9),
(4) Bias, (5) MC standard deviation of nAIPW. The bootstrap confidence intervals for the
bias, standard deviation and RMSE are calculated to capture significant differences between
the simulation scenarios. The x-axis includes 16 hyperparameter settings, and as a general
rule here, models in the left are most complex (less regularization and wider neural nets)
and in the right are least complex. Noted that L1TG regularization is only targeted at the
treatment model.

The Figures 3 and 4 show how the complexity of both dNN and jNN (x-axis) impact the
number of captured covariate types (i.e., confounders/IVs/y-predictors) (top graph), RMSE
(middle graph) and prediction measures (bottom graph). In almost all the hyperparameter
settings, especially when CL1TG is non zero, the number of captured confounders is larger
and the number of captured IVs is smaller in jNN as compared to dNN. This shows the
joint modeling has a benefit of focusing on the confounders, rather than IVs, especially in
the large data scenario.
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Figure 3. The ATE estimates and their asymptotically calculated 95% confidence intervals with nIPW,
AIPW, and nAIPW methods.

Figure 4. The ATE estimates and their asymptotically calculated 95% confidence intervals with nIPW,
AIPW, and nAIPW methods.
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Figure 5. The comparison of captured number of confounders, IVs and y-predictors, RMSE of nAIPW
and its bootstrap 95% confidence interval, and prediction measures R2, AUC and geo (geometric
mean of R2, AUC) for different hyperparameter settings and where the predictions come from jNN
or dNN models. (n = 750, p = 32).
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Figure 6. The comparison of captured number of confounders, IVs and y-predictors, RMSE of nAIPW
and its bootstrap 95% confidence interval, and prediction measures R2, AUC and geo (geometric
mean of R2, AUC) for different hyperparameter settings and where the predictions come from jNN
or dNN models. (n = 7500, p = 300).
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Figure 7. The bias and standard deviation of nAIPW and their bootstrap 95% confidence intervals for
different hyperparameter settings where the predictions come from jNN or dNN models. (n = 750,
p = 32).

Figure 8. The comparison of bias, Monte Carlo standard deviation and their bootstrap 95% confidence
intervals of nAIPW, for different hyperparameter settings and the predictions come from jNN or
dNN models. (n = 7500, p = 300).
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The RMSE of jNN is larger than that of dNN for models with zero targetted regular-
ization (the scenarios in the left). With decreasing the complexity of the treatment model,
the RMSE of both jNN and dNN decline. The jNN outperforms dNN in almost all of the
hyperparameter settings in case of n = 750, but does not show a clear pattern in case
of n = 7500. Further, the impact of the width of architectures (H) changes based on CL1

regularization: wider architectures (H = [p, p, p], p: number of covariates) with large CL1

outperform other combinations of these two hyperparameters. This observation is more
clear for smaller sized data, and for dNN model. In the small size scenarios, when the
width is small (H = [3, 32, 3]), the outcome model is affected and has a smaller R2. This
means there are not enough neurons (on the first or last layer) to provide more accurate
outcome predictions. In the best scenarios, the RMSE confidence intervals of jNN model
are below those of dNN, illustrating a small preference of jNN over dNN in terms of RMSE.
Comparing the three hyperparameters, CL1TG is most effective, and zero values of this
hyperparameter results in very large RMSEs for both dNN and jNN.

From Figures 3 and 4, it is observed that both jNN and dNN models have roughly the
same values for the R2 (outcome model performance) across hyperparameter settings and
for both data sizes (n = 7500, and n = 750). That is, the targeted regularization in jNN does
not impact the performance of the outcome model. The AUC, on the other hand, declines
with higher values of CL1TG , and is almost always smaller or equal in dNN as compared
to jNN. Further, larger values of geo in the small size data correspond to smaller RMSE,
but no such pattern can be seen in the large data scenario.

Overall, the trends favor the idea that more complex treatment models capture larger
number of IVs, have larger AUC (smaller geo.), and have larger RMSE. That is, more
complex models are less favorable.

Figures 7 and 8 illustrate the bias and standard deviation of the causal estimators.
As expected and mentioned in the Section 1, the models that do not dampen IVs suffer
from large bias and standard deviation. The bias and standard deviation have opposite
behavior in different settings, such that settings that produce larger standard deviation,
results in small bias, and vice versa, except for the one setting that produces both largest
bias and standard deviation. The fluctuations of the bias-variance across hyperparameter
settings are larger in n = 750 case than in n = 7500 case. For small sample n = 750,
the best scenario for jNN is H = [32, 32, 32], CL1 = 0.1, CL1TG = 0.7 where both bias and
standard deviation of jNN are small in the same direction. For the large sample n = 7500,
however, the best scenario for jNN is H = [30, 300, 30], CL1 = 0.01, CL1TG = 0.7 with a
similar behavior. The best scenarios for dNN are slightly different. For small sample
H = [32, 32, 32], CL1 = 0.1, CL1TG = 0.7 and for the large sample H = [30,300,30], CL1= 0.01,
CL1TG = 0.7 are most favorable.

5. Application: Food Insecurity and BMI

The Canadian Community Health Survey (CCHS) is a cross-sectional survey that
collects data related to health status, health care utilization and health determinants for the
Canadian population in multiple cycles. The 2021 CCHS covers the population 12 years of
age and over living in the ten provinces and the three territorial capitals. Excluded from
the survey’s coverage are: Persons living on reserves and other Aboriginal settlements in
the provinces and some other sub-populations that altogether represent less than 3% of
the Canadian population aged 12 and over. Examples of modules asked in most cycles are:
General health, chronic conditions, smoking and alcohol use. For the 2021 cycle, thematic
content on food security, home care, sedentary behavior and depression, among many
others, was included. In addition to the health component of the survey are questions about
respondent characteristics such as labor market activities, income and socio-demographics.

In this article, we use the CCHS dataset to investigate the causal relationship of
food insecurity and body mass index (BMI). Other gathered information in the CCHS is
used which might contain potential confounders, y-predictors and instrumental variables.
The data are from a survey and need special methods such as the resampling or bootstrap
methods to estimate the standard errors. However, here, we use the data to illustrate the

92



Entropy 2022, 24, 1290

utilization of jNN and dNN with different hyperparameters choices in the presence of
possible empirical positivity violations. In order to reduce the amount of variability in the
data, we have focused on the sub-population 18–65 years of age.

Figures 5 and 6 present the ATE estimates and their 95% asymptotic confidence inter-
vals with nIPW, AIPW and nAIPW methods. Figure 5 contains hyperparameter settings
where there is no targeted regularization and it shows how important this regularization
technique is, especially for the AIPW estimator that has no normalization. We have re-
moved these scenarios in Figure 6 for a more clear comparison between the remaining
scenarios. The estimates and 95% CIs seem similar across the hyperparameter settings,
but there is a clear difference between those of AIPW and nAIPW. This means that for
this dataset, normalization might not be needed as the propensity scores do not behave
extremely and AIPW does not blow up.

6. Discussion

In this paper, we have studied how hyperparameters of the Neural Network predic-
tions in the first step can affect the Average Treatment Effect (ATE) estimator. We have
considered a general Data Generating Process (DGP) that four types of covariates that exist
in the dataset, confounders, IVs, y-predictors, and irrelevant covariates. Two general NN
architectures have been studied, jNN and dNN where in the former both the outcome
and treatment are modeled jointly (with an appropriate loss function) and in the latter,
they are modeled separately. We have observed that L1 regularization especially the ones
that targets the treatment model (L1TG) is an effective hyperparameter for achieving a
better bias-variance trade-off for the normalized Augmented Inverse Probability Weighting
(nAIPW) estimator. And, the number of neurons in the first and last layer of the network
becomes irrelevant as long as the value of L1TG is sufficient. Further, we have observed
that in the hyperparameter settings where the IV effects are controlled, the estimation is
less biased and more stable. Thus the targeted regularization is successful in dampening
the IVs and preventing perfect prediction in the treatment model. Figures 3–8 illustrate that
jNN is overall more stable and has a smaller RMSE in the small sample dataset scenario
as compared to dNN. We utilized nAIPW in our simulations as they outperform or at
least do not underperform AIPW and other estimators such as IPW, nIPW, AIPW, and SR.
The nAIPW estimator has a normalization factor in the denumerator which can dilute the
impact of extreme predictions of the propensity score model and protect the estimator
against the positivity assumption violation Van der Laan and Rose [18].

We utilized a geometric-type average of the R2 and AUC to choose among the first
step models. As the objective of optimization in the first step is increasing prediction
performance which is not necessarily the same as the causal inference objectives, the usage
of either R2, AUC or their geometric average is sub-optimal. In a future study alternative
approaches will be explored and compared with the said prediction measure.

A real strength of NNs would be to uncover hidden information (and thus confounder
effects) in unstructured data such as text or image data. However, in this article, we have
not studied the presence of unstructured data and it is left for future research.

There are limitations due to the assumptions and simulation scenarios and, thus, some
questions are left to future studies to be explored. For example, the outcome here was
assumed to be continuous, and the treatment to be binary. We also did not cover heavy
tail outcomes or rare treatment scenarios. Also, the ratio of dimension to the size of the
data was considered to be fairly small (p � n), and we have not studied the case where
n < p. Furthermore, we did not study the asymptotic behavior of nAIPW when jNN or
dNN predictions are used.

A limitation of jNN as compared to dNN is that if one needs to shrink the final hidden
layer to control the complexity of the treatment model, by structure, we are limiting the
complexity of the outcome model which might not be necessary. This might be resolved by
another architectural design, which is left to future studies on the subject.
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The usage of another regularization technique that controls the extremeness of propen-
sity score values is a plausible approach. For example, a data-dependent term can be
added to the loss function ∑n

i=1
1
gi
+ 1

1−gi
. Such a term discourages the network to obtain

values extremely close to zero or one, as opposed to the negative log-likelihood term that
encourages such tendencies. This approach might also focus less on the inputs that cause
extreme values such as strong confounders or IVs. Examination of this approach is left to
future studies.

In the design of the optimization, we did not consider a formal early stopping as a reg-
ularization technique. However, in the preliminary exploration, our simulations performed
better with fewer iterations (in fact epochs). In modern NNs, researchers usually run the
NN algorithms in many iterations, but that is partly due to the dropout regularization
technique. We did not use drop-out (and L2) regularization in the final simulations, as the
preliminary results did not confirm dropout as promising as L1 regularization.

Further, we utilized NNs to learn the underlying relationships between the covariates
and the outcome and treatment by targeting the relevant features through regularization
and joint modeling of the treatment and outcome. NNs with other structures that might tar-
get confounders have not been explored, nor have other Machine Learning algorithms such
as tree-based models. The Gradient Boosting Machines (GBM) algorithm Friedman [41]
can be alternatively used to learn these non-linear relationships while targeting the right
set of features. This is postponed to a future article.
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Abstract: There is great demand for inferring causal effect heterogeneity and for open-source statisti-
cal software, which is readily available for practitioners. The mcf package is an open-source Python
package that implements Modified Causal Forest (mcf), a causal machine learner. We replicate three
well-known studies in the fields of epidemiology, medicine, and labor economics to demonstrate
that our mcf package produces aggregate treatment effects, which align with previous results, and
in addition, provides novel insights on causal effect heterogeneity. For all resolutions of treatment
effects estimation, which can be identified, the mcf package provides inference. We conclude that the
mcf constitutes a practical and extensive tool for a modern causal heterogeneous effects analysis.

Keywords: econometrics software; causal machine learning; statistical learning; conditional average
treatment effects; individualized treatment effects; multiple treatments; selection-on-observables

JEL Classification: C21; C870; J68

1. Introduction

Supervised machine learning algorithms, which learn a model by minimizing predic-
tion errors, do not generalize per se to evaluate treatment effects due to the missing data
problem. For each unit of observation, only one potential outcome is observed; hence, the
individualized treatment effect (ITE) remains unknown. This disallows to train a model by
minimizing the prediction error of the ITE. With the onset of causal machine learning in
recent years, flexible methods have been developed, which integrate supervised machine
learners into the classical analysis of causality. The causality literature defines the set of
conditions required to identify the causal parameters of interest and deals with the missing
data by imputing counterfactuals for adequate subpopulations [1], while the machine
learning (ML) literature provides methods to flexibly estimate treatment effects and deal
with a potentially large number of features. The causal machine learning literature has
also opened the door to systematic heterogeneous treatment effects estimation. There is
considerable interest in understanding heterogeneous treatment effects in various scientific
fields, including business, economics, epidemiology, marketing, and medicine (as discussed
in, e.g., [2]). The underlying premise is that treatment responses vary for subpopulations.
Uncovering this variation informs our understanding of the distributional implications of a
treatment and the underlying causal mechanisms, and potentially hints at more efficient
targeting rules.

Ref. [3] structure the rich universe of causal machine learners. They distinguish
between generic causal machine learners, which integrate a variety of off-the-shelf machine
learning estimators, e.g., [4], and estimator-specific approaches, where a specific machine
learner is adapted to the causal question, e.g., the tree-based methods [5–8].
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The causal forest by [7] is most related to the mcf estimator [9]. In each tree in the causal
forest, the feature space is recursively split to maximize the implied effect heterogeneity
greedily. The authors of [7] showed that this is equivalent to minimizing the mean squared
prediction error of treatment effects. Treatment effects are obtained as leaf-specific aver-
age differences averaged over all trees in the forest. Ref. [9] innovated the causal forest
estimator [5,7] in two dimensions. First, the splitting criterion in the tree growing step
is adapted to account for covariance structures in estimation errors of mean conditional
outcomes and selection bias. Ref. [9] demonstrated in extensive simulations that the bias
adjustment results in considerable performance improvements. Second, ref. [9] stipulated
a computationally efficient outcome-weight-based approach, which facilitates an approx-
imate inference of causal effects at all levels of resolution from estimating the modified
causal forest once.

Since June 2021, an open-source Python implementation of the estimator has been
made available on the Python Package Index (PyPI). The Python package provides an off-
the-shelf tool for practitioners to analyze effect heterogeneity for multiple treatment models
in a selection-on-observables setting. Related statistical software includes the Python
package EconML [10] and the R package grf [11]. Both implement forest-based causal
machine learners (orthogonal random forest, forest double machine learning estimator,
forest doubly robust estimator, the generalized random forest). However, in contrast to
the mcf, the cited packages do not infer causal effects at all levels of resolution in one
estimation round.

We present the package and demonstrate its core functionality—inference of hetero-
geneous causal effects at different levels of resolution—in the replication of three well-
published studies in the realm of epidemiology, medicine, and labor economics. Code
and data can be accessed on GitHub [12]. We found that the mcf matches results on ag-
gregate treatment effects estimation and provides additional insights on underlying effect
heterogeneity as measured by the individualized and group average treatment effects.

We contribute to the literature in five dimensions: First, we present the open-source
Python package that implements the mcf. Second, we provide novel results on causal effect
heterogeneity for benchmark studies in epidemiology, medicine, and labor economics. In
that scope, we demonstrate that the mcf matches previous results on aggregate treatment
effects and effectively deals with binary and multi-valued treatments and arbitrary out-
come and feature distributions. Third, for all resolutions of causal effect heterogeneity,
which can be statistically identified, we provide inference. Fourth, we uncover relevant
effect heterogeneity, which is potentially instructive for tailoring treatment assignments
in constrained settings. Fifth, we provide data, data documentation, and code to replicate
our results.

The remainder of this paper proceeds as follows. In Section 2, we delineate identifica-
tion, the estimands of interest, estimation, and the package’s infrastructure. For a detailed
discussion of the methodology, refer to [9]. Section 3 presents the results of our replications.
Finally, Section 4 concludes.

2. Framework

The mcf is a tree-based causal machine learner that produces valid causal estimates in
the selection-on-observables setting. To set the scene, we detail the identification setting,
define the causal parameters of interest at different levels of resolution, and outline the
core ideas of the mcf and the package’s infrastructure. For details of the algorithmic
implementation, we refer the reader to the official documentation [9,13].

The necessary assumptions to identify causal effects in the selection-on-observables
setting are the conditional independence assumption (CIA), exogeneity of the confounders,
common support, and stable unit treatment value assumption (SUTVA). The CIA stipulates
that treatment selection conditional on the set of so-called confounders is as good as random.
By the exogeneity assumption, confounders need to be invariant to treatment assignment.
The common support assumption demands that the probability of receiving a particular
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treatment is strictly bounded away from zero. Finally, SUTVA dictates that the observed
outcome equals potential outcomes for the observed treatment state, ruling out interference
between observational units or multiple versions of a treatment.

The causal parameters of interest comprise the individualized treatment effect (IATE),
the group average treatment effect (GATE), and the average treatment effect (ATE). The
IATE captures the expected causal impact of some treatment over another for a subpopula-
tion, which is defined by a particular realization of confounders and further variables that
are relevant for the heterogeneity analysis. To clarify, the number of comparisons that we
take interest in in the multi-treatment setting with k treatments, which includes the control
state, is k(k− 1)/2. The GATE aggregates the IATEs to more coarse subpopulations, and
the variables in the conditioning set are referred to as policy features. The conditioning
feature(s) are (is) a low-dimensional subset of the set of confounders. Finally, the ATE is the
expected causal impact for the entire population and hence obtained as a weighted average
of the IATEs. For all parameters defined above, the conditioning set can be extended
to include treatment group memberships. The causal parameters are then referred to as
average treatment effect of the treated (ATET) and group average treatment effect of the
treated (GATET), respectively.

The mcf is an instantiation of a causal forest, where splits in the tree growing process
minimize the estimation error of the IATEs greedily. Ref. [9] showed that the expected
mean-squared error (MSE) of the IATE can be decomposed into three parts: the two MSEs
of estimating the conditional mean responses of the two treatments, which are causally
compared, and the covariance of these two estimation errors (MCE). The estimates of the
MSEs and the MCE are obtained as sample analogues. If no exact matches are found in all
treatment leaves, the mcf uses the closest neighbor instead to compute the MCE. To guard
against selection issues in finite samples, the mcf splitting rule seeks to assign individuals
with different propensities of receiving a treatment to different partitions in the tree and
hence prefers splits with high propensity score homogeneity. Estimates are then obtained as
mean differences in the appropriate leaves. The mcf also builds upon the honesty principle,
e.g., [8].

In the multiple treatment setting, one can grow the forests separately for each of the
treatment comparisons or jointly for all unique treatment comparisons. For the latter case,
the splits are chosen to minimize the sum of the estimated mean squared errors of the
IATEs and the penalized propensity score heterogeneity. For inference, the mcf exploits
that every causal forest can be written as a weighted sum of outcomes. Maintaining that
observations are independent and identically distributed, ref. [9] derived an expression for
the variance, which admits a utilization of standard non-parametric machine learners. The
default method is k-Nearest Neighbor (k-NN) regression, but Nadaraya–Watson kernel
estimation is also supported.

The modified_causal_forest() function in the mcf Python package implements the mcf.
The user specifies treatment, outcome, confounders, policy variables, and the relevant
resolutions of causal effect heterogeneity. Optionally, the user may override the defaults
in the implementation—such as the grids for the parameter tuning in the forest growing
process and the mode of parallelization. A detailed exposition of the functional inputs is
given in the official documentation [13]. Whenever relevant, the documentation flags input
arguments as critical for runtime management.

3. Empirical Studies

In this section, we demonstrate the functionality of the mcf. For three distinct research
settings, we inquire to which extent the mcf matches previous estimation results on average
treatment effects and provides novel insights on underlying effect heterogeneity.

3.1. Maternal Smoking during Pregnancy

Infants born at low birth weight (LBW) are more likely to experience health and devel-
opment issues. Studies have found lower educational attainment, a poorer self-reported
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health status, and reduced employment and earnings for LBW infants, e.g., [14]. Study [15]
is a well-known study that examines the impact of maternal smoking during pregnancy on
birth weight, amongst other health outcomes. Adjusting for potential confounding factors,
the authors of [15] estimated a negative impact of maternal smoking on birth weight. Later,
ref. [16] deployed the [15] database to study multi-valued treatment effects. Ref. [16] found
evidence for both (i) treatment heterogeneities and (ii) non-linearities in the effect sizes. We
aimed to estimate the dose responses and to analyze IATEs along with GATEs to inform
about effect heterogeneities.

We used the linked birth–infant death data in [15], which was made available to us by
the author of [16]. The database compiles information for 511,940 births in Pennsylvania
for the years 1989 to 1991—including details on birth weight, pregnancy, and parental
characteristics. Smoking doses are defined as in [16]. We mapped the number of daily
smoked cigarettes to a multivalued treatment variable, T, which takes on 6 distinct values:
T ∈ {0, 1, 2, 3, 4, 5} for the cigarette-bin-categories {0, 1− 5, 6− 10, 11− 15, 16− 20, 21+}.
The bins were chosen to capture the mass points in the distribution, which occur roughly
every five cigarettes (a quarter of a US cigarette pack).

For identification, we stipulated the prototypical selection-on-observables setting.
We note that this is not an innocuous assumption as, for example, [17] convincingly
discussed. We informed our choice of confounders by [15,16]. We included parental
socio-demographics (age, education, and race), pregnancy-related information (number of
prenatal visits, adequacy of care, indicator if alcohol was consumed during the pregnancy,
number of months elapsed since last pregnancy), birth-related information (month of birth,
county of birth), and mother-related information (number of previous pregnancies, number
of children born dead, indicator if born abroad). A detailed summary is given in Table S14
in the Supplementary Materials file.

We explored treatment response heterogeneities for different values of (i) maternal
age, (ii) race, and (iii) number of care visits. The motivation for maternal age stems from the
consideration that oocytes (eggs) and embryos from older mothers tend to be more suscep-
tible to harmful environmental conditions such as smoking, e.g., [18]. Previous empirical
studies have informed the other grouping features, including [19] and [20], respectively.

We took a random draw from the largest treatment group in the training data to speed
up computations. The decrease in memory requirements and increase in computational
speed was achieved at relatively low cost in terms of statistical precision.

Overall, our estimation results are consistent with [15,16]. We found that smoking
tends to reduce birth weight and that dose matters. Smoking more cigarettes is more
detrimental in terms of birth weights (compare Table 1). The ATE for smoking one to five
cigarettes over no cigarette consumption decreases from −136 to −252 for smoking 16 to
20 cigarettes over no cigarette consumption. The more detrimental effect of higher cigarette
dosages is also suggested by the shifted distribution of the IATEs in Figure 1. However,
none of the IATEs is significantly different from the corresponding ATEs.

We found statistically significant GATEs for race, age, and number of prenatal visits
(compare Tables S1, S3, and S5 in the Supplementary Materials file). Figure 2 illustrates the
estimated GATEs for the different races. The effect is significantly different from zero for
races Other, Hispanic, and White, but not so for Black. The estimated GATEs for race, age
class, and number of prenatal visits are all not statistically significantly different from the
ATE (compare Tables S2, S4, and S6 in the Supplementary Materials file). We conclude that
the mcf does not indicate statistically significant effect heterogeneity.
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Table 1. ATEs in the maternal smoking during pregnancy study.

TC [16] mcf

T1-T0 −146 * −136 *
T2-T0 −217 * −213 *
T3-T0 −254 * −228 *
T4-T0 −255 * −252 *
T5-T0 −252 * −250 *
T2-T1 −71 * −77 *
T3-T1 −108 * −92 *
T4-T1 −109 * −115 *
T5-T1 −106 * −114
T3-T2 −37 −15
T4-T2 −38 * −38
T5-T2 −35 * −37
T4-T3 −1 −23
T5-T3 2 −22
T5-T4 3 1

Notes: TC denotes treatment comparison; estimates from [16] are printed in column two, estimates from the mcf
in column three. * denotes significance at the 5% level.

Notes: Reference treatment is no smoking during pregnancy.

Figure 1. Distribution of IATEs in the maternal smoking during pregnancy study.
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Notes: Treatment comparison is T5 versus T0.

Figure 2. GATEs for maternal race in the maternal smoking during pregnancy study.

3.2. Right Heart Catheterization

Right Heart Catheterization (RHC) is a surgical intervention widely used to monitor
critically ill patients. In a seminal contribution, ref. [21] investigated the efficacy of this
treatment measured by different outcomes (subsequent survival, length of stay, intensity of
care, cost of care). Deploying propensity score matching, [21] found that RHC is positively
associated with mortality, costs, and length of stay. The authors of [22–24] used alterna-
tive estimators and confirmed the findings in [21]. We matched previous results on the
average effects of RHC on survival. Extending previous work, we added insights on effect
heterogeneity, which the average treatment effect potentially masks.

The data we used are the same as in [21–24] and come from the SUPPORT prospective
cohort study [25]. The data were made available by [24] (among others) and comprise
information on 5735 critically ill and hospitalized adult patients between 1989 and 1994 in
five medical centers spread throughout the US. Out of the 5735 patients, 2184 individuals
received an RHC. In our analysis, we focused on survival within six months after treatment.
As before, identification was achieved by stipulating unconfoundedness. In total, we
included 55 features. For details refer to Table S15 in the Supplementary Materials file.

In the analysis of effect heterogeneity, we informed our choice of policy features by
expert opinions who classified eight features as high-priority factors [22]. The high-priority
factors include the nine primary disease categories, the estimated probability of surviving
two months, the acute physiology and chronic health evaluation score, the Glasgow coma
score indicator, age, an index of activities of daily living two weeks prior to admission,
mean blood pressure, and an indicator for resuscitate status on the first day.

Table 2 juxtaposes results on the estimated average effects of RHC on mortality after
six months from [22] and the mcf. Findings for the ATE and ATET are congruent in terms
of effect size and statistical significance and confirm that, on average, the RHC intervention
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decreases survival chances. Interestingly, as displayed in Figure 3, the distribution of the
IATEs shows that there is a non-negligible mass left to zero. Abstracting from estimation
uncertainty, some parts of the populations are estimated to benefit from the RHC interven-
tion. An analysis of the difference of IATEs against the ATE confirms that subpopulations,
which have IATEs at the tails of the distribution in Figure 4, have treatment effects that are
statistically different from the ATE.

Table 2. ATEs and ATETs in the RHC study.

Method Estimand Point Estimate p-Value

ps match ATET 0.063 0.005
gm match ATET 0.046 0.037

mcf ATE 0.048 0.013
mcf ATET 0.065 0.001

Notes: ps match and gm match refer to propensity score and genetic matching applied in [22], respectively. ATE
stands for the average treatment effect, ATET denotes the average treatment effect on the treated.

Notes: Treatment comparison is T1 versus T0.

Figure 3. Distribution of IATEs in the RHC study.
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Figure 4. Sorted IATEs versus ATE in the RHC study.

The mcf uncovered group effect heterogeneity, as Table 3 shows. Six out of eight
policy features exhibit significant differences of the GATEs from the ATEs, pointing to
effect heterogeneity in these policy features. Four policy features exhibit statistically
significant GATEs.

Exemplarily, Figure 5 summarizes the deviation of GATEs from the ATE for the policy
feature blood pressure. The corresponding data for Figure 5 are included in Table S7 in the
Supplementary Materials file. Figure 5 shows a significantly higher death risk for patients
with extremely low diastolic blood pressure from 35 to 57 and lower death risk for a blood
pressure from 106 to 145. Note that a diastolic blood pressure of zero may occur in cases of
severe hypotension, stiff arteries in the elderly, diabetes, arteriovenous malformation, aortic
dissection, or due to monitoring malfunction [26]. In the Supplementary Materials file we
provide further results on effect heterogeneity in Tables S8 and S9. Patients with APACHE
III scores ranging from 21 to 45 experience, on average, a significant increase in survival.
Those with scores ranging from 55 to 66 have a significantly lower survival probability. For
the policy feature summarizing the patient’s primary disease, Table S9 displays a significantly
higher death risk than the average for patients with non-traumatic coma.

Table 3. GATE results for the RHC study.

Feature Evaluation Points
Number of Significant

GATEs
Number of Significant

GATEs-ATEs

adld3pc 27 0 0
age 50 3 9
aps1 49 15 26
cat1 9 0 1
dnr1 2 0 0

meanbp1 49 15 32
scoma1 11 0 2

surv2md1 50 1 1
Notes: The significance level was set to 10%; adld3pc is the index of activities of daily living two weeks prior to
admission; aps1 is the acute physiology and chronic health evaluation score; cat1 are the nine primary disease
classes; dnr1 is an indicator for resuscitate status on the first day; meanbp1 is the mean blood pressure; scoma1 is
the Glasgow coma score; surv2md1 is the probability of surviving two months based on support model estimation.
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Figure 5. GATEs —ATE for mean blood pressure in the RHC study.

3.3. The Workforce Investment Act Programs

The Workforce Investment Act of 1998 (WIA) is the central federal workforce develop-
ment legislation in the United States, which succeeded the Job Training Partnership Act
(JTPA) and became operational from 1999 to 2000. The WIA programs provide services for
education and training to increase the labor market prospects of adults, displaced workers,
and youth. Participation in WIA services often starts in so-called one-stop centers, which
are spread out over the US. In total, there are 3000 one-stop centers. More details on the
WIA are summarized in [27]. Individuals participate in WIA-funded services voluntarily.
The services for adults and dislocated workers fall into four categories: self-service core
services, staff-assisted core services, intensive services, and training services. There are
no eligibility criteria for the core services [28]. Individuals usually set up an individual
training account to participate in a training service and select training and provider. Case-
workers may encourage or discourage participation in specific programs. Unlike in some
European countries, caseworkers cannot sanction the clients [28,29]. The WIA was replaced
by the Workforce Innovation and Opportunity Act (WIOA) in 2013. Neither the basic set of
services nor eligibility were much affected by the new legislation [28,30].

Previous studies found a positive impact of receivers of training over the core and/or
intensive services for WIA participants [28], and for WIA participants over Employment
Service (ES) participants [31] or unemployment insurance claimants and ES participants.
The authors of [30] found relevant heterogeneity in levels of program participation for
the examined WIA population. For identification, refs. [28,31] relied upon a selection-on-
observables framework and [30] on the invariance of conditional distributions. The authors
of [28] added an analysis where selection is on unobservables but maintained bias stability
across time and found similar results.

We used the database from [30]. The database synthesizes information on 85,440
individuals served by WIA and WIOA programs in California between 2012 and 2016.
Treatment takes four values, T ∈ {1, 2, 3, 4}, where 1 indicates core services, 2 intensive
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service, 3 basic/general training, and 4 occupational training service. Following [30], we
defined the outcome as the differences in average earnings four quarters after exiting the
program and three quarters before entering it. As before, identification was achieved by
stipulating conditional independence of treatment assignment and potential outcomes
controlling for all observables. In total, we included 24 features. For details refer to
Table S16.

Table 4 juxtaposes results on the estimated average effects from [30]—columns two
to four—and the mcf—columns five to seven. Point estimates for the two estimators are
aligned. The effects range from $317 to $1957 for the mcf and from $99 to $1739 for the
doubly robust GMM estimation method based on inverse probability weighting applied
in [30]. We observed the largest effect for the treatment pair occupational training service
(T4) and core services (T1). Participating in occupational training compared to core services
increased earnings on average by $1957 ([30] estimated $1739). Note that the estimated
weights-based standard errors of the mcf are larger than the bootstrapped standard errors
of [30], which were based on resampling estimates of the influence function.

The superiority of occupational training over core services is also reflected in Figure 6.
Ignoring estimation uncertainty, the estimated IATEs for comparing occupational training
(T4) versus core services (T1) are prevailingly positive.

Table 4. ATEs in the WIA programs study.

[30] mcf
TC ATE SE p-Value ATE SE p-Value

T2-T1 99 41 0.02 335 63 0.00
T3-T1 1273 56 0.00 1640 87 0.00
T4-T1 1739 85 0.00 1957 126 0.00
T3-T2 1174 53 0.00 1305 81 0.00
T4-T2 1640 82 0.00 1622 122 0.00
T4-T3 466 89 0.00 317 136 0.02

Notes: TC stands for treatment comparison, ATE for average treatment effects, SE for standard errors.

Our group heterogeneity analysis focused on two policy features—claim to unemploy-
ment compensation and age. The authors of [30] showed that unemployment compensation
status is an important confounding feature and hence may give rise to effect heterogeneity.
Indeed, the GATE deviates statistically significantly from the ATE for the policy feature
unemployment compensation. The deviations are negative for subjects with a claim to
unemployment for T3 versus T1, T3 versus T2, and positive for T4 versus T3. Contrariwise,
the deviations are positive for subjects without a claim to unemployment for T3 versus
T1, T3 versus T2, and negative for T4 versus T2. The results also hint at meaningful effect
heterogeneity for the policy feature age as measured by a significant deviation of the GATE
from the ATE. For example, when comparing treatment groups T3 versus T1, the GATE
deviates positively from the ATE for ages 21 to 33 and negatively for ages 45 to 67 (compare
Figure 7). This hints at an optimal assignment rule that should target clients of different
ages and unemployment compensation statuses differently when resource or capacity
constraints are binding. Detailed results on the GATEs and GATEs minus the ATEs for
both policy features age and claim to unemployment compensation are included in Tables
S10–S13 in the Supplementary Materials file.
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Notes: Reference treatment is treatment 1.

Figure 6. Distribution of IATEs in the WIA programs study.

Notes: Treatment comparison is T3 versus T1.

Figure 7. GATEs —ATE by age in the WIA programs study.
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4. Discussion

The modified causal forest (mcf) matched results on aggregate treatment effects esti-
mation and provided novel insights on underlying effect heterogeneity. The distilled effect
heterogeneity exhibited meaningful patterns for the RHC and WIA studies in that some
populations benefited more or less than the average from the treatment intervention. The
generated insights hint at more efficient targeting rules when resource or capacity con-
straints are binding. Mirroring the burgeoning literature in optimal policy learning, since
version 0.1.0 the mcf includes a functionality to learn minimax regret optimal treatment
assignments when the policy class is restricted to decision trees.

The mcf is under ongoing development to incorporate new functionalities. Since
version 0.2.0, the mcf accommodates continuous treatment effects estimation as an experi-
mental feature. In addition, the mcf provides statistics on balancing and common support
to evaluate the quality of the obtained causal parameters. There is ongoing research to
formalize the underlying statistics and provide critical values for practitioners.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/e24081039/s1. Tables S1–S13 compile results from the group average treatment
affects (GATEs) analysis. Tables S14–S16 provide an exhaustive variable description of the three data
sets used in the empirical analysis.
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Abstract: A wide range of machine-learning-based approaches have been developed in the past
decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces.
This has improved performance for inferential tasks such as estimating average treatment effects
in situations where standard parametric models may not fit the data well. These methods have
also shown promise for the related task of identifying heterogeneous treatment effects. However,
the estimation of both overall and heterogeneous treatment effects can be hampered when data are
structured within groups if we fail to correctly model the dependence between observations. Most
machine learning methods do not readily accommodate such structure. This paper introduces a new
algorithm, stan4bart, that combines the flexibility of Bayesian Additive Regression Trees (BART) for
fitting nonlinear response surfaces with the computational and statistical efficiencies of using Stan for
the parametric components of the model. We demonstrate how stan4bart can be used to estimate
average, subgroup, and individual-level treatment effects with stronger performance than other
flexible approaches that ignore the multilevel structure of the data as well as multilevel approaches
that have strict parametric forms.

Keywords: BART; Stan; causal inference; machine learning; heterogeneous treatment effects; multi-
level data; grouped data

1. Introduction

Causal effects represent comparisons between outcomes in factual and counterfactual
worlds. That is, for each observation in a study, we need to be able to not only measure the
outcome the subjects experienced under the treatment regime they were exposed to, we
also have to predict what their outcome would have been in a counterfactual world where
they were exposed to a different treatment. Since we have no data from the counterfactual
world, estimation in causal inference requires solving a difficult missing data problem.
In the absence of a randomized experiment, this is often approached by conditioning
treatment effect estimates on many pretreatment covariates in an attempt to ensure that
estimates have adjusted for any relevant differences across groups. An increasing number
of causal inference strategies approach this missing data problem (implicitly or explicitly)
by predicting these missing outcomes using flexible machine learning algorithms (for
example, [1–7]).

In many causal inference settings, we additionally expect that data will have a grouped
structure. For instance, we might have measurements of students within schools, patients
within hospitals, or individuals incarcerated within institutions. In such settings, observa-
tions may have correlated error structures within these groups. We may also have reason
to believe that the impact of the treatment exposure will vary across these groups. Most
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current machine-learning-based causal inference strategies either ignore such error struc-
ture or assume that errors are independently and identically distributed. Moreover, while
these approaches may allow for estimation of treatment effect heterogeneity across groups
they typically do so inefficiently and fail to capitalize on a potential distribution for these
varying effects. In essence, typically these algorithms can at best accommodate a fixed
effects approach to groups rather than a random effects approach.

On the other hand, multilevel models, in various forms, have been used for decades
to accommodate grouped error structures and to efficiently estimate varying treatment
effects [8–10]. This approach has been particularly successful in the context of randomized
experiments where the concern about appropriately incorporating covariates is minimized
for two key reasons. The most primal reason is that in a completely randomized exper-
iments, we do not need to condition on covariates at all to obtain unbiased estimates of
treatment effects. However, even if we do fit a model conditional on covariates to experi-
mental data (for example, to achieve greater efficiency), treatment effects estimates should
be relatively robust to model misspecification due to the fact that common support across
treatment groups is ensured in expectation [9,11].

This paper introduces a multilevel machine-learning-based approach to causal effect
estimation that combines the strengths of these two existing modeling frameworks. It
builds on an established machine learning algorithm, Bayesian Additive Regression Trees
(BART; [12,13]), that provides a flexible fit to the relationship between the outcome and the
covariates. The traditional form of the model is extended, however, to include a parametric
component that allows for covariates to be included with explicit parametric forms and
additionally allows group-level deviations from the common parameters to be modeled
with a hierarchical structure. The Markov chain Monte Carlo algorithm in Stan is used
to draw the unknowns in the parametric component and the hierarchical structure, given
the trees, and the BART algorithm is used to draw the trees, given the parametric and
hierarchical components. This Gibbs sampling algorithm is, to our knowledge, the first to
combine BART and Stan updates.

2. Background and Context

This section provides some background and a summary of the building blocks of
our new algorithm, stan4bart. It also discusses other approaches to causal inference for
heterogeneous treatment effect estimation in settings with grouped data.

2.1. BART

Bayesian Additive Regression Trees (BART; [12,13]) is a Bayesian machine learning
algorithm that can provide a flexible fit for a wide variety of conditional expectations of the
general form E[Y | X], where Y denotes the outcome of interest and X represents a vector
of covariates or predictors. The standard BART algorithm has been implemented in several
packages including BayesTree, bartMachine, and BART. We focus on the dbarts [14] soft-
ware package because it has an efficient implementation of the base BART algorithm and
was explicitly designed to incorporate model extensions of the kind described in this paper.

While the standard BART implementation assumes a continuous response and normal,
independent, and identically distributed errors, many extensions have been proposed. One
of the original BART papers describes a variation for a binary response based on a probit
link [13]. Extensions of this implementation capitalize on better priors or the use of cross-
validation to choose hyperparameters for the default priors resulting in better performance
(for example see [15]). Subsequent work has extended BART for a wide variety of different
regression models for categorical, count, zero-inflated, multivariate, and right-censored
survival responses [16–20].

2.2. BART for Causal Inference

BART has been proposed as a strategy for estimating causal effects [1]. The basic idea
is to use the algorithm to fit E[Y | X, Z] in a way that minimizes assumptions about the
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parametric relationships between the outcome, Y, and the covariates, X, while allowing
that relationship to vary across treatment groups defined by Z. This provides a flexible
approach to making predictions about missing counterfactual values (for example, the
outcome a participant would be predicted to experience under a different treatment regime)
based on the observed covariates. Moreover, this approach allows for the estimation of
posterior predictive distributions for each potential outcome, which enables the formation
of coherent uncertainty intervals both for potential outcomes and causal effects. The use of
BART for causal inference is explained in more detail later in the paper.

BART has been shown to have strong performance relative to standard parametric models
as well as a variety of machine learning approaches to regression [1,12,15,21–25]. Functions
to facilitate the use of BART for causal inference have been implemented in the bartCause

function (with dbarts at its foundation), which is described in more detail in Section 5.1.

2.3. Causal Inference with Multilevel Data

The standard BART model assumes that error terms are independently, identically, and
normally distributed, which limits its applicability. Extensions have been proposed to ac-
commodate heteroskedasticity in error terms and non-Gaussian response variables [17,20,26].
However, none of these approaches allow for a dependence between error terms. Bisbee [27]
used BART in an explicitly multilevel setting, however, groups were only incorporated as
fixed effects, and thus no direct correlations were modeled. Zeld et al. [6] fit a semiparametric
model with an arbitrary linear term, but no multilevel component. Moreover, Hahn et al. [7]
proposed an extension of BART for causal inference, Bayesian causal forests (BCF), which
has advantages for estimating heterogeneous treatment effects. In the standard implemen-
tation, however, the errors were assumed to be independent. Multilevel extensions to BCF
(random intercepts and varying slopes on treatment assignment) have been used in applied
work [28–30] but no software has been made available.

Suk and Kang [31] fit models that are in some ways conceptually similar to those in
stan4bart, with arbitrarily complex, machine learning components as well as parametric,
linear ones. However, their primary aim was to produce consistent estimates in the presence
of unmeasured, group-level confounders and as such, their approach addressed a different
issue. Another related BART extension was described in Spanbauer and Sparapani [32].
This approach incorporated random effects for longitudinal repeated measures into the
BART model as well as subject clustering within groups.

As a precursor to stan4bart, BART with varying intercepts was implemented as
rbart_vi in the dbarts package. It was also independently developed in [33]. stan4bart
allows for more general multilevel structures. This paper compares the performance of
traditional BART with rbart_vi and stan4bart, as well as several other options.

3. Notation, Estimands, and Assumptions

We formalize our model and assumptions relying on the Rubin–Neyman causal
model [34,35]. For simplicity, we focus on situations with a binary treatment variable, Z. Expo-
sure to Zi for observation i allows the potential outcome under treatment,
Yi(Zi = 1) ≡ Yi(1), to manifest. A lack of exposure (or possibly exposure to a different
treatment modality) leads to the expression of the other potential outcome Yi(Zi = 0) ≡ Yi(0).
The observed outcome Yi = Yi(0)× (1− Zi) + Yi(1)× Zi is thus a function of the potential
outcomes and the treatment assignment. Even though we focus on group-structured data, this
article only considers situations where treatment assignment occurs at the individual level.

3.1. Estimands

In our framework, several estimands are of interest. In this section, we index obser-
vations by i and refrain from further indexing by groups as this is unnecessary for our
purposes and merely clutters the notation. We start by defining an individual-level causal
effect on unit i as τi = Yi(1)− Yi(0). The estimand is rarely an inferential goal because it
is not identifiable without extremely strong assumptions [36]. However, the individual-
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level causal effect is a building block for many common causal estimands, which can be
expressed as averages of this estimand over different subsamples.

Consider, for instance, the sample average treatment effect (SATE) which takes an
average of these individual effects over the entire sample, SATE = 1

N ∑N
i τi, where N

denotes the size of our analytic sample. In observational studies we often care more about
estimating the average treatment effect for those who we observe to self-select into a
treatment or program, or conversely on those who have not yet had access to a treatment
or program. These concepts map more closely to estimands referred to as the effect of the
treatment on the treated or the effect of the treatment on the controls. This paper focuses
on the former quantity measured for our sample. This estimand, the sample average
treatment effect on the treated (SATT), can be formalized as SATT = 1

Nt
∑N

i τiI(Zi = 1),
where Nt = ∑N

i Zi is the number of people in the treatment group. It is worth noting,
however, that BART and stan4bart can be used to estimate population and conditional
versions of these estimates as well [1].

Researchers with access to observational multilevel data might also be curious to explore
whether treatment effects vary over the groups that define the multilevel data structure.
Thus, we also explore the performance of our estimation strategy with regard to group-level
causal estimands that can capture the heterogeneity in average treatment effects across groups
(such as hospitals, schools, or counties). If we use g[i] to denote the group membership
of person i, we can define a group-level sample average treatment effect for group g as
GSATE(g) = 1

ng
∑N

i τiI(g[i] = g), where ng = |{i : g[i] = g}| denotes the sample size in
group g. A group-level analog to the SATT is thus the group-level sample average treatment
for group g among the treated, GSATT(g) = 1

n1
g

∑N
i τiI(g[i] = g)I(Zi = 1). Here, n1

g denotes

the number of treated observations in group g such that n1
g = |{i : g[i] = g, Zi = 1}|.

To understand the treatment effect heterogeneity at a more fine-grained level it would
help to be able to estimate individual-level causal effects directly. Since τi is generally not
identifiable without extreme assumptions, researchers increasingly focus instead on the
conditional average treatment effect function, CATE(x) = E[τi|Xi = xi]. An important
property of the CATE is that the estimator with the smallest mean squared error (MSE) for
CATE will also have the smallest MSE for the individual causal effect, τi [4]. If we can obtain
accurate estimates of the CATE across the instantiations of the covariate values defined
in our sample, it will allow us to explore the treatment effect heterogeneity more flexibly
(see, for instance, [37]). Henceforth, we refer to each CATE that reflects the covariate values
specific to an individual in our sample as an iCATE; the collection of these for our sample
is referred to as the iCATEs for our sample.

3.2. Assumptions

The BART and stan4bart approaches to causal inference yield unbiased estimates only
if several assumptions are satisfied. The first assumption requires that we have measured
all confounders for the effect of Z on Y. This so-called unconfoundedness, or ignorability,
assumption can be formalized as Y(0), Y(1) ⊥ Z | X [34], where X denotes all measured
pretreatment covariates in our analysis, both at the individual and group level (we drop the
subscripts here for convenience). The intuition behind this assumption is that it allows us
to use information from observations in one treatment condition to help make predictions
about the other counterfactual outcome of a similar observation in a different treatment
condition. Here, similarity is defined by the covariates. This is generally considered to be a
strong assumption and it is untestable. For strategies to address potential violations of this
assumption see, for instance, Dorie et al. [23], Carnegie et al. [38].

If for a given individual no similar observations exist that received a different treat-
ment, it may be challenging to make a prediction for that individual’s potential outcome
under that different treatment. Therefore, we additionally make an assumption that all
neighborhoods of the covariate space with observations have a nonzero probability of
having both treated and control observations. This is often referred to as an overlap or
common support assumption and can be formalized as 0 < Pr(Z = z | X) < 1. If this
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assumption fails to hold, a general strategy is to identify which observations lack empirical
counterfactuals. Several BART-based strategies have been developed to identify and dis-
card these observations [22] and there is evidence that these perform better than traditional
propensity score strategies.

Our definition of potential outcomes above implicitly assumed that the only treatment
assignment that is necessary to define the potential outcomes for observation k is the treatment
received by that observation, Zk. Moreover, for a treatment effect estimand to have meaning,
we must assume that the treatment assigned to each of the different observations and referred
to as Z takes only one form. As a crude example, it would not make sense to define an
estimand with weight loss intervention, Z, if Za refers to a drug and Zb refers to an exercise
regime. These assumptions are often jointly referred to as the stable unit treatment value
assumption (SUTVA) [39]. While studies can be designed to increase the plausibility of SUTVA,
researchers often have access to data where they do not have this type of control over the
study design and rather hope that it holds approximately. To decrease the complexity of the
issues addressed in this paper, we assume that SUTVA holds.

When these structural assumptions hold, then E[Y(0) | X] = E[Y | Z = 0, X] and
E[Y(1) | X] = E[Y | Z = 1, X]. That means that our task as data analysts can be reduced to
a modeling task. Our goal then is to reduce the parametric assumptions required to esti-
mate these conditional expectations and appropriately reflect our uncertainty about these
estimates. The proposed algorithm is intended to provide robust inference in this setting.

4. Combining Stan and BART: stan4bart

This section describes how Stan [40] and BART are integrated to form a new modeling
strategy. Since this section focuses on modeling strategies for observed data, we now
use lower-case letters for observed covariates, x, and treatment assignment, z, when we
condition on these in our model. When it is desired to extrapolate the following results to
population level quantities, X can once more be treated as a random variable.

4.1. Stan and Variations on the No-U-Turn Sampler

One of the original motivations [41] for developing the MCMC algorithm in Stan was
to draw from the posterior distribution of multilevel models more efficiently than the pure
Metropolis–Hastings and Gibbs sampling algorithms that preceded it. Pure Metropolis–
Hastings algorithms often have an optimal acceptance probability below 0.25, implying
that only about one in four MCMC iterations move from the previous state and that the
mixing is slow. Gibbs samplers draw a unique value of each parameter (block) from its
full-conditional distributions, but when the variance of the full-conditional distribution is
small, they do not move very far from the previous state.

Stan has not relied on the algorithm described in [41] since the release of version 2.10
in 2016, but its current performance is at least as good [42]. Hamiltonian MCMC algorithms,
like the one in Stan, work by analogy to Hamiltonian physics [41,43]. The vector of unknown
location parameters is augmented with a vector of momentum parameters of the same size.
These momentum parameters are assumed to be independent, and each has a Gaussian
prior with mean zero and a standard deviation that is tuned during the warm-up phase
of the algorithm. Since the momentum parameters do not enter the likelihood function,
their posterior distribution is the same as their prior distribution. However, the realizations
of the momentum parameters serve as a catalyst to provide an initial push to the location
parameters that moves them through a parameter space whose topology is defined by
the log-likelihood function with the logarithm of the probability density functions (PDFs)
specified for the prior on the location parameters. The location parameters continue to
evolve forward (that is, with the momentum realization) and backward (that is, opposite the
momentum realization) in time until the Euclidean distance between the forward-moving
and backward-moving location parameters starts to shrink, at which point a U-turn is
declared and a realization of the location parameters is taken from the footprints they made
along their journey via multinomial sampling with products of Metropolis-like acceptance
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probabilities. However, unlike pure Metropolis–Hasting algorithms, the algorithm in Stan
yields an acceptance probability that is usually very close to 1. The realized parameter
vector is then used as the starting point for the next iteration when a new realization of the
momentum parameters is obtained.

As a result—and unlike both Gibbs sampling and pure Metropolis–Hastings algorithms—
the first-order autocorrelation between consecutive realizations of a parameter tends to
be negative with Stan and the autocorrelations at higher lags tend to dissipate quickly.
The formula for effective sample size used by Stan is S

1+∑∞
j=1 ρj

, where S is the nominal

number of MCMC draws and ρj is the j-th order autocorrelation between draws that are
separated by j steps. If the first-order autocorrelation is sufficiently negative, then the
denominator is less than 1, and the estimator of the mean is better than would be obtained
from independent draws even if it were possible to obtain independent draws.

4.2. Stan for Multilevel Models

Our work seeks to augment the BART model with a grouped error structure such as
those found in more traditional multilevel models. We review that framework first.

A general, linear, multilevel model for one observation can be written as

Y | �β,�λ, ε = xβ�β + w�λ + ε,
�λ | Σλ ∼ N(0, Σλ), (1)

ε | σ ∼ N(0, σ2).

Here, �β is a traditional linear, parametric vector of coefficients and xβ is a standard
linear model design vector. The first element of xβ is often the constant “1”, so that the
first element of �β enters the model as an offset or baseline. �λ is the vector of all parametric
random intercepts and slopes and w is a sparse vector which serves to select out and weight
the appropriate random values, essentially containing group-level dummy variables and
interactions between the group-level dummy variables and other predictors in xβ. To imply
the correct covariance structure, Σλ consists of block-diagonal repetitions of the covariance
matrices of the values for one or more grouping factors. For an explanation of the design
of �λ, w, and Σλ, see [44]. Finally, the errors (ε) are independent of the group variation
and normally distributed with an expectation of zero and a variance of σ2. All inference is
conditional on both the xβ and w vectors.

The Bayesian version of such a model fit by Stan—and extended by stan4bart— includes
prior distributions for �β, Σλ, and σ (or σ2). The prior distribution on the covariance matrix,
Σλ, can be rather consequential but rarely do researchers have strong beliefs about it. It is
now commonplace when using Stan to decompose covariance matrix as Σ = DCD, where
D is a diagonal matrix of standard deviations and C is a correlation matrix. The prior on
the standard deviations is fairly easy to specify, as any proper distribution for positive
random variables would do and even improper ones often work fine. By default, the prior
on the standard deviations is an exponential prior, which has maximum entropy among
positive random variables with a given expectation. The prior on the correlation matrix—if
it has more than one row and column—is jointly uniform by default over all symmetric,
positive definite matrices that have ones along their diagonal. This LKJ prior for correlation
matrices is used the vast majority of the time in Stan programs, but a shape hyperparameter
can be specified to a value greater than 1 to concentrate on the identity matrix [45]. A shape
hyperparameter value between zero and one is mathematically possible, which would
make sense if the identity matrix were thought to be the least likely correlation matrix
rather than the prior mode.

Unlike frequentist estimators of multilevel models [44] that integrate �λ out of the
original likelihood function to form a new likelihood function that can be maximized with
respect to �β and the group-level (co-)variances only, the Bayesian approach can—and in
our case, does—condition on the group-level structure defined by w and draws posterior
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realizations of�λ jointly along with the other parameters. In our experience, maximizing the
integrated likelihood function often yields an optimum on the boundary of the parameter
space where some diagonal element of the error covariance matrix is zero or the covariance
matrix is otherwise numerically singular. Bates et al. [46] report a similar experience
with such models in the field of psychological linguistics but recommends eliminating
variance components until numerical maximization is reliable and substantively useful.
This problem is avoided automatically with MCMC and proper priors that constrain all
the draws to be on the interior of the parameter space to yield good estimates of posterior
means, medians, and quantiles, even if the posterior mode might be on the boundary of
the parameter space.

4.3. Bayesian Additive Regression Trees

The BART algorithm consists of two pieces: a sum-of-trees model and a regularization
prior. We describe the algorithm in a slightly extended way as compared to the original
paper [12] to distinguish between the treatment variable, z, and the rest of the predictors, x.
For a response variable Y ranging continuously between −0.5 and 0.5, a treatment variable
z, and predictors x, we describe the sum-of-trees model by Y = f (x, z;�T, �M) + ε, where
ε ∼ N(0, σ2) and f (x, z;�T, �M) = g(x, z; T1, M1) + g(x, z; T2, M2) + · · · + g(x, z; Tm, Mm).
(Tj, Mj) defines a single regression tree submodel where Tj is the tree topology and branch-
ing rules, Mj are constants associated with each leaf node, and g(x, z; Tj, Mj) is a function
that uses Tj to map (x, z) to a value in Mj. The number of trees is typically allowed to be
large (Chipman et al. [12,13] originally suggested 200, though some recent work suggests
that 50 may be sufficient [47], and in practice this number should not exceed the number
of observations in the sample). As is the case with related sum-of-trees strategies (such
as boosting), the algorithm requires a strategy to avoid overfitting. With BART this is
achieved through a regularization prior that allows each (Tj, Mj) tree to contribute only a
small part to the overall fit. BART fits the sum-of-trees model using an MCMC algorithm
that cycles between draws of (Tj, Mj) conditional on σ and draws of σ conditional on all of
the (Tj, Mj). Convergence can be monitored by plotting the residual standard deviation
σ over time, though in general it makes sense to choose a statistic more relevant to one’s
inferential goals.

The BART prior works to avoid overfitting by specifying distributions that help control
the size of each tree, the shrinkage applied to the fit from each tree, and the uncertainty
associated with the residual standard error. Interested readers can find more information on
the model, prior, and fitting algorithms in Chipman et al. [12,13]. The key point is that BART
can be used to flexibly fit even highly nonlinear response surfaces, which is consistent with
our goal to fit E[Y(1) | x]− E[Y(0) | x] without making undue parametric assumptions.

Finally, we note that binary outcomes can be modeled by fixing σ to 1 and treating Y
as a latent variable where Y′ = I{Y > 0} is observed.

4.4. stan4bart

For an arbitrary continuous response variable, stan4bart augments the multilevel
model above by fitting the following, conditioned on covariates:

Y | �β,�λ, ε, �M,�T = xβ�β + f (x, z; �M,�T) + w�λ + ε,
�λ | Σλ ∼ N(0, Σλ), (2)

ε | σ ∼ N(0, σ2).

This model differs from that of Equation (1) in the inclusion of f (x; �M,�T), a nonparametric
sum-of-trees fit by BART (note that this component may or may not include z, we keep the
term in the model for generality). The same latent variable formulation that allows BART
to fit binary outcomes applies here.

The two sets of covariates, x and xβ, are integrated into a single model by first eliminat-
ing the global intercept term from xβ. Instead, for continuous outcomes the prior over the
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mean is explicitly set to the midpoint of the range of the response, and for binary outcomes
it is set to 0.5. Shrinkage to different values in the binary case is supported by manually
supplying a constant on the probit scale, as in [13]. In addition, having two design vectors
raises the practical question when specifying a model of choosing which variables are
included in each set. We discuss this at greater length below in Section 4.5; however, at this
point it is sufficient to say that x and xβ can share components without restriction.

At a high level, the model is implemented as a Gibbs sampler [48]. The parametric
components given the nonparametric one are jointly sampled using a Hamiltonian Monte
Carlo, no-U-turn sampler with a diagonal Euclidean adaptation matrix [41,42] and the
converse is sampled sequentially through trees using the original BART’s Bayesian backfitting
approach [12]. As discussed above, �β, σ, and Σλ are all given priors and are included in the
parametric sampling step.

In practical terms, this is accomplished by modifying and compiling into C++ a
parametric Stan model that fits the above equation, with f (x, z; �M,�T) treated as a generic
linear offset, that is, a fixed value that shifts the mean of the response. The model itself is
adapted from those used in the rstanarm package, a collection of model fitting functions
implemented in Stan for the R programming language [49]. This C++ code is encapsulated
in a custom mutable Stan sampler object which is coupled with a BART sampler set to
have a fixed variance parameter and an offset term of its own. Using a “veci·” operator
to denote a vector that comprises i = 1, . . . , N scalar values to run the Stan sampler
collects the current draws of the BART sum-of-trees predictions for all observations into
veci f (xi, zi; �M,�T). It uses these to produce a draw of �β,�λ, σ, Σλ | �Y, veci f (xi, zi; �M,�T).
From this, σ and veci

[
xβ

i
�β + wi�λ

]
are passed to BART. Then, the BART sampler produces

a draw of each tree, Mj, Tj | �Y, veci

[
xβ

i
�β + wi�λ

]
, σ, M−j, T−j. veci f (xi, zi; �M,�T) is passed

back to Stan, completing the cycle. This proceeds from starting points sampled from the
prior distribution over BART trees with the offset and variance estimated from a linear or
binary, multilevel model maximum likelihood fit, repeats through a warm-up phase during
which the Stan sampler performs adaptation of its proposal distribution, and finally iterates
through the set of samples from the posterior that are intended for inference. While this
strategy is similar to a similar proposal [50], our approach allows the same covariates in the
parametric and nonparametric components and has a shareable software implementation.

4.5. stan4bart Model Specification

Individual level covariates can enter a stan4bart model in the parametric mean
component, the nonparametric mean component, or both. Parametric terms for covariates
that are not included in the nonparametric component of the model have the benefit of
being interpretable as Bayesian multilevel regression coefficients with the downside of
potentially requiring nonlinearities and interactions to be explicitly specified. On the
other hand, exclusively nonparametric terms are more flexible, but suffer from reduced
explicability [51].

The pros and cons of including covariates in both components of the model are not
clear-cut, however, we can consider some use cases. For instance, suppose we know that
some of the covariates are particularly important for predicting the outcome, but we are
unsure that the relationship will be easily captured by a parametric model. We may also
believe that the stronger a continuous covariate’s association with the outcome, the harder
it is to accurately approximate its true relationship to the outcome with step functions and
regression trees. In that case, including such a covariate in both model components may
have computational benefits because it may simplify the nonparametric model, which now
just has to account for the part of the response surface that is not linear. This specification
might lead to faster convergence and, potentially, more precise estimates.

On the other hand, what if we are fairly confident in our specification of a parametric
model for some covariates? In that case, one might wonder what could be gained from
additionally including one or more of the covariates from that parametric model in the non-
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parametric component. However, in this setting, including a covariate in both components
is an example of parameter expansion, a technique often employed in Gibbs samplers to
reduce dependence between parameters and increase the efficiency of the sampler [52–54].
In such a case, neither the parametric nor the nonparametric components would be directly
identifiable but crucially their sum would still be. Thus, while we might not strive to
overparametrize, we are hopeful it need not be problematic if we do. More research will
need to be performed to confirm this.

Consequently, we offer the following practical guidance on how to include predictors
in stan4bart models:

• If a parameter must be interpreted as a regression coefficient or if the functional form of
its relationship to the response is known, include it only in the parametric component.

• Otherwise, include all individual predictors in the nonparametric component.
• Consider including strong predictors or ones that are substantively associated with

the outcome in both components, but be mindful that in doing so, the linear model
coefficients are not directly interpretable.

• Users who are comfortable with the above caveat can center their model on a simple
linear regression, so that BART effectively handles only the non-linearities in the
residuals of that fit.

4.6. stan4bart Software

The stan4bart package in R, available on the Comprehensive R Archive Network
(CRAN), provides a user-friendly, multithreaded implementation of the algorithm above.
Models are specified by using the following language constructs, chosen to be familiar to
users of other R software packages:

• The R standard left-hand-side–tilde–right-hand-side formula construct gives the base
of a parametric linear model, for example, response ∼ covariate_a + covariate_b

+ covariate_a:covariate_b.
• Multilevel structure is included by adding to the formula, terms of the form (1 + covari-

ate_c | grouping_factor), where the left-hand side of the vertical bar gives intercepts
and slopes, while the right-hand side specifies the variable across which those values
should vary. The full set of syntax implemented is described in Bates et al. [44].

• The BART component is specified by adding to the formula, a term of the form
bart(covariate_d + covariate_e). In this case, the “+” symbol is symbolic, indi-
cating the inclusion of additional variables among those eligible for tree splits.

As a convenience, a “.” can be used to specify all available variables, and subtraction (“-”)
can be used to remove variables from that set. A typical shorthand for fitting a causal
model with varying intercepts and slope for treatment would be specified similar to the
formula response ∼ treatment + bart(. - group) + (1 + treatment | group).

5. BART and stan4bart for Causal Inference

It is straightforward to use BART and stan4bart to estimate any of a variety of
average treatment effects under the assumptions above. We first describe the standard
BART implementation and then discuss the additional modeling choices that arise when
using stan4bart.

5.1. BART for Causal Inference

When using BART for causal inference the first step is to fit BART to the observed data,
that is, the outcome given the treatment indicator and covariates. Based on evidence from
simulations and previous data analysis challenges, we recommend running 8 to 10 chains
for each BART fit [55] and checking convergence using a statistic that is meaningful for the
desired estimand (such as the SATT estimate [37]).

The model fit can be used to make predictions for two counterfactual datasets [1]. The
covariates are kept intact for both; however, in one, all treatment values are set to 0, and in
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the other they are all set to 1. This allows BART or stan4bart to draw from the posterior
distribution for E[Y(0) | X = x] and E[Y(1) | X = x] for each person, meaning that we
can also obtain draws from E[Y(1)− Y(0) | X = x], the iCATE for each person. Various
combinations of these posterior distributions and the observed data can then be used to
obtain posterior distributions of average treatment effects either for the full dataset or any
subset thereof, and for sample, condition, and population quantities.

For example, consider the SATT estimand. Our best guess of Yi(1) for anyone in the
treatment group is simply their observed outcome, Yi. Our estimate of Yj(0), however, is
the mean (or median) draw from the posterior predictive distribution for the counterfactual
outcome for individual i in group j, Ỹi(0). We can thus define a new quantity τ̃i to be
the draw of the individual treatment effect for individual i from its posterior predictive
distribution. Averages of these draws can be used to estimate the SATT. More specific
subsets of this summation can be used to estimate any subgroup estimand of interest
including the SGATE, SGATT, and iCATEs defined above.

The R package bartCause (available on CRAN) provides a handy wrapper function
for the dbarts implementation of BART and stan4bart that simplifies the process of using
BART for causal inference by implementing the fitting and prediction steps described above
and by setting the defaults for the prior specification and model fitting (number of chains,
iterations per chain, etc.) to values found to be useful in practice. It is straightforward to
make inferences about any of the estimands described in this article either as estimates
and confidence intervals or draws from the (Monte Carlo approximation to the) relevant
posterior or posterior predictive distribution.

5.2. stan4bart for Causal Inference

To use stan4bart for causal inference, we can also use the algorithm directly. The key
is to specify the model so that it is possible to extract information about the appropriate
estimands. There are now two additional parametric pieces of the model to specify, however,
xβ�β and w�λ. As described above, we advise parsimony when specifying xβ�β. It should
be used for predictors that have special significance (for instance, the treatment variable
in a causal analysis), predictors (or transformations thereof) suspected to have a linear
relationship with the outcome, or suspected moderators. w�λ captures intercepts and slopes
that vary across groups.

Suppose you wanted to fit a model for causal inference, assuming that the response
variable, y, treatment variable, z, and a grouping variable, g, are in a data frame data

together with any additional confounders The following code demonstrates how to specify
the stan4bart function to estimate treatment effects in a setting where you suspect that
observations are correlated within groups (operationalized as g).

# varying intercepts

# we will train the model on the observed data in "data"

# but we also need to construct a dataset, "data.test",

# we use data.test to obtain counterfactual predictions

data.test <- data

data.test$z <- 1 - data.test$z

fit <- stan4bart(

# this next line only includes varying intercepts

y ~ z + bart(. - g) + (1 | g),

train = data,

test = data.test

)

To fit a stan4bart model that additionally accommodates varying slopes, the group
structure term can be altered as follows to account for varying slopes across groups:

# varying intercepts and slopes

# this code is similar to above in creating training and
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# test datasets

data.test <- data

data.test$z <- 1 - data.test$z

fit <- stan4bart(

# this next line includes the varying slopes for z

y ~ z + bart(. - g) + (1 + z | g),

train = data,

test = data.test

)

stan4bart has been integrated into the bartCause package for ease of use producing
estimates of a variety of causal estimands. However, they can be manually extracted in the
following manner:

## CATE

# Each draw is from the posterior of the expected value

# of the response under the observed and counterfactual

# treatment conditions.

# Matrices of size: n.observations x n.samples

mu.obs.samples <- extract(fit, sample = "train")

mu.cf.samples <- extract(fit, sample = "test")

z <- data$z

mu.1.samples <- z * mu.obs.samples + (1 - z) * mu.cf.samples

mu.0.samples <- (1 - z) * mu.obs.samples + z * mu.cf.samples

icate.samples <- mu.1.samples - mu.0.samples

cate.samples <- rowMeans(icate.samples)

# Estimands

cate <- mean(cate.samples)

cate.lb <- cate - 1.96 * sd(cate.samples)

cate.ub <- cate + 1.96 * sd(cate.samples)

## SATE

# Draw from the posterior predictive distribution.

y.obs <- data$y

y.cf.samples <- extract(fit, sample = "test", value = "ppd")

y.1.samples <- z * y + (1 - z) * y.cf.samples

y.0.samples <- (1 - z) * y + z * y.cf.samples

ite.samples <- y.1.samples - y.0.samples

sate.samples <- rowMeans(ite.samples)

sate <- mean(sate.samples)

sate.lb <- sate - 1.96 * sd(sate.samples)

sate.ub <- sate + 1.96 * sd(sate.samples)

To obtain intervals and estimates for effects on the treated population, subset the individual
effect matrices prior to averaging across rows.

5.3. Fixed vs. Random Effects

It is worth noting that we assume that our causal assumptions have not changed
from above. That is, the grouping variables are not acting as confounders, they impact
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only the error structure of the data generating process (henceforth, DGP). Of course, in
practice, in any given setting, it is always possible that ignorability would not be satisfied
solely given the other covariates but would be satisfied when conditioning on the grouping
variable as well. In that case it might be helpful to include the grouping variable as a
fixed effect as well, since the random effects assumption would not be expected to hold,
and conditioning on group level fixed effects allows one to control for any unmeasured
group level confounders. In the most likely scenario that ignorability is not satisfied
even conditional on the grouping variable—that is, there are unmeasured individual level
confounders—a random effects specification tends to be a reasonable compromise between
ignoring the group level structure entirely and using fixed effects, as fixed effects can act as
bias-amplifying covariates [56,57].

6. Simulation Design

We designed a set of simulations to better understand the properties of stan4bart
relative to close alternatives that either (1) have parametric assumptions or (2) cannot
explicitly accommodate more general error structures. This section outlines our simulation
design which has the general goal of trying to mimic a realistic data structure.

6.1. Original IHDP Simulation

The basic structure of our simulation mimics the simulation structure developed by
Hill [1] in the paper that first introduced machine learning for causal inference. This simu-
lation used data from a randomized experiment called the Infant Health and Development
Program (IHDP; [58,59]) conducted in the 1980s to understand whether intensive childcare
in the first few years of life could have a positive impact on the development of children
who were born low-birth-weight and premature.

This study randomized roughly one third of the 985 participating families to partici-
pate in the IHDP intervention. Participants were eligible for intensive, high-quality child
care and home visits from a trained provider during the first three years of infancy. A subset
of the covariates collected during the baseline phase of that study and used frequently
in subsequent evaluations of the IHDP program were included as the covariates for that
simulation. Thus, the simulation reflected the actual distributions for and associations
among covariates found naturally in existing data. The simulation covariates comprised six
continuous, nine binary, and two unordered categorical variables reflecting child measure-
ments at birth, the mother’s sociodemographic characteristics at the time of birth, behaviors
engaged in during pregnancy, and indicators for the study site.

To construct an observational study for the simulation, a hypothetical treatment as-
signment was induced by removing a nonrandom portion of the originally randomized
treatment group, those children born to nonwhite mothers. This destroyed the indepen-
dence between the originally randomized treatment assignment and the covariates but
maintained the common support for the new treatment group. By simulating outcomes for
the remaining sample with a mean structure that was a function solely of the treatment
and covariates, ignorability was satisfied by construction.

To explore the ability of BART to flexibility fit nonlinear response surfaces, three
different DGPs were used to generate potential outcomes. Response surface A was linear
for both E[Y(0) | X = x] and E[Y(1) | X = x] and had a constant treatment effect. Response
surface B created heterogeneous treatment effects by keeping the model for E[Y(0) | X = x]
linear but allowing the model for E[Y(1) | X = x] to be nonlinear by exponentiating a
linear combination of the covariates. Response surface C created heterogeneous treatment
effects by including a variety of squared terms and interactions.

In the original paper [1], this simulation was used to demonstrate the superior perfor-
mance of BART for causal inference relative to linear regression and a generic implementa-
tion of propensity score methods. Since Hill [1] was published, testing grounds have been
developed that allow for comparisons between BART and propensity score methods, in
which the propensity score methods were able to be more carefully curated by method-
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ologists who were experts in that field. These have also shown superior performance of
BART [15]. While that paper also explored performance in settings where the common
support assumption was violated, the current study restricted attention to scenarios where
common support was satisfied to allow space for exploring features of the data specific to
multilevel settings.

6.2. Extensions to the Original IHDP Simulation

This section details how we extended the original IHDP simulation to allow for a
group structure and explore other features of the DGP.

6.2.1. Adding Group Structure to the Response Surfaces

We wanted to create a grouped structure that would mimic those features of a grouped
data structure that exist naturally. Therefore, we repurposed two variables that were used
as covariates in the original IHDP simulation and treated them as grouping variables in
the current simulation. The first of these was the collection of eight indicators for the
study site (a blocking variable in the original IHDP experiment). The other was a variable
representing the mothers’ age at birth (treated as continuous in the original simulation)
which had 26 levels.

These groups were incorporated into the response surface in two different ways. The
varying intercepts setting generated data from the respective response surface

Yi(0) | λint
g[i], ε0

i = hz(xi) + λint
g[i] + ε0

i ,

Yi(1) | λint
g[i], ε1

i = hz(xi) + λint
g[i] + τ∗ + ε1

i ,

λint
g ∼ N(0, σλint),

ε0
i ∼ N(0, σ0),

ε1
i ∼ N(0, σ1),

where hz(xi) reflects the function of the covariates specific to the given potential outcome
and either response surface A, B, or C. τ∗ only appears in the model for Y(1) and represents
the constant treatment effect when h0(xi) = h1(xi) in response surface A. In response
surface B and C, these are not equal an thus heterogenous treatment effects that vary with
levels of the covariates are induced. The asterisk is meant to remind the reader that τ∗

should not necessarily be interpreted as a constant or average treatment effect. λint
g is the

varying intercept that corresponds to the grouping variable in question.
In contrast, the varying intercepts and slopes setting generated data from an aug-

mented version of the above

Yi(0) | λint
g[i], ε0

i = hz(xi) + λint
g[i] + ε0

i ,

Yi(1) | λint
g[i], λslo

g[i], ε1
i = hz(xi) + λint

g[i] + λslo
g[i] + ε1

i ,

λint
g ∼ N(0, σλint),

λslo
g ∼ N(0, σλslo),

ε0
i ∼ N(0, σ0),

ε1
i ∼ N(0, σ1).

This specification allowed the model for Y(1) to include the term λslo
g[i] rather than the

τ∗ in the varying intercepts specification so that treatment effects could vary explicitly by
group according to a distribution of varying slopes.

The choice of grouping variable and whether or not the varying slopes were included
in the DGP represented two distinct simulation knobs, each with two levels. Combined
with the three response surfaces discussed above, this created 12 different settings within
which to evaluate performance.
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6.2.2. Additional Simulation Knobs Explored

We also explored the variation in performance across two settings that are not repre-
sented in the results in the next section for the sake of parsimonious exposition. First, we
assessed the variation in performance based on the size of the treatment effect. Expressed in
units standardized by the standard deviation of the outcome, these effect sizes we examined
were 0, 0.2, 0.5, and 0.8. We found no difference in results across these choices. We also
tested the differences in performance based on intraclass correlation values of 0.2, 0.333
and 0.5. We also found no difference in results across these choices.

6.3. Methods Compared

We compared the performance of a variety of methods in an attempt to understand
the advantages of combining flexible modeling with the ability to explicitly incorporate
more complicated grouped error structures.

6.3.1. Linear Models

We fit several linear models to the data. Linear full pool is a linear regression where
the groups are ignored entirely. Linear f.e. is a linear regression with fixed effects included
for the grouping variables; this represents our no pooling option. Linear v.i. is a linear
regression with varying intercepts. Linear v.i.s is a linear regression with varying intercepts
and varying slopes, where the slopes in question are the coefficients on the treatment
variable. Each of the last two were fit using the stan_lmer function in rstanarm.

Given that the group-level estimands were one of our areas of focus it seemed unfair to
not include versions of the above that more explicitly targeted these estimands. We included
two additional models with this in mind. LinearX f.e. is a standard linear regression that
includes both fixed effects and interactions between the fixed effects and the treatment
variable. LinearX v.i.s. is an implementation of the stan_lmer function that allows for both
varying intercepts and varying treatment effects.

6.3.2. BART-Based Models

We also fit several different versions of BART models. vanilla BART uses a traditional
BART specification similar to that used in Hill [1] but specifically omitting the grouping
variables and including the propensity score as a covariate. BART f.e. extends this basic
implementation by adding fixed effects for the grouping variables. BART v.i. is a BART
implementation that allows for varying intercepts through the rbart_vi function in dbarts.
All BART implementations included a propensity score as suggested by Hahn et al. [7]. The
propensity score was estimated using BART using a hyperprior on the end-node variance,
making it extremely unlikely to take on small values and thus overfit, essentially guarding
against the problems induced by the originally proposed implementation [37]. Finally, we
also implemented Bayesian causal forests, which we denote vanilla BCF and BCF f.e.

6.3.3. stan4bart Implementations

We implemented two different versions of stan4bart. The simpler version, stan4bart

v.i., allows for varying intercepts. The slightly more complicated version, stan4bart v.i.s.,
allows for varying intercepts and slopes.

To fit stan4bart v.i., models with varying intercepts were specified as:

fit <- stan4bart(

y ~ bart(. - g) + (1 | g),

train = data,

test = data.test

)

Fitting stan4bart v.i.s. allowed for a variation in both intercepts and slopes and was
specified as:
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fit <- stan4bart(

y ~ bart(. - g) + (1 + z | g),

train = data,

test = data.test

)

7. Simulation Results

We compared methods based on performance with respect to several criteria for each
of our targeted estimands. We present the results for each estimand in turn.

7.1. SATT

We evaluated the performance with respect to SATT for each of our methods across the six
different settings by focusing on the root-mean-square error (RMSE), average interval length,
and coverage. The RMSE and interval length were standardized by the standard deviation of
the outcome variable so that the absolute size of each measure was more meaningful.

Figure 1 displays the results of our simulations for each method with respect to SATT
as measured by RMSE (y-axis) and the average interval length using six plots. Rows
correspond to response surfaces (A, B, or C) and columns to the metric displayed (RMSE
or interval length). The results specific to the choice of grouping variable (group 1 or
group 2) are displayed on each plot with different shapes (triangle or circle, respectively).
The grouping structure is represented by whether the plotted shape is hollow (varying
intercept) or filled (varying intercept and slope).

Figure 1. Results of our simulations for each method with respect to SATT as measured by RMSE (left

panel) and average interval length (right panel). Each row corresponds to one of the three response
surfaces (A, B, or C). Shapes are used to represent one of two grouping structures, triangles are for
results from grouping structure 1, and circles for results from grouping structure 2. Hollow shapes
represent results from DGPs with random intercepts and solid shapes represent results from DGPs
with random intercepts and random slopes.

The results for the linear response surface (A) demonstrate strong performance overall
from all methods with regard to RMSE with the possible exceptions of the vanilla BART and
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BCF implementations and the pooled linear regressions in the group 2 version of the DGPs.
Given the simplicity of the response surface, these results are not surprising—the only
complexity is the grouping structure. The differences across methods are more apparent
in the average interval lengths. Here, the linear models that allow for variation (either
intercept or slope) have the shortest intervals followed by the BCF and stan4bart methods.
These are followed by BCF with fixed effects and linear regression, and then the BART
methods with fixed effects and varying effects. The BART implementations that completely
ignore the grouped variables not surprisingly performs the worst overall on this metric.
One odd result is the linear model with varying slopes, which performs reasonably well
with regard to the interval length for the first grouping variable but much worse for the
second. We suspect that this has to do with the fact that while the group 1 version has
more levels, the correlation structure of group 2 is more complex. The effect of different
correlation on the performance of different methods is beyond the scope of this paper but
is an issue that could be explored in future simulation studies.

The ordering with regard to performance changes for some methods once we move
to the results for the nonlinear response surfaces in the second and third rows. These are
more challenging for all of the methods (note the change in the y-axis) but particularly for
those that have strict linear parametric requirements. The strongest consistent performers
with regard to RMSE are the stan4bart methods, BCF f.e., BART v.i., and BART f.e.. The
versions of BCF and BART that ignore the group structure perform fine in the setting with
the first grouping variable (triangles) but less well with the second (circles). The linear
models perform the worst. The best performers with regard to the average interval length
are again the flexible fitters with an edge once again for the stan4bart and BCF methods.

The performance with regard to the interval length for response surfaces B and C
highlights the differences between the stan4bart methods and BCF f.e. relative to vanilla
BCF (with just slightly longer intervals) and the BART methods with grouping structure.
The linear methods trail with LinearX v.i.s., demonstrating by far the longest intervals.
Vanilla BART has longer intervals than the best linear models for response surface B and
slightly longer ones for response surface C.

A shorter interval length is only an asset, however, if nominal coverage is achieved.
Figure 2 displays the coverage results for the top contenders across our 12 settings. In
addition, the plots include the average interval length across grouping settings for each
response surface as part of the method label on the x-axis. These plots indicate that the
stan4bart methods seem to strike the best balance between having a low RMSE and shorter
intervals while still maintaining nominal coverage. The BCF methods which performed
similarly to the stan4bart methods with regard to the RMSE and interval length struggled
a bit more to achieve nominal coverage, particularly for response surface B.

7.2. GSATT

The results for the group-level ATTs are more complicated because we have many
more estimands to consider (one for each group). Thus, we organized the plots to display
the RMSE and interval length results on separate plots. Since there was virtually no
distinction in the results between the two grouping settings—varying intercept versus
varying intercept and slope—we elected to collapse those results. Instead, we broke out
our group 1 and group 2 results into separate sets of plots (top and bottom panels).

Figure 3 displays the RMSE for each method (x-axis) and group-level estimand across
the six settings defined by the response surface (columns) and grouping variable (rows).
The performance for each method is displayed in its own column with separate points for
each estimand (group-level ATT). The average RMSE across estimands for each method
is displayed next to the label for its name for each response surface (collapsed across
settings defined by grouping variable). Across all of the response surfaces, the stan4bart

methods perform the best followed very closely by BCF f.e. and then the other BART-based
methods. The linear methods perform noticeably worse in all settings but in particular
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when the response surface is nonlinear (B) and additionally when the treatment effects are
heterogeneous by covariate values (C).

Figure 2. Percentage of 95% intervals that covered the true SATT for each of the top-performing
methods. Results are presented separately by settings defined by response surface (columns A, B, C)
and multilevel structure (rows: varying intercepts or varying intercepts and slopes). Results from
settings defined by grouping variable are displayed on the same plot with different symbols. Labels
on the x-axis additionally provide the average interval length (across both grouping settings).

Figure 4 displays the average interval length for each method (x-axis) across the six
settings defined by the response surface (columns) and grouping variables (rows). The
performance for each method is displayed in its own column with separate points for
each estimand (group-level ATT). The results that achieved nominal coverage for a given
estimand are displayed with solid rather than open circles for each group-level estimand.

The average coverage for each method and response surface combination (collapsed
across other sources of variability) is displayed next to the name of each method. For
response surface A, the linear methods with varying intercepts and slopes have the short-
est intervals; however, the coverage with respect to the group estimands is quite poor,
averaging 41% and 44%. The interval length for these methods increases with the more
complicated response surfaces and in the scenarios with the first group variable is more
variable across group estimands. LinearX f.e. performs the worst in terms of interval
length but has better coverage properties across the board.

The other methods perform reasonably similarly with regard to the distribution of interval
lengths across group-level estimands; however, the stan4bart implementations and BCF f.e.

are also able to maintain the best coverage. stan4bart v.i.s is the only method that achieves
nominal average coverage across all three response surfaces and vanilla BCF performs the
worst in this regard with an average coverage dipping to 80% for response surface B.

Figure 5 displays the coverage percentages separately for each combination of method,
grouping variable, and estimand and is thus capable of revealing greater distinctions across
methods that looked similar in the previous plot. With one exception, the stan4bart

demonstrate the least variability in coverage rates across groups. vanilla BCF has the
greatest variability in coverage among the flexible models. LinearX t.e. is unable to provide
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reasonable coverage in the setting with the second grouping variable; however, it performs
far better with respect to the covariate of group-level estimands than the other linear
methods for the setting defined by the first grouping variable.

Figure 3. RMSE results for the group-level estimands across methods. Each plot corresponds to a
setting defined by grouping variable (row) and response surface (column). Results are collapsed
across the settings defined by varying intercepts versus varying intercepts and slopes. Average RMSE
across these settings and across estimands are displayed numerically next to the name of each method,
separately for each response surface. Estimands that were covered by a 95% interval produced by the
method were filled in rather than left hollow.

7.3. iCATEs

We evaluated the ability of each method to estimate the CATE for each combination of
covariate values that manifested in each sample as the iCATEs. To compare performance,
we used the metric proposed in Hill [1], the precision in estimation of heterogeneous effects
measure, or PEHE. This was calculated within each dataset for a given method as the
square root of the average of the squared differences between the estimate of the iCATE
and the true iCATE for each person.

Figure 6 displays the PEHE results for each of the methods across the six settings
defined by response surface and multilevel setting (varying intercepts versus varying inter-
cepts and slopes). Results are collapsed across the DGPs defined by the grouping variable.

For the linear response surface A, which has a constant treatment effect, all of the
methods perform similarly which is not surprising given the ease of the task. The only
method that noticeably performs a bit worse is the linear model with fixed effects interacted
with the treatment, likely because it is overfitting. The landscape changes for the nonlinear
response surfaces where the top performing methods are the flexible models with the
strongest performance demonstrated by the stan4bart methods, BCF with fixed effects,
and BART with varying intercepts.
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Figure 4. Interval length results for the group-level estimands across methods. Each plot corresponds
to a setting defined by grouping variable (row) and response surface (column). Results are collapsed
across the settings defined by varying intercepts versus varying intercepts and slopes. Average
coverage across these settings and across estimands are displayed numerically next to the name
of each method, separately for each response surface. Within each vertical panel the methods are
ordered by average interval length across both grouping variable settings and estimands. Estimands
that were covered by a 95% interval produced by the method were filled in rather than left hollow.

Figure 5. Coverage rates for each method with respect to each of the group-level estimands. Plots
vary by settings defined by grouping variable (rows) and response surface (columns A, B, and C) and
are collapsed across grouping scenarios (varying intercept versus varying intercept and slope).
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Figure 6. PEHE results for each of the methods across the six settings defined by response surface
(columns A, B, and C) and multilevel setting (rows corresponding to varying intercepts versus varying
intercepts and slopes). Results are collapsed across the DGPs defined by the grouping variable.

8. Discussion

The goal of this work was to develop a method that could extend the BART framework
for the flexible fitting of response surfaces to accommodate more complex error structures.
We evaluated the utility of this approach by assessing performance in a causal inference
context that allowed for varying intercepts or varying intercepts and slopes. For one of our
three response surfaces, this heterogeneity was in addition to the heterogeneity in treatment
effects that was a systematic (nonrandom) function of observed confounders.

Our results indicated that the stan4bart models provided superior performance when
compared against both methods with flexible fit that did not allow for a more complicated
error structure as well as methods that explicitly accommodated a grouped error structure but
assumed a linear parametric mean structure. Throughout, BCF was a strong competitor on all
performance measures even though it did not explicitly accommodate the error structure.

We evaluated stan4bart in a causal setting, which is generally more challenging than
standard prediction settings. Given its strong performance in this challenging setting, we
recommend the use of stan4bart both in causal and noncausal settings. More broadly, we
hope that stan4bart will be a jumping-off point for the further development of methods
that aim to marry flexible mean structures with parametric approaches to either the mean
structure or the grouped error structure.
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Abstract: Thanks to technological advances leading to near-continuous time observations, emerging
multivariate point process data offer new opportunities for causal discovery. However, a key
obstacle in achieving this goal is that many relevant processes may not be observed in practice.
Naïve estimation approaches that ignore these hidden variables can generate misleading results
because of the unadjusted confounding. To plug this gap, we propose a deconfounding procedure to
estimate high-dimensional point process networks with only a subset of the nodes being observed.
Our method allows flexible connections between the observed and unobserved processes. It also
allows the number of unobserved processes to be unknown and potentially larger than the number of
observed nodes. Theoretical analyses and numerical studies highlight the advantages of the proposed
method in identifying causal interactions among the observed processes.

Keywords: causal discovery; Hawkes process; high-dimensional statistics; hidden confounder

1. Introduction

Learning causal interactions from observational multivariate time series is generally
impossible [1,2]. Among many challenges, two of the most important ones are that (i) the
data acquisition rate may be much slower than the underlying rate of changes; and (ii) there
may be unmeasured confounders [1,3]. First, due to the cost or technological constraints,
the data acquisition rate may be much slower than the underlying rate of changes. In such
settings, the most commonly used procedure for inferring interactions among time series,
Granger causality, may both miss true interactions and identify spurious ones [4–6]. Second,
the available data may only include a small fraction of potentially relevant variables,
leading to unmeasured confounders. Naïve connectivity estimators that ignore these
confounding effects can produce highly biased results [7]. Therefore, reliably distinguishing
causal connections between pairs of observed processes from correlations induced by
common inputs from unobserved confounders remains a key challenge.

Learning causal interactions between neurons is critical to understanding the neural
basis of cognitive functions [8,9]. Many existing neuroscience data, such as data collected
using functional magnetic resonance imaging (fMRI), have relatively low temporal res-
olutions, and are thus of limited utility for causal discovery [10]. This is because many
important neuronal processes and interactions happen at finer time scales [11]. New tech-
nologies, such as calcium florescent imaging that generate spike train data, make it possible
to collect ‘live’ data at high temporal resolutions [12]. The spike train data, which are multi-
variate point processes containing spiking times of a collection of neurons, are increasingly
used to learn the latent brain connectivity networks and to glean insight into how neurons
respond to external stimuli [13]. For example, Bolding and Franks [14] collected spike train
data on neurons in mouse olfactory bulb region at 30 kHz under multiple laser intensity
levels to study the odor identification mechanism. Despite progress in recording the activity
of massive populations of neurons [15], simultaneously monitoring a complete network
of spiking neurons at high temporal resolutions is still beyond the reach of the current
technology. In fact, most experiments only collect data on a small fraction of neurons,
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leaving many unobserved neurons [16–18]. These hidden neurons may potentially interact
with the neurons inside the observed set and cannot be ignored. Nevertheless, given its
high temporal resolution, spike train data provide an opportunity for causal discovery if
we can account for the unmeasured confounders.

When unobserved confounders are a concern, causal effects among the observed
variables can be learned using causal structural learning approaches, such as the Fast
Causal Inference (FCI) algorithm and its variants [1,19]. However, these algorithms may
not identify all causal edges. Specifically, instead of learning the directed acyclic graph
(DAG) of causal interactions, FCI learns the maximally ancestral graph (MAG). This
graph includes causal interactions between variables that are connected by directed edges,
but also bi-directed edges among some other variables, leaving the corresponding causal
relationships undetermined. As a result, causality discovery using these algorithms is
not always satisfactory. For example, Malinsky and Spirtes [20] recently applied FCI to
infer causal network of time series and found a low recall for identifying the true casual
relationships. Additionally, despite recent efforts [21], causal structure learning remains
computationally intensive, because the space of candidate causal graphs grows super-
exponentially with the number of network nodes [22].

The Hawkes process [23] is a popular model for analyzing multivariate point process
data. In this model, the probability of future events for each component can depend
on the entire history of events of other components. Under straightforward conditions,
the multivariate Hawkes process reveals Granger causal interactions among multivariate
point processes [24]. Moreover, assuming that all relevant processes are observed in a linear
Hawkes process, causal interactions among components can also be inferred [25]. The
Hawkes process thus provides a flexible and interpretable framework for investigating the
latent network of point processes and is widely used in neuroscience applications [26–32].

In modern applications, it is common for the number of measured components,
e.g., the number of neurons, to be large compared to the observed period, e.g., the duration
of neuroscience experiments. The high-dimensional nature of data in such applications
poses challenges to learning the connectivity network of a multivariate Hawkes process.
To address this challenge, Hansen et al. [33] and Chen et al. [34] proposed �1-regularized
estimation procedures and Wang et al. [35] recently developed a high-dimensional infer-
ence procedure to characterize the uncertainty of these regularized estimators. However,
due to the confounding from unobserved neurons in practice, existing estimation and in-
ference procedures assuming complete observation from all components, may not provide
reliable estimates.

Accounting for unobserved confounders in high-dimensional regression has been
the subject of recent research. Two such examples are HIVE [36] and trim regression [37],
which facilitate causal discovery using high-dimensional regression with unobserved
confounders. However, these methods are designed for linear regression with independent
observations and do not apply to the long-history temporal dependency setting of Hawkes
processes. Moreover, they rely on specific assumptions on observed and unobsvered causal
effects, which are not clear to hold in neuronal network settings.

In this paper, we consider learning causal interactions among high-dimensional point
processes with (potentially many) hidden confounders. Considering the generalization
of the above two approaches to the setting of Hawkes processes, we show that the as-
sumption required by trim regression is more likely to hold in a stable point process
network, especially when the confounders affect many observed nodes. Motivated by
this finding, we propose a generalization of the trim regression, termed hp-trim, for causal
discovery from high-dimensional point processes in the presence of (potentially many)
hidden confounders. We establish a non-asymptotic convergence rate in estimating the
network edges using this procedure. Unlike the previous result for independent data [37],
our result considers both the temporal dependence of the Hawkes processes as well as the
network sparsity. Using simulated and real data, we also show that hp-trim has superior
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finite-sample performance compared to the corresponding generalization of HIVE for point
processes and/or the naïve approach that ignores the unobserved confounders.

2. The Hawkes Processes with Unobserved Components

2.1. The Hawkes Process

Let {tk}k∈Z be a sequence of real-valued random variables, taking values in [0, T],
with tk+1 > tk and t1 ≥ 0 almost surely. Here, time t = 0 is a reference point in time,
e.g., the start of an experiment, and T is the duration of the experiment. A simple point
process N on R is defined as a family {N(A)}A∈B(R), where B(R) denotes the Borel σ-field
of the real line and N(A) = ∑k 1{tk∈A}. The process N is essentially a simple counting
process with isolated jumps of unit height that occur at {tk}k∈Z. We write N([t, t + dt)) as
dN(t), where dt denotes an arbitrarily small increment of t.

Let N be a p-variate counting process N ≡ {Ni}i∈{1,...,p}, where, as above, Ni satisfies
Ni(A) = ∑k 1{tik∈A} for A ∈ B(R) with {ti1, ti2, . . . } denoting the event times of Ni. Let
Ht be the history of N prior to time t. The intensity process {λ1(t), . . . , λp(t)} is a p-variate
Ht-predictable process, defined as

λi(t)dt = P(dNi(t) = 1 | Ht). (1)

Hawkes [23] proposed a class of point process models in which past events can affect
the probability of future events. The process N is a linear Hawkes process if the intensity
function for each unit i ∈ {1, . . . , p} takes the form

λi(t) = μi +
p

∑
j=1

(
ωij ∗ dNj

)
(t), (2)

where (
ωij ∗ dNj

)
(t) =

∫ t−

0
ωij(t− s)dNj(s) = ∑

k:tjk<t
ωij(t− tjk). (3)

Here, μi is the background intensity of unit i and ωij(·) : R+ → R is the transfer
function. In particular, ωij(t− tjk) represents the influence from the kth event of unit j on
the intensity of unit i at time t.

Motivated by neuroscience applications [38,39], we consider a parametric transfer
function ωij(·) of the form

ωij(t) = βijκj(t) (4)

with a transition kernel κj(·) : R+ → R that captures the decay of the dependence on past
events. This leads to

(
ωij ∗ dNj

)
(t) = βijxj(t), where the integrated stochastic process

xj(t) =
∫ t−

0
κj(t− s)dNj(s) (5)

summarizes the entire history of unit j of the multivariate Hawkes processes. A commonly
used example is the exponential transition kernel, κj(t) = e−t [40].

Assuming that the model holds and all relevant processes are observed, it follows
from [40] that the connectivity coefficient βij represents the strength of the causal dependence
of unit i’s intensity on unit j’s past events. A positive βij implies that past events of unit
j excite future events of unit i and is often considered in the literature (see, e.g., [40,41]).
However, we might also wish to allow for negative βij values to represent inhibitory
effects [34,42], which are expected in neuroscience applications [43].

Denoting x(t) = (x1(t), . . . , xp(t))� ∈ Rp and βi = (βi1, . . . , βip)
� ∈ Rp, we can

write

λi(t) = μi + x�(t)βi. (6)
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Furthermore, let Yi(t) = dNi(t)/dt and εi(t) = Yi(t) − λi(t). Then the linear Hawkes
process can be written compactly as

Yi(t) = μi + x�(t)βi + εi(t). (7)

2.2. The Confounded Hawkes Process

Because of technology constraints, neuroscience experiments usually collect data from
only a small portion of neurons. As a result, many other neurons that potentially interact
with the observed neurons will be unobserved. Consider a network of p + q counting
processes, where we only observe the first p components. The number of unobserved
neurons, q, is usually unknown and likely much greater than p. Extending (7) to include
the unobserved components, we obtain the confounded Hawkes model,

Yi(t) = μi + x�(t)βi + z�(t)δi + εi(t), (8)

in which z(t) = (xp+1(t), . . . , xp+q(t))� ∈ Rq denotes the integrated processes of the
hidden components, and δi ∈ Rq denotes the connectivity coefficients from the unobserved
components to unit i.

Unless the observed and unobserved processes are independent, the naïve estimator
that ignores the unobserved components will produce misleading conclusion about the
causal relationship among the observed components. This is illustrated in the simple linear
vector autoregressive process of Figure 1. This example includes three continuous random
variables generated according to the following set of equations

Y1(t) = Y1(t− 1) + Y2(t− 1) + ε1(t− 1)

Y2(t) = Y3(t− 1) + ε2(t− 1)

Y3(t) = Y3(t− 1) + ε2(t− 1),

where εi are mean zero innovation or error terms. The Granger causal network correspond-
ing to the above process is shown in Figure 1A. Figure 1B shows that if Y3 is not observed,
the conditional means of the observed variables Y1 and Y2, namely,

E{Y1(t) | Y1(t− 1), Y2(t− 1)} = Y1(t− 1) + Y2(t− 1)

E{Y2(t) | Y1(t− 1), Y2(t− 1)} = Y2(t− 1),

leads to incorrect Granger causal conclusions—in this case, a spurious autoregressive
effect from the past values of Y2. The same phenomenon occurs in Hawkes processes with
unobserved components.

Throughout this paper, we assume that the confounded linear Hawkes model in (8) is
stationary, meaning that for all units i = 1, . . . , p, the spontaneous rates μi and strengths of
transition (βi, δi) are constant over the time range [0, T] [44,45].
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Figure 1. Illustration of the effect of hidden confounders on inferred causal interactions among
the observed variables. (A) The true causal diagram for the complete processes. (B) The causal
structure of the observed process when the hidden component, Y3, is ignored, including a spurious
autoregressive effect of Y2 on its future values.

3. Estimating Causal Effects in Confounded Hawkes Processes

3.1. Extending Trim Regression to Hawkes Processes

Let bi ∈ Rp be the projection coefficient of z�(t)δi onto x(t) such that

Cov
(

x(t), z�(t)δi − x�(t)bi

)
= 0. (9)

We can write the confounded linear Hawkes model in (8) in the form of the perturbed
linear model [37]:

Yi(t) = μi + x�(t)(βi + bi) + νi(t), (10)

where νi(t) =
(
z�(t)δi − x�(t)bi

)
+ εi(t). By the construction of bi, ν(t) is uncorrelated

with the observed processes x(t) and bi represents the bias, or the perturbation, due to the
confounding from z�(t)δi. In general, bi �= 0 unless Cov(x(t), z(t)) = 0.

The perturbed model in (10) is generally unidentifiable because we can only estimate
βi + bi from the observed data, e.g., by regressing Yi(t) on x(t). The trim regression [37]
is a two-step deconfounding procedure to estimate βi for independent and Gaussian-
distributed data. The method first applies a simple spectral transformation, called trim
transformation (described below), to the observed data. It then estimates βi, using pe-
nalized regression. When bi is sufficiently small, the method consistently estimates βi.
Although this condition is generally not valid for Gaussian-distributed data, previous
work on Hawkes processes [34] implies that the confounding magnitude cannot be large
when the underlying network is stable, particularly when the confounders affect many
observed components (see the discussion following Corollary 1 in Section 4). This allows
us to generalize the trim regression to learn the network of multivariate Hawkes processes.

Assume, without loss of generality, that the first p components are observed at times
indexed from 1 to T. Let X ∈ RT×p be the design matrix of the observed integrated
process and Yi = (Yi(1), . . . , Yi(T))

� ∈ RT be the vector of observed outcomes. Further, let
X = UDV� be the singular value decomposition on X, where U ∈ RT×r, D ∈ Rr×r and
V ∈ Rp×r; here, r = min(T, p) is the rank of X. Denoting the non-zero diagonal entries of
D by d1, . . . , dr, the spectral transformation F : RT×p → RT×p is given by

F = U

⎛⎜⎜⎜⎝
d̃1/d1 0 . . . 0

0 d̃2/d2 . . . 0
...

...
. . .

...
0 0 . . . d̃r/dr

⎞⎟⎟⎟⎠U�. (11)
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Denoting by D̃ a diagonal matrix with entries d̃1, . . . , d̃r, the first step of hp-trim
involves applying the spectral transformation to the observed data to obtain

X̃ = FX = UD̃V�, (12)

Ỹ = FY. (13)

The spectral transformation is designed to reduce the magnitude of confounding.
In particular, when bi aligns with the top eigen-vectors of X, for an appropriate F, e.g., d̃k =
min(τ, dk) as used in previous work [37], the magnitude of X̃bi is small compared with Xbi.
Here, τ is a threshold parameter and the trim transformation is a special case of the spectral
transformation when τ = median(d1, . . . , dr). See Ćevid et al. [37] for additional details.

In the second step, we then estimate the network connectivities using the transformed
data by solving the following optimization problem

arg min
μi∈R,βi∈Rp

1≤i≤p

p

∑
i=1

{
1
T

∥∥∥Ỹi − μi − X̃βi

∥∥∥2

2
+ λ‖βi‖1

}
, (14)

which is an instance of lasso regression [46] and can be solved separately for each i ∈
{1, . . . , p}.

3.2. An Alternative Approach

HIdden Variable adjustment Estimation (HIVE) [36] is an alternative method for
estimating coefficients of a linear model with independent and Gaussian-distributed data
in the presence of latent variables. Adapted to the network of multivariate point processes,
HIVE first estimates the latent column space of the unobserved connectivity matrix, Δ =(
δ1 . . . δp

)� ∈ Rp×q , with δi defined in (8). It then projects the outcome vector, Y(t) =(
Y1(t), . . . , Yp(t)

)�, onto the space orthogonal to the column space of Δ. Assuming that

the column space of the observed connectivity matrix, Θ =
(

β1 . . . βp
)� ∈ Rp×p is

orthogonal to that of Δ, HIVE consistently estimates Θ using the transformed data. While
the orthogonality assumption might be satisfied when the hidden processes are external,
such as experimental perturbations in genetic studies [47], it might be too stringent in
a network setting. However, when the orthogonality assumption fails, HIVE may lead
to poor edge selection performance, and potentially worse than the naïve method that
ignores the hidden processes. HIVE also requires the number of hidden variables to
be known. Although methods in selecting the number of hidden variables have been
proposed, the resulting theoretical guarantees would only be asymptotic. An over- or
under-estimated number can either miss the true edges or generate false ones. Given these
limitations, we outline the extension of HIVE for Hawkes processes in Appendix A and
refer the interested reader to Bing et al. [36] for details.

4. Theoretical Properties

In this section we establish the recovery of the network connectivity in the presence of
hidden processes. Technical proofs for the results in this section are given in Appendix B.

We start by stating our assumptions. For a square matrix A, let Λmax(A) and Λmin(A)
be its maximum and minimum eigenvalues, respectively.

Assumption 1. Let Ω = {Ωij}1≤i,j≤p+q ∈ R(p+q)×(p+q) with entries Ωij =
∫ ∞

0 |ωij(Δ)|dΔ.
There exists a constant γΩ such that Λmax(ΩTΩ) ≤ γ2

Ω < 1.

Assumption 1 is necessary for stationarity of a Hawkes process [34]. The constant γΩ does
not depend on the dimension p + q. For any fixed dimension, Brémaud and Massoulié [44]
show that given this assumption the intensity process of the form (6) is stable in distribu-
tion and, thus, a stationary process exists. Since our connectivity coefficients of interest are
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ill-defined without stationarity, this assumption provides the necessary context for our estima-
tion framework.

Assumption 2. There exists λmin and λmax such that

0 < λmin ≤ λi(t) ≤ λmax < ∞, t ∈ [0, T]

for all i = 1, . . . , p + q.

Assumption 2 requires that the intensity rate is strictly bounded, which prevents degen-
erate processes for all components of the multivariate Hawkes processes. This assumption
has been considered in the previous analysis of Hawkes processes [33–35,42,48].

Assumption 3. The transition kernel κj(t) is bounded and integrable over [0, T], for 1 ≤ j ≤
p + q.

Assumption 4. There exists constants ρr ∈ (0, 1) and 0 < ρc < ∞ such that

max
1≤i≤p+q

p+q

∑
j=1

Ωij ≤ ρr and max
1≤j≤p+q

p+q

∑
i=1

Ωij ≤ ρc.

Assumption 3 implies that the integrated process xj(t) in (5) is bounded. Assumption 4
requires maximum in- and out- intensity flows to be bounded, which provides a sufficient
condition for bounding the eigenvalues of the cross-covariance of x(t) [35]. A similar
assumption is considered by Basu and Michailidis [49] in the context of VAR models. To-
gether, Assumptions 3 and 4 imply that the model parameters are bounded, which is often
required in time-series analysis [50]. Specifically, these assumptions restrict the influence
of the hidden processes from being too large.

Define the set of active indices among the observed components, Si = {j : βij �=

0, 1 ≤ j ≤ p}, and si = |Si| and s∗ ≡ max1≤i≤p si. Let Q = 1
T ∑T

t=1

(
1

x(t)

)(
1 x�(t)

)
,

and γmin ≡ Λmin(Q) and γmax ≡ Λmax(Q). Our first result provides a fixed sample bound
on the error of estimating the connectivity coefficients.

Theorem 1. Suppose each of the p-variate Hawkes processes with intensity function defined
in (8) satisfies Assumptions 1–4. Assume (log p) ∨ (s∗)1/2 = o(T1/5). Then, taking λ =
O(Λ2

max(F)T−2/5),∥∥∥βi − β̂i

∥∥∥
1
≤ C1Λ2

max(F)
s∗

γ2
min

T−2/5 + C2Λ−2
max(F)T−3/5

∥∥∥X̃bi

∥∥∥2

2
, 1 ≤ i ≤ p,

with probability at least 1− c1 p2T exp(−c2T1/5), where C1, C2, c1, c2 > 0 depend on the model
parameters and the transition kernel.

Compared to the case with independent and Gaussian-distributed data ([37], Theo-
rem 2), we obtain a slower convergence rate because of the complex dependency of the
Hawkes processes. Our rate takes into account the network sparsity among the observed
components. It also does not depend on the size of unobserved components, q, which is
critical in neuroscience experiments because q is often unknown and potentially very large.

The result in Theorem 1 is different from the corresponding result obtained when all
processes are observed ([35], Lemma 10). More specifically, our result includes an extra
error term, ‖X̃bi‖2

2, which captures the effect of unobserved processes. Next, we show
that when ‖bi‖2

2 is sufficiently small, we obtain a similar rate of convergence as the one
obtained when all processes are observed.
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Corollary 1. Under the same assumptions in Theorem 1, suppose, in addition,

‖bi‖2
2 = O

(
s∗

γ2
minγmax

T−4/5Λ2
max(F)

)
,

∥∥∥βi − β̂i

∥∥∥
1
= O

(
s∗

γ2
min

Λ2
max(F)T−2/5

)
, 1 ≤ i ≤ p,

with probability at least 1 − c1 p2T exp(−c2T1/5), where c1, c2 > 0 depending on the model
parameters and the transition kernel.

The spectral transformation empirically reduces the magnitude of 1
T ‖X̃bi‖2

2, especially
when the confounding vector, bi, stays in the sub-space spanned by top right singular
vectors of X; however, this is not guaranteed to hold for arbitrary bi. Corollary 1 specifies a
condition on bi that leads to consistent estimation of βi, regardless of the empirical perfor-
mance of the spectral transformation. While the condition does not always hold for arbi-
trary stochastic process, it is satisfied for a stable network of high-dimensional multivariate
Hawkes processes when the confounding is dense. Specifically, by the construction of bi in
(9), Assumption 4 implies that ‖bi‖1 = O(‖δi‖1) = O(1). When the confounding effects are
relatively dense—i.e., ‖bi‖0 = O(p), meaning that there are large number of interactions
from unobserved nodes to the observed ones—we obtain ‖bi‖2

2 = O(1/p). Therefore,
the constraint on ‖bi‖2

2 is likely satisfied under a high-dimensional network, when p � T.
The high-dimensional network setting is common in modern neuroscience experiments
where the number of neurons is often large compared to the duration of experiments.

Next we introduce an additional assumption to establish the edge selection consistency.
To this end, we consider the thresholded connectivity estimator,

β̃ij = β̂ij1
(∣∣∣β̂ij

∣∣∣ > τ
)

, 1 ≤ i, j ≤ p.

Thresholded estimators are used for variable selections in high-dimensional network
estimation [51] as they alleviate the need for restrictive irrepresentability assumptions [52].

Assumption 5. There exists τ > 0 such that

min
1≤i,j≤p

βij ≥ βmin > 2τ.

Assumption 5 is called the β-min condition [53] and requires sufficient signal strength
for the true edges in order to distinguish them from 0. Let the estimated edge set Ŝ ={
(i, j) : β̃ij �= 0, 1 ≤ i, j ≤ p

}
and the true edge set S =

{
(i, j) : βij �= 0, 1 ≤ i, j ≤ p

}
. The

next result shows that the estimated edge set consistently recovers the true edge set.

Theorem 2. Under the same conditions in Theorem 1, assume Assumption 5 is satisfied with

τ = O
(

s∗
γ2

min
Λ2

max(F)T−2/5
)

. Then,

P
(

Ŝ = S
)
≥ 1− c1 p2T exp

(
−c2T1/5

)
,

where c1, c2 > 0 depending on the model parameters and the transition kernel.

Theorem 2 guarantees the recovery of causal interactions among the observed compo-
nents. As before, the result is valid irrespsective of the number of unobserved components,
which is important in neuroscience applications.
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5. Simulation Studies

We compare our proposed method, hp-trim, with two alternatives, HIVE and the naïve
approach that ignores the unobserved nodes. To this end, we compare the methods in terms
of their abilities to identify the correct causal interactions among the observed components.

We consider a point process network consisting of 200 nodes with half of the nodes
being observed; that is p = q = 100. The observed nodes are connected in blocks of five
nodes, and half of the blocks are connected with the unobserved nodes (see Figure 2a). This
setting exemplifies neuroscience applications, where the orthogonality assumption of HIVE
is violated. As a sensitivity analysis, we also consider a second setting similar to the first,
in which we remove the connections of the blocks that are not connected with the unob-
served nodes This setting, shown in Figure 3a, satisfies HIVE’s orthogonality assumption.

Figure 2. Edge selection performance of the proposed hp-trim approach compared with estimators
based on HIVE (run with the known (oracle) number of latent features) and the naïve approach. Here,
p = q = 100. (a) Visualization of the connectivity matrix, with unobserved connecitivies colored in
gray and entries corresponding to edges shown in black. This setting violates the orthogonality con-
dition of HIVE because of the connections between the observed and the hidden nodes (represented
by the non-zero coefficients colored in red). (b) Average number of true positive and false positive
edges detected using each method over 100 simulation runs.

To generate point process data, we consider βij = 0.12 and δij = 0.10 in the setting of
Figure 2a, and βij = 0.2 and δij = 0.18 in the setting of Figure 3b. The background intensity,
μi, is set to 0.05 in both settings. The transfer kernel function is chosen to be exp(−t). These
settings satisfy the assumptions of stationary Hawkes processes. In both settings, we set
the length of the time series to T ∈ {1000, 5000} .
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Figure 3. Edge selection performance of the proposed hp-trim approach compared with estimators
based on HIVE and the naïve approach. Here, p = q = 100. (a) Visualization of the connectivity
matrix, with unobserved connecitivies colored in gray and entries corresponding to edges shown in
black. This setting satisfies the orthogonality condition of HIVE, which is run both with and without
assuming known number of latent features. These two versions are denoted HIVE-oracle and HIVE-
empirical, respectively. In HIVE-empirical the number of latent factors is estimated based on the
estimate with highest frequency over the 100 simulation runs (estimated q̂ = 79). (b) Average number
of true positive and false positive edges detected using each method over 100 simulation runs.

The results in Figure 2b shown that hp-trim offers superior performance for both small
and large sample sizes in the first setting. For example, with large sample size, T = 5000,
hp-trim is able to detect almost all 200 true edges at the expense of about 50 falsely detected
edges; this is almost twice as large as the number of true edges detected by HIVE and the
naïve method, which only detect half of the true edges at the same level of falsely detected
edges. The naïve method eventually detects all true edges but at much bigger cost of about
400 falsely detected edges. In this case, HIVE performs poorly and detects at most half
of the true edges, no matter the tolerance level of the number of falsely detected edges.
The poor performance of HIVE is because its stringent orthogonality condition is violated
in this simulation setting. When the orthogonality condition is satisfied (Figure 3a), HIVE
shows the best performance. Specifically, with large sample size, T = 5000, HIVE detects
all true edges almost without identifying any falsely detected edges (the red solid line in
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Figure 3b). However, this advantage requires knowledge of the correct number of latent
features. When the number of latent features is unknown and estimated from data, HIVE’s
performance deteriorates, especially with an insufficient sample size. For example, HIVE
with empirically estimated number of latent features only detect about 40 true edges (out
of a total of 100) at the expense of 100 falsely detected edges (pink lines in Figure 3b). In
contrast, hp-trim’s performance with both moderate and large sample sizes is close to the
oracle version of HIVE (HIVE-oracle). Specifically, with a large sample size, T = 5000,
hp-trim captures all 100 true edges at the expense of 50 falsely detected edges, again than
twice as many true edges as HIVE-empirical.

Although our main focus is on the edge selection relevant for causal discovery, in
Appendix C we also examine the estimation performance of our algorithm on the connec-
tivity coefficients associated with the observed processes. Not surprisingly, the results
indicate that hp-trim can also offer advantages in estimating the parameters, especially in
settings where it offers improved edge selection.

6. Analysis of Mouse Spike Train Data

We consider the task of learning causal interactions among the observed population of
neurons, using the spike train data from Bolding and Franks [14]. In this experiment, spike
times are recorded at 30 kHz on a region of the mice olfactory bulb (OB), while a laser pulse
is applied directly on the OB cells of the subject mouse. The laser pulse has been applied at
increasing intensities from 0 to 50 (mW/mm2). The laser pulse at each intensity level lasts
10 seconds and is repeated 10 times on the same set of neuron cells of the subject mouse.

The experiment consists of spike train data multiple mice and we consider data from
the subject mouse with the most detected neurons (25) under laser (20 mW/mm2) and no
laser conditions. In particular, we use the spike train data from one laser pulse at each
intensity level. Since one laser pulse spans 10 seconds and the spike train data is recorded
at 30 kHz, there are 300,000 time points per experimental replicate.

The population of observed neurons is a small subset of all the neurons in mouse’s
brain. Therefore, to discover causal interactions among the p = 25 observed neurons, we
apply our estimation procedure, hp-trim, along with HIVE and naïve approaches, separately
for each intensity level, and obtain the estimated connectivity coefficients for the observed
neurons. For ease of comparison, the tuning parameters for both methods are chosen to
have about 30 estimated edges; moreover, for HIVE, q is estimated following the procedure
in Bing et al. [36], which is based on the maximum decrease in eigenvalue of the covariance
matrix of the errors, Ẽ(t) in (A1).

Figure 4 shows the estimated connectivity coefficients specific to each laser condition
in a graph representation. In this representation, each node represents a neuron, and a
directed edge indicates a non-zero estimated connectivity coefficient. We see different
network connectivity structures when laser stimulus is applied, which agrees with the
observation by neuroscientists that the OB response is sensitive to the external stimuli [14].

Compared to our proposed method, the naïve approach generates a more similar
network than HIVE under both laser and no-laser conditions, which is likely an indication
that the naïve estimate is incorrect in this application.

As discussed in Section 4, our inference procedure is asymptotically valid. In other
words, with large enough sample size, if the other assumptions in Section 4 are satisfied,
the estimated edges should represent the true edges. Assessing the validity of the assump-
tions and selecting the true edges in real data applications is challenging. However, we can
assess the sample size requirement and the validity of assumptions by estimating the edges
over a subset of neurons as if the other removed neurons are unobserved. If the sample size
is sufficient and the other assumptions are satisfied, we should obtain similar connectivities
among the observed subset of neurons, even when some neurons are hidden. Figure 5
shows the result of such a stability analysis for the laser condition using hp-trim. Comparing
the connectivities in this graph with those in Figure 4 indicates that the estimated edges
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using the subsets of neurons are all consistent with those estimated using all neurons. Thus,
the assumptions are likely satisfied in this application.

Figure 4. Estimated functional connectivities among neurons using mouse spike train data from
laser and no-laser conditions [14]. Common edges estimated by the three methods are in red and
the method-specific edges are in blue. Thicker edges indicate estimated connectivity coefficients of
larger magnitudes.

(a) (b) (c)

Figure 5. Estimated functional connectivities using hp-trim among multiple subset of neurons. Here,
data is the same as that used in Figure 4 under the laser condition, except that 5, 10 and 15 neurons
(shown in gray) are considered hidden. Thicker edges indicate estimated connectivity coefficients of
larger magnitudes. All estimated edges using the subsets of neurons are also found in the estimated
network using all neurons (a–c).

7. Conclusions and Future Work

We proposed a causal-estimation procedure with theoretical guarantees for high-
dimensional network of multivariate Hawkes processes in the presence of hidden con-
founders. Our method extends the trim regression [37] to the setting of point process
data. The choice of trim regression as the starting point was motivated by the fact that its
assumptions are less stringent than conditions required for the alternative HIVE procedure,
especially for a stable point process network with dense confounding effects. Empirically,
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our procedure, hp-trim, shows superior performance in identifying edges in the causal
network compared with HIVE and a naïve method that ignores the unobserved nodes.

Causal discovery from observational time series is a challenging problem and the
success of our method is not without limitations. First, the theoretical guarantees for hp-trim
require the magnitude of the hidden confounding to be bounded. As we discussed in the
paper, this condition is likely met for a stable network of high-dimensional multivariate
Hawkes processes when the confounding is dense. Nonetheless a careful examination
of this condition is required when applying the method in other settings. When certain
structure exists between the observed and hidden network connectivities, more structure-
specific methods, such as HIVE, may be able to better utilize the structural property of the
network for improved performance in identifying the causal effects. Second, our estimates
assume a linear Hawkes process with a particular parametric form of the transition func-
tion. We also assume the underlying Hawkes process is stationary, where certain structural
requirements of the process (specified as assumptions in Section 4) must be satisfied. The
proposed method is guaranteed to identify causal effects only if these modeling assump-
tions are valid. When the modeling assumptions are violated, the estimated effects may not
be causal. In other words, the method is primarily designed to generate causal hypotheses—
or facilitate causal discovery—and the results should be interpreted with caution. Extending
the proposed approach to model the transition function nonparametrically, learning its
form adaptively from data and capturing time-varying processes would be important
future research directions. Finally, given that non-linear link functions are often used when
analyzing spike train data [54,55], it would also be of interest to develop causal-estimation
procedure for non-linear Hawkes processes.
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Appendix A. Additional Details on HIVE

We introduce additional notations before illustrating the method.
Let Y(t) =

(
Y1(t), . . . , Yp(t)

)�, X(t) =
(
x1(t), . . . , xp(t)

)�, Z(t) =
(
z1(t), . . . , zq(t)

)�
and E(t) =

(
ε1(t), . . . , εp(t)

)�. Then, we rewrite (8) simultaneously for all components:

Y(t) = μ + ΘX(t) + ΔZ(t) + E(t), (A1)

where Θ =

⎛⎝β�1
. . .
β�p

⎞⎠ ∈ Rp×p and Δ =

⎛⎝δ�1
. . .
δ�p

⎞⎠ ∈ Rp×q are connectivity matrix between the

observed and unobserved components, respectively. μ =
(
μ1, . . . , μp

)� ∈ Rp is the vector
of spontaneous rate.

To illustrate the confounding induced by the hidden process, we project Z(t) onto the
space spanned by X(t) as

Z(t) = ν + AX(t) + W(t), (A2)

145



Entropy 2021, 23, 1622

where A is the projection matrix, representing the cross-sectional correlation between Z
and X. Then, (A1) becomes

Y(t) = μ̃ + Θ̃X(t) + Ẽ(t), (A3)

where

μ̃ = μ + Δν,

Θ̃ = Θ + ΔA,

Ẽ(t) = E(t) + ΔW(t).

From the above, it is easy to see that the correlations between the observed and
unobserved processes determine the strength the confounding. Specifically, unless A = 0—
i.e., when the observed and unobserved processes are independent, directly regressing Y(t)
on X(t) produces biased estimates on Θ. Under the condition that Θ ⊥ Δ—i.e., the column
space of Θ is orthogonal to the column space of Δ, HIVE gets around this issue by finding a
projection matrix, PΔ⊥ , that projects Δ onto its orthogonal space—i.e., PΔ⊥Δ = 0. Moreover,
because of the orthogonality assumption, PΔ⊥Θ = Θ. Therefore, when multiplying both
sides in (A1) by PΔ⊥ , the unobserved term disappears. Specifically, letting Ỹ(t) = PΔ⊥Y(t),
(A1) becomes

Ỹ(t) = PΔ⊥μ + ΘX(t) + PΔ⊥E(t). (A4)

Consequently, regressing Ỹ(t) on X(t) produces unbiased estimates on Θ (using
penalized regression with �1-penalty on Θ under the high-dimensional setting when p
is allowed to grow with the sample size T). In order to obtain PΔ⊥ , HIVE first calculates
Ẽ(t) in (A3) and then implement heteroPCA algorithm [56] to estimate the latent column
space of Δ thus to obtain PΔ. Then, the method obtains the corresponding orthogonal
project as PΔ⊥ = I − PΔ. We refer the interested readers to Bing et al. [36] for details about
the method.

Appendix B. Proof of Main Results

Since our focus is on the estimation error for βi, we consider the perturbation model
in (10) in the following.

Let θi =
(
μi βi

)� be the true model parameter and θ̂i =
(

μ̂i β̂i

)�
be the optimizer

for (14). Recall that the set of active indices, Si = {j : βij �= 0, 1 ≤ j ≤ p}, and si = |Si|
and s∗ ≡ max1≤i≤p si. Because optimization problem (14) can be solved separately for
each component process, in the follows we focus on the estimation consistency for one
component process. For ease of notation, we drop the subscript i; that is, we use x(t) for
xi(t), θ for θi, dN(t) for dNi(t), λ(t) for λi(t), b for bi, S for Si and S̃ for S̃i.

Next, we state two lemmas that will be used in the proof of main results.

Lemma A1 (van de Geer [57]). Suppose there exists λmax such that λ(t) ≤ λmax where λ(t)
is the intensity function of Hawkes process defined in (2). Let H(t) be a bounded function that is
Ht-predictable. Then, for any ε > 0,

1
T

∫ T

0
H(t)

{
λ(t)dt− dN(t)

}
≤ 4

{
λmax

2T

∫ T

0
H2(t)dt

}1/2

ε1/2,

with probability at least 1− C exp(−εT), for some constant C.
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Lemma A2 (Wang et al. [35]). Suppose the Hawkes process defined in (2) satisfies Assumptions

1–4. Let Q = 1
T
∫ T

0

(
1

x(t)

)(
1 x�(t)

)
dt, where x(t) is defined in (5). Then, there exists γmax ≥

γmin > 0 such that

γmax ≥ Λmax(Q) ≥ Λmin(Q) ≥ γmin > 0,

with probability at least 1− c1 p2T exp(−c2T1/5), where constants c1, c2 depending on the model
parameters and the transition kernel.

Proof of Theorem 1. While the skeleton of the proof follows from (Ćevid et al. [37], The-
orem 2), the following two conditions are needed because of the Hawkes process data’s
unique dependency structure.

Condition 1. There exist constants γmin, c, C > 0 such that

P
(

min
Δ∈C(L,S)

1
T

∥∥∥X̃Δ
∥∥∥2

2
≥ γmin‖Δ‖2

2

)
≥ 1− cp2T exp(−CT1/5),

where C(L, S) = {α : ‖αSc‖1 ≤ L‖αS‖1}.

Condition 1 is referred as the restrict strong convexity (RSC) [58]. Lemma A2 by Wang
et al. [35] has shown Condition 1 holds when X̃ = X under Assumptions 1–4. Since the
min eigenvalue of X̃ stays the same with our choice of F, Condition 1 holds for X̃ = FX.

Condition 2. There exist c, C > 0 such that

P
(

1
T

∥∥∥X̃ν
∥∥∥

∞
≤ CΛ2

max(F)T−2/5
)
≥ 1− cp exp(−T1/5),

where ν is defined in (10).

Condition 2 holds as a result of Lemma A1 by van de Geer [57].
Under the two conditions, we achieve the conclusion as follows.
Because θ̂ is the optimizer for (14),

1
T
‖Ỹ− X̃θ̂‖2

2 + λ‖β̂‖1 ≤
1
T
‖Ỹ− X̃θ‖2

2 + λ‖β‖1

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ λ‖β̂‖1 ≤

2
T

∫ T

t=0
ν(t)X̃(t)

(
θ̂− θ

)
+

1
T
‖X̃b‖2

2 + λ‖β‖1

Under Condition 2,

2
T

∫ T

t=0
ν(t)X̃(t)

(
θ̂− θ

)
≤ 2

T

∥∥∥∥∫ T

t=0
ν(t)X̃(t)

∥∥∥∥
∞

∥∥∥θ̂− θ
∥∥∥

1
≤ ψ

∥∥∥θ̂− θ
∥∥∥

1
,

with probability at least 1− c1 p exp(−T1/5), where ψ = C1Λ2
max(F)T−2/5.

Letting θS =
(
u βS

)� and θSc =
(
u βSc

)�,

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ λ‖β̂‖1 ≤ ψ

∥∥∥θ̂− θ
∥∥∥

1
+

1
T
‖X̃b‖2

2 + λ‖β‖1

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ (λ− ψ)‖θ̂Sc − θSc‖1 ≤ (λ + ψ)

∥∥∥θ̂S − θS

∥∥∥
1
+

1
T
‖X̃b‖2

2

Next, we discuss in two conditions: i) 1
T ‖X̃b‖2

2 ≤ λ
∥∥∥θ̂S − θS

∥∥∥
1

and ii) 1
T ‖X̃b‖2

2 ≥
λ
∥∥∥θ̂S − θS

∥∥∥
1
.
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First, when 1
T ‖X̃b‖2

2 ≤ λ
∥∥∥θ̂S − θS

∥∥∥
1
,

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ (λ− ψ)‖θ̂Sc − θSc‖1 ≤ (2λ + ψ)

∥∥∥θ̂S − θS

∥∥∥
1
.

The above implies

(λ− ψ)‖θ̂Sc − θSc‖1 ≤ (2λ + ψ)
∥∥∥θ̂S − θS

∥∥∥
1
,

which means α̂Sc − αSc ∈ C(L, S) = {α : ‖αSc‖1 ≤ L‖αS‖1} for L = 2λ+ψ
λ−ψ .

Taking λ = 2ψ,

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ (λ− ψ)

∥∥∥θ̂− θ
∥∥∥

1

≤3λ
√

s∗‖θ̂S − θS‖2

≤3λ
√

s∗
1

γmin
√

T

∥∥∥X̃
(

θ̂− θ
)∥∥∥

2

≤3λ
√

s∗
1

γmin
√

T

{∥∥∥X̃
(

θ̂− θ− b
)∥∥∥

2
+
∥∥∥X̃b

∥∥∥
2

}
≤3λ

√
s∗

1
γmin

√
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥

2
+ 3λ

√
s∗

1
γmin

√
T

∥∥∥X̃b
∥∥∥

2

≤9
2

λ2s∗
1

γ2
min

+
1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+

1
T

∥∥∥X̃b
∥∥∥2

2
,

where the second inequality is by Condition 1 and the last step is by using xy ≤ 1
4 x2 + y2

twice. Therefore, we get

(λ− ψ)
∥∥∥θ̂− θ

∥∥∥
1
≤9

2
λ2s∗

1
γ2

min
+

1
T

∥∥∥X̃b
∥∥∥2

2
.

When 1
T ‖X̃b‖2

2 ≥ λ
∥∥∥θ̂S − θS

∥∥∥
1
,

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ (λ− ψ)

∥∥∥θ̂− θ
∥∥∥

1
≤ 3

T

∥∥∥X̃b
∥∥∥2

2
.

Combining the two cases, we always have

(λ− ψ)
∥∥∥θ̂− θ

∥∥∥
1
≤9

2
λ2s∗

1
γ2

min
+

3
T

∥∥∥X̃b
∥∥∥2

2
.

Thus, taking λ = 2ψ = O(Λ2
max(F)T−2/5) and dividing both sides by 1

2 λ, we achieve
the conclusion that∥∥∥θ̂− θ

∥∥∥
1
≤C1Λ2

max(F)
s∗

γ2
min

T−2/5 + C2T−3/5Λ−2
max(F)

∥∥∥X̃b
∥∥∥2

2
.

Proof of Corollary 1. Notice that

1
T
‖X̃b‖2

2 ≤ Λ2
max(F)

1
T
‖Xb‖2

2 ≤ Λ2
max(F)γmax‖b‖2

2,

with probability at least 1− c1 p2T exp(−c2T1/5), where the second inequality is by Lemma A2.
Then, Corollary 1 is a direct result from Theorem 1 by plugging in ‖b‖2

2.

Proof of Theorem 2. Recall S = {βij : βij �= 0, 1 ≤ i, j ≤ p} and SC = {βij : βij =
0, 1 ≤ i, j ≤ p} . To establish selection consistency, we need two parts. First, we show
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that our estimates on the true zero and non-zero coefficients can be separated with high
probability; that is, there exists some constant Δ > 0 such that for βS ∈ S and βSC ∈ SC,
|β̂S − β̂SC | ≥ Δ with high probability. By the β-min condition specified in Assumption 5,
we have βij ∈ S ≥ 2τ. Theorem 1 shows that for 1 ≤ i, j ≤ p, |β̂ij − βij| ≤ τ with
probability at least 1− c1 p2T exp(−c2T1/5). Then, for any βS ∈ S and βSC ∈ SC,

|β̂S − β̂SC | = |β̂S − βS − (β̂SC − βSC ) + βS − βSC |
≥ |βS − βSC | − |β̂S − βS| − |β̂SC − βSC |
≥ βmin − 2τ.

This means the estimates on zero and non-zero coefficients can be separated with
high probability.

Next, we show there exists a post-selection threshold that allows to correctly identify
S and SC based on the estimates. In fact, the post-selection estimator is

β̃ = β̂1(|β̂| > τ).

By Theorem 1, we have |β̂SC | ≤ τ, with probability 1− c1 p2T exp(−c2T1/5). Then,

β̃SC = β̂SC 1(β̂SC > τS) = 0,

which means β̃ selects βSC into SC with high probability. In addition, since |β̂S − βS| ≤ τ,

|β̂S| ≥ |βS| − τ ≥ βmin − τ > τ > 0.

Therefore,
β̃S = β̂S1(|β̂S| > τ) = β̂S �= 0,

which means β̃S selects βS into S with high probability.
Combining the two sides, the post-selection estimator β̃ identifies S and SC with

high probability.

Appendix C. Parameter Estimation Performance

In this section we examine estimation performance of our algorithm on the connec-
tivity coefficients associated with the observed processes. To this end, we compare the
optimal root-mean squared error (RMSE) of the various methods (hp-trim, HIVE and Naïve)
over all connectivity coefficients for the observed processes. Here, the optimal RMSE is the
minimum RMSE for each estimation method over the range of tuning parameters in each
simulation run.

We find that in the case when hp-trim performs the best in terms of edge selection (i.e.,
under the setting by Figure 2a), the method also gives the lowest RMSE (see Unorthogonal
(T = 5000 and T = 1000) in Figure A1). In contrast, when the orthogonality condition is
met for HIVE (i.e., under the setting by Figure 3a), HIVE-oracle gives the best RMSE (see
Orthogonal (T = 5000 and T = 1000) in Figure A1). However, HIVE-oracle is not available
in practice, and even when the orthogonality assumption is satisfied, the empirical version
of HIVE (HIVE-empirical) performs worse than hp-trim.
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Figure A1. Boxplot of optimal RMSE over all connectivity coefficients for hp-trim, HIVE and Naïve.
Unorthogonal (T = 5000 and T = 1000) conditions refer to the setting in Figure 2a in the main text;
Orthogonal (T = 5000 and T = 1000) conditions refer to the setting in Figure 3a in the main text.

RMSE over all connectivity coefficients is calculated as
√

1
p2 ∑1≤i,j,≤p(β̂

(k)
ij − βij)2, where β̂

(k)
ij is the

estimate of the true parameter value, βij, from the kth simulation run (k = 1, . . . , 100) and p = 100
observed processes are considered as in the simulation study in the main text.
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Abstract: Recent work has shown that people use temporal information including order, delay, and
variability to infer causality between events. In this study, we build on this work by investigating the
role of time in dynamic systems, where causes take continuous values and also continually influence
their effects. Recent studies of learning in these systems explored short interactions in a setting with
rapidly evolving dynamics and modeled people as relying on simpler, resource-limited strategies
to grapple with the stream of information. A natural question that arises from such an account is
whether interacting with systems that unfold more slowly might reduce the systematic errors that
result from these strategies. Paradoxically, we find that slowing the task indeed reduced the frequency
of one type of error, albeit at the cost of increasing the overall error rate. To explain these results we
posit that human learners analyze continuous dynamics into discrete events and use the observed
relationships between events to draw conclusions about causal structure. We formalize this intuition
in terms of a novel Causal Event Abstraction model and show that this model indeed captures the
observed pattern of errors. We comment on the implications these results have for causal cognition.

Keywords: causal inference; causal graphs; dynamic systems; causal learning; time; continuous;
event cognition; interventions

1. Introduction

Learning about causal structure is central to higher level cognition because it allows
people to predict the future, select beneficial actions, and make sense of the past. The study
of how people learn causal structure has historically focused on simple scenarios involving
the presence or absence of binary variables (e.g., did a patient take a drug, and did they
feel better?). This has taught us much about how people use causal structure for a host
of decisions (e.g., [2–5]). However, this focus on simple stimuli obscures other important
questions, such as how we incorporate continuous covariation and temporal information
into our causal judgments.

Time is central to our notions of causality [6], making it unsurprising that temporal
contiguity is one of the strongest psychological cues to causality [7]. Sophisticated expecta-
tions about delays between events shape causal judgments [8,9], interventions [10], and
goal directed actions [11]. People also judge that highly variable delays are less causal [12]
and use variability as a cue for structure in the absence of order or covariational cues [10].

Prior work on the role of time in causality has focused on delay distributions, i.e., the
time that it takes for one event to influence another, where events are largely treated as
punctate rather than extended in time. In this project we instead study a fully continuous
setting in which continuous valued causes continually affect rates of change of their effects,
introducing a different set of representational challenges. Rather than reasoning directly
about rates of occurrence of events or delay distributions between events, people must
reason from unfolding timeseries data.

How might varying the speed at which a continuous system evolves affect what people
learn about it? Extrapolating from the literature on events cited above, one might expect
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that a more slowly evolving system would make learners less likely to infer the presence
of causal linkages between variables. Yet a system that unfolds more slowly may have
advantages as well. In the setting originally explored by [1], people were well described
with a Local Computations (LC) model, which characterized them as focusing on establishing
the relationship between pairs of variables independently, that is, rather than controlling
for other variables, as one would if one considered the full space of possible structural
models. The key support for the LC model came from a particular characteristic error.
Participants frequently inferred direct connections between variables that were indirectly
related (e.g., in the network X → Y → Z concluding incorrectly that additionally X → Z).
This error was first observed in studies with binary variables observed at discrete time
points [13,14]. One potential explanation of these errors in [1] is that participants failed to
notice the relative time delays among the variables. In network X → Y → Z, the mediated
influence of X on Z will be delayed in time compared to the direct influences of X on Y
and of Y on Z. A learner who fails to notice these temporal differences will incorrectly
conclude that X → Z. This hypothesis predicts that increasing the saliency of these time
delay differences by slowing the system will reduce instances of these errors.

We also aim to understand how people learn causal structure from a continuous
flow of information by comparing different formal accounts of how people represent
continuous information and use it to infer causal relationships. Firstly, we follow [1]
in describing people as computing likelihoods on the basis of the continuous dynamics
directly—either considering all hypotheses in parallel (normative model), or focusing
separately on individual edges (Local Computations variant). Secondly, we introduce a
new account of how people might handle continuous information in time—the Causal Event
Abstraction (CEA) model—that characterizes people as segmenting the continuous stream
into discrete events, and using those to infer causal structure.

In summary, we ask two questions. Firstly, does slowing the dynamics of the system
reduce the systematic errors that have been previously observed? We do find the expected
reduction in those errors but at the cost of accuracy on other types of causal links. Secondly,
how do people represent continuous information in dynamic systems? We find that
a model describing people as segmenting continuous information into discrete events
captures people’s behavior across conditions.

1.1. Ornstein–Uhlenbeck Networks

The stimuli in our task were generated using a new approach for simulating contin-
uous causal systems first proposed in [15]. See [1] for a full explication of the generative
process, but briefly Ornstein–Uhlenbeck (OU) networks represent causality with autore-
gressive processes that move towards a basin point as a function of time [16]. Importantly,
however, when one variable is causally influenced by another (as defined by the causal
structure of the OU network), this is modelled by making the effect’s basin point nonsta-
tionary, following some function of the state of its cause(s). Specifically, we stipulate that
the basin point is the sum of the causal influences exerted by each of the effect’s causal
parents. Formally, the change in a variable vi following time t, Δvt

i , is given by

P(Δvt
i |vt, ω, σ, θ•i) = ω

[[
∑

j
θji · vt

j
]
− vt

i

]
+ N(0, σ) (1)

where vt
i is the value of variable i at time t, θji is the causal influence of variable j on variable

i, ∑j θjivt
j (the sum of vi’s causal parents, each multiplied by its corresponding θji) is the

basin to which vi is attracted, and σ is the endogenous noise of each variable. ω (also
known as the “spring rigidity” of the system) is the rate at which vi reverts to its basin.
For example, ω = 0.10 means that the variable’s expected value will move 10% of the way
toward the basin.

We now consider a number of alternative hypotheses regarding how OU networks
are learned.
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1.2. An Optimal Learner

The normative account of learning of a causal graph in an OU networks involves
inverting the above generative model. (Note that although we specify normative learning in
light of observed data and the interventions on the causal system made by a learner, we do
not specify what interventions a learner should perform to maximize learning). Assuming
an initially-uniform prior, the inferred causal structure is the one most likely to produce the
changes in all variables at all time points, taking into account the learner’s interventions.
Consider a hypothesis space G in which a learner’s task to estimate the likelihood of discrete
causal hypotheses, ones where the θ associated with every potential causal relationship
has been trichotomized into one of three states: positive, inverse (negative), or zero. For a
system with three variables, G would contain 729 distinct causal hypotheses. (In this work,
we exclude the possibility of self-cycles in which a variable is causally influenced by itself.
That is, θii = 0 for all i).

The likelihood of observing the change in variable vi at t given graph g is therefore,

P(Δvt
i |g, ω, σ, ιti) =

∫
θ•i

P(Δvt
i |vt, ω, σ, θ•i, ιti)P(θ•i|g)P(g)dθ•i (2)

where
∫

θ•i
is a multiple integral over each of vi’s incoming causal strengths, θ•i. P(θ•i|g)

represents the priors over θ•i corresponding to hypothesis g. For example, for a graph
g that includes a positive X → Y causal relationship, P(θXY|g) = 0 for all θXY ≤ 0 but
otherwise represents the learner’s priors over the strength of a positive causal relationship
when θXY > 0.

ιti is an indicator variable that is true if vi is intervened on at t and false otherwise. We
accommodate interventions by the standard notion of graph surgery [17]. Thus, if vi is
manipulated at time t, the likelihood of the observed Δvt

i is 1 (i.e., is independent of vi’s
current value or the value of its causes). Otherwise, it is given by Equation (1). That is,

P(Δvt
i |vt, ω, σ, θ•i, ιti) =

{
1 ιti True
N(ω(∑j θjivt

j − vt
i), σ) ιti False

(3)

The likelihood of all observed variables at all time points, taking into account potential
uncertainty regarding ω and σ, is,

P(v|g, ι) =
N

∏
i=1

T−1

∏
t=1

∫
ω

∫
σ

P(Δvt
i |vt, g, ω, σ, ιti)P(ω)P(σ)dωdσ (4)

P(ω) and P(σ) represent the learner’s priors over ω and σ. See [1] for additional
details and explanation.

Simulations of an Optimal Learner

We now present simulations of an optimal learner to identify some key factors that
determine its success at learning a causal network. Several assumptions were made to
make these simulations relevant to the experiment that appears at the end of this paper.
In that experiment, the variables of the OU system are presented as sliders that take on a
value between −100 and 100 (see Figure 1 for an example). Human learners are asked to
identify the causal structure that relates these variables.

First, because learners will be allowed to manipulate the variables of the OU network,
our theoretical analysis will assume the presence of manipulations qualitatively similar
to those observed in [1]. In particular, we assume that each variable is manipulated by
first setting it to one extreme value (100) and then the other (–100) during each learning
trial. Figure 2 shows examples of the variable manipulations that were presented to the
optimal learner.
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Figure 1. An OU system with three variables displayed as “sliders” on a computer screen. The values
of the sliders take on values from −100 to 100 and are updated continuously as a function of the
input they receive from their causal parents and system noise σ.

Figure 2. Examples of manipulating an OU network with three variables that form a causal chain
X → Y → Z. In each panel X is first manipulated, followed by Y and then Z. Each manipulation
consists holding the variable at 100 and then −100. Panels (A,B) present manipulations that last
32 and 64 time units, respectively. Interventions were separated by 32 time units, allowing the
variables to return to a baseline value near 0. The resulting changes in in X, Y, and Z reflect the
X → Y → Z causal relationships. θXY = θYZ = 1, ω = 0.05, and σ = 2.
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Second, the upcoming experiment will present subjects with four instructional videos.
These will present examples of OU systems with values of ω and σ, and possible values
of θ (−1, 0, or 1), that are the same as those of OU systems they are subsequently asked
to learn. Thus, for simplicity the simulations were derived assuming that learners extract
from the videos those values of ω and σ and the possible values of the θs.

Third, without modification the normative model is powerful enough to almost
perfectly identify the correct hypothesis given the amount of time subjects are allowed to
examine how the OU network evolves over time. We think that such extreme performance is
psychologically unrealistic because human learners presumably experience simple resource
limitations (e.g., lapses of attention). Thus, in presenting the simulation results we will pass
the normative model’s posterior probabilities through a softmax function.

P(g|v, ι) =
P(v|g, ι)−τ

∑k P(v|g, ι)−τ
(5)

Values of τ < 1 yield a posterior distribution over G that is less “sharp”, that is, one
that favors the true hypothesis less decisively than it would otherwise. In the simulations
below τ = 40.

Note that it is straightforward to go from a posterior distribution over G to the posterior
probability of a positive, negative, or zero causal relationship from one variable to another
via Bayesian model averaging. Define Gl as the subset of graphs that includes a particular
causal link l (e.g., a positive X → Y causal relationship). Then, the posterior probability of
l is simply,

P(l|v, ι) = ∑
g∈Gl

P(g|v, ι) (6)

Our simulations focus on the chain network X → Y → Z because it is an example of
a causal system that is susceptible to the local computations error described earlier (i.e.,
incorrectly inferring that X and Z are directly rather than indirectly causally related). The
normative model’s ability to learn X → Y → Z is examined as a function two properties,
properties that turn out to discriminate an optimal learner from the two alternative models
described later. The first is the OU network’s spring rigidity ω. The second is a property of
the variable manipulations that we refer to as intervention duration. Intervention duration
is the amount of time that a variable is manipulated to both extreme values (100 or –100).
Whereas in Figure 2A the manipulation of each variable lasts 32 time steps, in Figure 2B
they last 64 time steps.

Figure 3 presents learning accuracy on the X → Y → Z causal network as a function
of ω and intervention duration. Direct links (left panel of Figure 3) refers to the average
accuracy on the causal links that make up the causal chain, namely, X → Y and Y → Z.
Accuracy on these links consists of correctly identifying the presence of a link between
these pairs of variables. The indirect link (middle panel) refers to a potential X → Z link.
Because there is no such link in the X → Y → Z causal chain, accuracy consists of correctly
identifying the absence of such a causal relationship. Other links (right panel) refers to other
potential causal relations between the variables (i.e., Y → X, Z → Y, Z → X), and again
accuracy consists of correctly identifying the absence of those relations.

Figure 3 confirms that an important factor determining the learnability of an OU
network’s causal relations is its rigidity ω: Causal links are more easily identified when an
effect variable exhibits a larger change in value (due to a larger ω) in response to a change
in value of its cause. This is so because a large change is less likely to be due to system
noise. Of course, this result generalizes findings reviewed above that temporal contiguity
between events promotes the identification of causal relations to continuous variables that
react more quickly to causal interventions.

Figure 3 also reveals that longer interventions also aid learning. This is so for a reason
that is analogous to the effect of rigidity: A longer intervention allows more time for a
change to become apparent against a background of system noise.
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Note that another important factor that influences learning in OU systems (one not
shown in Figure 3) is the range of the intervention, that is, the absolute magnitude of the
change that the manipulated variable undergoes. Whereas in Figure 3 the variables are
manipulated to their extreme values of 100 and−100, less extreme manipulations will result
in degraded learning. In our Supplementary Materials (https://osf.io/rfx2q) we present
simulations that vary intervention range while holding intervention duration constant that
show results analogous to those in Figures 3–5. We will also evaluate the effect of both
intervention duration and range when presenting the results of the upcoming experiment.

Figure 3. Accuracy for an optimal learner learning the causal graph X → Y → Z as a function of ω

and intervention duration. The first panel presents accuracy at correctly identifying the presence
of the X → Y and Y → Z causal relationships. The second panel presents accuracy at correctly
identifying the absence of an X → Z causal relationship. The third panel presents accuracy at
correctly identifying the absence of the remaining potential causal relationships (Y → X, Z → Y,
Z → X). θXY = θYZ = 1, σ = 5 and τ = 40. Results are averaged over 1000 simulations of each
parameter combination.

Figure 4. Accuracy of the Local Computations (LC) model under the same parameterization as
Figure 3. Results are averaged over 1000 simulations of each parameter combination.

Figure 5. Accuracy of the Causal Event Abstraction (CEA) model under the same parameterization
as Figures 3 and 4. CEA’s threshold parameter was 50 and its guessing parameter was 0.10. Results
are averaged over 1000 simulations of each parameter combination.
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1.3. The Local Computations Model

We compare an optimal learner to the Local Computations (LC) model. As mentioned,
LC has been advocated as a general-purpose account of causal learning behavior [13,18].
Applied to an OU network, the LC model entails deciding, for each potential causal
relationship considered in isolation, whether the observed values of those two variables
implies a positive, inverted (negative), or zero causal relation.

LC can be formalized by rewriting Equation (3) in the case that ιti is false with,

P(Δvt
i |vt, ω, σ, θ•i) =

N

∑
j,j �=i

N(ω(θjivt
j − vt

i), σ) (7)

Whereas Equation (3) computes the probability of observing Δvt
i by considering the

simultaneous influences of all of vi’s causal parents, Equation (7) does so by considering
each parent in isolation, failing to control for the fact that Δvt

i might partly be due to one of
the other causal parents. For example, given an OU network with three variables X, Y, and
Z, the likelihood of a change in, say, Z, Δvt

Z, is computed by computing the likelihood of
the Δvt

Z given X ignoring Y, the likelihood of the Δvt
Z given Y ignoring X, and summing

the two. LC-based models have been proposed as accounts of how people build causal
models in a resource-efficient way [13,19].

Simulations of an LC Learner

Figure 4 shows the performance of the LC model on the causal graph X → Y → Z as a
function of the same parameters as in Figure 3. Like the normative model, LC’s performance
generally improves as the rigidity ω and intervention duration increase. However, the
middle panel reveals that these same factors result in LC becomes increasingly vulnerable
to committing local computation errors (i.e., incorrectly inferring X → Z). Indeed, a rigid
OU system with ω = 0.125 and interventions of length 80 will almost certainly be perceived
as including a X → Z causal relationship in addition to X → Y and Y → Z. This is so
because a long intervention on X combined with a large ω results in a large and rapid
change to Z, which is easily mistaken as evidence for X → Z.

1.4. The Causal Event Abstraction Model

Whereas the normative learning model and the LC model both compute likelihoods
associated with the observed data, the Causal Event Abstraction (CEA) model posits that
people use a simple heuristic to identify causal relations. In particular, it assumes that, while
one variable of an OU system is being manipulated, people track the changes that occur
to the system’s other variables. Should a change to a variable during that intervention
be sufficiently large, it is recorded as a change ‘event’ providing evidence for a causal
relationship from the manipulated variable to the changed one.

CEA’s main parameter is the threshold value that the absolute value of the purported
effect variable must exceed during an intervention to be classified as undergoing a change.
In the simulations below, the threshold is 50 and so a change event is recorded if the variable
goes above 50 or below −50. For example, Figure 6 shows variable Z changing in response
to a manipulation on X. Because Z exceeds the threshold (dashed line in Figure 6) a change
event would be recorded as evidence for a causal relation between X and Z (To only register
events when a threshold is crossed, CEA excludes all cases where a potential end variable is
above threshold before the intervention begins). For all timepoints during the intervention
that the variable exceeds the threshold, CEA compares the signs of it and the manipulated
variable and records evidence for a regular (positive) causal link if on average the signs
match and an inverse (negative) one otherwise. For example, after Z exceeds the threshold
in Figure 6, the sign of both it and X are positive so the change event would be recorded
as evidence for a positive X → Z relationship. For variables that did not change during
the intervention, no evidence of a causal link between it and the manipulated variable
is recorded.
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Figure 6. Illustration of the CEA model. During the learner’s manipulation of X, which takes place
during seconds 1–3, Z crosses threshold (here shown as 50).

The probability of a causal relationship (say, a positive X → Z relationship) is then
computed by CEA by dividing the number of positive changes to Z induced by the ma-
nipulation of X divided by the number of times that X was manipulated. This calculation
is also moderated by a guessing parameter (0.10 in the simulations) that corresponded to
the probability of responding counter to the predictions of the events model. Note that the
CEA model is insensitive to temporal delays in that it only depends on whether a variable
exceeds the threshold, not how quickly. It only infers a causal relationship from a variable
if that variable has been manipulated at least once.

Simulations of a CEA Learner

Figure 5 show the performance of the CEA model on the causal graph X → Y → Z as
a function of both spring rigidity (ω) and intervention duration. As in the previous models,
CEA’s success at identifying the X → Y and Y → Z causal relations (left side of Figure 5)
generally increases as ω increases. Unlike the previous models however, accuracy on the
relations also increases sharply as the duration of the interventions increase. This is so
because short interventions will not allow sufficient time for the effect variables to cross
the threshold.

In addition, the middle panel of Figure 5 reveals that CEA is also vulnerable to
committing local computation errors (incorrectly inferring X → Z), just as LC is. This panel
reveals that both increasing ω and intervention duration result greater local computation
errors. This is so because both of these factors increase the probability that Z will cross the
threshold in response to a manipulation of X.

1.5. Summary of Learning Models

The following experiment tests these model predictions by explicitly manipulating the
rigidity parameter ω, varying it between the values of 0.05, representing a more flexible
system that responds more slowly to changes in inputs, and 0.10, representing a more rigid
system that responds more quickly. We also analyze how learning success varies with the
duration and range of the interventions that learners choose to make.

Figure 7 summarizes the predictions shown in Figures 3–5 for ω values of 0.05 and 0.10
and an intervention duration of 64. Figure 7 reveals that the LC and CEA models capture
what we have referred to as the paradox of time in learning causal systems. Generally, these
models predict that the correct identification of both the presence and absence of causal
relationships is promoted when a learner’s interventions result in a system undergoing
more rapid changes due to a larger ω. However, more rapid changes also makes it more
likely that these models will incorrectly conclude that two variables that are indirectly
causally related (X and Z in X → Y → Z) have a direct causal relation between them.
We ask whether human learners also exhibit this pattern. We also predict that longer and
more extreme interventions will have an effect that is analogous to rigidity, namely, better
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performance overall but more local computation errors. Finally, we fit all three models to
the learning results to determine which model provides the best quantitative account of
the data.

Figure 7. Predictions of the three models for three causal link types for intervention duration of 64.

2. Materials and Methods

2.1. Participants

107 participants were recruited from Amazon Mechanical Turk using psiTurk [20].
They were paid a base payment of $3 plus performance related bonuses (M = $0.97,
SD = $0.46) and the task took 32.6 minutes (SD = 18.3). Participants were randomly as-
signed to either the rigid or the flexible condition. Those who made a causal judgment
before intervening on any slider on over 90% of trials were excluded, leaving 87 participants
(29 female, 58 male; age M = 37.6, SD = 11.8). The results presented below are based on
42 and 45 participants in the flexible and rigid conditions, respectively.

2.2. Materials

Participants interacted with a number of causal devices represented by three vertical
sliders that moved on their own according to the hidden causal structure and OU process,
but could also be intervened on, by clicking and dragging to set their levels, overriding
their normal causes (see Figure 8A) (See zach-davis.github.io for a demo). The sliders
were constrained to be between −100 and 100, and the buttons on the slider presented a
rounded integer value in addition to moving up and down. A timer at the top of the page
counted down from 45 s at 1 s increments, and at the bottom of the page were six additional
sliders (one for each potential causal relation). Responses could be one of three options:
‘Inverted’, ‘None’, or ‘Regular’, corresponding to θ < 0, no relationship (θ = 0), and θ > 0,
respectively. Participants were pretrained on these terms in the instructions.

2.3. Stimuli and Design

Participants were tested on 25 causal graphs (see Figure 8B) that were roughly bal-
anced across a number of factors, such as the number of inverted and regular links and
the number of links between each variable. The graphs were presented in random order
for a total of 25 trials. The OU parameters used during training and the test were σ = 5
and θ = [1, 0,−1] for regular, none, or inverse connections, respectively. The sliders were
updated with the OU system’s next set of variable values every 100 ms.
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Figure 8. Stimuli. (A) Task environment. Sliders turn blue when intervened on. (B) All tested causal
graphs, presented in random order. Black arrowheads denote regular connections, white arrowheads
denote inverse connections.

Participants were randomly assigned to one of two conditions in which the rigidity ω
parameter was either 0.05 (“flexible”) or 0.10 (“rigid” condition). Recall that ω sets the rate
at which the process asymptotes: When ω = 0.05 (0.10) a variables move 5% (10%) of the
way toward its current basin (see Figure 9).

Figure 9. An OU variable’s rate of change toward a basin of 100 for two values of ω. Stimuli were
generated with a small amount of noise (σ = 2).

2.4. Procedure

Participants first completed an interactive instruction section that used a sequence of
videos to explain the nature and goals of the task, how to intervene, as well as the trial
duration. They were instructed that, for a randomly selected trial, they would receive a
bonus of $0.25 for each correct causal link judgment (out of ‘no link’, ‘regular’ and ‘inverse’
for each of the 6 directed links). Importantly, this bonus scheme was demonstrated with a
hypothetical participant who observed a chain network and correctly identified the two
existing causal links but incorrectly added an additional direct link between the indirect
effects. Participants were told that this participant received a reward of $1.25 for the correct
responses but missed out on an additional $0.25 for marking the direct connection between
indirect effects. Participants could not proceed to the task until they correctly answered
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five comprehension check questions probing if they knew the duration of each trial, the
difference between a regular and inverted connection, that there can be more than one
connection per network, and that they would have to provide a response for all six possible
connections on each trial.

In the main task, participants completed 25 trials lasting 45 s each. A trial was initiated
by pressing the “Start” button at the top of the page, whereupon the sliders began updating
according to the OU process every 100 ms. Participants were free to click, drag, or hold any
slider to any value for any amount of time, overriding its normal causal input, if any. After
releasing a slider, it continued to move according to the OU process.

Participants could make (and revise) their causal judgments at any point during the
trial, but could not proceed to the next trial until they had entered a judgment for all
six potential causal relations. No feedback was provided. After completing the 25 trials,
participants were informed of their bonus and completed a brief post-test questionnaire.

3. Results

Across all conditions, participants were above chance (0.33) in identifying causal links
(M = 0.763, SD = 0.203), t(86) = 19.80, p < 0.0001. They were slightly more likely to
correctly identify regular (0.869) than inverse (0.837) causal links, t(86) = 3.14, p = 0.002.
Participants were also more likely to correctly classify causal links as the experiment pro-
gressed, as confirmed by a regression with subject-level intercept and slope for trial number
(mean β = 0.004), t(86) = 5.24, p < 0.001. Accuracy was 0.789, 0.788, 0.753, and 0.642 for
OU networks with 1, 2, 3, and 4 causal links, respectively, F(3, 258) = 23.3, p < 0.0001,
indicating that learning difficulty increased with the complexity of the network.

3.1. Effect of Rigidity on Accuracy

Consistent with the theoretical analyses presented earlier, overall accuracy increased
as the rigidity of the system increased, from 0.731 in the flexible (ω = 0.05) to 0.800 in the
rigid (ω = 0.10) condition, an effect that was marginally significant t(86) = 1.50, p = 0.137.
However, the key theoretical question is how accuracy varied with type of causal link
across rigidity conditions, as shown in Figure 10. In the rigid condition, accuracy was
generally good, except for the very poor (indeed, below chance) performance on the indirect
links. This result reflects learners’ tendency to mistakenly infer a direct causal relationship
between two variables that are only indirectly related (e.g., X and Z in X → Y → Z) and
replicates past findings [1]. The important result is that this pattern of errors interacted
with the manipulation of ω: When the system was more flexible, accuracy decreased on the
direct and other links but, paradoxically, improved on the indirect links.

These findings were supported by statistical analysis. A two-way mixed ANOVA with
repeated measures on the link type factor revealed a main effect of link type F(2, 170) = 204.1,
p < 0.0001, no main effect of rigidity F < 1, but an interaction, F(2, 170) = 12.7, p < 0.0001.
Accuracy on indirect links decreased as system rigidity increased, t(85) = 3.17, p = 0.002.
In contrast, accuracy on other links increased, t(85) = 2.20, p = 0.030. Accuracy on the
direct links also increased, although not significantly so, t < 1. Note that the total number
of causal links inferred per causal network in the flexible (3.51) and rigid (3.19) conditions
were not significantly different, t(85) = 1.50, p = 0.137.
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Figure 10. Accuracy identifying causal links by rigidity condition (ω = 0.05 or 0.10) and type of causal
link. Causal links are categorized in the same manner as Figures 3–6, namely, as direct, indirect, and
other. For example, in a X → Y → Z network the direct links are X → Y and Y → Z, the indirect link
is X → Z, and the other links are Y → X, Z → Y, Z → X. Accuracy on direct links means correctly
identifying the presence of a causal link (and its sign) and accuracy on the remaining links means
correctly identifying their absence. Error bars are standard errors of the mean.

3.2. Effect of Interventions on Accuracy

As mentioned, successful learning relies on effective interventions, that is, ones that
are extended in time and involve large swings of each variable’s value. The average
intervention duration did not differ between the flexible (3.86 s) and rigid (3.79 s) con-
ditions, t < 1. To assess how the duration of participants’ intervention affected their
learning, we repeated the 2 × 3 analysis corresponding to Figure 10 with intervention
duration added as a per-participant covariate. This analysis yielded an effect of inter-
vention duration, F(1, 83) = 8.08, p = 0.006, indicating that longer interventions were
associated with greater accuracy, but also an interaction between duration and causal link
type, F(2, 166) = 20.18, p < 0.0001. This interaction is depicted in Figure 11A in which
interventions have been dichotimized via a median split into those that are short and long.
Although overall accuracy improved as the duration of interventions increased, accuracy on
the indirect links was lower when interventions were longer. The explanation for this result
is straightforward. For example, in the network X → Y → Z, longer interventions allow
time for the value of variable Z to change in response to an intervention on X, allowing the
learner to incorrectly infer the existence of a direct X → Z relationship. Separate analyses
of each link type revealed that longer interventions resulted in significantly higher accuracy
on direct and other links (both ps < 0.0001) and marginally lower accuracy on the indirect
links, t(85) = 1.59, p = 0.121. Note that the two-way interaction depicted in Figure 11A
did not itself significantly interact with rigidity condition, F(2, 166) = 2.01, p = 0.138.
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Figure 11. (A) Accuracy identifying causal links by intervention duration and type of causal link.
(B) Accuracy identifying causal links by intervention range and type of causal link. Error bars are
standard errors of the mean.

The average range of interventions—defined as the minimum slider value subtracted
from the maximum value during an intervention bout—was 141.4 in the rigid condition as
compared to 126.5 in the flexible condition, a difference that arose because rigid condition
participants were more likely to swing the variable between extremes (e.g., from 100 to
−100). This difference did not reach statistical significance however, t(85) = 1.59, p = 0.115.
To assess how intervention range affected learning, we again repeated the 2 (rigidity condi-
tion) × 3 (link type) analysis now with intervention range as a per-participant covariate.
This analysis yielded an effect of range, F(1, 83) = 28.1, p < 0.0001, indicating that interven-
tions of a larger magnitude were associated with greater accuracy, but also an interaction
between range and causal link type, F(2, 166) = 5.19, p = 0.007. This interaction is depicted
in Figure 11B in which intervention range has been dichotimized via a median split into
smaller and larger. The interaction reflects the fact that the increase in accuracy brought
about by increased range was lower for indirect links than the other link types. Again, this
result is explicable under the assumption that larger interventions increase the likelihood
that indirect causal links will be mistaken for direct ones. Separate analyses of each link
type revealed that more extreme interventions resulted in significantly higher accuracy on
direct and other links (both ps < 0.0001). In contrast, accuracy on the indirect links did not
vary with range, t(85) = 1.09, p = 0.279. The two way interaction in Figure 11B between
range and link type did not itself interact with rigidity condition, F < 1.

3.3. Modeling

To better understand participants’ judgments, we compared them to the causal struc-
ture learning models presented above. For each participant and model, the model received
as input the slider values and the participant’s interventions and yielded a posterior dis-
tribution over the 729 causal graphs. As mentioned, the normative model inverts the
generative model to optimally infer the structure most likely to have produced the evi-
dence. We assumed a uniform prior over the hypothesis space. We also assumed priors
over the parameters ω, θ, and σ. Because they observed four instructional videos of OU
networks with those parameter values, we assume that subjects induced the true values
of those parameters albeit with some uncertainty. (See our Supplementary Materials at
https://osf.io/rfx2q for details). A softmax function was applied to the posterior over
graphs, with a separate temperature parameter τ fit for each participant.

The Local Computations (LC) model focuses on pairs of variables rather than evaluat-
ing the evidence with respect to the full space of possible causal models (Equation (7)). In
other respects the LC model is identical to the normative model. Note that [1] showed that
the LC model best fit participants in a very similar task to this study’s rigid condition. Here
we test the extent to which these results generalize to different time characteristics.

The Causal Event Abstraction (CEA) model describes people as abstracting continuous
variables into events and using those events as cues for causality. To account for uncertainty
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in participant judgments, we fit not only a per participant threshold parameter but also
a guessing parameter that corresponded to the probability of responding counter to the
predictions of the events model.

Finally, we compare the models above to a baseline model that assumes participants
have an equal probability of responding for any graph. It has no fitted parameters.

3.4. Modeling Results

For the normative model, the median fitted values of the softmax τ parameter was
6.15 and 6.35 in the flexible and rigid conditions, respectively, whereas for the LC model
they were 5.98 and 6.81. For the CEA model, the median fitted values of the threshold and
guessing parameter were 53.1 and 0.284, respectively, in the flexible condition and 64.3 and
0.107 in the rigid condition.

The left panel of Figure 12 shows the relative performance of the models as mea-
sured by mean Bayesian Information Criterion (BIC) per participant. Overall, CEA is the
best-fitting model. This greater performance of CEA is also reflected in the number of
participants best fit by each model (right panel of Figure 12). Although the CEA model fits
the majority of participants in both conditions, its advantage over the other models was
slightly greater in the rigid as compared to the flexible condition.

Note that the CEA models also explains one way that learners’ interventions varied
across experimental conditions. For example, a good intervention for the CEA model
involves holding an intervened-on variable at or near a particular value for an extended
period (providing the time needed for an effect variable to cross its threshold so that
an event is recorded). Although the duration and range of interventions did not vary
significantly with rigidity, our Supplementary Materials (https://osf.io/rfx2q) presents
the proportion of interventions that are held at one value over time in each experimental
condition. In fact, as the time increased for a variable to cross some threshold because of
lower rigidity, learners were more likely to hold the intervened-on variable at one value, a
behavior consistent with a CEA learner.

Figure 12. Evaluation measures for the theoretical models. Left panel: Mean BIC per participant.
Right panel: Number of participants best fit by each model as measured by BIC. The normative and
LC models were fit with a softmax temperature parameter per participant. The CEA model was fit
with a threshold and guessing parameter per participant.

3.5. Replication Experiment

We augment these results by reporting in our Supplementary Materials (https://osf.
io/rfx2q) the results of a replication experiment that was identical except that the rate at
which the computer screen was updated to include the next OU system state (100 ms in
the current experiment) was set to 300 ms instead. The results were qualitatively identical,
including the interactions shown in Figures 10 and 11 and the general superiority of the
CEA model.
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4. Discussion

This paper investigated the impact of timing on causal learning in continuous dynamic
systems. Specifically, by manipulating an OU system’s rigidity we varied the rate at which
causes influence their effects. We hypothesized doing so would moderate a particular
type of error previously captured by the Local Computations model—given X → Y → Z,
incorrectly inferring a direct relationship between X and Z—because in a less rigid system
learners would be more likely to note that the influence of X on Z was time delayed,
making the possibility that this relationship was mediated by Y more salient. Yet, we also
noted that people are generally less likely to infer a causal relationship the greater the time
delay between cause and effect. In fact, we found just this paradoxical effect of time on
learning: While slowing the dynamics resulted in increased accuracy for indirect effects, it
also resulted in reduced accuracy on other types of causal links. That is, rather than having
a uniformly positive or negative effect, changes in system timing led to a trade-off between
different types of errors.

Although we could not manipulate the interventions that learners chose to make,
we also predicted that both the duration and range of those interventions would have
effects that were analogous to those of rigidity. In fact, we found that longer interventions
were associated with better learning performance overall but at the cost of increasing the
prevalence of local computation errors. Interventions of a greater range (i.e., achieved
by setting intervened-on variables to more extreme values) were also associated with
better overall performance. Although greater range did not numerically increase local
computation errors, it did not improve performance on the indirect links as it did on
the other link types. Note that the interactions between the pattern of errors and system
rigidity, intervention duration, and intervention range were not predicted by the optimal
learning model.

To make sense of this pattern of results, we drew on a foundational principle in cogni-
tive psychology: that a major part of what brains do is abstract and discretize continuous
inputs into quantities and concepts amenable to structured symbolic processing [21,22].
Along these lines, we explored the idea that people form a greatly simplified representation
of the causal dynamics they are observing, viewing them as constituted by causal events
triggered by interventions, and using this representation to drive their structure inferences.

We introduced this principle in the form of the Causal Event Abstraction (CEA)
model, finding that it better captured the majority of our participants. The success of
this model fits nicely with work suggesting that people naturally abstract continuous
streams of information into discrete events (for review, see, [22]). That said, the CEA
model in its current form is highly exploratory with plenty of room for improvement
and further testing. First, CES’s current notion of a threshold is absolute in that it is
defined relative to 0. This was perhaps a reasonable simplifying assumption for the OU
networks tested here in which variables tended to revert to a basin of 0 in the absence
of interventions. In other setting, a more realistic model would consider the change in a
variable relative to its starting value. Second, CEA’s threshold is also binary: An effect
variable either crosses it or not. In reality, evidence for a causal relation in human learners
may be more graded in that it depends on the distance from the threshold. (We thank an
anonymous reviewer for mentioning this possibility). Third, in its current form CEA only
infers a direct connection between an intervened-on root variable and end variable that
registers an effect, whereas people have been shown to infer structure by linking sequences
of events [10]. Fourth, future studies could apply the event abstraction principle as an
account of observational causal inference as well as interventional learning. Fifth, given
the importance of interventions to produce events for the CEA to learn from, a future
direction would be modeling the CEA’s prescriptions for how one should intervene to
maximize learning. It seems probable that the a goal of producing causally-indicative event
sequences would predict markedly different behaviours than the goal of generating the
most normatively “invertable” continuous dynamics. Finally, the real-time setting explored
here also has rich implications for issues of bounded rationality in active learning. For
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instance, given the potentially overwhelming complexity of real time dynamics, learners
might choose interventions that generate evidence that is informative but not so complex
that it cannot be used (cf. [23–25]).

While we manipulated the “speed” of the system dynamics here, even our supposedly
slow (i.e., flexible) condition reflects what we believe is the fast end of the spectrum
of the dynamics people reckon with in daily life. From economic conditions to climate
patterns, many decision-relevant causal dynamics unfold orders of magnitude slower
that those we probed in this experiment. It is an open question what relationship such
radical clock-time shift has on the interactions between human cognition, intervention
choice, event abstraction and causal learning. Recent work examining causal inference
from observations spanning hours [26] and days [27] suggests people have at least as much
difficulty identifying relationships and dealing with confounds and dependencies. In such
settings it seems likely that processing bottlenecks are caused as much by the structure and
limits of long term memory and retrieval as by limited online processing bandwidth.

Learning the relationships between continually shifting variables in real-time is as
challenging as it is common. In this paper, we identified factors that modulate performance
in continuous dynamic environments, and proposed a new model for causal learning
inspired by people’s ability to abstract and discretize their experiences. We find support for
the idea that, in these informationally rich settings, people use events triggered by their
actions to infer causal structure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//osf.io/rfx2q, accessed on 2 April 2022.
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Abstract: The deployment of machine learning (ML) systems in applications with societal impact has
motivated the study of fairness for marginalized groups. Often, the protected attribute is absent from
the training dataset for legal reasons. However, datasets still contain proxy attributes that capture
protected information and can inject unfairness in the ML model. Some deployed systems allow
auditors, decision makers, or affected users to report issues or seek recourse by flagging individual
samples. In this work, we examine such systems and consider a feedback-based framework where
the protected attribute is unavailable and the flagged samples are indirect knowledge. The reported
samples are used as guidance to identify the proxy attributes that are causally dependent on the
(unknown) protected attribute. We work under the causal interventional fairness paradigm. Without
requiring the underlying structural causal model a priori, we propose an approach that performs
conditional independence tests on observed data to identify such proxy attributes. We theoretically
prove the optimality of our algorithm, bound its complexity, and complement it with an empirical
evaluation demonstrating its efficacy on various real-world and synthetic datasets.

Keywords: causal fairness; responsible data science

1. Introduction

Due to the societal impact of automated systems, fairness in supervised learning
has been a topic of prime importance. There have been numerous advances in defining
fairness in terms of associational and causal effects of protected attributes on the prediction
attribute [1–4], thereby mitigating unwanted bias. The majority of these algorithms assume
that the protected attribute is accurately specified for the training dataset, which is then
used to mitigate unwanted biases by processing the input dataset or modifying the train-
ing algorithm (in-processing) or post-processing the output of the prediction algorithm.
However, the protected attribute is often unavailable or anonymized for legal reasons [5–7].

The absence of protected attributes from the training dataset does not guarantee
fairness of the prediction algorithm. One of the primary reasons for this is the presence of
proxy attributes that are causally dependent on the protected attributes. In such settings,
a key challenge to ensure fairness is to identify these proxy attributes that may percolate
bias into the prediction algorithm and then develop ways to mitigate such biases. Even if
the dataset lacks any information about these attributes, software testing by legal auditors,
recourse analysis of certain samples [8], or complaints from customers often uncover the
presence of bias. In this work, we formalize a framework that leverages such indirect
knowledge to identify proxy attributes, which can then help to improve fairness. We
motivate this setting with the following example.

Example 1. Imagine that you are a manager examining a machine learning-powered resume
screening app that your software company is starting to use internally [9]. You notice that a
candidate named Latanya Sweeney—with an S.M. degree in electrical engineering and computer
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science from MIT and professional experience in minimizing privacy risk—has not been prioritized
for your requisition for a staff software engineer to work on a HIPAA-compliant cloud infrastructure
project. Suspecting algorithmic bias, you flag Latanya’s resume as feedback to the resume app.

In this example of possible unfairness, neither the app nor the manager had access to
any protected attributes such as race and gender for legal reasons [5,6]. The missingness
of the protected attribute, however, did not prevent the manager from mentally using
proxies for race and gender to flag the prediction. In this case, the name Latanya Sweeney
is correlated with black women. If the machine learning model behind the app did have
unwanted bias providing systematic disadvantage to black people and/or women, the
algorithm must have used proxy attributes (like zip code, projects, or writing style) to
reconstruct the information in the protected attributes. However, it is difficult to know what
those proxy attributes were; it is usually not as simple as just the name of the individual or
their zip code.

In this paper, we study fairness in terms of the causal effect of protected attributes on
the prediction output/outcome attribute [1–4] and sought to identify the proxy attributes
that are causally dependent on the protected attributes (that we do not know and do not
have). A variable X is said to be causally dependent on another attribute X′ if X′ → X
in the causal graph, i.e., X is functionally dependent on X′ and any manipulation of X′

would impact X. However, we needed some extra information to help us on this quest.
The information we utilized is precisely the indirect knowledge that we can glean from
the flagging of possibly unfair decisions that the manager in our example submitted as
feedback. We do not assume that the causal graph is known a priori.

We formalized the feedback-based framework to identify proxy attributes that are
causally dependent on the unknown protected attribute. In terms of the causal graph,
a proxy attribute is defined as the child of a protected attribute. We proposed efficient
polynomial time algorithms that identify various connectivity properties of the causal
graph that differ in the input dataset and the samples that are flagged by an auditor
(indirect knowledge). It then uses these properties to identify constraints over pairs of
input attributes, which are then used to formulate a constraint satisfaction problem (CSP).
The solution of the CSP returns the set of proxy attributes.
Contributions. Our primary contributions are as follows.

1. We formalized a novel problem of using indirect signals to identify proxy attributes
that are causally dependent on the protected attribute.

2. We identified unique connectivity properties of the causal graph, which are leveraged
to develop a suite of efficient polynomial time algorithms that do not require the
causal graph as an input. Our proposed techniques use off-the-shelf conditional
independence tests to identify these attributes.

3. We proved theoretical guarantees that our algorithm accurately identifies the proxy
attributes and runs in polynomial time. We showed that the complexity of our
algorithm is linear in the number of attributes for sparse graphs.

4. We performed an end-to-end evaluation of our proposed techniques on various real-
world and synthetic datasets. In real-world datasets, we showed that the classifier
trained using our methods is fair and maintains high accuracy. On synthetic datasets,
we validated the correctness of our algorithm by comparing with the ground truth.

2. Problem Setup

We denote random variables (also known as dataset attributes or features) by up-
percase letters like X, S, A and their corresponding sample values in lowercase like x, s, a.
Table 1 summarizes the notation.
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Table 1. Notation Table.

Symbol Meaning

S Unobserved protected attribute

V Set of attributes (also known
as variables of the causal graph)

D Input dataset containing V attributes

Y Prediction attribute

Y′ Classifier output

F Feedback attribute

D′ Feedback set

V′ ⊆ V Proxy attributes

VF ⊆ V Parents of F in the causal graph

Causal DAG and interventions A causal directed acyclic graph (DAG), G over a set of
attributes V is a DAG that models the functional dependence between attributes in V . Each
node X represents an attribute in V that is functionally determined by its parents Pa(X)
in the DAG and some unobserved variables. An intervention to a causal graph is where
an attribute X is set to some specific value, say x, and its effect on the distribution of the
learned target attribute Y is observed. The do-operator allows this effect to be computed
on a causal DAG, denoted P(Y|do(X = x)). To compute this value, we assumed that X is
determined by a constant X = x. This assumption is equivalent to a modified graph with
all incoming edges into X removed, and the value of X was set to x.

We assumed that the causal graph G on V is faithful to the observational distribution
on V . This means that if two nodes A and B are connected by an edge in the causal graph,
the data cannot result in any incorrect conditional independence of the form A ⊥ B | C
for any subset C ⊂ V \ {A, B}. It is one of the most common assumptions in the causal
discovery literature [1,3,10–19]. We use ⊥ to denote independence. We denote the edges of
the causal graph E as a list of pairs (X1, X2) such that either X1 causes X2 or vice versa.
Unobserved Protected Attribute Consider a dataset D consisting of attributes V = {X1, . . .,
Xn} along with a target attribute Y. Let S denote the protected attribute that is not available
in the dataset D. S is considered as the common confounder for the set of attributes V′ ⊆ V .
This is generally the case in settings where the protected attribute is the root node (has no
parent) of the causal graph [3].
Interventional Fairness In this work, we consider the causal interventional fairness [3]
paradigm that does not allow the protected attributes to affect the classifier output Y′

through any attribute that is not admissible (A). Intuitively, an admissible attribute is the
one that is allowed to percolate bias into the training algorithm. In Example 1, attributes
like race and gender are considered protected attributes, and user preferences like type of
job and expected salary are admissible.

Definition 1 (Causal Interventional Fairness). For a given set of admissible attributes A, a
classifier is considered fair if for any collection of values a of A and output Y′, the following holds:
Pr(Y′ = y|do(S) = s, do(A = a)) = Pr(Y′ = y|do(S) = s′, do(A = a)) for all values of A,
S and Y′.

Intuitively, this definition means that the probability distribution of the classifier
output Y′ is independent of the protected attributes when we intervene on the admissible
attributes. In terms of the causal graph, this holds when all paths from the protected at-
tribute to Y′ are blocked by the admissible attributes. For more details about this definition,
please refer to [3]. As discussed in the example, the current classifier output Y′ does not
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satisfy this fairness criterion, and we wanted to identify the proxy attributes in order to
train a fair classifier.
Feedback Attribute In this problem setup, we assume that a biased classifier outputs Y′ are
available and that an auditor inspects a subset of these records to identify biased outcomes.
These flagged records are denoted with an extra attribute F, where F = 1 denotes an
example that was flagged by the auditor. As discussed in Example 1, the auditor processes
a subset of the features, say, V′ ⊆ V , to flag a data point. Therefore, F is a function of a
subset V′ ⊆ V and the learned target Y′ such that F = 1 refers to a biased prediction. In
terms of the causal graph, the attributes that were used as a signal to flag the classifier
output are parents of F.
Complaint set. In order to define the complaint set, we assume a subset of the records from
marginalized groups are discriminated, and a small subset of these discriminated records
are reported as complaints. Therefore, all individuals in the complaint set are assumed
to correspond to a specific subset of the marginalized group. The set of complaints are
denoted by D′, comprising attributes V for a small subset where F = 1. (Note that the
complaints D′ does not contain all samples that suffer from biased prediction but only the
ones that have been flagged.) Therefore, any conditional independence test of the form
A ⊥D′ B|C on the sample D′ is equivalent to conditioning on the attribute F along with
C, denoted by (A ⊥D B|C, F). Whenever it is clear from context, we ignore the subscript
D from the expressions. Unless specified, we always write the expression in terms of ⊥D.
The operator ⊥D′ is equivalent to ⊥D with a conditioning on F. Since the feedback F = 1
refers to a sample of biased predictions, we assumed that the majority of the samples with
F = 1 correspond to the members of marginalized or otherwise unprivileged communities.

Assumption 1. Considering the set of complaints (dataset D′ where F = 1), the protected attribute
S = s is fixed for some records in the marginalized group S = s that have been flagged.

This assumption is crucial to ensure that the feedback set D′ contains indirect infor-
mation about the marginalized group of individuals. Without this assumption, the set D′

cannot be used to relate the complaints with the marginalized group. Note that the set D′

does not contain all datapoints that have S = s. Therefore, adding a new column that treats
all records in feedback set as S = s and all others as S = s′ cannot be used as the protected
attribute of individuals. Let VF ⊆ V denote the set of attributes that are used by the auditor
to flag the datapoint. In terms of the causal graph, F is functionally dependent on F. Since
F is a common descendant of all these attributes, any pair of attributes X1, X2 ∈ VF cannot
be d-separated over D′ i.e., (X1 �⊥D′ X2|A) ≡ (X1 �⊥D X2|A, F), ∀A ⊆ V \ {X1, X2}.
Proxy variables. We defined the proxy variables as the non-admissible set of attributes
that are functionally dependent on the unobserved protected attribute and that, therefore,
have the maximum causal impact of the protected attribute. Due to the absence of the
protected attribute, considering the proxy attributes as protected while employing any
prior fairness-aware learning algorithm would guarantee a causally fair classifier. More
formally, we claim the following.

Lemma 1. Consider a causal graph G over a set of attributes V , with unobserved protected attribute
S. Let Children of the protected attribute S be denoted by Ch(S). If

Pr(Y′|do(Ch(S) \ A) = c, do(A) = a) = P(Y′|do(Ch(S) \ A) = c′, do(A) = a)

then Y′ is causally fair, i.e., P(Y′|do(A) = a, do(S) = s) = P(Y′|do(A) = a, do(S) = s′)

Proof. Let T denote the children of S in the causal graph. If Pr(Y′|do(T ) = c, do(A) =
a) = P(Y′|do(T ) = c′, do(A) = a), then all paths from the attributes T to Y′ are blocked
when incoming edges of T and A are removed from G. In order to show that a classifier
that obeys the condition of causal fairness with respect to S, we need to prove the following.
After removing all incoming edges of S and A, there should be no directed paths from S
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to Y′ without a collider (Y′ should not be a descendant of S). Since all incoming edges of
S have been removed, all directed paths from S to Y′ pass through the children T . These
paths S → X → . . . → Y′ where X ∈ T : these paths that contain outgoing edges from T
are all blocked because Pr(Y′|do(T ) = c, do(A) = a) = P(Y′|do(T ) = c′, (A) = a).
This shows that whenever the proxy variables are considered as protected while training a
fair classifier, causal fairness of the outcome is guaranteed.

Note that any superset of the children of S (multi-hop descendants) is a valid set of
proxy variables as they may be causally dependent on S. However, Children(S) is the
smallest set of attributes that need to be accounted for fair classification. Considering more
variables as proxies could affect the overall classification accuracy.

3. Problem Statement and Solution Approach

In this section, we first define the problem statement and give high-level observations
about the connectivity properties of the causal graph. We then use these properties to
design a simple algorithm, which is then improved by formulating a constraint satisfaction
problem. We then improve the efficiency of the algorithm by leveraging the sparsity
properties of causal graphs.

Based on the notation we defined in the previous section, we can state the problem of
identifying proxy-protected attributes as follows.

Problem 1. Given a dataset D comprising attributes V with a classifier output Y′ and a biased
feedback set D′, identify the smallest subset V′ ⊆ V such that the hidden protected attribute S is a
common confounder for the attributes in V′.

Now let us work towards a solution. Let us first identify the condition under which
proxies for the protected attribute can be identified from observational data and develop
efficient techniques for the same. Consider a simple toy causal graph example, shown in
Figure 1, where only the protected attribute is unobserved. We made a simplistic assump-
tion that only the protected attribute is unobserved for this example. Our technique and
theoretical analysis extends to the general case where many other attributes may be un-
observed. Note that we have access to the training dataset D containing V = {X1, X2, X3}
and a small feedback dataset D′, which is equivalent to conditioning F = 1. The subset
of the data that has F = 1 may not overlap with the training data. In this example, the
attributes that impact F are VF = {X1, X3}, and the proxy attributes are V′ = {X1, X2}.
We can see that identifying proxy attributes is an easy task if the causal graph is known.
Now, let us look at some of the properties of D and D′ that can help in the absence of the
causal graph.

1. Consider the attributes X1 and X2, which are confounded by the protected attribute
S and (X1, X2) /∈ E. Since S is unobserved in the dataset D, X1 and X2 cannot be
d-separated, i.e., X1 �⊥D X2|A, ∀A ⊆ V \ {X1, X2}. However, the feedback F is
equivalent to considering a smaller sub-population (conditioning on S), which breaks
the confounding relation between X1 and X2. Therefore, X1 ⊥D X2|F ≡ X1 ⊥D′ X2.
This equation can be easily tested by performing a CI test on the flagged samples.

2. Consider the attributes X1 and X3, which are not confounded by the protected at-
tribute S. For such attributes, there exists a subset A ⊆ V \ {X1, X3} such that
X1 ⊥ X3|A. In Figure 1, A = φ. However, X1, X3 ∈ VF means that the collider path
X1 → Y′ ← X3 gets unblocked given F, implying X1 �⊥D X3|A, F ≡ X1 �⊥D′ X3|A,
∀A ⊆ V \ {X1, X3}. Therefore, X1 and X3 can never be d-separated in the feedback
dataset D′.

These observations show that different attributes in the causal graph satisfy different
properties based on their membership. We formalize these intuitions for general graphs and
prove the following properties for any pair of attributes. Lemma 2 proves the condition in
which X1 and X2 can be d-separated with respect to D and D′, if X1, X2 are proxy attributes.
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Figure 1. Example dataset where the protected attribute S and the causal graph are unobserved.
The attribute Y′ denotes the learned target attribute; F is the feedback attribute, which refers to the
selection variable for the complaints flagged by an auditor; and X1 and X2 are proxy attributes.

Lemma 2. Consider a pair of attributes X1 and X2 ∈ V with (X1, X2) /∈ E. X1, X2 ∈ V′, and at
least one of X1 and X2 does not belong to VF iff

1. X1 �⊥ X2|A for all A ⊆ V \ {X1, X2} and
2. X1 ⊥ X2|A, F for some A ⊆ V \ {X1, X2}

Proof. We consider the two sides of the lemma separately. First, let us assume that
(X1, X2) /∈ E, X1, X2 ∈ V′ and at least one of X1 and X2 do not belong to VF. This
implies the following conditions.

• If X1, X2 ∈ V′, then S is a common confounder for both X1 and X2. Therefore, X1 and
X2 can not be d-separated, implying (X1 �⊥ X2|A) ∀A ⊆ V \ {X1, X2} because S is
not observed.

• If at least one of X1 and X2 do not belong to VF and (X1, X2) /∈ E, then there exists
some A such that X1 and X2 are d-separated given A, F. This is because conditioning
on the feedback F implies S = 1 (conditioning on S), which breaks the confounding
relationship between X1 and X2.

For the other direction,

• If X1 ⊥ X2|A, F for some A ⊆ V \ {X1, X2}, then both X1 and X2 cannot be in VF
and (X1, X2) /∈ E. This is because if X1, X2 ∈ VF, then X1 �⊥ X2|A, F for any A (by
definition of VF).

• If X1 �⊥ X2|A for all A but ∃A′ | X1 ⊥ X2|A′, F (we also know that (X1, X2) /∈ E.).
Suppose X1, X2 are not confounded by S. Conditioning on F and A′ blocks all paths
from X1 to X2. Since conditioning on F does not open any new paths between X1 and
X2, there will exist A′ such that X1 ⊥ X2|A′ if X1 and X2 are not confounded by S.
This is a contradiction, implying X1 and X2 are confounded by S.

Lemma 3 proves the properties for X1 and X2, whenever both of these attributes are
considered by the auditor to flag the datapoint.
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Lemma 3. For a pair of attributes X1 and X2 ∈ V with (X1, X2) /∈ E, X1, X2 ∈ VF, and at least
one of X1 and X2 does not belong to V′ iff

1. X1 ⊥ X2|A for some A ⊆ V \ {X1, X2}
2. X1 �⊥ X2|A, F for all A ⊆ V \ {X1, X2}

Proof. First, let us assume that (X1, X2) /∈ E, X1, X2 ∈ VF, and at least one of X1 and X2
do not belong to V′.
• If at least one of X1 and X2 do not belong to V′ and (X1, X2) /∈ E, then there exists

some A ⊆ V \ {X1, X2} such that X1 and X2 are d-separated given A.
• If X1, X2 ∈ VF, then X1 → F ← X2 forms a collider path, which is unblocked given F.

Therefore, (X1 �⊥ X2|A, F) ∀A ⊆ V \ {X1, X2}
For the other direction,

• If X1 ⊥ X2|A for some A ⊆ V \ {X1, X2}, then both X1 and X2 cannot be in V′ and
(X1, X2) /∈ E. This is because if X1, X2 ∈ V′, then X1 �⊥ X2|A, ∀A ⊆ V because of an
unblocked path X1 ← S → X2

• If X1 �⊥ X2|A, F for all A but ∃A such that X1 ⊥ X2|A. We also know that (X1, X2) /∈ E.
Consider the A for which X1 ⊥ X2|A. In this causal graph, all paths from X1 to X2 are
blocked but on conditioning F along with A, some path gets unblocked. Since X1 and
X2 cannot be d-separated when we condition on F, X1, X2 ∈ VF.

For simplicity, we proved these properties for two cases. These properties can be
extended for any combination of attributes based on their occurrence in V′ and VF. Table 2
lists these conditional independence/dependence behavior of all possible combination of
attributes X1 and X2. For example, the first row shows that if X1 and X2 ∈ VF ∩ V′, then
X1 �⊥ X2|A for all A ⊆ V \ {X1, X2}.

3.1. Simple Algorithm

Using the properties listed in Table 2, Algorithm 1 presents the pseudocode of a simple
algorithm that identifies proxy-protected attributes. It iterates over all pair of attributes
and performs two types of conditional independence tests (one with conditioning on
A ⊆ V \ {X1, X2} and the other with conditioning on A and F, i.e., with respect to D′).
Following Lemma 2, if ∃A such that X1 ⊥ X2|F, A and X1 �⊥ X2|A, ∀A, then X1 and X2 are
both added to the set V′. Lemma 4 analyzes the conditions when an attribute X1 ∈ V′ is
correctly identified by Algorithm 1.

Table 2. Conditional independence properties for a pair of attributes X1, X2 ∈ V such that (X1, X2) /∈ E where the output of
conditional independence tests varies based on the set that X1, X2 belong to and vice versa. For example, X1, X2 ∈ V′ ∩ VF

iff X1 �⊥ X2|A and X1 �⊥ X2|A, F for all A ⊆ V \ {X1, X2}.

Conditions on X1, X2 Conditioning on D Conditioning on D′

X1, X2 ∈ V′ ∩ VF X1 �⊥ X2|A for all A ⊆ V \ {X1, X2} X1 �⊥ X2|A, F for all A ⊆ V \ {X1, X2}
X1, X2 ∈ VF and

(X1 /∈ V′ and/or X2 /∈ V′)
(Lemma 3) and

X1 ⊥ X2|A for some A ⊆ V \ {X1, X2} X1 �⊥ X2|A, F for all A ⊆ V \ {X1, X2}

X1, X2 ∈ V′ and
(X1 /∈ VF and/or X2 /∈ VF)

(Lemma 2)
X1 �⊥ X2|A for all A ⊆ V \ {X1, X2} X1 ⊥ X2|A, F for some A ⊆ V \ {X1, X2}

X1 ∈ V′ \ VF and
X2 ∈ VF \ V′ X1 ⊥ X2|A for some A ⊆ V \ {X1, X2} (X1 ⊥ X2|A, F) for some A ⊆ V \ {X1, X2}

X1 /∈ V′ ∪ VF X1 ⊥ X2|A for some A ⊆ V \ {X1, X2} (X1 ⊥ X2|A, F) for some A ⊆ V \ {X1, X2}
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Algorithm 1 Proxy identification.

1: Input: attributes V , F
2: V′ ← φ
3: for X1 ∈ V \ V′ do
4: for X2 ∈ V do
5: if ∃A ⊆ V \ {X1, X2} | (X1 ⊥ X2|F, A) then
6: if ∀A ⊆ V \ {X1, X2} | (X1 �⊥ X2|A) then
7: V′ ← V′ ∪ {X1, X2}
8: return V′

Lemma 4. An attribute X ∈ V′ is correctly identified to belong to V′ if ∃X′ ∈ V′ such that
(X, X′) /∈ E and |VF ∩ {X, X′}| ≤ 1.

Proof. Consider an attribute X ∈ V′, and let X′ ∈ V′ such that VF ∩{X, X′} ≤ 1. Therefore,
one of X and X′ /∈ VF. Using Lemma 2, X �⊥ X′|A, ∀A ⊆ V \ {X1, X2}, and ∃A ⊆
V \ {X1, X2} such that X ⊥ X′|A, F holds. Therefore, Algorithm 1 correctly identifies X
and X′ ∈ V′.

However, Algorithm 1 has two main drawbacks:

1. In dense graphs, there may exist an attribute X ∈ V′ such that �X′ ∈ V′ where
(X, X′) /∈ E. Such attributes may not be identified by Algorithm 1.

2. The conditional independence test of the form X1 �⊥ X2|A, ∀A ⊆ V \ {X1, X2} re-
quires us to test the conditional dependence for every subset A ⊆ V \ {X1, X2}. This
condition requires an exponential number of conditional independence tests.

We now present a constraint satisfaction problem-based formulation that overcomes
the first limitation (Section 3.2) and an efficient mechanism to optimize the total number of
required conditional independence tests (Section 3.3).

3.2. Constraint Satisfaction Formulation

In this section, we leverage the properties of Table 2 to formulate a constraint satis-
faction problem (CSP), which is then solved to identify the membership of the attributes.
Let us first define the set of variables for this CSP. For each attribute X ∈ V , define two
binary variables XF and XS ∈ {0, 1} such that XF = 1 if X ∈ VF and 0 otherwise. Similarly,
XS = 1 if X ∈ V′ and 0 otherwise. Given a pair of attributes X1 and X2, we can perform
conditional independence tests as described in Table 2 and introduce one of the following
constraints based on their output.

• If X1 �⊥ X2|A, ∀A ⊆ V \ {X1, X2} and ∃A ⊆ V \ {X1, X2} such that X1 ⊥ X2|A, F,
then both X1 and X2 ∈ V′ and at least one of the two attributes does not belong to VF
(Using Lemma 2). Therefore, XS

1 = XS
2 = 1 and XF

1 + XF
2 ≤ 1.

• If ∃A ⊆ V \ {X1, X2} such that X1 ⊥ X2|A and X1 �⊥ X2|A, F ∀A ⊆ V \ {X1, X2},
then both attributes X1 and X2 belong to VF, and at least one of the attributes does
not belong to V′ (Using Lemma 3). Therefore, XF

1 = XF
2 = 1 and XS

1 + XS
2 ≤ 1

• If ∃A ⊆ V \ {X1, X2} such that X1 ⊥ X2|A and ∃A′ ⊆ V \ {X1, X2} such that X1 ⊥
X2|A′, F, then X1 and X2 /∈ V′ ∩ VF. Therefore, XF

1 + XS
1 + XF

2 + XS
2 ≤ 2.

Using this strategy, we introduce constraints for every pair of attributes X1, X2 ∈ V .
The membership of all attributes can be identified by solving this constraint satisfaction
problem. To solve this constraint satisfaction problem (containing at most O((n

2)) con-
straints), we can use any standard CSP solver [20]. Note that most of the presented
constraints are binary, and we can easily implement a polynomial time solver to calculate
their membership. An efficient implementation of this instance would be to construct a
complete graph over the attributes V with constraints on nodes and edges. For example,
the constraint of the form XS

1 + XF
1 ≤ 1 is a constraint on the node (as these constraints

involve a single attribute), and the ones of the form XF
1 + XF

2 ≤ 1 refer to edge constraints.
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To identify a feasible solution, we iteratively remove the constraints by processing node
constraints that fix the values of variables and then propagating their effect on the edge
constraints. In this constraint satisfaction formulation, membership of all variables that
have a unique value are correctly identified. All other variables that do not have a unique
value cannot be classified correctly and are considered as proxy attributes. However, we
next show that membership of all attributes are correctly identified for realistic settings
(sparse graphs). The membership may not be identified in case a number of attributes
have a very high degree (see Lemma 4). As an extreme case, membership of an attribute
that is functionally dependent on all other attributes would not be identified by the CSP.
However, it is impossible to identify its membership as all attributes are dependent on this
high-degree attribute.

The main advantage of this algorithm over Algorithm 1 is that we leveraged properties
from Table 2 to identify the membership of an attribute X. If an attribute X is attached
to every other attribute X′ ∈ V , then our techniques would not be able to pin-point
whether X is a proxy attribute or not. In such cases, it returns three sets of attributes (a)
proxy attributes having XS = 1, (b) non-proxy attributes (XS = 0), and (c) undecided
attributes (high-degree nodes for which XS is not uniquely determined). If all the proxy
and undecided attributes are not used, the trained classifier is guaranteed to be fair.

3.3. Efficient Implementation

Algorithm 1 and the constraint satisfaction problem rely on conditional independence
tests that consider all possible subsets A ⊆ V \ {X1, X2}. Therefore, a naive implementation
of Algorithm 1 requires O(2|V|) tests. This may not be feasible for large values of |V|,
especially when it has to be performed for all pairs of attributes.

In order to improve the overall complexity, we made the following observation for
sparse causal graphs. If there exist two attributes X1 and X2 /∈ V′ where (X1, X2) /∈ E, then
they are not connected to any length-2 collider path (paths of the form X1 → X′ ← X2
for some X′ ∈ V) iff X1 ⊥ X2|V \ {X1, X2}. This holds because when we condition on
all attributes except X1 and X2, all paths from X1 and X2 are blocked except length-2
collider paths of the form X1 → X3 ← X2. Since there are no such paths, it means that the
test X1 �⊥ X2|A, ∀A ⊆ V \ {X1, X2} is equivalent to testing for X1 �⊥ X2|V \ {X1, X2} for
such pairs of attributes. Lemma 5 extends this observation to general scenarios where the
number of such length-2 collider paths between a pair of attributes is bounded.

Lemma 5. Consider a pair X1 and X2 such that (X1, X2) /∈ E and at least one of the two attributes
does not belong to V′. The following conditions hold:

1. X1 and X2 are independent when conditioned on all other attributes (X1 ⊥ X2|V \ {X1, X2})
iff there does not exist X′ ∈ V such that X1 → X′ ← X2 form a collider path.

2. ∃V1 such that X1 ⊥ X2|V1 where |V1| ≥ n − t iff the number of attributes in set V′
is less than t, where V′ contains all attributes X ∈ V that form a length-2 collider path
X1 → X ← X2 or X is a descendant of some attribute X′ ∈ V′, where X′ forms a length-2
collider path.

Proof of Lemma 5. Consider a pair of attributes X1 and X2 such that (X1, X2) /∈ E and at
least one of X1, X2 /∈ V′. If X1 and X2 do not have any length-2 collider path, conditioning
on all attributes d-separates X1 and X2. This holds because for any collider path of length
more than 2 (say X1 → Xi . . . ← Xj ← X2), then both Xi or Xj are conditioned. Similarly
for any path with incoming edges into X1 or X2 (backdoor paths), the parents of both
attributes are also conditioned on. Therefore, X1 ⊥ X2|V \ {X1, X2}.

If a set of attributes X ′, |X ′| ≤ t where X ′ contains all X such that attributes forming
length-2 collider of the form X1 → X ← X2 or X is a descendant of an attribute X′ ∈ X ′. In
this case, X1 and X2 can be d-separated by conditioning on all attributes except X ′ because
conditioning on any ancestor of X1 and X2 does not open new paths. Similarly, if the collider
path has a length greater than 2, then the path is blocked by conditioning on all attributes
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that are not in X ′. For example, if the collider path is length 3, X1 → X3 → X4 ← X2, then
conditioning on X3 and X4 does not open this collider path.

More formally, consider any collider path of length greater than 2, say X1 → Xi . . . Xj ←
X2. If Xi, Xj ∈ X ′, then all descendants of Xi and Xj also belong to X ′. Therefore, this path
is blocked. If Xi /∈ X ′, this path is blocked by conditioning on Xi, and conditioning on
Xi does not open any length-2 collider paths because Xi /∈ X ′. Any > 2 length collider
path that is unblocked by conditioning on Xi get blocked by another Xj′ , which is a child
of X1 or X2 in that path. Therefore, conditioning on V \ X ′ does not open any path from
X1 to X2.

Algorithm 2 uses this property to optimize the number of conditional independence
tests required to calculate the membership of each attribute. It initializes with t = |V| (line
3) and iteratively decreases t to consider attributes with at most |V| − t length-2 collider
paths. For an iteration t, it considers all subsets of V of size n− t (denoted by T ) as the
conditioning set (line 6). Using this conditioning set, it evaluates conditional independence
constraints for every pair of attributes X1, X2 ∈ V (Algorithm 3). These constraints are the
same as the ones discussed in Section 3.2. The SolveCSP subroutine then solves the CSP
with new constraints and removes the attributes from U for which XS has been uniquely
determined (line 9). The procedure stops as soon as the XS values of all attributes X ∈ V
have been uniquely identified (U = φ) and returns the subset for which XS = {1}.

Algorithm 2 Proxy identification.

1: Input: attributes V , F
2: U ← V , C ← φ
3: XS, XF ← {0, 1}, ∀X ∈ V
4: t ← |V|
5: while t ≥ 0 and U �= φ do
6: T ← IDENTIFYSUBSET(V , t)
7: C ← C ∪ PairwiseConstraints(V , T )
8: SolveCSP(V , C)
9: U ← {X : 0, 1 ∈ XS, X ∈ V}

10: t ← t− 1
11: V′ ← {X : XS = {1}}
12: return V′

Algorithm 3 Pairwise constraints.

Input: Attributes V , F, T
C ← φ
for (X1, X2) ∈ V × V do

if ∃T ∈ T | X1 ⊥ X2|T \ {X1, X2} and X1 �⊥ X2|T \ {X1, X2}, F ∀T ∈ T then
C ← C ∪ {XF

1 , XF
2 ← 1}

C ← C ∪ {XS
1 + XS

2 ≤ 1}
if X1 �⊥ X2 | T \ {X1, X2} and X1 ⊥ X2 | T \ {X1, X2}, F then

C ← C ∪ {XS
1 , XS

2 ← 1}
C ← C ∪ {XF

1 + XF
2 ≤ 1}

if X1 ⊥ X2 | T \ {X1, X2} and X1 ⊥ X2 | T \ {X1, X2}, F then
C ← C ∪ {XS

1 + XF
1 + XS

2 + XF
2 ≤ 2}

return C

PairwiseConstraints. Algorithm 3 presents the pseudocode for this subroutine. It iterates
over pairs of attributes and performs CI tests to identify the corresponding constraint,
guided by Table 2.
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In order to prove the correctness of Algorithm 2, we argue that it does not introduce
any spurious constraints in the CSP optimization. Lemma 6 shows that if a pair X1 and
X2 have more than α length-2 collider paths, then X1 and X2 cannot be d-separated by
conditioning on any subset of size more than n− α. Since each new constraint introduced
by Algorithm 3 requires conditional independence of X1 and X2 with respect to some
subset on D or D′, it does not identify incorrect constraints. We now prove Lemma 6.

Lemma 6. Consider a pair of attributes X1 and X2 such that the total number of length-2 collider
paths (X1 → X ← X2 where X ∈ V′) is at least α. Any CI test between X1 and X2 conditioning
on A where |A| > n− α returns X1 �⊥ X2|A.

Proof. If a pair of attributes X1 and X2 have more than α length-2 collider paths, then
conditioning on any subset of size more than n− α implies conditioning on at least one of
the collider nodes. Therefore, X1 �⊥ X2|A whenever |A| > n− α.

3.4. Time Complexity

We now analyze the running time of Algorithm 2 for commonly studied causal graph
models. Theorem 1 bounds the total number of CI tests required for a degree-bounded
graph, and then we extend our analysis to Erdős-Renyi graphs.

Theorem 1. For a causal graph where each node X ∈ V has a degree less than α and |V ′ \ VF| > α2,
Algorithm 2 requires O(n2) CI tests to identify all proxy attributes.

Proof. For a node X with degree < α, the maximum number of 2-hop neighbors of X
is ≤ (α − 1)2. This analysis considers all edges as undirected and can be tightened by
considering directions and splitting α into incoming and outgoing degrees of each node.
Therefore, X can have at most (α− 1)2 length-2 collider paths. This means that if V′ \ VF
contains more than (α− 1)2 two-hop and α− 1 one-hop attributes, then ∃X′ ∈ V′ such that
X′ is at least 2-hops away from X. Since α2 > (α− 1)2 + (α− 1), ∃X′ ∈ V′ that satisfies
this condition. Such attributes are identified in the CI test X ⊥ X′|F,V \ {X, X′}. Therefore,
all attributes are correctly identified in 1 test for every pair of attributes.

Erdős-Renyi Graphs. We consider a randomized generative model for the causal graph
construction where each pair of attributes are causally related independently with a prob-
ability p. We show that whenever p < 1/

√
n, Algorithm 2 identifies all proxy attributes

in O(n2) running time. Such connectivity models for causal graphs have been widely
studied [21]. Lemma 7 bounds the expected number of length-2 collider paths between a
pair of attributes X1 and X2.

Lemma 7. Consider a pair of attributes X1 and X2 such that (X1, X2) /∈ E. The probability that
X1 and X2 have a length-2 collider path between them is less than p2(n− 2).

Proof. Let Xv denote a binary random variable such that Xv = 1 if X1 → X ← X2 forms a
collider path for X ∈ V . The probability that (X1, X) ∈ E and (X, X2) ∈ E is p× p = p2.
Therefore, Pr[Xv = 1] = p2.

Using this result, we prove the following complexity of our algorithm.

Theorem 2. Algorithm 2 identifies the proxy attributes in less than O(n2) CI tests if p =
o(
√

1/n)

Proof. Given a pair of attributes X1 and X2, the probability that X1 and X2 are within
2-hops from each other is p2(n− 2) = o(1) if p = o(

√
1/n). Therefore, ∀X ∈ V′, there

will exist X′ ∈ V′ such that (X, X′) /∈ E and the two attributes are more than 2-hops away.
Therefore, X �⊥ X′|A∀A ⊆ V \ {X, X′} and X ⊥ X′|A, F for some A ⊆ V \ {X, X′}.
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This means that all attributes in V′ have been recovered in the first iteration of
Algorithm 2.

3.5. Graphical Lasso-Based Algorithm

In this section, we study a specific class of causal graphs where the structural equations
are Gaussian. In this setting, we show that Algorithm 2 can be implemented efficiently
using the graphical lasso algorithm.

Graphical lasso [22] is one of the widely studied methods to infer the precision matrix
of the underlying causal model in settings where the structural equations are Gaussian.
(The precision matrix is the inverse of the covariance matrix; its non-zero values encode
the edges in the graph.) Following the properties of Lemma 2, we know that X1 �⊥ X2|A,
∀A ⊆ V \ {X1, X2} if X1, X2 ∈ V′. Therefore the precision matrix identified over D would
contain (X1, X2) as an edge. Similarly, Lemma 2 also shows that ∃A ⊆ V \ {X1, X2} such
that X1 ⊥ X2|A, F iff X1, X2 ∈ V′. This means that the entry corresponding (X1, X2) in the
precision matrix will be 0. Using this property, a simple algorithm to identify the proxy
attributes is as follows. (a) Step 1: Run graphical lasso on the original dataset D. Let P
denote the returned precision matrix. (b) Step 2: Run graphical lass on the dataset D′. Let
P′ denote the returned precision matrix. (c) Step 3: Calculate the set difference P \ P′. All
attributes with degree more than 0 in P \ P′ are the proxy attributes. One of the advantages
of this technique is that the graphical lasso algorithm is highly efficient, but it is restricted
to multivariate Gaussian causal models and does not generalize to general datasets.

4. Experiments

In this section, we evaluate the effectiveness of our techniques to identify proxy
attributes that capture protected information such that removing these attributes improves
classifier fairness. The protected attributes are hidden from the dataset and are used only
to evaluate the fairness of the learned classifier.

4.1. Setup
4.1.1. Datasets

We consider the following real-world datasets.

• Medical Expenditure (MEPS) [23]: This dataset is used to predict the total number
of hospital visits from patient medical information. Healthcare utilization is some-
times used as a proxy for allocating preventative care management. We consider
“arthritis diagnosis” as admissible. Race is considered protected and is hidden for
experimentation. The dataset contains 7915 training and 3100 test records.

• German Credit [24] dataset contains attributes of various applicants, and the goal
was to classify them based on credit risk. The account status is taken as admissible,
and whether the person is below the mean age is considered protected. The dataset
contains 800 training and 200 test records.

• Adult dataset [25] contains demographic information of individuals along with their
information on their level of education, occupation, working hours, etc. The task
was to predict whether or not the annual income of an individual exceeds 50K. Race
was treated as the protected attribute, and education was treated as admissible. The
dataset contains around 32K training and 16K test records.

4.1.2. Baselines

Our experimental setup is similar to that of [3], where the input dataset contains
admissible attributes (denoted by A), referring to the set of attributes that are allowed to
inject bias into the trained classifier. In the implementation of our algorithm, we identified
all proxy attributes and trained a new classifier after removing them from the dataset. Due
to the small size of A, classifiers trained on A tend to predict a single class if the training
data are not balanced. Therefore, we compare the performance of the trained classifier on

182



Entropy 2021, 23, 1571

both original and balanced data. All algorithms were implemented in Python, and we use
Scikit-Learn’s logistic regression classifier with default parameters.

Since causal fairness cannot be tested on real datasets, we evaluate the fairness of the
classifier in terms of absolute odds difference (AOD) as a proxy. AOD is calculated as the
difference in the false-positive rate and the true-positive rate between the privileged and
unprivileged/marginalized groups. The set of privileged and unprivileged/marginalized
groups are identified according to the sensitive attribute. For example, white individuals
are considered privileged in MEPS dataset. The feedback sample is constructed randomly
by considering a small sample of unprivileged records that received negative outcomes
(less than 100 data points). We used the RCIT package [26] for CI testing, and the Glass
package [27] for graphical lasso. These packages are in R. Unless specified, we used
Algorithm 2 for our experiments. We considered the following baselines. (i) A uses the
attributes in the admissible set. (ii) ALL uses all attributes present in the dataset.

4.2. Solution Quality

Table 3 compares the accuracy and average precision of the trained classifier along
with absolute odds difference to measure fairness. Among all datasets, the accuracy of our
approach is similar to All, and the fairness is similar to that of A. This experiment validates
that the removal of proxy attributes from the dataset does not worsen the overall accuracy
but helps to improve fairness of the trained classifier. Low average precision (less than
0.60) for A shows that it does not learn the target attributes Y and predicts the same label
for each datapoint. On the other hand, All has high accuracy but is highly unfair. As an
example, it has an odds difference of 0.38 on the Adult and 0.27 on the MEPS dataset.

Table 3. Comparison of accuracy (Acc), average precision (AvgP), and absolute odds difference (AOD).

Dataset OurApproach All A
Acc AvgP OD Acc AvgP OD Acc AvgP OD

Adult 0.79 0.78 0.025 0.80 0.75 0.06 0.75 0.47 0.03

Adult-balanced 0.78 0.71 0.068 0.65 0.59 0.38 0.63 0.59 0.40

MEPS 0.85 0.75 0.09 0.86 0.77 0.15 0.83 0.41 0

MEPS-balanced 0.77 0.67 0.25 0.77 0.67 0.27 0.76 0.59 0.05

German 0.74 0.7 0.075 0.79 0.71 0.12 0.72 0.44 0.003

German-balanced 0.70 0.66 0.06 0.72 0.67 0.13 0.6 0.53 0.05

On training a balanced classifier for the Adult dataset, our algorithm achieved higher
accuracy than All and almost a 0 odds difference. On investigating this dataset, we
noticed that the identified proxy attributes did not help with prediction, and ignoring
those attributes helped with both accuracy and fairness. Some of the attributes used by our
technique for classifier training after removing the proxy attributes were education and
capital in Adult and purpose and age in German. In MEPS, our approach used diagnostic
features like cancer diagnosis and blood pressure for prediction. We observed similar
results on changing the training algorithm to random forest and AdaBoost classifier.

In addition to comparing the odds difference, we considered the causal graph for
Adult and German from the prior literature [2] and used it as a ground truth to test the
correctness of our algorithm. Overall, Algorithm 2 identified 95% of the proxy attributes
for these datasets. In terms of running time, our presented technique was completed in
less than 10 min on all datasets.

4.3. Synthetic Dataset

In this experiment, we considered different synthetic datasets and calculated the
fraction of proxy attributes identified by Algorithm 2. Since the causal graph was used to
generate data, we can verify the correctness of identified proxy attributes for these datasets.
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The first experiment considered causal graphs corresponding to Adult and German where
the structural equations of the causal graph followed a multivariate Gaussian distribution.
We used the graphical lasso variant of our algorithm for these datasets. Our algorithm
identified all proxy attributes on both datasets, and none of the non-proxy attributes were
labeled incorrectly.

The second experiment considered random causal graphs containing 20, 40, 60, 80,
and 100 attributes consisting of 5 proxy-protected attributes, generated according to the
Erdős-Renyi model where every pair of attributes was connected with probability p = 0.2.
In this case, Algorithm 2 achieved 100% accuracy to identify proxy attributes. To further
study the effect of probability p, we considered higher values of p = 0.5 and 0.75. In such
cases, Algorithm 2 identified 83% of the proxy attributes correctly where the high degree
nodes were not identified. These attributes were neither labeled as proxy nor non-proxy.
Complexity Figure 2a shows the effect of an increase in the number of proxy attributes
V′ on the number of required conditional independence tests by Algorithms 1 and 2. In
this experiment, we considered a causal graph of 50 attributes and varied the number
of proxy attributes from 5 to 30. The complexity of both techniques increased linearly
with an increase in |V ′|, and Algorithm 2 is orders of magnitude better than Algorithm 1.
In Figure 2b, we varied the edge formation probability p of the generative model while
keeping the size of V′ constant. In this experiment, the total number of tests required
increased with increasing p, but Algorithm 1 required much more tests as compared to
Algorithm 2. This experiment validated the effectiveness of Algorithm 2 to reduce the
number of CI tests required to identify proxy attributes.

In terms of running time, Algorithm 2 ran within 10 minutes for all real-world datasets.
In Figure 2, its running time increased proportionally to the increase in the number of
CI tests.

Figure 2. Complexity comparison of our techniques for varying dataset sizes.

Effect of feedback set size As an additional experiment, we varied the feedback set size
and evaluated the difference in results for real datasets. We observed that our approach
ensures fairness whenever the feedback set contains more than 25 samples. An increase
in feedback ensures that our technique is stable and ensures fairness across different runs.
Whenever the number of samples is small, the behavior of our approach varies. This varied
behavior is because our algorithm uses RCIT as a black-box algorithm to test conditional
independence, and it returns spurious answers for small sizes of the feedback set.

Overall, this experiment validates that our technique is effective in identifying proxy
attributes and mitigating unwanted biases.

5. Related Work

There has been very little work to consider fairness in the absence of protected at-
tributes. Refs. [28,29] consider adversarial reweighting and empirical risk minimization
techniques to learn a fair classifier in the absence of demographic information. These
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techniques do not assume knowledge of protected attributes, but do not study the causal
impact of the unobserved features on the target attribute. Ref. [7] tackles the absence
of protected attributes using transfer learning from a different dataset that does have
protected attributes. Ref. [30] studies fair class balancing techniques in the absence of
protected attributes. There has been some recent interest in studying the effect of noisy
attributes on the fairness of classification. Ref. [31] studied the problem of training a fair
classifier in the presence of noisy protected attributes. This work does not consider the
causal fairness paradigm and does not directly extend to settings where the protected
attribute is unobserved. Ref. [32] considered fairness in the presence of noise in the target
attribute. These techniques are not directly applicable to our problem setting.

The literature on mitigating unwanted biases considers two types of fairness measures:
associational and causal. Associational methods [33–38] have been shown to fail in distin-
guishing spurious correlations and causal dependence between attributes [3]. Identifying
proxy attributes for these techniques is outside the scope of this work. There has been
much recent interest in studying causal fairness frameworks [1,10–15,17–19,39] to achieve
fairness. Ref. [2] studies the effect of different causal paths from the protected attributes
on the target attribute assuming knowledge of the protected attribute and the underlying
causal graph. Ref. [3] studies the problem of changing input data distribution in order to
ensure interventional fairness. All these techniques require accurate characterization of
the protected attribute for all data points. Extending these techniques [2,3] to leverage the
information about proxy attributes in the absence of protected attributes is orthogonal to
this work and an interesting question for future work.

6. Conclusions

In this work, we formalized a feedback based framework for interventional fairness in
settings where the protected attribute is unobserved. Specifically, we examined systems
where the auditors, decision makers, or affected individuals report issues in the deployed
classifier. These flagged samples that suffered from biased prediction are considered
indirect knowledge about the unobserved protected attributes. In this setting, we developed
efficient techniques that use conditional independence (CI) testing over the observational
data to formulate a constraint satisfaction problem, which identifies the proxy variables.
Our techniques partition the variables into different categories based on the output of the
performed CI tests. We theoretically proved the correctness of our algorithm, bound its
complexity for popular causal graph models, and demonstrated its efficacy on real-world
and synthetic datasets.
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Hlaváčková-Schindler

Received: 10 September 2021

Accepted: 2 October 2021

Published: 6 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Statistics Department, University of Warwick, Coventry CV4 7AL, UK; j.q.smith@warwick.ac.uk
2 The Alan Turing Institute, London NW1 2DB, UK
* Correspondence: xuewen.yu@warwick.ac.uk

Abstract: Graph-based causal inference has recently been successfully applied to explore system
reliability and to predict failures in order to improve systems. One popular causal analysis following
Pearl and Spirtes et al. to study causal relationships embedded in a system is to use a Bayesian
network (BN). However, certain causal constructions that are particularly pertinent to the study of
reliability are difficult to express fully through a BN. Our recent work demonstrated the flexibility of
using a Chain Event Graph (CEG) instead to capture causal reasoning embedded within engineers’
reports. We demonstrated that an event tree rather than a BN could provide an alternative framework
that could capture most of the causal concepts needed within this domain. In particular, a causal
calculus for a specific type of intervention, called a remedial intervention, was devised on this tree-like
graph. In this paper, we extend the use of this framework to show that not only remedial maintenance
interventions but also interventions associated with routine maintenance can be well-defined using
this alternative class of graphical model. We also show that the complexity in making inference about
the potential relationships between causes and failures in a missing data situation in the domain of
system reliability can be elegantly addressed using this new methodology. Causal modelling using a
CEG is illustrated through examples drawn from the study of reliability of an energy distribution
network.

Keywords: Chain Event Graphs; interventions; causal calculus

1. Introduction

The use of Bayesian Networks (BN) for the study of reliability has been widely
advocated in the literature [1]. However, the asymmetric processes that are common in
system reliability can hardly be fully captured by the framework of a BN.

Fortunately, it has been shown that any discrete BN can be embellished into a tree-
based graph called a Chain Event Graph (CEG) [2,3]. The CEG is a graphical model that is a
function of an underlying event tree and certain context specific conditional independence
statements. In particular, the CEG can model and depict the types of structural asymmetries
that the BN framework struggles to embody [4]. This can then provide a framework for
studying the causal mechanisms behind the failures of a given system. For example, Cowell
and Smith [2] developed a dynamic programming algorithm for maximum a posterior
(MAP) structural learning for causal discovery within a restricted class of CEGs called
stratified CEGs.

Conventional causal algebras have been adapted from Pearl’s do-calculus for BNs [5]
to the singular manipulation on a CEG, and the back-door theorem has been generalised to
estimate the effect of this manipulation by previous research [6,7]. In a different strand of
research, Barclay, Hutton, and Smith [8] developed a class of CEGs suited for incorporating
various missing data structures directly through its topology. Unlike BNs, conjugate infer-
ence is still well supported by the structure of CEGs even in the presence of missingness [2].

In Section 2, we adapt the MAP structural learning algorithm [2] to search for the best
scoring structure of a CEG when some data is informedly missing. The selected model
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provides the best explanation of the observed data that has been informedly censored. By
assuming that each candidate CEG is causal in the sense formally defined in [6,7], the best
scoring CEG is of a CEG in idle mode, and then causal deductions can be made from it.

In our recent work [9], we demonstrated how to embed the causal reasoning underly-
ing engineering reports for CEGs designed specifically for applications in system reliability.
The causal calculus we developed there only provided a framework to study and analyse
the impact of remedial interventions, i.e., interventions designed to rectify the root cause
after a failure had been observed.

In Section 3, we extend the use of the CEG causal framework with missingness to
express and analyse a different kind of intervention called a routine intervention. This new
class of intervention is necessary when we are evaluating the impact of interventions within
scheduled maintenance regimes. These regimes are prepared in advance and are used to
inspect machines with the objective of preventing future failures that might be about to
happen. In this context, although the data may be informedly missing, we can still develop
algorithms that, under certain stated hypotheses, produce formulae to give quantitative
estimates of the impacts of various candidate routine interventions of this type.

In this paper, we can, therefore, show how we can use the underlying CEG model to
predict the effect of various types of such interventions. In particular we report a new back-
door criterion—an analogue of Pearl’s back-door criterion for BNs [5]. This gives a quick
sufficient condition as to whether the effect of such an intervention is identifiable when
data is censored in a way that induces informed missingness. This criterion significantly
increases the scope of the original causal calculus using CEGs designed for the singular
manipulation [6] and the stochastic manipulation established for BNs [5]. It, thus, enables
us to transfer causal technologies so that they apply to this graphical family.

In Section 4, we demonstrate how to interpret the causal structures of a best scoring
CEG by a simple example of a conservator system. Furthermore, comparative experiments
are designed to show that the proposed new causal algebras can embellish the current
structural learning algorithm to capture the causal effects of a routine intervention.

The contributions of this paper are threefold. First, we formally derive a method for
selecting a CEG providing the framework of a probability model of maintenance regimes,
which acknowledges the presence of informed missingness within the fitted data endemic
in these applications. Second, we devise new causal algebras for the routine intervention
and prove the identifiability of its causal effects in presence of the types of missing data
that we might expect from this application. Third, we demonstrate how important this
new intervention calculus can be in making valid inferences and how naive inferences that
treat the system as uncontrolled and ignore the underlying causal structure within this
application can severely mislead the analyst.

2. Causal Identifiability on Chain Event Graphs with Informed Missingness

We begin this section by briefly reviewing and then extending the definition of a
CEG [2,3,6–8] before providing a systematic approach to embedding information about the
context-specific missingness into a CEG customised for the domain of reliability [9,10].

Suppose we have a vector of variables X = (X1, X2..., Xn) taking values in a state
space X = X1 × · · · ×Xn, among which we explore various putative causal hypotheses.
An event tree T (X) = (VT , ET ) can be constructed to represent relationships embedded in
X, where VT denotes the vertex set and ET denotes the edge set of T (X). Each non-leaf
node is also called a situation. Let ST denote the set of non-leaf nodes. The floret of a
situation v ∈ ST is a subtree of T (X), denoted by F (v) = (VF (v), EF (v)). The vertex set
of F (v) consists of v and the vertices in ST connected from v by a directed edge in ET :
VF (v) = {v} ∪ {v′ ∈ VT |ev,v′ ∈ ET }. The edge set of F (v) is a subset of ET satisfying
EF (v) = {ev,v′ : v′ ∈ VT , ev,v′ ∈ ET }.

Let FT = {F (v)}v∈ST denote the collection of all florets on the tree T . Let μ(v0, v)
denote a subpath from the root node v0 to a node v ∈ VT on the event tree. Every floret
F (v) represents a random variable conditional on μ(v0, v). We denote this conditional
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random variable by X(v) = X|μ(v0, v) for X ∈ X. Each emanating edge ev,v′ of v is labelled
by a value x ∈ X(v). Thus, every conditional variable Xi, i ∈ {1, ..., n}, is represented
on a set of florets on the event tree, denoted by F (v(Xi)). Previous research [3,4,6,7] has
demonstrated the capability of a tree-like structure to encode the asymmetric information.
The corresponding event tree T associated with this description can be asymmetric and
non-stratified [2,4] so that the florets representing the same variable can have different
distances from the root node v0.

Figure 1 depicts an event tree for a conservator system. Its variables are X = (Xcause,
Xleak, Xalarm, Xs/b, X f ail). The categorical variable Xcause represents causes of defects and
has three levels {temperature, seal/pipe, and breathing system}; Xleak is the oil leak indi-
cator; Xalarm is the alarm indicator; Xs/b is an indicator of whether there is a sight glass
defect or a buchholz defect; and X f ail is a failure indicator. This tree is constructed under
the assumption that the fault caused by low temperature is irrelevant to the sight glass
or buchholz defect, labelled as s/b on the tree. The situations of the tree are annotated
as {v0, · · · , v37}, and the leaves are the unlabelled vertices. Since the last variable mod-
elled on this tree is X f ail , the leaves represent the status of the conservator being failed
or operational.
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Figure 1. An event tree constructed for the conservator system of a transformer.

Let ΛT denote the set of all root-to-leaf paths on the tree and λ(v, v′) ∈ ΛT denote
the root-to-leaf paths passing through vertices v, v′ ∈ VT . The vector θv = P(X(v)) =
P(X|μ(v0, v)) is called the vector of primitive probabilities. Let θT = (θv)v∈VT , which
satisfies ∑v′∈ch(v) θv,v′ = 1 and θv,v′ ∈ (0, 1) for all v ∈ VT , where ch(v) = {v′ ∈ VT |ev,v′ ∈
ET }. Then, the pair (T (X), θT ) indexes the probability tree [2,3] defined over X.

191



Entropy 2021, 23, 1308

The BN is capable of handling the missing data whenever this applies to all values of
a pre-assigned set of variables by assigning a missingness indicator to each unobservable
variable within that set. It is, therefore, possible to use the BN as a framework for identifying
when causal hypotheses are identifiable in this rather restricted setting. The associated
analyses use various graphically stated criteria—such as the front-door and the back-door
criteria—see e.g., [11–13]. However, unfortunately, the types of missingness that routinely
occur in reliability—and, in particular, those associated with the data we collect when
performing routine maintenance—are rarely missing across the original random vector
associated with the system in this sort of symmetric way. This is because we only learn
about those parts of a system that we have chosen to inspect.

In contrast, the probability tree provides a natural and more flexible way to visualise
and model the context-specific missingness, where the unobservability of the variable par-
tially depends on which path it lies on the tree. Here, we import the informed missingness
into the event tree by defining the floret-dependent missingness [14]. Thus, consider a floret
F (v), if the value of the corresponding variable X(v) is unobservable, then we classify this
floret into F (v) ∈ FM.

On the other hand, if conditioned on μ(v0, v), the value of the variable X(v) is always
observed, and then the corresponding floret is classified into F (v) ∈ FO. Accordingly,
we have two subsets of florets, FM and FO, representing unobservable florets and fully
observed florets, respectively. Then, FM ∩ FO = ∅ and FM ∪ FO = FT . For every
unobservable floret F (vj) ∈ FM, we define a missing floret indicator as:

BF (vj)
=

{
1 if x(vj) is missing,
0 otherwise.

(1)

Then, BF (vj)
represents the conditional missingness and

P(BF (vj)
= 1) = P(X(vj) missing|μ(v0, vj)). (2)

When P(BF (vj)
= 1) ∈ (0, 1), we construct a floret representing this indicator, denote

this by F (v(BF (vj)
)), and call it a missing indicator floret. We then reconstruct an event

tree by importing the missing indicator florets on to T . We call this a missingness event
tree (m-tree). Here, we assume that BF (vj)

precedes X(vj), denoted by BF (vj)
≺ X(vj). In

particular F (vj) is appended to the edge emanating from v(BF (vj)
) labelled by BF (vj)

= 0.
This artificially introduced ordering has already been shown to be useful for interpreting
an event tree constructed with informed missingness [8]. The m-tree then has a new class
of florets FMI = F (v(B)) for B = {BF}F∈FM , which is the set of missing indicator florets.
The variables associated to the m-tree are expanded to (X, B). We denote the topology of
the m-tree by T (X, B). An example of the missingness event tree is shown in Figure 2.

Having a missingness event tree, we further elicit a missingness staged tree from
T (X, B). For two situations v and w, if F (v) and F (w) represent the same variable,
then these two situations are in the same stage whenever θv = θw [3], and the emanating
edge ev,v′ is labelled the same value of X as ew,w′ when θv,v′ = θw,w′ . Here, we relax the
restrictions for a stratified staged tree where two situations in the same stage have the same
distance from the root node [2,4]. For example, v18 can be in the same stage as v38 in the
missingness event tree in Figure 2, similar example see [8].

Here, we assume that situations along the same root-to-leaf path cannot be in the same
stage. This is the square-free condition defined by Collazo et al. [3]. Vertices in the same
stage are assigned a unique colour, and the edges emanating from the same stage with
the same label are assigned the same colour. Such a coloured tree that embeds context-
specific conditional independence relations is a missingness staged tree. Let U = {u1, .., ul}
denote the set of stages in the m-tree. Let u(Xi) represent the set of stages associated
with variable Xi and U(X) = {u(X1), · · · , u(Xn)}. Let U(B) = U/U(X) denote the set of

192



Entropy 2021, 23, 1308

stages associated to the missing floret indicators. An example of a missingness staged tree
of the m-tree in Figure 2 is depicted in Figure 3.

Two situations vj, vk ∈ ui ∈ U in the same stage are in the same position w if the
rooted subtrees Tvj(X, B) and Tvk (X, B) are isomorphic. This clustering gives a finer
partition of vertices than U, denoted by W = {w1, ..., wm}. A missingness chain event graph
(MCEG) C(X, B) = (VC , EC) can be constructed from a missingness staged tree as follows.
A sink node w∞ is created by merging all the leaves of T (X, B). Then, the vertex set is
VC = W

⋃
w∞.

For any two w, w′ ∈ VC , we create an edge for every v ∈ w and the child node
v′ ∈ ch(v) ∈ VT , which belongs to the position w′, where the annotating edge probability
is the same as that of ev,v′ ∈ ET and is inherited from the original tree. The colours of the
vertices and edges of the MCEG are the same as the corresponding stages and edges in the
missingness staged tree [15].

Note that the events on the event tree are chronologically ordered. By definition,
a cause comes before its effects. We can be reasonably confident in providing X with a
plausible order. For example, the trajectory of the events that lead to a machine’s failure
always starts with a cause, followed by symptoms, and terminates with a failure. Therefore,
we can construct event trees for analysing system failures following this order. In this case,
having failed or not is always modelled on the leaves of the tree. Examples are shown in
Figures 1 and 2.

It follows that, for this special application of CEGs in system reliability, it is convenient
to adapt the semantics and to replace the sink node w∞ defined above by w f

∞ and wn
∞.

In this way, w f
∞ is the receiving node of the edges labelled by a failure, while wn

∞ is the
receiving node of the edges labelled by an operational condition.

Thus, we can classify the root-to-sink paths into two categories: failure paths and
deteriorating paths. The former terminate in w f

∞, while the latter terminate in wn
∞. Figure 4

gives an example of such a MCEG derived from Figure 3.
It is possible to perform conjugate inference on an idle MCEG even when the data

is informed censored [8,16]. This enables us to greatly speed up the search for good
explanatory models. The simplest prior to set up in this context assumes each stage vector
θu = (θu1 , ..., θul ) is independently Dirichlet with parameters (αu1, ..., αumu) [3,8]. This is
identical to the case when there are no missingness indicators:

f (θ|C(X, B)) = ∏
u∈U

Γ(∑mu
j=1 αuj)

∏mu
j=1 Γ(αuj)

mu

∏
j=1

θ
αuj
uj . (3)

Let αu = ∑mu
j=1 αuj so that, in particular, the equivalent sample size is α = ∑u∈U ∑mu

j=1 αuj.
Then, given a set of observations D, the posterior can be computed in a closed form

due to Dirichlet-multinomial conjugacy. Thus,

f (θ|D, C(X, B)) = ∏
u∈U

f (θu|D, C(X, B))

= ∏
u∈U

Γ(∑mu
j=1 αuj+)

∏mu
j=1 Γ(αuj+)

mu

∏
j=1

θ
αuj+
uj ,

(4)

where αuj+ = αuj + nuj, and αu+ = αu + nu is the updated parameter vector.
The log-likelihood score for a MCEG C(X, B) can be decomposed into local scores

associated with the variables X and the missingness indicators B.

log Q(C(X, B)) = log fC(X,B)(D) =
n

∑
i=1

log Qu(Xi)
(C(X, B)) + ∑

u∈U(B)
log Qu(C(X, B)) (5)
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We can explicitly compute the log-likelihood in a closed form:

log Q(C(X, B)) = ∑
u∈U

(log Γ(αu)− log Γ(αu+)−
mu

∑
j=1

(log Γ(αuj)− log Γ(αuj+))). (6)

To elicit a best scoring CEG from an event tree, it is necessary to search over all
possible orderings over the variables modelled by the tree when the total order over
the variables is unknown. The event tree is defined to be built with respect to X, and
the associated missingness event tree is built as a function of T (X) with appropriate
hypotheses of missingness. Therefore, even when the dataset has missing values, we still
only search over permutations over X to find an appropriate ordering that best explains
the observed process.

Let Π denote an ordering of X. This could be a set of partial orderings. All variables
represented on the m-tree can automatically be ordered given Π. We denote the m-tree
with a specified ordering Π by T (X(Π), B) = (VT , ET ).

It is non-trivial to identify causal structure from a finite observational dataset. How-
ever, the idle model first needs to be estimated before any causal relations can be explored.
Many advances have been made in casting the causal discovery as a Bayesian model
selection problem [2,17,18]. The MAP structural learning algorithm is a popular and
well-developed tool for selecting a best topology of CEGs that best explains the data.

Under the hypothesis that there are no unobserved confounders [2], we render the
best scoring structure selected by the MAP algorithm causal and assume it is the model
of the idle system when there is no intervention imported. This enables us to further
perform causal analysis. Given such a causal graph, we can derive causal hypotheses from
the structure and estimate causal effects under different hypothesised underlying causal
mechanisms.

Sometimes there is only a putative partial order rather than total order on the variables
X whose causal relationship needs to be explored. However, in this setting we can still
perform the search over candidate CEGs for the best fitting model, providing that the
missing variables only extend to later nodes of the tree.

Cowell and Smith [2] and Collazo et al. [3] presented a recursive algorithm to find the
best sink variable for every subset of X ordered by increasing size. This algorithm can be
simply adapted for the tree built for the informedly missing data. Let Xj ⊆ X denote the
subset of variables whose ordering is needed to be learned and ΠXj denote the best partial
ordering over Xj.

Then, through applying the algorithm designed by [2,3] on every Xj, we can find
the best ordering over the variables defined on the tree, where Π = {ΠXj}j. Here, we
search over subspaces Xj1 × · · · × Xjk for Xj1 , ..., Xjk ∈ Xj and compute the local scores

with respect to the corresponding Y . In particular, for every X(l)
j = {Xj1 , ..., Xjl}, where

l ∈ {1, ..., k− 1}, we find a best sink variable X′ ∈ X(l)
j for every X(k−1)

j ⊆ X(k)
j that has

been ordered appropriately. The best sink variable X′ is found by computing the local
score of the best subtree spanned by X(k−1)

j
⋃{Xs} for every Xs ∈ X(k)

j together with the
corresponding missingness indicators.

The MAP score can be evaluated directly from the local scores that have been com-
puted because the total score is the sum of local scores as shown in Equation (5). Two
MCEGs C1 and C2 with respect to the same data set can be compared by the log-posterior
Bayes factor. Suppose both trees have Dirichlet priors whose hyperparameters are α1 and
α2. The Bayes factor, then, has a closed form [3]:

lpBF(C1, C2) = log q(C1)− log q(C2) + log Q(C1)− log Q(C2), (7)

where log q(Ci) denotes the log prior. Different priors over models can be chosen given
expert judgement on different missingness mechanisms and conditional dependencies.
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When using a uniform prior, log q(C1)− log q(C2) =
1

NC
− 1

NC
= 0, where NC denotes the

total number of models.

v0

v1

v2

missing cause

v3

oil leak v4

v5

v6

v7

cause

alarm

v8

v9

v10

v11

missing s/b

alarm

oil leak

missing s/b

missing s/b

missing s/b

v12

v13

v14

v15

v16

v17

oil leak

oil leak

alarm

alarm

alarm

alarm

alarm

v18

v19

v20

v21

v22

v23

v24

v25

fail

s/b

fail

s/b

fail

s/b

fail

s/b

alarm
v26

v27

v28

v29

v30

v31

v32

v33

v34

v35

v36

v37

fail

fail

fail

fail

missing s/b

missing s/b

missing s/b

missing s/b

missing s/b

missing s/b

missing s/b

missing s/b

v38

v39

fail

fail

v40

v41

fail

fail

v42

v43

fail

fail

v44

v45

fail

fail

v46

v47

v48

v49

v50

v51

v52

v53

v54

v55

v56

v57

v58

v59

v60

v61

fail

s/b

fail

s/b

fail

s/b

fail

s/b

fail

s/b

fail

s/b

fail

s/b

fail

s/b

v62

v63

fail

fail

v64

v65

fail

fail

v66

v67

fail

fail

v68

v69

fail

fail

v70

v71

fail

fail

v72

v73

fail

fail

v74

v75

fail

fail

v76

v77

fail

fail

ye
s

no

ye
s

no

te
m
pe
ra
tu
re

seal/pipe

breathing
system

ye
s

ye
s

no

no

yes

ye
s

yes

no

no

no

ye
s

no

ye
s

no

yes

no

yes

no

yes

no

yes

no

ye
s

no

yes

no

yes

no

yes

no

ye
s

no

ye
s

no

yes
no

yes

no

yes
no

yes

no

yes
no

yes

no

yes
no

yes
no

yes
no

yes
no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes

no

yes

no

ye
s

no

ye
s

no

yes
no

yes

no

yes
no

yes

no

yes
no

yes

no

yes
no

yes

no

yes
no

yes

no

yes
no

yes

no

yes
no

yes

no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

Figure 2. A missingness event tree constructed from Figure 1.
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Figure 3. A missingness staged tree of the m-tree in Figure 2.
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Figure 4. A MCEG derived from Figure 3. For simplicity, the edges labelled “no” are coloured in red.

3. Causal Algebras for Routine Maintenance

By assuming the best scoring CEG causal and treating it as the idle system, one can
always design experiments to collect data under the influence of interventions, and thus
we can estimate the causal effects from the partially observed system. By controlling
certain events on the tree, the semantics of a causal CEG allow us to explore its effect on
the events that lie downstream of the controlled events along the root-to-sink paths. For
a reliability analysis, it is extremely useful to trace and discover the potential causes of
abnormal conditions or failures. By designing causal algebras for different interventions,
we can make predictive inferences about the effects of a variety of types of maintenance
and thus improve the prediction of system failures.

Having defined the remedial intervention on the CEG for the reliability system in [9],
here, we investigate a new class of intervention regime. In the reliability literature, there are
two main categories of maintenance: corrective maintenance (CM) and preventive maintenance
(PM) [19]. CM takes place after a failure, while PM often refers to a scheduled maintenance
that helps to identify and prevent problems during inspections before a failure occurs [20].
In this section, we carefully customise causal algebras for the intervention in light of the
latter case, calling this a routine intervention. A routine intervention not only has an impact
on the lifetime of the maintained equipment but also affects the likelihood of different
defects that may occur in the equipment.
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3.1. Effects on Lifetime

In the context of reliability, the interventions largely consist of replacing failed compo-
nents of the system. This type of intervention—unusual in most causal analyses—requires
special attention, especially as there are some very well-known effects of such interventions
that need to be incorporated before it is possible to realistically model the effects of inter-
ventions. In particular, when describing the failure of equipment, the bathtub effect [20] is
widely applicable. This divides the lifetime of an equipment into three periods: the early
life of a new component has a decreasing failure rate; this is followed by a period with
a constant failure rate; the failure rate rises during the wear-out period [21]. A Weibull
distribution whose density is given by

f (t) =
β

η
(

t
η
)β−1e−(

t
η )

β

(8)

is often used by reliability engineers to model this varying hazard [20], where the scale
parameter is η > 0, and the shape parameter is β > 0. The survival function takes the form:

1− F(t) = e−(
t
η )

β

. (9)

Let ΛC denote the set of all root-to-sink paths on the MCEG C(X(Π), B). Then, the
lifetime of the repaired equipment can be modelled on the associated root-to-sink paths,
denoted by Λ̃ ⊆ ΛC . For λ ∈ Λ̃, let T(λ) represent the total lifetime of the equipment when
the failure trajectory is modelled on the path λ.

For a repairable system, the PM prolongs the life of the component [22–24]. By
adopting the Arithmetic Reduction of Age (ARA) model, which assumes the life of the
equipment is shortened up to proportionality [23], we now establish methods to evaluate
the effect of the scheduled PM on the equipment’s lifetime.

Let Zλ
s represent the failure time of an equipment with observed age s given a failure

process that is modelled on the path λ. Then, the survival function is

P(Zλ
s > t) =

1− Fλ(s + t)
1− Fλ(s)

= e−(
s+t
ηλ

)βλ+( s
ηλ

)βλ
, (10)

where Fλ(·) denotes the reliability distribution for failure trajectory λ.

In an idle system, for λ ∈ Λ̃, T(λ) has the same distribution as Zλ
0 , i.e., T(λ) d

= Zλ
0 .

Thus,
P(T(λ) > t) = P(Zλ

0 > t) = 1− Fλ(t). (11)

Preventive maintenance can be scheduled periodically. However, for simplicity, we
only demonstrate the effect of a single time routine maintenance in this paper. We suppose
that an equipment is diagnosed during a routine maintenance and is repaired at age τ.
Kijima [24] and Guessoum and Aupiedy [23] introduced a parameter representing the
degree of repair, denoted by A ∈ [0, 1]. When A = 0, the repair is perfect and restores
the maintained part to as good as new (AGAN). On the other hand, A = 1 corresponds
to a minimal repair, after which the maintained part is functioning as it was just prior to
the repair.

Since the repaired equipment is rejuvenated, the virtual age [23,24] after maintenance
is then Aτ. Let T∗(λ) denote the post-intervention time to failure. Then, after a routine
intervention, the residual lifetime of the maintained equipment has the same distribution
as Zλ

Aτ . Therefore,

P(T∗(λ) > t) = P(Zλ
Aτ > t) =

1− Fλ(t + Aτ)

1− Fλ(Aτ)
. (12)
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3.2. Manipulations on the MCEG

If Xi ∈ X takes value xij, let e(xij) ∈ EC denote the edges labelled by this value that
emanate from w(Xi). The set of vertices receiving e(xij) are represented by w(xij). The
path related probability, denoted by π(λ) for λ ∈ ΛC , can then be factorised as:

π(λ) = ∏
e∈Eλ

θe, (13)

where Eλ represents a collection of edges lying along the path λ.
When there is a routine intervention, we are only interested in the process portrayed by

the deteriorating paths. We denote this set of paths by Λx f ail,0 = Λ(e(x f ail,0)), where x f ail,0
represents X f ail = 0. Whatever this preventive action is, an analogue of the do-operation
do(X f ail = 0) is imported into the idle MCEG. Thus, we force e(x f ail,0) to have probability
1 and e(x f ail,1) to have probability 0, or, equivalently, we manipulate Λx f ail,0 . Therefore, we
always have the post-intervened path probability:

π̂
Λx f ail,0 (λ) =

⎧⎨⎩
∏e∈Eλ

θe

θe(x f ail,0)
if λ ∈ Λx f ail,0 ;

0 otherwise,
(14)

This is a singular manipulation on the MCEG and yields a manipulated MCEG with respect

to Λx f ail,0 . We denote this by ĈΛx f ail,0 .
Depending on the preventive action taken, other manipulations can also be imported

into the MCEG in addition to the singular manipulation on Λx f ail,0 . We next demonstrate
two scenarios of composite manipulations.

3.2.1. Composite Singular Manipulations under Routine Intervention

In this section, we discuss the situation where the preventive maintenance perfectly
repaired a problem, and, as a consequence of this repair, an event xr is forced to occur. The
event xr is labelled on a set of edges e(xr) whose receiving nodes are w(xr) and emanating
nodes are pa(w(xr)). In this case, the unit will be forced to pass through every edge
e ∈ e(xr) with probability 1. We, therefore, have a composition of singular manipulations,
and the manipulated events are x = {x f ail,0, xr}. On an MCEG, the controlled event is
represented by

Λx = Λ(e(x)) = Λ(e(x f ail,0)) ∩Λ(e(xr)). (15)

Let F (e(x)) denote the set of florets that the edges e(x) lie in.
If we are interested in the effect of the routine maintenance on event y, then, on the

MCEG, we represent it by Λy = Λ(e(y)). The set of florets that e(y) lies in is denoted by
F (e(y)).

Given a CEG, let π(Λy||Λx) denote the probability of observing event y given a
manipulation that forces the events x to occur. We aim to estimate this probability from the
observed data and to demonstrate that the effects of a routine intervention are identifiable.
We have shown in [9] that causal effects from a singular manipulation are estimable, also
called recoverable, by adapting the back-door theorem [5]. Here, we simply extend our
previous results [9] so that it now also applies to the types of composite manipulations that
we discuss here.

The MCEG provides flexible choices of events z to be the back-door partition so that
Λz partitions ΛC [6,7]. We first impose a constraint on z that F (e(z)) � FMI , i.e., that
cannot be a missingness indicator. This is to ensure that π(Λy||Λx) can be estimated
from the partially observed data [9]. Note that any of F (e(x)),F (e(y)),F (e(z)) might be
unobservable. Let

Fx∪y∪z = {F : F ∈ F (e(x)) ∪ F (e(y)) ∪ F (e(z)) and F /∈ FMI}. (16)
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We define the manifest paths to be the largest set of root-to-sink paths on the MCEG passing
along edges labelled by x, y and z. We let bF (e(x)),0 = {bF ,0}F∈F (e(x)) denote the set of
missingness indicators of florets F (e(x)) taking value 0, i.e., values of the corresponding
floret variables are observed. Then, the manifest paths are

Λ(w(bFx∪y∪z,0)) = Λ(w(bF (e(x)),0)) ∩Λ(w(bF (e(y)),0)) ∩Λ(w(bF (e(z)),0)). (17)

We can construct a sub-MCEG CM using the manifest paths. Let the collection of the
root-to-sink paths of this subgraph be ΛCM = Λ(w(bFx∪y∪z,0)). We call this sub-MCEG
the manifest MCEG. This construction ensures that there is no edge in the manifest MCEG
associated with a controlled event, effect, or partition event being missing.

We next reconstruct π(Λy||Λx) from the manifest MCEG. Let πΛCM (Λy||Λx) denote
the probability of observing an event y given a manipulation forcing x to happen within the
manifest MCEG. Note that the manipulated MCEG is a subgraph of the manifest MCEG.
For a singular manipulation on Λx, the manipulated paths on the manifest MCEG are

Λ∗ = Λ(w(bFx∪y∪z,0)) ∩Λx. (18)

The manipulated MCEG with respect to Λ∗ is then denoted by ĈΛ∗ and satisfies ΛĈΛ∗ = Λ∗.

Theorem 1 (The m-back-door criterion for composite singular manipulations). When a
dataset has missing values, the effect of a singular manipulation on x on y is identifiable on the
MCEG if we can find a partition Λz of ΛCM such that

πΛCM (Λy||Λx) = ∑
z

π(Λy|Λx, Λz, Λ(w(bFx∪y∪z,0)))π(Λz|Λ(w(bFx∪y∪z,0))). (19)

For the proof of this theorem, see [9,14].

Example 1. Given the causal MCEG in Figure 4 of a conservator system, we demonstrate how the
formulae defined above works for a specific routine maintenance that successfully prevents an oil
leak. This is equivalent to importing a combination of do(X f ail = 0) and do(Xleak = 0) operations
to the idle MCEG. The controlled events are x = {x f ail,0, xleak,0}. From Figure 4, we next identify
the associated root-to-sink paths. In particular,

Λx f ail,0 =
⋃

w∈{w25,··· ,w30}
Λ(ew,wn

∞), (20)

Λxleak,0 = Λ(ew2,w8) ∪Λ(ew3,w9) ∪Λ(ew4,w10), (21)

and Λx f ail,0,xleak,0 = Λx f ail,0 ∩Λxleak,0 .
To next focus on alarm, the effect event is xalarm,1. The associated set of paths is Λxalarm,1 =

Λ(ew5,w25)∪ Λ(ew6,w11)∪Λ(ew7,w13)∪Λ(ew8,w25)∪Λ(ew9,w12)∪Λ(ew10,w14). The causal query
with respect to x is identifiable whenever π(Λxalarm,1 ||Λx f ail,0,xleak,0) can be recovered from the
MCEG by estimating it from the dataset with missing entries. There are a variety of possible
choices for the partition events z. Here, we simply let z be Xcause whose corresponding positions
lie upstream of the controlled events xleak,0 on the tree. The corresponding floret is, then, F (e(z))
= F (w1).

We now construct the manifest MCEG and the manipulated MCEG in order to identify
the effects of the intervention. Notice that the controlled events and the effect events are always
observable in our example. Thus,

Λ(w(bF (e(x)),0)) = (
⋃

w∈{w25,··· ,w30}
Λ(w)) ∩ (

⋃
w∈{w2,w3,w4}

Λ(w)) = ΛC , (22)

Λ(w(bF (e(y)),0)) =
⋃

w∈{w5,··· ,w10}
= ΛC , (23)

200



Entropy 2021, 23, 1308

However, the back-door partition events might be missing. The collection of paths along which z are
observed is

Λ(w(bF (e(z)),0)) = Λ(w1). (24)

Following Equation (17), the manifest paths are Λ(w(bFx∪y∪z,0)) = ΛC ∩Λ(w1) = Λ(w1). Thus,
to investigate this, we construct the manifest MCEG with respect to Λ(w1). This is a subgraph
of the idle MCEG in Figure 4 obtained by simply removing the edge ew0,w3 , which represents the
causes that are missing. We further elicit the manipulated MCEG from the manifest MCEG. By
the definition of the manipulated paths given in Equation (18), we select the manipulated paths
from the manifest paths: Λ∗ = Λ(w1) ∩ Λx f ail,0,xleak,0 . Since the intervention forces x f ail,0 and
xleak,0 to happen, the events x f ail,1 and xleak,1 should never be observed. Thus, the probability of a
manipulated path passing along the edges e(x f ail,1) and e(xleak,1) is 0.

Equivalently, the positions w(x f ail,1) = w f
∞ and w(e(xleak,1)) = {w5, w6, w7} should never

be passed through by any path in the manipulated graph. Then, by removing the nodes and edges that
are not traversed by the manipulated paths in the manifest MCEG, we can derive the manipulated
MCEG with respect to Λ∗, see Figure 5. We can then estimate the causal effects on alarm using
the formula given in the m-back-door theorem defined above. The conditional path probabilities
in Equation (19) can simply be evaluated using the factorisation of the corresponding primitive
probabilities in the manipulated MCEG.
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Figure 5. The manipulated MCEG when controlling xleak,0 and x f ail,0

3.2.2. Composite Singular and Stochastic Manipulations under Routine Intervention

During routine inspections, the field engineers may clean the components, check the
oil level and leakage, replace some units, and so on [25]. Since there are different types
of repair and because the degree of this repair varies, the manipulations enacted by the
routine intervention could be more complicated than forcing a specific event to happen. In

201



Entropy 2021, 23, 1308

fact, repairing or replacing an equipment could affect multiple units or multiple defects of
a unit.

Therefore, depending on the repaired subcomponent and the degree of repair, multiple
florets can be influenced separately and simultaneously. Thus, a routine intervention could
introduce more uncertainty to the probability distributions over these relevant florets.
Therefore, the distributions of some of the primitive probabilities may need to be reassigned.
This manipulation is then called a stochastic manipulation on the MCEG.

Unlike a remedial intervention [9], a stochastic manipulation induced by a routine
intervention is not restricted to root causes. Consider a floret F whose distribution is
manipulated by a routine intervention. The events represented by this floret could be
defects or symptoms of the maintained equipment.

Let xr denote the controlled events of a routine intervention. Suppose we can find the
edges labelled by these events, denoted by e(xr), then F (e(xr)) is the set of florets whose
distribution are manipulated under the routine intervention. Let w∗ = pa(w(xr)) denote
the set of emanating nodes of edges e(xr). We can then conclude that F (w∗) = F (e(xr)).

For w ∈ w∗, we update the probability distribution after a routine intervention via the
transformation:

q̂(θw) = G[q(θw)] (25)

where q̂(·) represents the post-intervened distribution. The transformation G preserves the
properties of the transition probabilities so that ∑e∈E(w) θe = 1 and θe > 0.

Motivated by the steady model [26,27], one straightforward option is to map distribu-
tions to distributions through non-linear state space models. A possible transformation to
increase uncertainty in a distribution is the power steady transformation [26,28], which can be
characterised by information loss after the intervention takes.

q̂(θw) ∝ q(θw)
φ, (26)

where φ ∈ (0, 1]. Assume that the value of φ can be assessed and informed by the domain
experts. Then, a power steady evolution assumes that such information loss is linear and
proportional to φ so that:

E[log q̂(θw)] = φE[log q(θw)] + c, (27)

for some constant c.
For a Dirichlet prior θw ∼ Dirichlet(αw) with concentration parameters

αw = (αw1, · · · , αwmw), following [29], we can transform it to Dirichlet(α̂w), where α̂w =
(α̂w1, · · · , α̂wmw) and α̂wj − 1 = φ(αwj − 1), for j ∈ {1, · · · , mw}. By this transformation,
the mode remains the same. We can consider such manipulations when searching for the
best scoring MCEG for causal discovery. This is explained in Section 4.

Having updated the transition probabilities, the path probabilities under the stochas-
tic manipulation given a routine intervention can be re-evaluated. Let Λ(w∗) denote
the set of root-to-sink paths on the MCEG passing through any position w ∈ w∗. Let
Λ(w∗) = ΛC/Λ(w∗). Then, the probabilities of paths in Λx f ail,0 ∩Λ(w∗) are affected by
both the singular manipulation on x f ail,0 and the stochastic manipulation on F (w∗). The
probabilities of paths in Λx f ail,0 ∩Λ(w∗) are affected by the singluar manipulation on x f ail,0.
Therefore, the post-intervened path probabilities on the MCEG are:

π̂(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∏e∈Eλ

θe

θe(x f ail,0)
∏e′∈E(w∗)∩Eλ

θe′
×∏e′∈E(w∗)∩Eλ

θ̂e′ if λ ∈ Λx f ail,0 ∩Λ(w∗),

∏e∈Eλ
θe

θe(x f ,0)
if λ ∈ Λx f ail,0 ∩Λ(w∗),

0 otherwise.

(28)
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Let x∗ denote the set of all events represented on F (w∗) and let x = x f ail,0 ∩ x∗ denote the
set of events that are manipulated. Then, the set of florets associated with the manipulated
events, the effect event and the partition events is

Fx∪y∪z = {F : F ∈ F (e(x f ail,0)) ∪ F (w∗) ∪ F (e(y)) ∪ F (e(z)) and F /∈ FMI}. (29)

The manifest paths are defined analogously to Equation (17) so that no event of interest,
i.e., x, y, and z, is missing in this restricted class of paths.

Λ(w(bFx∪y∪z,0 )) = Λ(w(bF (e(x f ail,0)),0)) ∩Λ(w∗) ∩Λ(w(bF (e(y)),0)) ∩Λ(w(bF (e(z)),0)). (30)

We next show the identifiability of the effects by adapting the back-door criterion for
stochastic manipulation [9]. More specifically, this is possible whenever we need to identify
a Λz that partitions the root-to-sink paths of the manifest MCEG CM so that

πΛCM (Λy||Λx f ail,0 , θ̂w∗ ) = ∑
x∈x

∑
z

π(Λy|Λx, Λz, Λ(w(bFx∪y∪z ,0)))π(Λz|Λx, Λ(w(bFx∪y∪z ,0)))

× π̂(Λx|Λ(w(bFx∪y∪z ,0))),
(31)

where

π̂(Λx|Λ(w(bFx∪y∪z ,0))) =
π̂(Λx, Λ(w(bFx∪y∪z)))

π̂(Λ(w(bFx∪y∪z ,0)))
. (32)

The numerator and denominator are the post-intervened path probabilities. Note that these
can be computed using Equation (28). Assuming that a stochastic manipulation on θ̂w∗

is equivalent to forcing each x with probability π(Λx||θ̂w∗) for every x ∈ x∗ [5], we can
obtain Equation (31) by expressing the causal query as

πΛCM (Λy||Λx f ail,0 , θ̂w∗) = ∑
x∈x∗

πΛCM (Λy||Λx f ail,0,x)π
ΛCM (Λx|Λx f ail,0 , θ̂w∗). (33)

The first component on the right hand side of the equation can be evaluated by applying
the results in Equation (19), and the second component can be simplified to Equation (32).
By doing this, we have the expression in Equation (31).

Example 2. Given the idle system in Figure 4, suppose routine maintenance involved in checking
the oil level, cleaning the leakage, and topping up the oil, but this did not fully prevent the oil leak.
The manipulations imported to the idle system under this intervention are then different from the one
we discussed in Example 1. Suppose florets F (w2),F (w3),F (w4) are directly affected in response
to the maintenance. Then, these florets are stochastically manipulated, and w∗ = {w2, w3, w4}.
This gives the same Λ(w(bF (e(x)),0)) as in Example 1. If we are interested in how the sight glass or
buchholz defect is affected by this intervention, then the effect event is xs/b,1. Note that this event is
unobservable and Λ(w(bF (e(xs/b,1)),0)) =

⋃
w∈{w19,··· ,w24} Λ(w).

Here, we can choose Xalarm as the partition events z, and these are always observable. Next
the manifest MCEG is constructed from the idle MCEG by removing the paths that do not traverse
any position in {w19, · · · , w24}. The manipulated MCEG is obtained by further deleting the paths
that terminate in w f

∞ from the manifest MCEG, see Figure 6. If the post-intervention probabilities
θ̂w∗ are known, then we can evaluate the path probabilities in the manipulated MCEG following
the factorisations we specified in Equation (28). Then, conditional on the manifest paths, each
probability in Equation (31) can be computed to estimate the effects of the observed maintenance on
the sight glass or the buchholz.
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Figure 6. The manipulated MCEG for Example 2.

4. Experiments

Due to commercial sensitivity, we cannot disclose the real maintenance data from the
energy distribution company and examine our methodology on it. Here, we show experi-
mentally, using synthetic data, how the structural learning algorithm over a class of MCEGs
can be used to provide useful causal inferences. We, then, perform a comparative study to
demonstrate how the predictions are improved when incorporating the causal algebras we
specified in previous section into the algorithm for the synthetic experimental data.

4.1. Causal Discovery with the Structural Learning Algorithm

Assume a ground truth missingness staged tree in Figure 3 and a corresponding
MCEG in Figure 4 are valid. Assume the causal ordering here is Π1 = Xcause ≺ Xleak
≺ Xalarm ≺ Xs/b ≺ X f ail . The oil leak, alarm, and sight glass or buchholz defect are faults
that may appear before a failure or routine maintenance. Thus, the oil leak could be a
potential cause of alarm and the defect in buchholz or sight glass. We assume that, for any
floret, the parameters of primitive probability vector are independent, and the vectors of
primitive probabilities associated with each stage are mutually independent.

This ensures a model search based on product of independent Dirichlet priors over the
model parameters and a closed-form conjugate analysis [30]. Based on these assumptions,
we now generate observation data D1 of size 5000 from the ground truth MCEG with
the corresponding hypothesized transition probabilities. This emulates the dataset in a
situation when there has been no intervention to the system.
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To begin to learn a best model for D1 given the event tree in Figure 2, we specify the
Dirichlet hyperparameters. We use established methods and treat each αuj as the number
of phantom units [3], which is believed to arrive at jth child of stage u. We let the total
phantom units entering the root vertex v0 be 1 and denote this by α = 1.

By performing the MAP algorithm, the best scoring MCEG is shown in Figure 7. In
this MCEG, denoted by C(X(Π1), B), the positions representing the same variable Xi ∈ X
are vertically aligned in descending order with respect to P(Xi(w) = 1|D1, μ(w0, w)). For
transparency, the edges that are supposed to have a label “yes” have been coloured red
for clarity.

The posterior means for each stage are summarised in Table 1. The score of this
selected model is −20,389.83. The stages for Xleak, Xalarm and the missing indicator of s/b
defect in this tree are accurately learned by the algorithm when these are compared with
the stages in the ground truth MCEG. In terms of the stages for Xs/b, the stage assigned to
v23 is wrong. There are 15 misclassifications appearing for X f ail . One possible reason is
that the dataset is not sufficiently large to provide sufficient information on the last event
modelled on the tree.

The best scoring MCEG in Figure 7 has a complex topology because many stages for the
last variable modelled on the tree are misspecified. However, we can still summarise some
causal explanations from it when assuming it is causal. We read the causal relationships
from the semantics of a causal CEG in an analogous way to a causal BN [3,6]. For example,
from Figure 7, we see that all the edges representing oil leak point to the stage u′ =
{w6, · · · , w9}, which is coloured in green, while the edges representing no leak point to the
stage u′′ = {w10, · · · , w13}, which is coloured in brown. The stage u′ is located above u′′

on the tree, meaning the mean posterior probability of alarm at this stage is higher than
that at u′′.

Therefore, the oil leak gives rise to the likelihood of alarm. Root causes also lie
upstream of alarm on the tree and can affect the possibility of alarm. However, from
Figure 7, whether the cause is missing and which cause is observed appear to have no
influence on alarm given an oil leak. Thus, given the oil leak, the alarm is independent
of the root causes we specified for this model. We could say that the oil leak is the main
cause of alarm given the hypothesised causal ordering Π1. One causal implication of
this discovery is that we could prevent an alarm by fixing or preventing the oil leak. For
positions associated with failure indicators, w37 is aligned at the lowest position. This
means that the probability P(X f ail = 1|μ(w0, w37), D1) is the lowest compared with the
probability of failure conditional on the position w34 or w35 or w36. There are eight edges
pointing to w37 labelled by no s/b defect and only one edge pointing to it labelled by a
s/b defect. Thus, to increase the reliability of the machine, we can schedule the preventive
maintenance for the sight glass or the buchholz.

4.2. A Comparison Study

Now, we assume the routine intervention described in Example 2 has occurred, and
Figure 4 portrays the real causal structure. We, then, simulate synthetic data D2 of size 5000
from this intervened model to emulate an experimental dataset by the following setups.
First, we assume the 5000 pieces of equipment here have been intervened in the same way
by the same routine maintenance. Second, a complete and unique root-to-sink path on the
tree can be identified for each case in D2. Third, assume we have the estimated posteriors
from the past failure data before conduction of routine maintenance, and these are now
used as priors to generate the data that would be observed after the routine maintenance.

Here, the prior independence assumptions are still assumed to be valid so that conju-
gate sampling can be characterised. To simulate from the intervened system instead of the
idle system, the florets F (w2),F (w3),F (w4) are stochastically manipulated in response to
the routine maintenance, and we adjust the corresponding Dirichlet hyperparameters as
described in the previous section.

205



Entropy 2021, 23, 1308

w0

missing cause

w1

cause

w4

w5

w3

w2

oil leak

w6

alarm

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20

missing s/b

w21

w22

w23

w24

w25

s/b

w26

w27

w28

w29

w30

w31

w32

w33

w34

w35

fail

w36

w37

wf
∞

wn
∞

breathing
system

te
m
pe
ra
tu
re

seal/pipe

Figure 7. The best scoring MCEG selected for D1 with hypothesised causal ordering Π1.

Table 1. Mean posterior probabilities P(X = 1|stage, D1).

Xleak = 1 Xalarm = 1 Bs/b = 1 Xs/b = 1 X f ail = 1

stage w2 w3 w4, w5 w6, · · · , w9 w10, · · · , w13 w14, · · · , w19 w20, · · · , w24 w25, w26, w27 w28, w29, w30 w31, w32, w33 w34 w35 w36 w37
estimate 0.77 0.69 0.50 0.69 0.49 0.51 0.29 0.80 0.67 0.51 0.78 0.70 0.59 0.45

It is possible to embody the effects of this intervention when learning the causal struc-
ture by incorporating the stochastic manipulations we developed in the previous section
into the MAP algorithm. We can check whether this improves the causal structure learning
and parameter estimations. On the corresponding missingness event tree, see Figure 2, we
accordingly revise the Dirichlet hyperparameters of florets F (v1),F (v5),F (v6) and F (v7)
using the method we proposed in Section 3.2.2.

We defined φ in Equation (27) to add uncertainties to the intervened floret distributions.
In this study, we aim to compare the estimates learned from the best scoring model selected
by the algorithm when no distributions are manipulated, i.e., φ = 1, with the estimates
learned from the best scoring model selected by the algorithm when inputting φ < 1. In
particular, we consider six different cases here: φ = 0.1, φ = 0.3, φ = 0.5, φ = 0.7, φ = 0.9,
and φ = 1.

Now, we run the algorithm for α = 0.001, α = 0.01, α = 0.1, α = 1, α = 3, α = 5,
where α is the prior parameter representing the number of phantom units entering the
root node. We assess the resulted models in terms of situational errors [31] and MAP
scores. The situational error (The total situational error of a tree is evaluated as γ(T ) =

∑v∈VT ||θ∗v − θ̃v||2) for a situation v measures the Euclidean distance between the true
conditional probabilities θ∗v and the mean posterior probabilities θ̃v estimated on the best
scoring model.

The results are shown in Figure 8. The upper panel of each plot displays the total situ-
ational errors, while the lower panel displays the MAP scores for the best scoring models
for different values of φ. For any prior parameter α we choose, we observe that the best
scoring model is selected from the algorithm by setting φ = 0.1, which gives the smallest
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situational error and the highest MAP score. In particular, the situational error rises when
φ increases towards 1. Thus, the posterior parameters are better estimated by incorporating
the manipulations into the learning algorithm when modelling the experimental data for
an intervened system.

When φ = 1 (i.e., the distributions are not manipulated), the MAP score in each plot
of Figure 8 is much lower than that for φ = 0.1. This means the best structure selected
with φ = 0.1 is more consistent with the dataset D2 than the best model selected by the
algorithm without importing stochastic manipulations.
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Figure 8. Comparing situational errors and MAP scores for the best scoring models selected to fit
D2. The x-axis of each plot is labelled by different values of φ, where φ = 1 refers to the case when
no manipulation is imported to the prior. Each plot displays results for a specified total phantom
number α.

5. Discussion

Thus far, we demonstrated how the context-specific CEG is a compelling graphical tool
for analysing system failure data. This happens not only because of its ability to represent
structural asymmetries but also its flexibility in being able to perform the necessary analyses
in a straightforward way even in the presence of censored data that are informedly missing;
causal analyses can be performed through simple MAP structural learning algorithms. We
developed bespoke causal algebras for the routine intervention and extended the back-door
theorems for identifying its causal effects on the MCEG. The results from our designed
experiments confirm the usefulness of these bespoke causal algebras in structural learning
to improve the predictions needed for system reliability.

One concern of the study is that the model classes containing the best explanation can
become huge when the systems are very large. However, the established methodology
allows us to scale up the search space for more complex models with up to 20 variables [32].
Furthermore, these challenges associated with scalability are generic ones and are currently
being actively researched. Each new development can be simply translated into causal
analyses of reliability systems using the technologies we described above.
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Abstract: Universal Causality is a mathematical framework based on higher-order category theory,
which generalizes previous approaches based on directed graphs and regular categories. We present
a hierarchical framework called UCLA (Universal Causality Layered Architecture), where at the
top-most level, causal interventions are modeled as a higher-order category over simplicial sets
and objects. Simplicial sets are contravariant functors from the category of ordinal numbers Δ into
sets, and whose morphisms are order-preserving injections and surjections over finite ordered sets.
Non-random interventions on causal structures are modeled as face operators that map n-simplices
into lower-level simplices. At the second layer, causal models are defined as a category, for example
defining the schema of a relational causal model or a symmetric monoidal category representation
of DAG models. The third layer corresponds to the data layer in causal inference, where each
causal object is mapped functorially into a set of instances using the category of sets and functions
between sets. The fourth homotopy layer defines ways of abstractly characterizing causal models
in terms of homotopy colimits, defined in terms of the nerve of a category, a functor that converts
a causal (category) model into a simplicial object. Each functor between layers is characterized
by a universal arrow, which define universal elements and representations through the Yoneda
Lemma, and induces a Grothendieck category of elements that enables combining formal causal
models with data instances, and is related to the notion of ground graphs in relational causal models.
Causal inference between layers is defined as a lifting problem, a commutative diagram whose
objects are categories, and whose morphisms are functors that are characterized as different types of
fibrations. We illustrate UCLA using a variety of representations, including causal relational models,
symmetric monoidal categorical variants of DAG models, and non-graphical representations, such as
integer-valued multisets and separoids, and measure-theoretic and topological models.

Keywords: artificial intelligence; higher-order category theory; causality; machine learning; statistics

1. Introduction

Applied category theory [1] has been used to design algorithms for dimensionality
reduction and data visualization [2], resolve impossibility theorems in data clustering [3]
and propose schemes for knowledge representation [4]. Universal Causality (UC) is a
mathematical framework based on applied higher-order category theory, which applies
to graph-based [5] and non-graphical representations [6–8], and statistical [9] and non-
statistical frameworks [10,11] (see Table 1 and Figure 1). Ordinary categories are defined as
a collection of objects that interact pairwise through a collection of morphisms. Higher-order
categories, such as simplicial sets [12], quasicategories [13] and ∞-categories [14], model
higher-order interactions among groups of objects, and generalize both directed graphs and
ordinary categories. Our approach builds extensively on categories over functors. Causal
interventions are defined over the functor category of simplicial objects, mapping ordinal
numbers into sets or category objects. Causal inference is defined over the functor category
of presheafs HomC(−, c), mapping an object c in category C into the set of morphisms into
it. Adjoint functors define a pair of opposing functors between categories. Causal models
are often characterized in terms of their underlying conditional independence structures.
We model this relationship by adjoint functors between the category of conditional inde-
pendence structures [15], based on algebraic representations such as separoids [10], and
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the category of causal models, defined by graphical approaches [16] or non-graphical ap-
proaches, such as integer-valued multisets [8] or measure-theoretic information fields [6,7].
We build extensively on universal constructions, such as colimits and limits, defined through
lifting diagrams [17].

Table 1. Category theory provides a unifying mathematical framework for relating the diverse
formalisms used to study causal inference.

Representation Objects Morphisms Citation

Rank-ordered statistics Plants Total ordering Darwin [18]

Structural equation models Variables Algebraic equations Wright [19]

Potential outcomes Humans Drug effects Imbens and Rubin [9]

Directed Acyclic Graphs Vertices Paths Pearl [5]

Distributive lattices Subsets Joins/Meets Beerenwinkel et al. [20]

Relational causal models Database schemas Database relations Maier et al. [21]

Information fields Measurable Spaces Measurable functions Witsenhausen [6]

Resource Models Monoidal resources Profunctors Fong and Spivak [1]

Universal Decision Models UDM States UDM morphisms Mahadevan [22]

Counterfactual logic Propositions Proofs Lewis [11]

Variational inequalities Consumers/Producers Trade Nagurney [23]

Discourse sheaves Users Communication Hansen and Ghrist [24]

String diagram surgery Tensored objects Tensored morphisms Jacobs et al. [25]

Mean embeddings RKHS embeddings Mean maps Muandet et al. [26]

Universal Causality
B

A C

δ∅ − δa − δb + δab

BA C

f

Integer-valued multisets

Directed acyclic graph

Symmetric monoidal category of causal DAG models

Causal Information Fields

IC ⊂ { , A} ⊗ { , B} ⊗ FC ⊗ UA ⊗ UB ⊗ { ,UC}
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Figure 1. UC is a representation-independent framework that can be applied to many causal representations.

Over the past 150 years, causality has been studied using diverse formalisms (Table 1).
While causal effects are inherently directional, differing from symmetric statistical models
of correlation and invertible Bayesian inference, many causal discovery methods rely on
querying a (symmetric) conditional independence oracle on submodels resulting from
interventions on arbitrary subsets of variables (such as a separating set [27,28]). Abstractly,
we can classify the causal representations in Table 1 using category theory in terms of
their underlying objects and their associated morphisms. Causal morphisms can be alge-
braic, graph-based, logical, measure-theoretical, probabilistic or topological. For example,
counterfactual mean embeddings [26] generalizes Rubin’s potential outcome model to
reproducing kernel Hilbert spaces (RKHS), where the kernel mean map is used to embed
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a distribution in an RKHS, and the average treatment effect (ATE) is computed using
mean maps. As Figure 1 emphasizes, UC is representation agnostic, and while it is related
to category-theoretic approaches of causal DAG models that use symmetric monoidal
categories [25,29,30], it differs substantially in many ways. UC introduces many novel
ideas into the study of causal inference, including higher-order categorical structures based
on simplicial sets and objects [12–14,31], adjoint functors mapping categories based on
algebraic models of conditional independence [10] into actual causal models, lifting dia-
grams [17], and Grothendieck’s category of elements that generalizes the notion of ground
graphs in relational causal models [32]. As we show later, any category, including symmetric
monoidal categories, can be converted into simplicial objects by using the nerve functor,
but its left adjoint that maps a simplicial set into a category is lossy, and preserves structure
only up to n ≤ 2-simplices. Higher-order category structures can be useful in modeing
causal inference under interference [33], where the traditional stable unit treatment value
assumption (SUTVA) is violated. Higher-order categories can also help model hierarchical
interventions over groups of objects.

As Studeny [8] points out, Bayesian DAG models capture only a small percentage of
all conditional independence structures. In particular, the space of DAG models grows
exponentially in the number of variables, whereas the number of conditional independence
structures grows super-exponentially proportional to the number of Boolean functions.
Consequently, UC is intended to be a general framework that applies to representations
that are more expressive than DAG models. In particular, UC can be used to analyze recent
work on relational causal models [21,32]. The notion of a ground graph in relational causal
models is a special case of the Grothendieck category of elements that plays a key role in
the UCLA architecture. UC applies equally well to non-graphical algebraic representations
that are much more expressive than DAG models, including integer-valued multisets [8],
separoids [10], as well as measure-theoretic representations, such as causal information
fields [6,7], that have been shown to generalize Pearl’s d-separation calculus [5].

Specifically, taking the simple example of a collider in Figure 1, in the Bayesian DAG
parameterization, a well-established theoretical framework [34] specifies how to decompose
the overall probability distribution into a product of local distributions. In contrast, in
causal information fields [6,7], each variable is defined as a measurable space over a discrete
or continuous set, and each local function is defined as a measurable function over its
information field. For example, the information field IC for variable C is defined to be
some measurable subset over a product σ-algebra that includes the σ-algebras UA and UB
over its parents A and B, but the information field of C cannot depend on its own values,
hence its local σ-algebra is defined as {∅,UC}, where UC is the space of possible values
of C. A full discussion of causal information fields is given in [7], who show it generalizes
d-separation to models that include cycles and other more complex structures. Similarly,
Studeny [8] proposed an algebraic framework called integer-valued multisets (imsets) for
representing conditional independence structures far more expressive than DAG models.
For the specific case of a DAG model G = (V, E), an imset in standard form [8] is defined as

uG = δV − δ∅ + ∑
i∈V

(δPai
− δi∪Pai

)

where each δV term is the characteristic function associated with a set of variables V. Finally,
separoids [10] is an algebraic framework for characterizing conditional independence as an
abstract property, defined by a join semi-lattice equipped with a partial ordering ≤, and a
ternary property ⊥⊥ over triples of elements such that X ⊥⊥ Y|Z defines the property that
X is conditionally independent of Y given Z. It is worth pointing out that separoids are
more general than the graphoid axiomatization [16] that underpins causal DAG models,
since as Studeny [8] shows, graphoids are defined in terms of disjoint subsets of variables,
which seriously limits their expressiveness. All these non-graphical representations can be
naturally modeled within the UC framework. One of the unique aspects of UC is that causal
interventions are themselves modeled as a (higher-order) category. Many approaches to
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causal discovery use a sequence of interventions, which naturally compose and form a
category. To achieve representation independence, we model interventions as a higher-
order category defined by simplicial sets and objects [12]. One strength of the simplicial
objects framework for modeling causal interventions is that it enables modeling hierarchical
interventions over groups of objects.

UC builds on the concept of universal arrows [35] to illuminate in a representation-
independent manner the central abstractions employed in causal inference. Figure 2
explains this concept with an example, which also illustrates the connection between
categories and graphs. For every (directed) graph G, there is a universal arrow from G to
the “forgetful” functor U mapping the category Cat of all categories to Graph, the category
of all (directed) graphs, where for any category C, its associated graph is defined by U(C).
Intuitively, this forgetful functor “throws” away all categorical information, obliterating for
example the distinction between the primitive morphisms f and g vs. their compositions
g ◦ f , both of which are simply viewed as edges in the graph U(C). To understand this
functor, consider a directed graph U(C) defined from a category C, forgetting the rule for
composition. That is, from the category C, which associates to each pair of composable
arrows f and g, the composed arrow g ◦ f , we derive the underlying graph U(C) simply
by forgetting which edges correspond to elementary arrows, such as f or g, and which are
composites. For example, consider a partial order as the category C, and then define U(C)
as the directed graph that results from the transitive closure of the partial ordering.

The universal arrow from a graph G to the forgetful functor U is defined as a pair
〈C, u : G → U(C)〉, where u is a “universal” graph homomorphism. This arrow possesses
the following universal property: for every other pair 〈D, v : G → H〉, where D is a category,
and v is an arbitrary graph homomorphism, there is a functor f ′ : C → D, which is
an arrow in the category Cat of all categories, such that every graph homomorphism
φ : G → H uniquely factors through the universal graph homomorphism u : G → U(C)
as the solution to the equation φ = U( f ′) ◦ u, where U( f ′) : U(C) → H (that is, H =
U(D)). Namely, the dotted arrow defines a graph homomorphism U( f ′) that makes
the triangle diagram “commute”, and the associated “extension” problem of finding this
new graph homomorphism U( f ′) is solved by “lifting” the associated category arrow
f ′ : C → D. This property of universal arrows, as we show in the paper, provide the
conceptual underpinnings of universal causality in the UCLA architecture, leading to the
defining property of a universal causal representation through the Yoneda Lemma [35].
Recent work on causal discovery of DAG models [27,28] can be seen as restricted ways of
defining adjoint functors between causal categories of DAG models and their underlying
graphs, assuming access to a conditional independence oracle that can be queried on causal
sub-models resulting from interventions on arbitrary subsets of variables.

Universal causal models are defined in terms of universal constructions, such as the
pullback, pushforward, (co)equalizer, and (co)limits. Figure 3 illustrates how universal
causal models are functors that map from some indexing category of abstract diagrams
into an actual causal model. For instance, COVID-19 Lockdown caused a reduction in
Traffic and Agricultural Fires, which in turn caused a significant reduction in Pollution.
In UC, we are interested in a deeper question, namely whether the pullback of Traffic

and Agricultural Fires could have been some other common cause that mediated between
COVID-19 Lockdown and its effects. If such a common cause exists, it will be viewed as a
limit of an abstract causal diagram, a functor that maps from the indexing category of all
diagrams to the actual causal model shown.
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U(C)
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D

Universal Arrow: G to U
Defined by <C, u: G -> U(C)>

Figure 2. Universal arrows play a central role in the UCLA framework. In this example, the forgetful
functor U between Cat, the category of all categories, and Graph, the category of all (directed) graphs,
maps any category into its underlying graph, forgetting which arrows are primitive and which
are compositional. The universal arrow from a graph G to the forgetful functor U is defined as
a pair 〈C, u : G → U(C)〉, where u is a “universal” graph homomorphism. The universal arrow
property asserts that every graph homomorphism φ : G → H uniquely factors through the universal
graph homomorphism u : G → U(C), where U(C) is the graph induced by category C defining
the universal arrow property. In other words, the associated extension problem of “completing” the
triangle of graph homomorphisms in the category of Graph can be uniquely solved by “lifting” the
associated category arrow h : C → D.

Figure 3. A causal model of climate change and COVID-19 lockdown. Universal causality defines
causal models as functors mapping from an indexing category of abstract diagrams to the actual
causal model.

Figure 4 illustrates the concept of causal simplicial structures. Here, X denotes a
causal structure represented as a category. X[0] represents the “objects” of the causal
structure, defined formally as the contravariant functor X[0] : [0]→ X from the simplicial
category Δ to the causal category X. The arrows representing causal effects are defined as
X[1] : [1]→ X. Note that since [1] = {0, 1} is a category by itself, it has one (non-identity)
arrow 0 → 1 (as well as two identity arrows). The mapping of this arrow onto X defines the
“edges” of the causal model. Similarly, X2 represents oriented “triangles” of three objects.
Note that there is one edge from X0 to X1, labeled by s0. This is a co-degeneracy operator
from the simplicial layer that maps each object A into an identity edge 1A. Similarly, there
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are two edges marked d0 and d1 from X1 to X0. These are co-face operators that map an
edge to its source and target vertices correspondingly. Notice also that there are three
edges from X2 to X1, marked d0, d1, and d2. These are the “faces” of each 2-simplex as
shown. Consider the fragment of the causal DAG model from Figure 3 shown on the right
in Figure 4. The order complex of a DAG forms a simplicial object as shown, where the
simplices are represented by the nonempty chains. In particular, each path of length n
defines a simplex of size n. For example, the path from O (representing Overpopulation) to
T (representing Traffic) to P (representing Pollution) defines a simplex of size 2, shown as
the green shaded triangle. Note the simplices are oriented, which is not shown for simplicity
in Figure 4. Thus, the 2-simplex formed from the chain from O to T to P is oriented such
that O “points to” T, which in turn “points to” P. This mapping from chains over DAGs to
simplicial objects is a special case of a more general construction discussed later in the paper,
based on constructing the nerve of a category that provides a faithful functor embedding
any (causal) category as a simplicial object. For example, the symmetric monoidal category
representations of causal DAG models [25,29,30] can be faithfully embedded as simplicial
objects by constructing their nerve.

O C F

T A

P

O

T

P

C

A

F

Causal DAG Model
Causal Simplicial Object

From Order Complex

Figure 4. (Left) generic structure of a simplicial set. (Right) an oriented simplicial complex formed
from the order complex of nonempty chains of the DAG model from Figure 3.

2. A Layered Architecture for Universal Causality

In this paper, we propose a layered architecture that defines the framework called
UCLA (Universal Causality Layered Architecture). This architecture is illustrated in Figure 5.
Table 2 describes the composition of each layer. Many variants are possible, as we will
discuss in the paper. As functors compose with each other, it is also possible to consider
“collapsed” versions of the UCLA hierarchy.

The UCLA architecture is built on the theoretical foundation of ordinary category
theory [35–38] and higher-order category theory, including quasicategories [13], and ∞-
categories [14]. As Figure 5 illustrates, at the top layer of UCLA, we model causal in-
terventions itself as a higher-order category defined over simplicial sets and objects [12].
Causal discovery often involves a sequence of interventions, which naturally compose to
form a category. Simplicial sets and simplicial objects [12] have long been a foundational
framework in algebraic topology [39]. Modeling interventions using simplicial sets permits
a hierarchical language for expressing interventions, as (co)face operators in simplicial
sets and objects operate over groups of objects of arbitrary sizes. This category-theoretic
approach of formalizing causal interventions gives an algebraic formalism that are related
to topological notions used in causal discovery methods, such as separating sets [27,28]
that can be defined in terms of lifting diagrams [17]. Although we will not delve into this
elaboration in this paper, it is possible to define causal inference over “fuzzy” simplicial
sets as well [2], which associate a real number p ∈ I = (0, 1] with each simplicial object
that denotes the uncertainty associated with a causal object or morphism. In this case, we
define a fuzzy simplicial object as the functor Δop × I → C. Fuzzy simplicial sets have been
recently used in data visualization [2].
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Table 2. Each layer of UCLA represents a categorical abstraction of causal inference.

Layer Objects Morphisms Description

Simplicial [n] = {0, 1, . . . , n} f = [m]→ [n] Category of interventions

Relational Vertices V, Edges E s, t : E → V Causal Model Category

Tabular Sets Functions on sets f : S → T Category of instances

Homotopy Topological Spaces Causal equivalence Causal homotopy

Quasicategory of simplicial 
objects 

Category of causal objects

Category of Instances

Category of homotopies

[n]

B

A C

B

A C

Lifting Problems

Functor

Functor

Functor

Grothendieck Category
Of Elements

Grothendieck Category
Of Elements

Grothendieck Category
Of Elements

Universal Arrow

Universal Arrow

Universal Arrow

Layered Architecture for Universal Causality (UCLA)

Figure 5. UCLA is a layered architecture that defines Universal Causality.

The second layer of the model represents the causal category itself, which could be a
causal DAG [5], a symmetric monoidal category defining a causal DAG [25], a semi-join
lattice defining a conditional independence structure, such as an integer-valued multiset [8],
a relational database defining a relational causal model [21], or a causal information
field [6,7], which uses a measure-theoretic notion of causality. At the third layer, we model
the actual data defining a causal model by a category of instances. Finally, at the bottom-
most layer, we use a homotopy category to define equivalences among causal models.

The Grothendieck Category of Elements (GCE) is a type of universal construction [35,37,40]
that plays a central role in the UCLA architecture. It is remarkably similar to other represen-
tations widely used in database theory, and specifically in the context of causal inference,
it is related to the ground graph used in relational causal models [21,32]. However, GCE is
far more general than the ground graph construction in that it can be used to embed any
object or indeed any category in Cat, the category of all categories.
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We use lifting diagrams [17] to formalize causal inference at each layer of the hierarchy.
A lifting problem in a category C is a morphism h : B → X in C satisfying p ◦ h = ν and
h ◦ f = μ as indicated in the commutative diagram below.

A X

B Y

f

μ

ph

ν

Lifting diagrams were shown to be capable of expressing SQL queries in relational
databases [4]. Here, we extend this approach to model causal inference under non-random
interventions, exploiting the capability of the simplicial layer to impose non-random
“surgical” operations on a causal category.

Finally, to explain the bottom-most layer in UCLA of homotopy categories, it is well
known that causal models are not identifiable from observations alone [5]. For example,
the three distinct causal DAG models over three variables A ← B → C, A → B → C
and A ← B ← C have the same conditional independence structure, and are equivalent
given a dataset of values of the variables. To model the non-distinguishability of causal
models under observation, we introduce the concept of homotopic equivalence comes
from topology, and is intended to reflect equivalence under some invertible mappings. A
homotopy from a morphism f : X → Y to another morphism g : X → Y is a continuous
function h : X × [0, 1] → Y satisfying h(0, x) = f (x) and h(x, 1) = g(x). In the category
Top of topological spaces, homotopy defines an equivalence class on morphisms. In the
application to causal inference, we can define causal homotopy [41] as finding the “quotient
space” of the category of all causal models under a given set of invertible morphisms
mapping one causal model into another equivalent model.

3. Categories, Functors, and Universal Arrows

We introduce the basic theory underlying UC in more depth now, building on relation-
ship between categories and graphs illustrated in Figure 2. Given a graph, we can define
the “free” category associated with it where we consider all possible paths between pairs
of vertices (including self-loops) as the set of morphisms between them. In the reverse
direction, given a category, we can define a “forgetful” functor that extracts the underlying
graph from the category, forgetting the composition rule.

Definition 1. A graph G (sometimes referred to as a quiver) is a labeled directed multi-graph
defined by a set O of objects, a set A of arrows, along with two morphisms s : A → O and
t : A → O that specify the domain and co-domain of each arrow. In this graph, we define the set of
composable pairs of arrows by the set

A×O A = {〈g, f 〉| g, f ∈ A, s(g) = t( f )}

A category C is a graph G with two additional functions: id : O → A, mapping each object
c ∈ C to an arrow idc and ◦ : A×O A → A, mapping each pair of composable morphisms 〈 f , g〉
to their composition g ◦ f .

It is worth emphasizing that no assumption is made here of the finiteness of a graph,
either in terms of its associated objects (vertices) or arrows (edges). Indeed, it is entirely
reasonable to define categories whose graphs contain an infinite number of edges. A
simple example is the group Z of integers under addition, which can be represented as a
single object, denoted {•} and an infinite number of morphisms f : • → •, each of which
represents an integer, where composition of morphisms is defined by addition. In this
example, all morphisms are invertible. In a general category with more than one object, a
groupoid defines a category all of whose morphisms are invertible.
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As our paper focuses on the use of category theory to formalize causal inference, we
interpret causal changes in terms of the concept of isomorphisms in category theory. We
will elaborate this definition later in the paper.

Definition 2. Two objects X and Y in a category C are deemed isomorphic, or X ∼= Y if and only
if there is an invertible morphism f : X → Y, namely f is both left invertible using a morphism
g : Y → X so that g ◦ f = idX, and f is right invertible using a morphism h where f ◦ h =
idY. A causally isomorphic change in a category is defined as a change of a causal object Y into
Ŷ under an intervention that changes another object X into X̂ such that Ŷ ∼= Y, that is, they are
isomorphic. A causal non-isomorphic effect is a change that leads to a non-isomorphic change
where Ŷ �∼= Y. An alternate definition would be to define a causally isomorphic change as a change
that is an isomorphism in the category whose morphisms are causal changes.

In the category Sets, two finite sets are considered isomorphic if they have the same
number of elements, as it is then trivial to define an invertible pair of morphisms between
them. In the category Vectk of vector spaces over some field k, two objects (vector spaces)
are isomorphic if there is a set of invertible linear transformations between them. As we
will see below, the passage from a set to the “free” vector space generated by elements of
the set is another manifestation of the universal arrow property.

Functors can be viewed as a generalization of the notion of morphisms across algebraic
structures, such as groups, vector spaces, and graphs. Functors do more than functions:
they not only map objects to objects, but like graph homomorphisms, they need to also map
each morphism in the domain category to a corresponding morphism in the co-domain
category. Functors come in two varieties, as defined below.

Definition 3. A covariant functor F : C → D from category C to category D, and defined as
the following:

• An object FX (also written as F(X)) of the category D for each object X in category C.
• An arrow F( f ) : FX → FY in category D for every arrow f : X → Y in category C.
• The preservation of identity and composition: F idX = idFX and (F f )(Fg) = F(g ◦ f ) for

any composable arrows f : X → Y, g : Y → Z.

Definition 4. A contravariant functor F : C → D from category C to category D is defined
exactly like the covariant functor, except all the arrows are reversed.

3.1. Universal Arrows

This process of going from a category to its underlying directed graph embodies
a fundamental universal construction in category theory, called the universal arrow [35].
It lies at the heart of many useful results, principally the Yoneda Lemma that shows
how object identity itself emerges from the structure of morphisms that lead into (or out
of) it. The Yoneda Lemma codifies the meaning of universal causality, as it implicitly
states that any change to an object must be accompanied by a change to its presheaf
structure. Consequently, we can model UC in a representation-independent manner using
the Yoneda Lemma.

Definition 5. Given a functor S : D → C between two categories, and an object c of category C, a
universal arrow from c to S is a pair 〈r, u〉, where r is an object of D and u : c → Sr is an arrow
of C, such that the following universal property holds true:

• For every pair 〈d, f 〉 with d an object of D and f : c → Sd an arrow of C, there is a unique
arrow f ′ : r → d of D with S f ′ ◦ u = f .

Above we used the example of functors between graphs and their associated “free”
categories and graphs to illustrate universal arrows. A central principle in the UCLA
architecture is that every pair of categorical layers is synchronized by a functor, along
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with a universal arrow. We explore the universal arrow property more deeply in this
section, showing how it provides the conceptual basis behind the Yoneda Lemma, and
Grothendieck’s category of elements. In the case of causal inference, universal arrows
enable mimicking the effects of causal operations from one layer of the UCLA hierarchy
down to the next layer. In particular, at the simplicial object layer, we can model a causal
intervention in terms of face and degeneracy operators (defined below in more detail).
These in turn correspond to “graph surgery” [5] operations on causal DAGs, or in terms
of “copy”, “delete” operators in “string diagram surgery” of causal models defined on
symmetric monoidal categories [25]. These “surgery” operations at the next level may
translate down to operations on probability distributions, measurable spaces, topological
spaces, or chain complexes. This process follows a standard construction used widely
in mathematics, for example group representations associate with any group G, a left
k-module M representation that enables modeling abstract group operations by operations
on the associated modular representation. These concrete representations must satisfy the
universal arrow property for them to be faithful. A special case of the universal arrow
property is that of universal element, which as we will see below plays an important role in
the UCLA architecture in defining a suitably augmented category of elements, based on a
construction introduced by Grothendieck.

Definition 6. If D is a category and H : D → Set is a set-valued functor, a universal element

associated with the functor H is a pair 〈r, e〉 consisting of an object r ∈ D and an element e ∈ Hr
such that for every pair 〈d, x〉 with x ∈ Hd, there is a unique arrow f : r → d of D such
that (H f )e = x.

Example 1. Let E be an equivalence relation on a set S, and consider the quotient set S/E of
equivalence classes, where p : S → S/E sends each element s ∈ S into its corresponding equivalence
class. The set of equivalence classes S/E has the property that any function f : S → X that respects
the equivalence relation can be written as f s = f s′ whenever s ∼E s′, that is, f = f ′ ◦ p, where the
unique function f ′ : S/E → X. Thus, 〈S/E, p〉 is a universal element for the functor H.

3.2. The Grothendieck Category of Elements

We turn next to define the category of elements, based on a construction by Grothendieck,
and illustrate how it can serve as the basis for inference at each layer of the UCLA architec-
ture. This definition is a special case of a general construction by Grothendieck [40].

Definition 7. Given a set-valued functor δ : C → Set from some category C, the induced
Grothendieck category of elements associated with δ is a pair (

∫
δ, πδ), where

∫
δ ∈ Cat

is a category in the category of all categories Cat, and πδ :
∫

δ → C is a functor that “projects” the
category of elements into the corresponding original category C. The objects and arrows of

∫
δ are

defined as follows:

• Ob(
∫

δ) = {(s, x)|x ∈ Ob(C), x ∈ δs}.
• Hom∫

δ((s, x), (s′, x′)) = { f : s → s′|δ( f )(x) = x′}

Example 2. To illustrate the category of elements construction, let us consider the toy climate
change causal model shown in Figure 6. Let the category C be defined by this causal DAG model,
where the objects Ob(C) are defined by the four vertices, and the arrows HomC are defined by the
four edges in the model. The set-valued functor δ : C → Set maps each object (vertex) in C to a set
of instances, thereby turning the causal DAG model into an associated set of tables.
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Climate
Change (CC)

Rainfall (R) Wind (W)

California
Wildfires (CW)

Causal Model
1 2 3

E W S

5 10 20

HML

30

Figure 6. A toy causal DAG model of climate change to illustrate the category of elements construction.
Climate Change is a discrete multinomial variable over three values 1, 2, and 3. For each of its values,
the arrow from Climate Change to Rainfall maps each specific value of Climate Change to a value
of Rainfall, thereby indicating a causal effect of climate change on the amount of rainfall in California.
Rainfall is also a multinomial discretized as low (marked “L”), medium (marked “M”), high (marked
“H”), or extreme (marked “E”). Wind speeds are binned into two levels (marked “W” for weak, and
“S” for strong). Finally, the percentage of California wildfires is binned between 5 and 30. Not all
arrows in the category of elements are shown, for clarity.

Later in the paper, we give an application of the category of elements construction to
relational causal models, where in particular, it gives a rigorous semantics for ideas such as
relational skeleton and the ground graph proposed in [21,32].

3.3. Yoneda Lemma

The Yoneda Lemma plays a crucial role in UC because it defines the concept of a
representation in category theory. We first show that associated with universal arrows is
the corresponding induced isomorphisms between Hom sets of morphisms in categories.
This universal property then leads to the Yoneda Lemma.

Theorem 1. Given any functor S : D → C, the universal arrow 〈r, u : c → Sr〉 implies a bijection
exists between the Hom sets

HomD(r, d) % HomC(c, Sd)

While this is a well-known result whose proof can be found in [35], the crucial point
here is its implication for causal inference. As we will see later, often in the modeling of
causal inference using symmetric monoidal categories [25,29,30], a correspondence is set
up between two categories, for example the symmetric monoidal category representing
the structure of a causal DAG model, and the category of stochastic matrices that defines
the DAG semantics. The universal arrow theorem above shows how the morphisms over
the symmetric monoidal category can be synchronized with those over the stochastic
matrices, enabling causal interventions to be tracked properly. A special case of this natural
transformation that transforms the identity morphism 1r leads us to the Yoneda Lemma.

D(r, r) C(c, Sr)

D(r, d) C(c, Sd)

D(r, f ′)

φr

C(c,S f ′)
φd

As the two paths shown here must be equal in a commutative diagram, we get the
property that a bijection between the Hom sets holds precisely when 〈r, u : c → Sr〉 is a
universal arrow from c to S. Note that for the case when the categories C and D are small,
meaning their Hom collection of arrows forms a set, the induced functor HomC(c, S−) to
Set is isomorphic to the functor HomD(r,−). This type of isomorphism defines a universal
representation, and is at the heart of the causal reproducing property (CRP) defined below.
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Lemma 1. Yoneda Lemma: If H : D → Set is a set-valued functor, and r is an object in D, there
is a bijection that sends each natural transformation α : HomD(r,−) → K to αr1r, the image of
the identity morphism 1r : r → r.

y : Nat(HomD(r,−), K) % Kr

The proof of the Yoneda Lemma follows directly from the below commutative diagram,
a special case of the above diagram for universal arrows.

D(r, r) Kr

D(r, d) Kd

D(r, f ′)

φr

C(c,S f ′)

φd

3.4. The Universality of Diagrams and the Causal Reproducing Property

We state two key results that underly UC, and while both these results follow directly
from basic theorems in category theory, their significance for causal inference is what makes
them particularly noteworthy. The first result pertains to the notion of diagrams as functors,
and shows that for the functor category of presheaves, which is a universal representation
of causal inference, every presheaf object can be represented as a colimit of representables
through the Yoneda Lemma. This result can be seen as a generalization of the very simple
result in set theory that each set is a union of one element sets. The second result is the
causal reproducing property, which shows that the set of all causal effects between two
objects is computable from the presheaf functor objects defined by them. Both these results
are abstract, and apply to any category representation of a causal model.

Diagrams play a key role in defining UC and the UCLA architecture, as has already
become clear from the discussion above. We briefly want to emphasize the central role
played by universal constructions involving limits and colimits of diagrams, which are
viewed as functors from an indexing category of diagrams to a category. To make this
somewhat abstract definition concrete, let us look at some simpler examples of universal
properties, including co-products and quotients (which in set theory correspond to disjoint
unions). Coproducts refer to the universal property of abstracting a group of elements into
a larger one.

Before we formally the concept of limit and colimits [35], we consider some examples.
These notions generalize the more familiar notions of Cartesian products and disjoint
unions in the category of Sets, the notion of meets and joins in the category Preord of
preorders, as well as the least upper bounds and greatest lower bounds in lattices, and
many other concrete examples from mathematics.

Example 3. If we consider a small “discrete” categoryD whose only morphisms are identity arrows,
then the colimit of a functor F : D → C is the categorical coproduct of F (D) for D, an object of
category D, is denoted as

ColimitDF =
⊔
D
F (D)

In the special case when the category C is the category Sets, then the colimit of this functor is
simply the disjoint union of all the sets F(D) that are mapped from objects D ∈ D.

Example 4. Dual to the notion of colimit of a functor is the notion of limit. Once again, if we
consider a small “discrete” category D whose only morphisms are identity arrows, then the limit
of a functor F : D → C is the categorical product of F (D) for D, an object of category D, is
denoted as

limitDF = ∏
D
F (D)
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In the special case when the category C is the category Sets, then the limit of this functor is
simply the Cartesian product of all the sets F(D) that are mapped from objects D ∈ D.

Pullback and Pushforward Mappings

Universal causal models in UC are defined in terms of universal constructions, which
satisfy a universal property. We can illustrate this concept using pullback and pushforward
mappings. These notions help clarify the idea of the Grothendieck category of elements,
which plays a key role in the UCLA architecture.

Z X

Y X &Y

R

p

q f
h

g

i

r

An example of a universal construction is given by the above commutative diagram,
where the coproduct object X &Y uniquely factorizes any mapping h : X → R, such that
any mapping i : Y → R, so that h = r ◦ f , and furthermore i = r ◦ g. Co-products are
themselves special cases of the more general notion of co-limits. Figure 7 illustrates the
fundamental property of a pullback, which along with pushforward, is one of the core ideas
in category theory. The pullback square with the objects U, X, Y and Z implies that the
composite mappings g ◦ f ′ must equal g′ ◦ f . In this example, the morphisms f and g
represent a pullback pair, as they share a common co-domain Z. The pair of morphisms f ′, g′

emanating from U define a cone, because the pullback square “commutes” appropriately.
Thus, the pullback of the pair of morphisms f , g with the common co-domain Z is the
pair of morphisms f ′, g′ with common domain U. Furthermore, to satisfy the universal
property, given another pair of morphisms x, y with common domain T, there must exist
another morphism k : T → U that “factorizes” x, y appropriately, so that the composite
morphisms f ′ k = y and g′ k = x. Here, T and U are referred to as cones, where U is the
limit of the set of all cones “above” Z. If we reverse arrow directions appropriately, we get
the corresponding notion of pushforward. So, in this example, the pair of morphisms f ′, g′

that share a common domain represent a pushforward pair. As Figure 7, for any set-valued
functor δ : S → Sets, the Grothendieck category of elements

∫
δ can be shown to be a

pullback in the diagram of categories. Here, Set∗ is the category of pointed sets, and π is a
projection that sends a pointed set (X, x ∈ X) to its underlying set X.

T

U X

Y Z

x

y

k
g′

f ′ f
g

T

∫
δ Set∗

S Set

x

y

k

δ′

πδ π

δ

Figure 7. (Left) Universal Property of pullback mappings. (Right) The Grothendieck category of
elements

∫
δ of any set-valued functor δ : S → Set can be described as a pullback in the diagram of

categories. Here, Set∗ is the category of pointed sets (X, x ∈ X), and π is the “forgetful" functor that
sends a pointed set (X, x ∈ X) into the underlying set X.

In the category Sets, we know that every object (i.e., a set) X can be expressed as
a coproduct of its elements X % &x∈X{x}, where x ∈ X. Note that we can view each
element x ∈ X as a morphism x : {∗} → X from the one-point set to X. The categorical
generalization of this result is called the density theorem in the theory of sheaves [36]. First,
we define the key concept of a comma category.
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Definition 8. Let F : D → C be a functor from category D to C. The comma category F ↓ C
is one whose objects are pairs (D, f ), where D ∈ D is an object of D and f ∈ HomC(F(D), C),
where C is an object of C. Morphisms in the comma category F ↓ C from (D, f ) to (D′, f ′),
where g : D → D′, such that f ′ ◦ F(g) = f . We can depict this structure through the following
commutative diagram:

F(D)

F(D′) C

F(g)
f

f ′

We first introduce the concept of a dense functor [40]:

Definition 9. Let D be a small category, C be an arbitrary category, and F : D → D be a functor.
The functor F is dense if for all objects C of C, the natural transformation

ψC
F : F ◦U → ΔC, (ψC

F )(D, f ) = f

is universal in the sense that it induces an isomorphism ColimitF↓CF ◦U % C. Here, U : F ↓ C →
D is the projection functor from the comma category F ↓ C, defined by U(D, f ) = D.

A fundamental consequence of the category of elements is that every object in the func-
tor category of presheaves, namely contravariant functors from a category into the category
of sets, is the colimit of a diagram of representable objects, via the Yoneda Lemma. Notice
this is a generalized form of the density notion from the category Sets, as explained above.

Theorem 2. Universality of Diagrams in UC: In the functor category of presheaves SetC
op

,
every object P is the colimit of a diagram of representable objects, in a canonical way [36].

To explain the significance of this result for causal inference, note that UC represents
causal diagrams as functors from an indexing category of diagrams to an actual causal
model (as illustrated earlier in Figure 3). The density theorem above tells us that every
presheaf object can be represented as a colimit of (simple) representable objects, namely
functor objects of the form HomC(−, c).

Reproducing Kernel Hilbert Spaces (RKHS’s) transformed the study of machine learn-
ing, precisely because they are the unique subcategory in the category of all Hilbert spaces
that have representers of evaluation defined by a kernel matrix K(x, y) [42]. The repro-
ducing property in an RKHS is defined as 〈K(x,−), K(−, y)〉 = K(x, y). An analogous but
far more general reproducing property holds in the UC framework, based on the Yoneda
Lemma. The significance of the Causal Reproducing Property is that presheaves act as
“representers” of causal information, precisely analogous to how kernel matrices act as
representers in an RKHS.

Theorem 3. Causal Reproducing Property: All causal influences between any two objects X
and Y can be derived from its presheaf functor objects, namely

HomC(X, Y) % Nat(HomC(−, X), HomC(−, Y))

Proof. The proof of this theorem is a direct consequence of the Yoneda Lemma, which states
that for every presheaf functor object F in Ĉ of a category C, Nat(HomC(−, X), F) % FX.
That is, elements of the set FX are in 1− 1 bijections with natural transformations from the
presheaf HomC(−, X) to F. For the special case where the functor object F = HomC(−, Y),
we get the result immediately that HomC(X, Y) % Nat(HomC(−, X),HomC(−, Y)).
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In UC, any causal influence of an object X upon any other object Y can be represented
as a natural transformation (a morphism) between two functor objections in the presheaf
category Ĉ. The CRP is very akin to the idea of the reproducting property in kernel methods.

3.5. Lifting Problems

The UCLA hierarchy is defined through a series of categorical abstractions of a causal
model, ranging from a combinatorial model defined by a simplicial object down to a
measure-theoretic or topological realization. Between each pair of layers, we can formulate
a series of lifting problems [17]. Lifting problems provide elegant ways to define basic
notions in a wide variety of areas in mathematics. For example, the notion of injective and
surjective functions, the notion of separation in topology, and many other basic constructs
can be formulated as solutions to lifting problems. Database queries in relational databases
can be defined using lifting problems [4]. Lifting problems define ways of decomposing
structures into simpler pieces, and putting them back together again.

Definition 10. Let C be a category. A lifting problem in C is a commutative diagram σ in C.

A X

B Y

f

μ

p

ν

Definition 11. Let C be a category. A solution to a lifting problem in C is a morphism
h : B → X in C satisfying p ◦ h = ν and h ◦ f = μ as indicated in the diagram below.

A X

B Y

f

μ

ph

ν

Definition 12. Let C be a category. If we are given two morphisms f : A → B and p : X → Y
in C, we say that f has the left lifting property with respect to p, or that p has the right lifting

property with respect to f if for every pair of morphisms μ : A → X and ν : B → Y satisfying the
equations p ◦ μ = ν ◦ f , the associated lifting problem indicated in the diagram below.

A X

B Y

f

μ

ph

ν

admits a solution given by the map h : B → X satisfying p ◦ h = ν and h ◦ f = μ.

Example 5. Given the paradigmatic non-surjective morphism f : ∅ → {•}, any morphism p that
has the right lifting property with respect to f is a surjective mapping. .

∅ X

{•} Y

f

μ

ph

ν

Example 6. Given the paradigmatic non-injective morphism f : {•, •} → {•}, any morphism p
that has the right lifting property with respect to f is an injective mapping. .

{•, •} X

{•} Y

f

μ

ph

ν
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4. Universal Conditional Independence in Categories

Before proceeding to further detail the UCLA architecture, we discuss the special role
played by conditional independence in causal inference. Causal models can be abstractly
characterized by their underlying conditional independences. A number of previous
axiomatizations such as graphoids [5,16], integer-valued multisets [8], and separoids [10] can be
subsumed under the category-theoretic notion of universal conditional independence [15].
Conditional independence structures have been actively studied in AI, causal inference,
machine learning, probability, and statistics for many years. Dawid [10] define separoids, a
join semi-lattice, to formalize reasoning about conditional independence and irrelevance in
many areas, including statistics. Pearl [16] introduced graphoids, a distributive lattice over
disjoint subsets of variables, to model reasoning about irrelevance in probabilistic systems,
and proposed representations using directed acyclic graphs (DAGs). Studeny [8] proposed
a lattice-theoretic model of conditional independences using integer-valued multisets to
address the intrinsic limitations of DAG-based representations.

In particular, we want to show how it is possible to define universal conditional in-
dependence [15], a representation of conditional independence in any category. We build
specifically on the notion of separoids [10], an algebraic characterization of conditional inde-
pendence. Recent work by Fritz and Klingler [30] has proposed a symmetric monoidal cate-
gory representation of DAG type causal models, and an associated categorical probabilistic
representations of d-separation. Our goals are to construct a more abstract representation
of conditional independence based on non-graphical representations, like separoids [10] as
well as integer-valued multisets [8].

Conditional independence plays a key role in causal discovery as it is often used
as an oracle in causal discovery from data. Consider the problem of causal discovery as
inferring a directed acyclic graph (DAG) G = (V, E) from data, where the conditional
independence ⊥⊥ property is defined using the graph property of d-separation [16]. A
given DAG G can be characterized in two ways: one parameterization specifies the DAG G
in terms of the vertices V and edges E, which corresponds to specifying the objects and
morphisms of a category defining the DAG. The second way to parameterize a DAG is by
its induced collection of conditional independence properties, as defined by d-separation.
For example, the serial DAG over three variables, A → B → C, can be defined using
its two edges A → B and B → C, but also by its conditional independences, namely
A ⊥⊥ C|B using the theory of d-separation. We are thus given two possibly redundant
parameterizations of the same algebraic structure. However, multiple DAG models can
define the same conditional independences. For example, the serial model A → B → C, as
well as the “diverging” model A ← B → C and the “reverse” serial model A ← B ← C
all capture the same conditional independence property (A ⊥⊥ C|B). This non-uniqueness
property arises because Bayes rule can be used to map any one of these three DAGs into
the form represented by one of the other DAGs.

4.1. The Category of Separoids

A separoid (S ,≤,⊥⊥) [10] is defined as a semi-lattice S , where the join ∨ operator over
the semi-lattice S defines a preorder ≤, and the ternary relation ⊥⊥ is defined over triples
of the form (x ⊥⊥ y|z) (which are interpreted to mean x is conditionally independent of y
given z). We show briefly how to define a category for universal conditional independence,
where each object is a separoid, and the morphisms are homomorphisms from one separoid
to another. It is possible to define “lattice” objects in any category by interpreting an arrow
f : x → y as defining the partial ordering [36].

Definition 13. A separoid [10] defines a category over a preordered set (S ,≤), namely ≤ is
reflexive and transitive, equipped with a ternary relation ⊥⊥ on triples (x, y, z), where x, y, z ∈ S
satisfy the following properties:

• S1: (S ,≤) is a join semi-lattice.
• P1: x ⊥⊥ y | x
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• P2: x ⊥⊥ y | z ⇒ y ⊥⊥ x |z
• P3: x ⊥⊥ y | z and w ≤ y ⇒ x ⊥⊥ w |z
• P4: x ⊥⊥ y | z and w ≤ y ⇒ x ⊥⊥ y | (z ∨ w)
• P5: x ⊥⊥ y | z and x ⊥⊥ w | (y ∨ z) ⇒ x ⊥⊥ (y ∨ w) | z

A strong separoid also defines a categoroid. A strong separoid is defined over a lattice S has
in addition to a join ∨, a meet ∧ operation, and satisfies an additional axiom:

• P6: If z ≤ y and w ≤ y, then x ⊥⊥ y | z and x ⊥⊥ y | w ⇒ x ⊥⊥ y | z ∧ w

To define a category of separoids, we have to define the notion of a homomorphism
between separoids [10]:

Definition 14. Let 〈S ,≤,⊥⊥〉 and 〈S′,≤′,⊥⊥′〉 be two separoids. A map f : S → S′ is a
separoid homomorphism if:

1. It is a join-lattice homomorphism, namely f (x ∨ y) = f (x) ∨′ f (y), which implies that
x ≤ y → f (x) ≤′ f (y).

2. x ⊥⊥ y |z → f (x) ⊥⊥′ f (y) | f (z).
3. In case both S and S’ are strong separoids, we can define the notion of a strong separoid

homomorphism to additionally include the condition: f (x ∧ y)→ f (x) ∧′ f (y).

With this definition, we can now define the category of separoids and a representation-
independent characterization of universal conditional independence as follows:

Theorem 4. The category of separoids is defined as one where each object in the category is defined
as a separoid 〈S ,≤,⊥⊥〉, and the arrows are defined as (strong) separoid homomorphisms. The
category of separoids provides an axiomatization of universal conditional independence, namely that
it enables a universal representation through the use of universal arrows and Yoneda Lemma.

Proof. First, we note that the category of separoids indeed forms a category as it straightfor-
wardly satisfies all the basic properties. The (strong) separoid homomorphisms compose,
so that g ◦ f as a composition of two (strong) separoid homomorphisms produces another
(strong) separoid homomorphism. The universal property derives from the use of the
Yoneda Lemma to define a category of presheaves that map from the category of separoids
to the category Sets.

4.2. Adjoint Functors in Causal Discovery

First, we need to review the basic concept of adjoint functors, which will be helpful in
modeling several aspects of causal inference in this paper.

Definition 15. A pair of adjoint functors is defined as F : C → D and G : D → C, where F is
considered the right adjoint, and G is considered the left adjoint,

D C.
G

F
�

must satisfy the property that for each pair of objects C of C and D of D, there is a natural
transformation between the two sets of morphisms

φC,D : HomC(C, G(D)) % HomD(F(C), D)

An important property of adjoint functors is connected to the concepts of limits and
colimits reviewed above.
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Theorem 5. If F and G are a pair of adjoint functors

D C.
G

F
�

then the functor G preserves colimits and the functor F preserves limits.

Notice the similarity of this definition to the one earlier where the universal arrow
property induced a bijection of Hom sets that then led to universal elements, Grothendieck
category of elements, and the Yoneda Lemma.

We now introduce the perspective of adjoint functors for causal discovery (see Figure 8).
Many causal discovery algorithms [27] that use a conditional independence oracle to query
conditional independence properties from a dataset can be viewed in this perspective as
using adjoint functors between the category of separoids and the category of the causal
model itself. We can design functors that map from the category of all separoids into the
category of causal models (in particular, for example, the category of graphs, or the category
of integer-valued multisets [8]). Shown in the figure is one particular separoid object with a
single conditional independence property stating that A and B are dependent conditional
on knowing the value of C), which can realized in two ways: one using a collider DAG
A → C ← B, and the other as a integer-valued multiset. These pair of functors are an
example of the general case of adjoint functors between “forgetful” and “free” functors [40].
To make this more precise, let us define the “forgetful” functor R between a causal model
on the right to its underlying set of conditional independences on the left, so that R(M) is
the separoid object that represents the conditional independence in a causal model M. Note
that R is a “forgetful” functor, in that it “throws away” structural information, including
for example, whether the causal model is a causal DAG or an integer-valued multiset. On
the other hand, the “free” functor L(M), its left adjoint, maps a given separoid object to any
of its associated “free” objects, namely causal models that represent it, irrespective of their
formalism. Within the category of causal models, morphisms enable translation between
different representations.

B

A C

Category of Separoids Category of Causal Models

Adjoint
Functors

δ∅ − δa − δb + δab

A �⊥ B|C

Figure 8. Adjoint functors between the category of separoids and the category of causal models. Here,
a causal “collider" DAG over three random variables A, B, and C, and its associated integer-valued
multiset, can both be viewed as “free" objects associated with a separoid conditional independence
object, whereas the latter can be viewed in terms of a forgetful functor that throws away the causal
DAG or integer-valued multiset structure.

5. Layers 1 and 2: Category of Causal Interventions over Simplicial Objects

We now discuss Layers 1 and 2 in UCLA architecture, describing the top simplicial
objects layer, and how it interacts with the causal category structure (layer 2). Simplicial sets
are higher-dimensional generalizations of directed graphs, partially ordered sets, as well as
regular categories themselves. Importantly, simplicial sets and simplicial objects form a
foundation for higher-order category theory [13,14]. By using simplicial sets and objects
at the top layer, UCLA enables a powerful machinery to define a higher-order category
for representing a rich class of causal interventions over a very expressive set of causal
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models, including relational causal models [32], and perform abstract “diagram surgery”,
for example “graph surgery” [5] or “string diagram surgery” [25].

Simplicial objects have long been a foundation for algebraic topology [12,39], and more
recently in higher-order category theory [13,14,43]. The category Δ has non-empty ordinals
[n] = {0, 1, . . . , n] as objects, and order-preserving maps [m]→ [n] as arrows. An important
property in Δ is that any many-to-many mapping is decomposable as a composition of
an injective and a surjective mapping, each of which is decomposable into a sequence of
elementary injections δi : [n] → [n + 1], called coface mappings, which omits i ∈ [n], and
a sequence of elementary surjections σi : [n] → [n − 1], called co-degeneracy mappings,
which repeats i ∈ [n]. The fundamental simplex Δ([n]) is the presheaf of all morphisms
into [n], that is, the representable functor Δ(−, [n]). The Yoneda Lemma [35] assures us
that an n-simplex x ∈ Xn can be identified with the corresponding map Δ[n]→ X. Every
morphism f : [n]→ [m] in Δ is functorially mapped to the map Δ[m]→ Δ[n] in S .

Any morphism in the category Δ can be defined as a sequence of co-degeneracy and
co-face operators, where the co-face operator δi : [n− 1]→ [n], 0 ≤ i ≤ n is defined as:

δi(j) =
{

j, for 0 ≤ j ≤ i− 1
j + 1 for i ≤ j ≤ n− 1

Analogously, the co-degeneracy operator σj : [n + 1]→ [n] is defined as

σj(k) =
{

j, for 0 ≤ k ≤ j
k− 1 for j < k ≤ n + 1

Note that under the contravariant mappings, co-face mappings turn into face map-
pings, and co-degeneracy mappings turn into degeneracy mappings. That is, for any
simplicial object (or set) Xn, we have X(δi) := di : Xn → Xn−1, and likewise, X(σj) := sj :
Xn−1 → Xn.

The compositions of these arrows define certain well-known properties [12,40]:

δj ◦ δi = δi ◦ δj−1, i < j

σj ◦ σi = σi ◦ σj+1, i ≤ j

σj ◦ δi(j) =

⎧⎨⎩
σi ◦ σj+1, for i < j
1[n] for i = j, j + 1
σi−1 ◦ σj, for i > j + 1

Example 7. The “vertices” of a simplicial object Cn are the objects in C, and the “edges” of C are
its arrows f : X → Y, where X and Y are objects in C. Given any such arrow, the degeneracy
operators d0 f = Y and d1 f = X recover the source and target of each arrow. Also, given an object
X of category C, we can regard the face operator s0X as its identity morphism 1X : X → X.

Example 8. Given a category C, we can identify an n-simplex σ of a simplicial set Cn with
the sequence:

σ = Co
f1−→ C1

f2−→ . . .
fn−→ Cn

the face operator d0 applied to σ yields the sequence

d0σ = C1
f2−→ C2

f3−→ . . .
fn−→ Cn

where the object C0 is “deleted” along with the morphism f0 leaving it. The “edge intervention”
model in [44] effectively can be viewed as deleting the vertex from which the edge originates.
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Example 9. Given a category C, and an n-simplex σ of the simplicial set Cn, the face operator dn
applied to σ yields the sequence

dnσ = C0
f1−→ C1

f2−→ . . .
fn−1−−→ Cn−1

where the object Cn is “deleted” along with the morphism fn entering it. Note this face operator can
be viewed as analogous to interventions on leaf nodes in a causal DAG model.

Example 10. Given a category C, and an n-simplex σ of the simplicial set Cn the face operator
di, 0 < i < n applied to σ yields the sequence

diσ = C0
f1−→ C1

f2−→ . . . Ci−1
fi+1◦ fi−−−−→ Ci+1 . . .

fn−→ Cn

where the object Ci is “deleted” and the morphisms fi is composed with morphism fi+1. Note that
this process can be abstractly viewed as intervening on object Ci by choosing a specific value for it
(which essentially “freezes” the morphism fi entering object Ci to a constant value).

Example 11. Given a category C, and an n-simplex σ of the simplicial set Cn, the degeneracy
operator si, 0 ≤ i ≤ n applied to σ yields the sequence

siσ = C0
f1−→ C1

f2−→ . . . Ci
1Ci−→ Ci

fi+1−−→ Ci+1 . . .
fn−→ Cn

where the object Ci is “repeated” by inserting its identity morphism 1Ci .

Definition 16. Given a category C, and an n-simplex σ of the simplicial set Cn, σ is a degenerate

simplex if some fi in σ is an identity morphism, in which case Ci and Ci+1 are equal.

5.1. Simplicial Subsets and Horns

We now describe more complex ways of extracting parts of causal structures using
simplicial subsets and horns. These structures will play a key role in defining suitable
lifting problems.

Definition 17. The standard simplex Δn is the simplicial set defined by the construction

([m] ∈ Δ) �→ HomΔ([m], [n])

By convention, Δ−1 := ∅. The standard 0-simplex Δ0 maps each [n] ∈ Δop to the single
element set {•}.

Definition 18. Let S• denote a simplicial set. If for every integer n ≥ 0, we are given a subset
Tn ⊆ Sn, such that the face and degeneracy maps

di : Sn → Sn−1 si : Sn → Sn+1

applied to Tn result in
di : Tn → Tn−1 si : Tn → Tn+1

then the collection {Tn}n≥0 defines a simplicial subset T• ⊆ S•

Definition 19. The boundary is a simplicial set (∂Δn) : Δop → Set defined as

(∂Δn)([m]) = {α ∈ HomΔ([m], [n]) : α is not surjective}

Note that the boundary ∂Δn is a simplicial subset of the standard n-simplex Δn.
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Definition 20. The Horn Λn
i : Δop → Set is defined as

(Λn
i )([m]) = {α ∈ HomΔ([m], [n]) : [n] �⊆ α([m]) ∪ {i}}

Intuitively, the Horn Λn
i can be viewed as the simplicial subset that results from

removing the interior of the n-simplex Δn together with the face opposite its ith vertex.

5.2. Example: Causal Intervention and Horn Filling of Simplicial Objects

Let us illustrate this abstract discussion above by instantiating it in the context of
causal inference. Figure 9 instantiates the abstract discussion above in terms of an example
from causal inference. We are given a simple 3 variable DAG, on which we desire to
explore the causal effect of variable A on C. Using Pearl’s backdoor criterion, we can
intervene on variable A by freezing its value do(A = 1), for example, which will eliminate
the dependence of A on B. Consider now the lifting problem where we want to know if
there is a completion of this simplicial subset Λ2

2, which is a “outer horn”.

B

A C

B

A C

Figure 9. Causal interventions can be related to horns of a simplicial object.

We can view the causal intervention problem in the more abstract setting of a class of
lifting problem, shown with the following diagrams. Consider the problem of composing
1-dimensional simplices to form a 2-dimensional simplicial object. Each simplicial subset
of an n-simplex induces a a horn Λn

k , where 0 ≤ k ≤ n. Intuitively, a horn is a subset of
a simplicial object that results from removing the interior of the n-simplex and the face
opposite the ith vertex. Consider the three horns defined below. The dashed arrow ���
indicates edges of the 2-simplex Δ2 not contained in the horns.

{0}

{1} {2}

{0}

{1} {2}

{0}

{1} {2}

The inner horn Λ2
1 is the middle diagram above, and admits an easy solution to the

“horn filling” problem of composing the simplicial subsets. The two outer horns on either
end pose a more difficult challenge. For example, filling the outer horn Λ2

0 when the
morphism between {0} and {1} is f and that between {0} and {2} is the identity 1 is
tantamount to finding the left inverse of f up to homotopy. Dually, in this case, filling
the outer horn Λ2

2 is tantamount to finding the right inverse of f up to homotopy. A
considerable elaboration of the theoretical machinery in category theory is required to
describe the various solutions proposed, which led to different ways of defining higher-
order category theory [13,14,43].

5.3. Higher-Order Categories

We now formally introduce higher-order categories, building on the framework pro-
posed in a number of formalisms [13,14,43]. We briefly summarize various approaches to
the horn filling problem in higher-order category theory.

Definition 21. Let f : X → S be a morphism of simplicial sets. We say f is a Kan fibration if,
for each n > 0, and each 0 ≤ i ≤ n, every lifting problem.
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Λn
i X

Δn S

σ0

fσ

σ̄

admits a solution. More precisely, for every map of simplicial sets σ0 : Λn
i → X and every n-simplex

σ̄ : Δn → S extending f ◦ σ0, we can extend σ0 to an n-simplex σ : Δn → X satisfying f ◦ σ = σ̄.

Example 12. Given a simplicial set X, then a projection map X → Δ0 that is a Kan fibration is
called a Kan complex.

Example 13. Any isomorphism between simplicial sets is a Kan fibration.

Example 14. The collection of Kan fibrations is closed under retracts.

Definition 22 ([14]). An ∞-category is a simplicial object S• which satisfies the following condi-
tion:

• For 0 < i < n, every map of simplicial sets σ0 : Λn
i → S• can be extended to a map

σ : Δn → Si.

This definition emerges out of a common generalization of two other conditions on a
simplicial set Si:

1. Property K: For n > 0 and 0 ≤ i ≤ n, every map of simplicial sets σ0 : Λn
i → S• can

be extended to a map σ : Δn → Si.
2. Property C: for 0 < 1 < n, every map of simplicial sets σ0 : Λn

i → Si can be extended
uniquely to a map σ : Δn → Si.

Simplicial objects that satisfy property K were defined above to be Kan complexes.
Simplicial objects that satisfy property C above can be identified with the nerve of a
category, which yields a full and faithful embedding of a category in the category of sets.
Definition 22 generalizes both of these definitions, and was called a quasicategory in [13]
and weak Kan complexes in [43] when C is a category. We will use the nerve of a category
below in defining homotopy colimits as a way of characterizing a causal model.

5.4. Example: Simplicial Objects over Integer-Valued Multisets

To help ground out this somewhat abstract discussion above on simplicial objects
and sets, let us consider its application to two other examples. Our first example comes
from a non-graphical representations of conditional independence, namely integer-valued
multisets [8], defined as an integer-valued multiset function u : ZP(Z) → Z from the power
set of integers, P(Z) to integers Z. An imset is defined over partialy ordered set (poset),
defined as a distributive lattice of disjoint (or non-disjoint) subsets of variables. The bottom
element is denoted ∅, and top element represents the complete set of variables N. A full
discussion of the probabilistic representations induced by imsets is given [8]. We will only
focus on the aspects of imsets that relate to its conditional independence structure, and its
topological structure as defined by the poset. A combinatorial imset is defined as:

u = ∑
A⊂N

cAδA

where cA is an integer, δA is the characteristic function for subset A, and A potentially
ranges over all subsets of N. An elementary imset is defined over (a, b ⊥⊥ A), where a, b are
singletons, and A ⊂ N \ {a, b}. A structural imset is defined as one where the coefficients
can be rational numbers. For a general DAG model G = (V, E), an imset in standard
form [8] is defined as

uG = δV − δ∅ + ∑
i∈V

(δPai
− δi∪Pai

)
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The space of all possible imset representations over n variables defines a lattice [8],
where the top of the lattice corresponds to the “discrete" causal model with no non-trivial
morphisms, and the bottom of the lattice corresponds to the complete model with mor-
phisms between every pair of objects. Each candidate imset defines a causal horn, a sim-
plicial subobject of the complete simplex, and the process of causal structure discovery
can be viewed in terms of the abstract horn filling problem defined above for higher-
order categories.

5.5. Example: Simplicial Objects over String Diagrams

We now illustrate the above formalism of simplicial objects by illustrating how it
applies to the special case where causal models are defined over symmetric monoidal
categories [25,29,30]. For a detailed overview of symmetric monoidal categories, we
recommend the book-length treatment by Fong and Spivak [1]. Symmetric monoidal
categories (SMCs) are useful in modeling processes where objects can be combined together
to give rise to new objects, or where objects disappear. For example, Coecke et al. [45]
propose a mathematical framework for resources based on SMCs. We focus on the work of
Jacobs et al. [25]. It is important to point out that monoidal categories can be defined as
a special type of Grothendieck fibration [40]. We discuss one specific case of the general
Grothendieck construction in the next section construction, and refer the reader to [40] for
how the structure of monoidal categories itself emerges from this construction.

Our goal in this section is to illustrate how we can define simplicial objects over the
SMC category CDU category SynG constructed by Jacobs et al. [25] to mimic the process of
working with an actual Bayesian network DAG G For the purposes of our illustration, it is
not important to discuss the intricacies involved in this model, for which we refer the reader
to the original paper. Our goal is to show that by encapsulating their SMC category in the
UCLA framework, we can extend their approach as described below. In particular, we can
solve an associated lifting problem that is defined by the functor mapping the simplicial
category Δ to their SMC category. They use the category of stochastic matrices to capture
the process of working with the joint distribution as shown in the figure. Instead, we show
that one can use some other category, such as the category of Sets, or Top (the category of
topological spaces), or indeed, the category Meas of measurable spaces.

Recall that Bayesian networks [16] define a joint probability distribution

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|Pa(Xi)],

where Pa(Xi) ⊂ {X1, . . . , Xn} \ Xi represents a subset of variables (not including the
variable itself). Jacobs et al. [25] show Bayesian network models can be constructed using
symmetric monoidal categories, where the tensor product operation is used to combine
multiple variables into a “tensored” variable that then probabilistically maps into an
output variable. In particular, the monoidal category Stoch has as objects finite sets, and
morphisms f : A → B are |B| × |A| dimensional stochastic matrices. Composition of
stochastic matrices corresponds to matrix multiplication. The monoidal product ⊗ in
Stoch is the cartesian product of objects, and the Kronecker product of matrices f ⊗ g.
Jacobs et al. [25] define three additional operations, the copy map, the discarding map, and
the uniform state.

Definition 23. A CDU category (for copy, discard, and uniform) is a SMC category (C, ⊗, I),
where each object A has a copy map CA : A → A⊗ A, and discarding map DA : A → I, and a
uniform state map UA : I → A, satisfying a set of equations detailed in Jacobs et al. [25]. CDU
functors are symmetric monoidal functors between CDU categories, preserving the CDU maps.

The key theorem we are interested in is the following from the original paper [25]:
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Theorem 6. There is an isomorphism (1-1 correspondence) between Bayesian networks based on a
DAG G and CDU functors F : SynG → Stoch.

The significance of this theorem for the UCLA architecture is that it shows how the
SMC category of CDU objects can be defined as Layer 2 of the UCLA hierarchy, whereas the
category Stoch can be viewed as instantiating the Layer 3 of the UCLA hierarchy. Notice
that this theorem in effect defines a universal arrow between the CDU category and the
category of stochastic matrices, which is a central unifying principle in UC.

5.6. Nerve of a Category

An important concept that will play a key role in Layer 4 of the UCLA hierarchy is
that of the nerve of a category [40]. The nerve of a category C enables embedding C into the
category of simplicial objects, which is a fully faithful embedding.

Definition 24. Let F : C → D be a functor from category C to category D. If for all arrows f the
mapping f → F f

• injective, then the functor F is defined to be faithful.
• surjective, then the functor F is defined to be full.
• bijective, then the functor F is defined to be fully faithful.

Definition 25. The nerve of a category C is the set of composable morphisms of length n, for
n ≥ 1. Let Nn(C) denote the set of sequences of composable morphisms of length n.

{Co
f1−→ C1

f2−→ . . .
fn−→ Cn | Ci is an object in C, fi is a morphism in C}

The set of n-tuples of composable arrows in C, denoted by Nn(C), can be viewed as a
functor from the simplicial object [n] to C. Note that any nondecreasing map α : [m]→ [n]
determines a map of sets Nm(C)→ Nn(C). The nerve of a category C is the simplicial set
N• : Δ → Nn(C), which maps the ordinal number object [n] to the set Nn(C).

The importance of the nerve of a category comes from a key result [40], showing it
defines a full and faithful embedding of a category:

Theorem 7. The nerve functor N• : Cat → Set is fully faithful. More specifically, there is a
bijection θ defined as:

θ : Cat(C, C′)→ SetΔ(N•(C), N•(C′)

Using this concept of a nerve of a category, we can now state a theorem that shows
it is possible to easily embed the CDU symmetric monoidal category defined above that
represents Bayesian Networks and their associated “string diagram surgery” operations
for causal inference as a simplicial set.

Theorem 8. Define the nerve of the CDU symmetric monoidal category (C, ⊗, I), where each
object A has a copy map CA : A → A⊗ A, and discarding map DA : A → I, and a uniform state
map UA : I → A as the set of composable morphisms of length n, for n ≥ 1. Let Nn(C) denote the
set of sequences of composable morphisms of length n.

{Co
f1−→ C1

f2−→ . . .
fn−→ Cn | Ci is an object in C, fi is a morphism in C}

The associated nerve functor N• : Cat→ Set from the CDU category is fully faithful. More
specifically, there is a bijection θ defined as:

θ : Cat(C, C′)→ SetΔ(N•(C), N•(C′)
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This theorem is just a special case of the above theorem attesting to the full and faithful
embedding of any category using its nerve, which then makes it a simplicial set. We can
then use the theoretical machinery at the top layer of the UCLA architecture to manipulate
causal interventions in this category using face and degeneracy operators as defined above.

Note that the functor G from a simplicial object X to a category C can be lossy. For
example, we can define the objects of C to be the elements of X0, and the morphisms of C as
the elements f ∈ X1, where f : a → b, and d0 f = a, and d1 f = b, and s0a, a ∈ X as defining
the identity morphisms 1a. Composition in this case can be defined as the free algebra
defined over elements of X1, subject to the constraints given by elements of X2. For example,
if x ∈ X2, we can impose the requirement that d1x = d0x ◦ d2x. Such a definition of the left
adjoint would be quite lossy because it only preserves the structure of the simplicial object
X up to the 2-simplices. The right adjoint from a category to its associated simplicial object,
in contrast, constructs a full and faithful embedding of a category into a simplicial set. In
particular, the nerve of a category is such a right adjoint.

6. Layers 2 and 3 of UCLA: The Category of Elements in Causal Inference

Next, we turn to describe the second (from top) and third layers of the UCLA architec-
ture, which pertain to the category of causal models (for example, a graph or a symmetric
monoidal category), and the database of instances that support causal inferences. Drawing
on the close correspondences between between categories and relational database schemes
(see [4] for details), we can view causal queries over data as analogous to database queries,
which can then be formulated by corresponding lifting problems. That is, each object
in the model, e.g., a variable indicating a patient, maps into actual patients, and a vari-
able indicating outcomes from COVID-19 exposure, maps into actual outcomes for that
individual. The causal arrow from the patient variable into the exposure variable then
maps into actual arrows for each patient. Causal queries of exposure to COVID-19 then
become similar to database queries. In the next section, we will generalize this perspective,
showing that we can map into a topological category and answer more abstract questions
relating to the geometry of a dataset, or map into a category of measurable spaces to answer
probabilistic queries. The structure of the lifting problem remains the same, what changes
are the specifics of the underlying categories.

6.1. Grothendieck Category of Elements in Relational Causal Models

The Grothendieck category of elements is related to the notion of ground graphs used
in relational causal models [32]. Using the example in their papers, we are given three
generic objects, Employee, Product, and Business-Unit, and several morphisms, including
Develops, Funds, Salary, Competence, Revenue and Budget. We can view a relational
schema as shown as a category, following the approach shown in [46,47]. Note each object,
such as Employee, maps using a functor into the category Sets into actual employees, such
as Paul or Sally. Each morphism in the category, for example Develops must accordingly
also be mapped by this functor into a set-valued function. So, as illustrated, we have that
Sally is involved in developing a Laptop, and Paul is involved in developing a Case, both
of which of course are instances of Product. The GCE for this relational causal model is
strongly related to the so-called relational skeleton and ground graph explored in relational
causal models [21,32].

A full discussion of these connections is beyond the scope of this paper, but there are
some interesting differences to be noted. In their approach, relations such as Develops

are depicted as undirected, whereas in our case, we model these as directional properties
(which seems natural in this example). Ahsan et al. [32] develop a notion of relational
d-separation in their work, and it would be interesting to construct a categorified version
of that notion, an interesting problem for future work. We turn instead to discuss how
GCE plays a key role in lifting problems associated with causal inference in UCLA. These
provide a rigorous semantics to their use in relational causal models as well, which might
be a fruitful avenue to explore in subsequent work.
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6.2. Lifting Problems in Causal Inference

Many properties of Grothendieck’s construction can be exploited (some of these are
discussed in the context of relational database queries in [4]), but for our application to
causal inference, we are primarily interested in the associated class of lifting problems that
define queries in a causal model.

Definition 26. If S is a collection of morphisms in category C, a morphism f : A → B has the
left lifting property with respect to S if it has the left lifting property with respect to every
morphism in S. Analogously, we say a morphism p : X → Y has the right lifting property with

respect to S if it has the right lifting property with respect to every morphism in S.

We now turn to sketch some examples of the application of lifting problems for
causal inference. Many problems in causal inference on graphs involve some particular
graph property. To formulate it as a lifting problem, we will use the following generic
template, following the initial application of lifting problems to database queries proposed
by Spivak [4].

Q
∫

δ

R C
f

μ

ph

ν

Here, Q is a generic query that we want answered, which could range from a database
query, as in the original setting studied by Spivak [4], but more interestingly, it could be
a particular graph property relating to causal inference (as illustrated by the following
two examples), but as we will show later, it could also be related to the combinatorial
category of simplicial objects used to model causal intervention, and finally, it could also be
related to questions relating to the evaluation of causal models using a measure-theoretic or
probability space. By suitably modifying the base category, the lifting problem formulation
can be used to encode a diverse variety of problems in causal inference. R represents
a fragment of the complete causal model C, and δ is the category of elements defined
above. Finally, h gives all solutions to the lifting problem. Some examples will help clarify
this concept.

Example 15. Consider the category of directed graphs defined by the category G, where Ob(G) = {V, E},
and the morphisms of G are given as HomG = {s, t}, where s : E → V and t : E → V define
the source and terminal nodes of each vertex. Then, the category of all directed graphs is precisely
defined by the category of all functors δ : G → Set. Any particular graph is defined by the functor
X : G → Set, where the function X(s) : X(E) → X(V) assigns to every edge its source vertex.
For causal inference, we may want to check some property of a graph, such as the property that
every vertex in X is the source of some edge. The following lifting problem ensures that every vertex
has a source edge in the graph. The category of elements

∫
δ shown below refers to a construction

introduced by Grothendieck, which will be defined in more detail later.

V(•)
∫

δ

{E(•) s−→ V(•)} G

f

μ

p
h

ν

Example 16. As another example of the application of lifting problems to causal inference, let us con-
sider the problem of determining whether two causal DAGs, G1 and G2 are Markov equivalent [48].
A key requirement here is that the immoralities of G1 and G2 must be the same, that is, if G1 has a
collider A → B ← C, where there is no edge between A and C, then G2 must also have the same
collider, and none others. We can formulate the problem of finding colliders as the following lifting
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problem. Note that the three vertices A, B and C are bound to an actual graph instance through the
category of elements

∫
δ (as was illustrated above), using the top right morphism μ. The bottom left

morphism f binds these three vertices to some collider. The bottom right morphism ν requires this
collider to exist in the causal graph G with the same bindings as found by μ. The dashed morphisms
h finds all solutions to this lifting problem, that is, all colliders involving the vertices A, B and C.

{A(•), B(•), C(•)}
∫

δ

{A(•)→ B(•)← C(•)} G
f

μ

p
h

ν

If the category of elements is defined by a functor mapping a database schema into a
table of instances, then the associated lifting problem corresponds to familiar problems like
SQL queries in relational databases [4]. In our application, we can use the same machinery
to formulate causal inference queries by choosing the categories appropriately. To complete
the discussion, we now make the connection between universal arrows and the core notion
of universal representations via the Yoneda Lemma.

6.3. Modeling Causal Interventions as Kan Extension

It is well known in category theory that ultimately every concept, from products and
co-products, limits and co-limits, and ultimately even the Yoneda Lemma (see below),
can be derived as special cases of the Kan extension [35]. Kan extensions intuitively are a
way to approximate a functor F so that its domain can be extended from a category C to
another category D. Because it may be impossible to make commutativity work in general,
Kan extensions rely on natural transformations to make the extension be the best possible
approximation to F along K. We want to briefly show Kan extensions can be combined
with the category of elements defined above to construct causal “migration functors” that
map from one causal model into another. These migration functors were originally defined
in the context of database migration [4], and here we are adapting that approach to causal
inference. By suitably modifying the category of elements from a set-valued functor δ : C →
Set, to some other category, such as the category of topological spaces, namely δ : C → Top,
we can extend the causal migration functors into solving more abstract causal inference
questions. We explore the use of such constructions in the next section on Layer 4 of the
UCLA hierarchy. Here, for simplicity, we restrict our focus to Kan extensions for migration
functors over the category of elements defined over instances of a causal model.

Definition 27. A left Kan extension of a functor F : C → E along another functor K : C → D,
is a functor LanKF : D → E with a natural transformation η : F → LanF ◦ K such that for any
other such pair (G : D → E , γ : F → GK), γ factors uniquely through η. In other words, there is
a unique natural transformation α : LanF =⇒ G.

C E

D

K

F

LanK F

G

∃!
η

A right Kan extension can be defined similarly. To understand the significance of Kan
extensions for causal inference, we note that under a causal intervention, when a causal
category S gets modified to T, evaluating the modified causal model over a database of
instances can be viewed as an example of Kan extension.

Let δ : S → Set denote the original causal model defined by the category S with
respect to some dataset. Let ε : T → Set denote the effect of a causal intervention abstractly
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defined as some change in the category S to T, such as deletion of an edge, as illustrated in
Figure 10. Intuitively, we can consider three cases: the pullback ΔF along F, which maps the
effect of a causal intervention back to the original model, the left pushforward ΣF and the
right pushforward ∏F, which can be seen as adjoints to the pullback ΔF.

B

A C

B

A C

Category of InstancesCategory of Instances

Original Causal Model S Causal Model under Intervention
Causal Migration Functors

Figure 10. Kan extensions are useful in modeling the effects of a causal intervention, where in this
example of a causal model over three objects A, B, and C, the object A is intervened upon, eliminating
the morphism into it from object B.

Following [4], we can define three causal migration functors that evaluate the impact of
a causal intervention with respect to a dataset of instances.

1. The functor ΔF : ε → δ sends the functor ε : T → Set to the composed functor
δ ◦ F : S → Set.

2. The functor ΣF : δ → ε is the left Kan extension along F, and can be seen as the left
adjoint to ΔF.
The functor ∏F : δ → ε is the right Kan extension along F, and can be seen as the
right adjoint to ΔF.

To understand how to implement these functors, we use the following proposition
that is stated in [4] in the context of database queries, which we are restating in the setting
of causal inference.

Theorem 9. Let F : S → T be a functor. Let δ : S → Set and ε : T → Set be two set-valued
functors, which can be viewed as two instances of a causal model defined by the category S and T. If
we view T as the causal category that results from a causal intervention on S (e.g., deletion of an
edge), then there is a commutative diagram linking the category of elements between S and T.∫

δ
∫

ε

S T

πδ πε

F

Proof. To check that the above diagram is a pullback, that is,
∫

δ % S×T
∫

δ, or in words,
the fiber product, we can check the existence of the pullback component wise by comparing
the set of objects and the set of morphisms in

∫
δ with the respective sets in S×T

∫
ε.

For simplicity, we defined the migration functors above with respect to an actual
dataset of instances. More generally, we can compose the set-valued functor δ : S → Set

with a functor T : Set→ Top to the category of topological spaces to derive a Kan extension
formulation of the definition of a causal intervention. We discuss this issue in the next
section on causal homotopy.

7. Layer 4 of UCLA: Causal Homotopy

Finally, we turn to discuss the role of the causal homotopy layer. To understand
the reason for considering homotopy in causal inference, note that causal models can
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only be determined up to some equivalence class from data, and while many causal dis-
covery algorithms assume arbitrary interventions can be carried out, e.g., on separating
sets [27], to discover the unique structure, such interventions are generally impossible to
do in practical applications. The concept of essential graph [48] and chain graph [49] are
attempts to formulate the notion of a “quotient space” of graphs, but similar issues arise
more generally for non-graph based models as well. Thus, it is useful to understand how
to formulate the notion of equivalent classes of causal models in an arbitrary category.
For example, given the conditional independence structure A ⊥⊥ B|C, there are at least
three different symmetric monoidal categorical representations that all satisfy this con-
ditional independence [25,29,30], and we need to define the quotient space over all such
equivalent categories.

In our previous work on causal homotopy [41], we exploited the connection between
causal DAG graphical models and finite topological spaces [50,51]. In particular, for a DAG
model G = (V, E), it is possible to define a finite space topology T = (V,O), whose open
sets O are subsets of the vertices V such that each vertex x is associated with an open set
Ux defined as the intersection of all open sets that contain x. This structure is referred to an
Alexandroff topology [52]. An intuitive way to construct an Alexandroff topology is to define
the open set for each variable x by the set of its ancestors Ax, or by the set of its descendants
Dx. This approach transcribes a DAG graph into a finite topological space, upon which the
mathematical tools of algebraic topology can be applied to construct homotopies among
equivalent causal models. Our approach below generalizes this construction to simplicial
objects, as well as general categories.

7.1. The Category of Fractions: Localizing Invertible Morphisms in a Category

A principal challenge in causal discovery is that models can be inferred from data only
up to an equivalence class. We can view the morphisms between equivalent causal models
as “invertible” arrows, which defines a construction called an “essential” graph [48]. The
problem of defining a category with a given subclass of invertible morphisms, called the
category of fractions [53], is another concrete illustration of the close relationships between
categories and graphs. It is also useful in the context of causal inference, as for example,
in defining the Markov equivalence class of directed acyclic graphs (DAGs) as a category
that is localized by considering all invertible arrows as isomorphisms. Borceux [54] has a
detailed discussion of the “calculus of fractions”, namely how to define a category where
a subclass of morphisms are to be treated as isomorphisms. The formal definition is
as follows:

Definition 28. Consider a category C and a class Σ of arrows of C. The category of fractions

C(Σ−1) is said to exist when a category C(Σ−1) and a functor φ : C → C(Σ−1) can be found with
the following properties:

1. ∀ f , φ( f ) is an isomorphism.
2. If D is a category, and F : C → D is a functor such that for all morphisms f ∈ Σ, F( f ) is an

isomorphism, then there exists a unique functor G : C(Σ−1)→ D such that G ◦ φ = F.

A detailed construction of the category of fractions is given in [54], which uses the
underlying directed graph skeleton associated with the category. The characterization of
the Markov equivalent class of acyclic directed graphs is an example of the abstract concept
of category of fractions [48]. Briefly, this condition states that two acyclic directed graphs
are Markov equivalent if and only if they have the same skeleton and the same immoralities.
In our previous work [41], we explored constructing homotopically invariant causal models
over finite Alexandroff topological spaces, which can be seen as a special case of the UCLA
framework since finite topological (Alexandroff) spaces define a category [52].
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7.2. Homotopy of Simplicial Objects

We will discuss homotopy in categories more generally now. This notion of homotopy
generalizes the notion of homotopy in topology, which defines why an object like a coffee
cup is topologically homotopic to a doughnut (they have the same number of “holes”).

Definition 29. Let C and C′ be a pair of objects in a category C. We say C is a retract of C′ if
there exists maps i : C → C′ and r : C′ → C such that r ◦ i = idC .

Definition 30. Let C be a category. We say a morphism f : C → D is a retract of another

morphism f ′ : C → D if it is a retract of f ′ when viewed as an object of the functor category
Hom([1], C). A collection of morphisms T of C is closed under retracts if for every pair of
morphisms f , f ′ of C, if f is a retract of f ′, and f ′ is in T, then f is also in T.

Definition 31. Let X and Y be simplicial sets, and suppose we are given a pair of morphisms
f0, f1 : X → Y. A homotopy from f0 to f1 is a morphism h : Δ1× X → Y satisfying f0 = h|0×X
and f1 = h1×X.

7.3. Singular Homology

Our goal is to define an abstract notion of a causal model in terms of its underlying
classifying space as a category, and show how it can be useful in defining causal homotopy.
We will also clarify how it relates to determining equivalences among causal models,
namely homotopical invariance, and also how it sheds light on causal identification. First,
we need to define more concretely the topological n-simplex that provides a concrete way
to attach a topology to a simplicial object. Our definitions below build on those given
in [14]. For each integer n, define the topological space |Δn| realized by the object Δn as

|Δn| = {t0, t1, . . . , tn ∈ Rn+1 : t0 + t1 + . . . + tn = 1}

This is the familiar n-dimensional simplex over n variables. For any causal model,
its classifying space |N•(C)| defines a topological space. We can now define the singular
n-simplex as a continuous mapping σ : |ΔN | → |N•(C)|. Every singular n-simplex σ
induces a collection of n− 1-dimensional simplices called faces, denoted as

diσ(t0, . . . , tn−1) = (t0, t1, . . . , ti−1, 0, ti, . . . , tn−1)

Note that as discussed above, a causal intervention on a variable in a DAG can be
modeled as applying one of these degeneracy operators di. The above definition shows
that every such intervention has an effect on the topology associated with the causal model.
Define the set of all morphisms Singn(X) = HomTop(Δn, |N•(C)|) as the set of singular
n-simplices of |N•(C)|.

Definition 32. For any topological space defined by a causal model |N•(C)|, the singular homol-

ogy groups H∗(|N•(C)|; Z) are defined as the homology groups of a chain complex

. . . ∂−→ Z(Sing2(|N•(C)|))
∂−→ Z(Sing1(|N•(C)|))

∂−→ Z(Sing0(|N•(C)|))

where Z(Singn(|N•(C)|)) denotes the free Abelian group generated by the set Singn(|N•(C)|) and
the differential ∂ is defined on the generators by the formula

∂(σ) =
n

∑
i=0

(−1)idiσ

Intuitively, a chain complex builds a sequence of vector spaces that can be used to
construct an algebraic invariant of a causal model from its classifying space by choosing
the left k module Z to be a vector space. Each differential ∂ then becomes a linear transfor-
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mation whose representation is constructed by modeling its effect on the basis elements in
each Z(Singn(X)).

Example 17. Let us illustrate the singular homology groups defined by an integer-valued multi-
set [8] used to model conditional independence. Imsets over a DAG of three variables N = {a, b, c}
can be viewed as a finite discrete topological space. For this topological space X, the singular
homology groups H∗(X; Z) are defined as the homology groups of a chain complex

Z(Sing3(X))
∂−→ Z(Sing2(X))

∂−→ Z(Sing1(X))
∂−→ Z(Sing0(X))

where Z(Singi(X)) denotes the free Abelian group generated by the set Singi(X) and the differential
∂ is defined on the generators by the formula

∂(σ) =
4

∑
i=0

(−1)idiσ

The set Singn(X) is the set of all morphisms HomTop(|Δn|, X). For an imset over the three
variables N = {a, b, c}, we can define the singular n-simplex σ as:

σ : |Δ4| → X where |Δn| = {t0, t1, t2, t3 ∈ [0, 1]4 : t0 + t1 + t2 + t3 = 1}

The n-simplex σ has a collection of faces denoted as d0σ, d1σ, d2σ and d3σ. If we pick the
k-left module Z as the vector space over real numbers R, then the above chain complex represents a
sequence of vector spaces that can be used to construct an algebraic invariant of a topological space
defined by the integer-valued multiset. Each differential ∂ then becomes a linear transformation
whose representation is constructed by modeling its effect on the basis elements in each Z(Singn(X)).
An alternate approach to constructing a chain homology for an integer-valued multiset is to use
Möbius inversion to define the chain complex in terms of the nerve of a category (see our recent work
on categoroids [15] for details).

7.4. Classifying Spaces and Homotopy Colimits

Building on the intuition proposed above, we now introduce a formal way to define
causal effects in our framework, which relies on the construction of a topological space
associated with the nerve of a category. As we saw above, the nerve of a category is a full
and faithful embedding of a category as a simplicial object.

Definition 33. The classifying space of a causal model defined as a category C is the topological
space associated with the nerve of the category |N•C|.

To understand the classifying space |N•C| of a causal model defined as a category C,
let us go over some simple examples to gain some insight.

Example 18. For any set X, which can be defined as a discrete category CX with no non-trivial
morphisms, the classifying space |N•CX | is just the discrete topology over X (where the open sets
are all possible subsets of X).

Example 19. If we take a causal model defined as a partially ordered set [n], with its usual order-
preserving morphisms, then the nerve of [n] is isomorphic to the representable functor δ(−, [n]), as
shown by the Yoneda Lemma, and in that case, the classifying space is just the topological space Δn
defined above.

Example 20. In our earlier work on causal homotopy [41], we associated with any finite causal
DAG G, a finite Alexandroff topological space, where the open sets of the topology corresponding to
the down sets or upsets of descendants or ancestors, respectively. Since any causal DAG model G

241



Entropy 2023, 25, 574

induces a partial ordering, we can then define the classifying space of a causal DAG in terms of the
topological space associated with the nerve of the DAG, namely |N•G|.

Example 21. Witsenhausen [6] defined a measure-theoretic notion of causality called the intrinsic
model. An intrinsic model M = (α, Uα, Iα)α∈A, where the parameters of the intrinsic causal
model over n variables A are defined in terms of a collection of measurable functions over each
variable’s information field Iα (a subfield of the product σ-algebra over all variables upon which it
depends), where Uα is the space over which α takes its values. Heymann et al. [7] showed recently
that Witsenhausen’s intrinsic model generalizes Pearl’s d-separation condition, and can be used to
define a rich set of causal models that includes cycles and feedback, as well as more refined notions of
conditional d-separation. The definition of causality in an intrinsic model is based on structuring
the information fields of every variable in such a way that it is possible to sequentially order them
for any particular instance of the underlying sample space. It is possible to define a topology on the
underlying variables (which Witsenhausen referred to as agents), by defining subystem of variables
B ⊆ A such that every variable α ∈ B has an information field that only depends on the information
fields of members in its subset B, that is ∀α ∈ B, the condition states that Iα ⊆ FB, where FB is
the induced product information field over the subset of variables B. Witsenhausen proves that the
collection of subsystems forms a finite topology on A. We can then define the classifying space of an
intrinsic causal model to be the topological space associated with the nerve of an intrinsic modelM,
namely |N•M|.

We now want to bring in the set-valued functor mapping each causal category C
to the actual experiment used, e.g., in a clinical trial [9], to evaluate average treatment
effect or quantify the effect of a do calculus intervention [5] We can then compute the
topological space prior to intervention, and subsequent to intervention, and compare the
two topological spaces in terms of their algebraic invariants (e.g., the chain complex, as
described below).

Definition 34. The homotopy colimit of a causal model defined as nerve of the category of
elements associated with the set-valued functor δ : C → Set mapping the causal category C to a
dataset, namely N•(

∫
δ).

In general, we may want to evaluate the homotopy colimit of a causal model not
only with respect to the data used in a causal experiment, but also with respect to some
underlying topological space or some measurable space. We can extend the above definition
straightforwardly to these cases using an appropriate functor T : Set→ Top, or alternatively
M: Set → Meas. These augmented constructions can then be defined with respect to a
more general notion called the homotopy colimit [40] of a causal model.

Definition 35. The topological homotopy colimit hocolimT ◦δ of a causal model associated
with a category C, along with its associated category of elements associated with a set-valued functor
δ : C → Set, and a topological functor T : Set→ Top is isomorphic to topological space associated
with the nerve of the category of elements, that is hocolimT ◦δ % |N•(

∫
δ)|.

Example 22. The classifying space |N•CCDU | associated with CDU symmetric monoidal category
encoding of a causal Bayesian DAG is defined using the monoidal category (C, ⊗, I), where each
object A has a copy map CA : A → A⊗ A, and discarding map DA : A → I, and a uniform state
map UA : I → A, is defined as the topological realization of its nerve. As before, the nerve Nn(C)
of the CDU category is defined as the set of sequences of composable morphisms of length n.

{Co
f1−→ C1

f2−→ . . .
fn−→ Cn | Ci is an object in C, fi is a morphism in C}

Note that the CDU category was associated with a CDU functor F : SynG → Stoch to the
category of stochastic matrices. We can now define the homotopy colimit hocolimF of the CDU
causal model associated with the CDU category C, along with its associated category of elements
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associated with a set-valued functor δ : C → Set, and a topological functor F : Set → Stoch

is isomorphic to topological space associated with the nerve of the category of elements over the
composed functor, that is hocolimF◦δ.

7.5. Defining Causal Effect

Finally, we turn to defining causal effect using the notion of classifying space and
homotopy colimits, as defined above. Space does not permit a complete discussion of this
topic, but the basic idea is that once a causal model is defined as a topological space, there
are a large number of ways of comparing two topological spaces from analyzing their chain
complexes, or using a topological data analysis method such as UMAP [2].

Definition 36. Let the classifying space under “treatment” be defined as the topological space
|N•C1| associated with the nerve of category C1 under some intervention, which may result in a
topological deformation of the model (e.g., deletion of an edge). Similarly, the classifying space
under “no treatment” be defined as the |N•C0| under a no-treatment setting, with no intervention.
A causally non-isomorphic effect exists between categories C1 and C0, or C1 �∼= C0 if and only if
there is no invertible morphism f : |N•C1| → N•(C0| between the “treatment” and “no-treatment”
topological spaces, namely f must be both left invertible and right invertible.

There is an equivalent notion of causal effect using the homotopy colimit definition
proposed above, which defines the nerve functor using the category of elements. This
version is particularly useful in the context of evaluating a causal model over a dataset.

Definition 37. Let the homotopy colimit hocolim1 = |N•(
∫

δ1)| be the topological space associated
with a causal category C1 under the “treatment’ condition be defined with respect to an associated
category of elements defined by a set-valued functor δ1 : C → Set over a dataset of “treated”
variables, and corresponding “no-treatment” hocolim0 = |N•(

∫
δ0)| be the topological space of

a causal model associated with a category C0 be defined over an associated category of elements
defined by a set-valued functor δ0 : C → Set over a dataset of “placebo” variables. A causally

non-isomorphic effect exists between categories C1 and C0, or C1 �∼= C0 if and only if there is
no invertible morphism f : |N•(

∫
δ1)| → |N•(δ0)| between the “treatment” and “no-treatment”

homotopy colimit topological spaces, namely f must be both left invertible and right invertible.

We can define an equivalent “do-calculus” like version of the causal effect defini-
tions above for the case when a causal model defined as a graph structure is manipu-
lated by an intervention that deletes an edge, or does some more sophisticated type of
“category” surgery.

8. Contributions of Our Paper

We summarize the principal contributions of our paper. Our principal contribution is
the development of the notion of “universal causality”, a representation-independent defi-
nition whose goal is to elucidate the “universal’ properties of causal inference. Our work is
inspired by other work, for example separoids [10] elucidates the concept of conditional
independence in a representation-independent manner, which applies to conditional inde-
pendence in probability theory, statistics, and geometry. Another example is the concept
of Grothendieck topology [36], which defines topology abstractly in the context of any cate-
gory. Implicit in these constructions is the abstraction of a specific construct—conditional
independence or topology–in a manner that lets it be studied across a wide range of
representations. Similarly, UC is intended to be an abstract characterization of causality.

1. Universal Arrow: We used universal arrows as a unifying principle in UC, which
allows synchronizing causal changes at different levels of the UCLA hierarchy. Uni-
versal arrows set up a correspondence between a “forgetful” functor and its left
adjoint“free” functor. In the application to causal inference, universal arrows, for
example, define forgetful and free functors between the category of conditional in-
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dependence structures, such as separoids, from the category of actual causal models
(e.g., as symmetric monoidal categories of causal DAG models [25,29,30]).

2. Causal reproducing property: The universal arrow property leads to the powerful
Yoneda Lemma, which provides the foundational result embodied in the causal
reproducing property. The CRP implies that all causal influences between two objects
X and Y in a category C are representable in the functor category of presheaves, namely

HomC(X, Y) % Nat(HomC(−, X), HomC(−, Y))

3. Causal interventions as a higher-order category: Most causal discovery algorithms
require a sequence of interventions, which naturally compose to form a category. We
introduced the framework of higher-order category theory using simplicial sets and
objects to define a category over causal interventions. Simplicial objects provides
an elegant and general way of extracting parts of a compositional structure, and its
associated lifting problems define when a partial fragment of a causal model can be
“put back” together into a complete model.

4. Nerve of a causal model: We used the nerve construction to set up a functor between a
casual category and its associated simplicial object, which is a fully faithful embedding
of any category as a simplicial object. Its left adjoint functor, which maps a simplicial
set into a category, is a lossy representation that only preserves structure up to n ≤ 2
simplices. Simplicial sets suggest a way to define higher-order causal models, a topic
for future work.

5. Relational causal models: The Grothendieck category of elements is closely related to
the notion of ground graphs in relational causal models [32], which gives a rich source
of applications of causal inference. Any relational database defines a category [4],
and our paper shows how to formulate causal inference in the rich space of relational
enterprise datasets.

6. Lifting Problem: Associated with each pair of layers of the UCLA hierarchy is a lifting
problem over a suitable category of elements, from simplicial category of elements,
to a category of elements over a dataset, to a category of elements over a topological
space. In general, the Grothendieck category of elements is a way to embed each
object in a category into the category of all categories Cat. This construction has many
elegant properties, which deserves further exploration in a subsequent paper.

7. Homotopy colimits and Classifying Spaces: We defined causal effect in terms of
the classifying space associated with the nerve of a causal category, and with the
homotopy colimit of the nerve of the category of elements. These structures have
been extensively explored in the study of homotopy in category theory [40], and there
are many advanced techniques that can be brought to bear on this problem, such as
model categories [55].

9. Future Work

There are many directions for future work, and we summarize a few of them below.

1. Higher-order causality: Our use of simplicial sets and objects suggests a way of defin-
ing higher-order causality, as simplicial sets generalize directed graphs, categories,
and partial orders. Simplicial sets permit modeling the interaction between groups of
objects, which naturally applies to cases of causal inference with interference, where
the stable unit treatment value assumption (SUTVA) [9] is violated. Zigler and Pa-
padogeorgou [33] explores an application to causal interference, where the treatment
units (e.g., power plants) and response units (e.g., people living close to power plants)
have a complex set of interactions, where a particular treatment may affect many
individuals. These types of problems can be studied using higher-order degeneracy
operators over oriented n-simplexes.

2. Causal Discovery from Conditional Independence Oracles: The problem of causal
discovery can then be rigorously formulated as a lifting problem as well, where the
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conditional independence oracle is defined as a solution to a lifting problem. More
specifically, it is possible to define a Grothendieck category of elements for a functor
F: Graph→ Separoids mapping the category of directed graphs into the category of
separoids, which define its equivalent set of conditional independence statements.
The Grothendieck fibration in this case maps the category of elements, combining
conditional independence properties and graph objects, into the category Graph.
Algorithms proposed in the literature, such as [27], can be seen as queries in a lifting
problem, analogous to the lifting problems defined for the UCLA hierarchy. This
approach can be extended to causal discovery over higher-order categories.

3. Grothendieck Topology: Analogous to the representation-independent definition of
conditional independence using separoids, our longstanding goal has been to define
causality purely in terms of a categorical structure. The Grothendieck topology J
for any category, which leads to the concept of a site [36], is defined such that for any
object c in C, a sieve S is a family of morphisms, all with co-domain c such that

f ∈ S → f ◦ g ∈ S

for any g where the composition is defined. A Grothendieck topology J on category
C defines a sieve J(c) for each object c such that the following properties hold: (i) the
maximal sieve tc = { f |cod( f ) = c} is in J(c). There is an additional stability condition
and a transitive closure condition. An interesting problem for future work is to
define causal inference over sheaves of a site, using the concept of Grothendieck
topologies. Any causal intervention that, for instance, deletes an edge, would change
the Grothendieck topology embodied in the structure of sieves.

4. Gröbner Causal Models: Another direction for future work is to construct Gröb-
ner representations of causal categories. Sam and Snowden [56] define a general
Gröbner representation for combinatorial categories, which apply to causal models
as well. Specifically, denote Repk(C) as the category of representations of a causal
model C, where k is a non-zero ring, and Modk is the category of left-k modules.
Thus, we can define a representation of a causal category C as a functor C → Modk.
Let x be an object of C. Define a representation Px of C as a left k-module, where
Px(y) = k[HomC(x, y)], that is, Px(y) is the free left k-module with basis HomC(x, y).
For any particular morphism f : x → y, let e f denote the corresponding element
of Px(y). Broadly speaking, this approach generalizes the work on modeling graph-
ical models as algebraic varieties [20,57,58], and ideals on partially ordered sets
(posets) [59]. The intuitive idea is that a representation of a category can be defined as
an abstract Gröbner basis over an ideal defined on a module whose basis is defined
using the free algebra generated by the set of all morphisms out of an object. This
approach provides an alternative way of parameterizing causal models defined as
combinatorial categories.

10. Summary

In this paper, we proposed a framework called Universal Causality (UC) for causal
inference using the tools of category theory. Specifically, we described a layered hierarchical
architecture called UCLA (Universal Causality Layered Architecture), where causal infer-
ence is modeled at multiple levels of categorical abstraction. At the top-most level, causal
inference is modeled using a higher-order category of simplicial sets and objects, defined
as contravariant functors from the category of ordinal numbers Δ, whose objects are the
ordered natural numbers [n] = {0, . . . , n}, and whose morphisms are order-preserving
injections and surjections. Causal “surgery” is then modeled as the action of a contravariant
functor from the category Δ into a causal model. At the second layer, causal models are
defined by a category consisting of a collection of objects, such as the entities in a relational
database, and morphisms between objects can be viewed as attributes relating entities. The
third categorical abstract layer corresponds to the data layer in causal inference, where
each causal object is mapped into a set of instances, modeled using the category of sets and
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morphisms are functions between sets. The fourth layer comprises of additional structure
imposed on the instance layer above, such as a topological space, a measurable space or
a probability space, or more generally, a locale. Between every pair of layers in UCLA
are functors that map objects and morphisms from the domain category to the co-domain
category. Each functor between layers is characterized by a universal arrow, which defines
an isomorphism between every pair of categorical layers. These universal arrows define
universal elements and representations through the Yoneda Lemma, and in turn lead to a
new category of elements based on a construction introduced by Grothendieck. Causal in-
ference between each pair of layers is defined as a lifting problem, a commutative diagram
whose objects are categories, and whose morphisms are functors that are characterized
as different types of fibrations. We defined causal effect in the UCLA framework using
the notion of homotopy colimits associated with the nerve of a category. We illustrate the
UCLA architecture using a diverse set of examples.
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Simple Summary: The current paper develops a probabilistic theory of causation and suggests
practical routines for conducting causal inference applicable to new machine learning methods that
have, so far, remained relatively underutilized in this context.

Abstract: The current paper develops a probabilistic theory of causation using measure-theoretical
concepts and suggests practical routines for conducting causal inference. The theory is applicable
to both linear and high-dimensional nonlinear models. An example is provided using random
forest regressions and daily data on yield spreads. The application tests how uncertainty in short-
and long-term inflation expectations interacts with spreads in the daily Bitcoin price. The results
are contrasted with those obtained by standard linear Granger causality tests. It is shown that
the suggested measure-theoretic approaches do not only lead to better predictive models, but also
to more plausible parsimonious descriptions of possible causal flows. The paper concludes that
researchers interested in causal analysis should be more aspirational in terms of developing predictive
capabilities, even if the interest is in inference and not in prediction per se. The theory developed in
the paper provides practitioners guidance for developing causal models using new machine learning
methods that have, so far, remained relatively underutilized in this context.

Keywords: causality; Bitcoin; inflation; yield spreads; approximation theory; Hellinger distance;
Kullback–Leibler divergence; correct specification; misspecified models

1. Introduction

Philosophers have debated at length whether causality is a subject that should be
treated probabilistically or deterministically. This resulted in the development of different
inferential systems and views on reality. Pure logic dealt with inferences about deterministic
truths [1,2]. Probabilistic reasoning has been developed to allow for uncertainty in infer-
ences about deterministic truths [3,4], to make inferences about probabilistic truths [5,6],
or to imply the existence of associated deterministic truths [7–11]. Probabilistic theories
about causality were developed throughout the 20th century, with notable contributions
by Reichenbach, Good, and Suppe [12]. At the same time, however, the classical model of
physics maintained its position as a role model for other sciences, which led researchers, in-
cluding those concerned with human behavior and economic systems, to reject ideas about
probabilistic causation, opting, often, to reason probabilistically about deterministic truths.

In modern physics, the standard equations of quantum mechanics suggest that reality
is, in fact, better described by probability laws [13]. The outcome of the Bohr–Einstein
debates settled on the assertion that these probability laws are a result of a real indeter-
minacy and that reality itself is probabilistic (One may also argue that this is simply a
correct exposition of the theory and not necessarily of the physical world, as more complete
theories may yet be discovered). Ref. [14] provides an alternative interpretation of quan-
tum physics in which the probability laws are statistical results of the development of
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completely determined, but hidden, variables. At a macroscopic level, deterministic laws
and contingencies induce associated probabilistic laws (Contingencies is a term used by
Ref. [14] to refer to independent factors that may exist outside the scope of what is treated
by the laws under consideration, and which do not follow necessarily from anything that
may be specified under the context of these laws). In particular, by broadening the context
of the processes under consideration, new laws that govern some of the contingencies can
be found. This inevitably leads to new contingencies: a process that repeats indefinitely.
For this reason, any theory about reality that embraces either of deterministic law or chance,
to the exclusion of the other, is inherently incomplete. Regardless of one’s position on real
indeterminism, it holds, according to this logic, that any natural process that arises deter-
ministically must also satisfy statistical laws that are more general, and so any complete
theory about interesting real-world phenomena must be probabilistic.

In a probabilistic view of reality cause and consequence are related by probability laws
rather than laws of logical truths. A theory about probabilistic causality can, therefore, be
stated in terms of the properties of the true measure that describes a process stochastically.
The theory of causation developed here is that a causal relationship exists if there exists
a true probability measure that produces a non-empty stochastic sequence that describes
the directly caused effects from perturbations in one variable in terms of the responses in
another. The paper shows that ideas about causality, including the direction, statistical
significance, and economic relevance of effects, may be tested by formulating a statistical
model that correctly describes observed data, and evaluating its dynamic properties. In
practice, this means that the inference is conducted with a best approximation of the true
probability measure. It is the position of the paper that in order to demonstrate that causality
runs from a potential causal variable to the target variable, one requires developing the
best approximation of the true probability measure using the potential causal variable and
a best approximation of the true probability measure without the potential causal variable.
The analysis should then (1) conclude whether the first modeled measure is closer to the
true measure, and (2) test that the two modeled measures are not equivalent. Practical
routines to do so shall be discussed and an example is provided using random forest (RF)
regressions and daily data on yield spreads. The application tests how uncertainty around
short- and long-term inflation expectations interact with spreads in the daily Bitcoin price,
a digital asset with a predetermined finite supply that has been characterized as a new
potential inflation hedge. The results are contrasted with those obtained with standard
linear Granger causality tests. It is shown that the suggested approaches do not only lead to
better predictive models, but also to more plausible parsimonious descriptions of possible
causal flows.

The focus on approximating a correct stochastic representation of the DGP (data gen-
erating process) as a means of learning about true causal linkages is different from the
approaches that try to simulate laboratory conditions by testing for statistical differences in
control groups, such as described by [15,16]. The focus on obtaining a correct functional
representation of the data is also different from attributing the presence of causal relation-
ships directly to the values of parameters representing averages in treatment groups, see
for instance [17–19] on this approach. Placing emphasis on the need for accurate statistical
models for the full data distribution when conducting causal analysis introduces an obvious
weakness: it is generally accepted that all empirical models will be mis-specified to a certain
degree and that empirical models are likely never correctly specified. The true process, after
all, is unknown in practice. This is the reason to conduct analyses in the first place. The aim
to develop correct models can therefore be seen as an idealistic idea that is difficult to put
into practice. However, it is still valuable to understand the role of the correct-specification
assumption in causal analysis. It is commonly taught that mis-specification leads to residual
dependencies that violate the assumptions made by general central limit theorems needed
to obtain correct standard errors, see for example chapter 2 in [20]. However, more general
estimation theory for dependent processes, as those developed and discussed for instance
by [21–25], may help correct standard error estimation but do not remedy the issue that the
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structural response of the model is incorrect [26]. These are theories to correct the variance
estimator when the underlying model is wrong, and do not address the issue that the
structural response of the model does not correctly describe the data.

The paper builds on contributions of others in the following lines of research. The
views on causality developed in the paper are related to the information theoretic view
on testing causal theories, as discussed by [27–30], which, as here, emphasizes model
parsimony. The line of reasoning is inspired by the work of [31,32], who emphasized the
importance of a probabilistic formulation of economic theories and warned against the
use of statistical methods without any reference to a stochastic process. The paper also
emphasizes the importance of the overall model response, and, thus, on focusing on system
behavior, rather than on isolated parameters that make no reference to a wider economic
system. This has previously been advocated by [33]. The main result of the paper is that
convincing statements about partial causal linkages must be underpinned by an accurate
model of broader reality, even if the interest is in inference and not prediction per se. In
order to do so, researchers must, as shall be discussed, pay due attention to distinguishing
between direct causal impacts and system memory and take note of developments in the
field of predictive modeling.

The plan of the paper is as follows. Section 2 develops definitions for probabilistic
causality in terms of true probability measures using a flexible type of dynamical system
that covers many processes observed in economics, physics, finance, and related fields
of study. Section 3 discusses approximating this true probability measure as an act of
minimizing divergence between the modeled probability measure and the true probability
measure, while section 4 forges the link between statistical divergence and distance. This
draws the connections between distance-minimization and the use of maximum likelihood
criteria. Section 5 provides practical considerations and applies the theory. Finally, Section 6
concludes. Proofs are provided in the Appendix A.

2. Causality in Terms of True Probability Measures

Notation will be as follows.

Notation 1. N, Z and R, respectively denote the sets of natural, integer, and real numbers. If
A is a set, B(A) denotes the Borel-σ algebra over A, and ×t=T

t=1A, alternatively denoted as AT,
is the Cartesian product of T copies of A. Definitional equivalence is denoted :=, which is to be
distinguished from ≡ denoting equivalence, for example in the functional sense. For two maps, f
and g, their composition arises from their point-wise application and is denoted f ◦ g := f (g) and
f−1 is the inverse function of f . The tensor product is denoted ⊗. The notation μ � ν is used
to indicate that μ is absolutely continuous with respect to ν, i.e., if μ and ν are two measures on
the same measurable space (X,A), μ is absolutely continuous with respect to ν if μ(A) = 0 for
every set A for which ν(A) = 0, or, as an example, if ν is the counting measure on[0, 1] and μ is
the Lebesgue measure, then μ � ν. It is also said that ν is dominating μ when μ � ν, see for
instance ([34] p. 574). Finally, the empty set ∅ is also used in the context of an empty sequence,
which sometimes would be notated as () in the literature.

Directional causality is interesting when at least two sequences are considered. Specif-
ically, when the focus is on a T-period sequence {xt(ω)}T

t=1, that is a subset of the realized
path of the nx-variate stochastic sequence x(ω) := {xt(ω)}t∈Z for events in the event
space ω ∈ Ω. (That is, xt(ω) ∈ X ⊆ Rnx ∀ (ω, t) ∈ Ω× Z. The random sequence x(ω)
is a Borel-σ F/B(X∞)-measurable map x : Ω → X∞ ⊆ Rnx

∞ . In this, Rnx
∞ := ×t=∞

t=−∞Rnx

denotes the Cartesian product of infinite copies of Rnx and X∞ = ×t=∞
t=−∞X with B(X∞) :=

B(Rnx
∞ ) ∩ X∞, and B(Rnx

∞ ) denotes the Borel-σ algebra on the finite dimensional cylinder
set of Rnx

∞ , see Theorem 10.1 of [35], p. 159). As always, the complete probability space of
interest is described by a triplet (Ω,F ,P), with F as the σ-field defined on the event space.
P is used here informally as a placeholder for a collection of probability measures, as we
shall introduce the exact probability measures of interest shortly.
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If x is considered as a univariate sequence independent from causal drivers, then
for every event ω ∈ Ω, the stochastic sequence xt(ω) would live on the probability space
(X∞,B(X∞), Px) where Px assigns probability to all elements ofB(X∞). In a similar fashion,
one can consider {yt(ω)}T

t=1 as the subset of the realized path of the ny-variate stochastic
sequence y(ω) := {yt(ω)}t∈Z indexed by identical t for events ω ∈ Ω (i.e., yt(ω) ∈ Y ⊆
Rny ∀ (ω, t) ∈ Ω× Z and the random sequence y(ω) is a Borel-σ F/B(Y∞)-measurable
map y : Ω → Y∞ ⊆ R

ny
∞ .) If y would live similarly isolated from outside influence, then

for every ω ∈ Ω, the stochastic sequence yt(ω) would operate on a space (Y∞,B(Y∞), Py)
where Py assigns probability to all the elements of B(Y∞). We have a system of two
unrelated sequences (This naturally covers to most common auto-regression case, only
stated for yt here, yt = f yy(yt−1) + εt, where εt is unobserved. The linear auto-regression
case is obtained when f yy is a scaled identity function.):

x := {xt = f xx(xt−1), t ∈ Z}
y := {yt = f yy(yt−1), t ∈ Z} . (1)

As we shall see, an important aspect of causal analysis is to rule out that the observed
data is not generated by Equation (1). As such, it is important to comment on a number of
properties. First, in this system of equations, the functions f xx and f yy are intentionally not
indexed by t. This does not imply that these functions cannot posses complex time-varying
properties; it only limits the discussion to observation-driven models (to the exclusion of
parameter-driven models), in which time-varying parameters arise as nonlinear functions
of the data. An example would be the threshold models considered by [36,37], in which
parameter values are allowed to differ across regimes in the data. The choice to restrict
the discussion is made because it is intuitively easier to conceive of causal effects in
an observation-driven context where observations represent verifiable values describing
different states of real-world phenomena. At the same time, it has been shown that
parametric observation-driven models can produce time-varying parameters of a wide
class of nonlinear models [38] and that the forecasting power of such models may be on-par
with parameter-driven models, even if the latter are correctly specified [39]. Moreover,
Refs. [20,40,41] show how observation-driven models may be used to not only investigate
how observations impact future observations, but also future parameter values, which may
empirically be interesting if those parameters carry an economic interpretation. Finally,
many popular machine learning algorithms, such as neural networks, can be reduced to
equations that show how parameter values change according to levels in the data [42].

While the dynamics in Equation (1) may be nonlinear, the notation is too restrictive
to nest long-memory processes. In particular, the state at time t is only a function of the
previous state at time t− 1, or t− p if the model would be generalized to p-order lags, but
not of the full history. Vanishing dependence, implied under contraction conditions [43],
is often key to verifying irreducibility and continuity [44] and proving the ergodicity of
time series [45]. Proving the ergodicity of a model is needed to obtain an estimation theory
under an assumption of correct specification [20,24]. Later, multivariate models will be
considered, in which case long-memory properties may arise, for example, when time-
varying parameters in one of the functions are a function of past data as well as of past
values of those time-varying parameters.

If interrelated stochastic sequences are at the center of inference, additional building
blocks are required to describe the processes. This increases the potential complexity of
Px and Py, but it also allows to distinguish between causality, non-causality, and feedback.
Consider the stochastic system:

x := {xt = f xx(xt−1) + f xy(yt−1), t ∈ Z}
y := {yt = f yx(xt−1) + f yy(yt−1), t ∈ Z} . (2)

In this multivariate context, f xy and f yx will be referred to as the direct causal maps, while
f xx and f yy control the memory properties within each channel.
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When x and y are analyzed individually, the properties of f xx and f yy are of key
interest. They carry information on the future positions of xt+1 and yt+1, and provide
predictability without considering outside influence directly. However, correct causal
inference around the interdependencies of x and y may be preferred over developing
predictive capabilities that can result from many configurations within the parameter
space that are associated with untrue probability measures. The properties of f xy and
f yx determine the direction in which effects move. Verifying their properties is central to
causality studies. The functions f xx and f yy, on the other hand, play a central role in the
system’s responses to external impulses by shaping memory of the causal initial impact of
a sequence of interventions, even after that sequence turns inactive.

The functions that control memory properties within channels in some sense determine
how the past reverberates into the future, and specifying correct empirical equivalents to
f xx and f yy is as crucial to the inference about the causal interdependencies as is specifying
mechanisms for the action of interest (it would be more general to write Equation (2) with
x := {xt = f xx(xt−1; wt−1) + f xy(yt−1; wt−1), t ∈ Z} and y := {yt = f yx(xt−1; wt−1) +
f yy(yt−1; wt−1), t ∈ Z} and with wt = (xt, yt). In this case, for instance, the dependence
of xt on its own past, xt−1, is allowed to vary based on the levels in past data. However,
under this notation, one could at any point in time, decompose the change in one variable
into effects attributed to memory and outside influence separately, which the simplified
notation in Equation (2) is intended to focus on). In fact, as Ref. [46] point out, systems
may be dominated by memory and the influence of the causal components may be small on
the overall process in which case predictive power can be obtained without specifying any
causal maps and focusing solely on memory. Inversely, this also suggests that one must
obtain a model for the memory process to isolate the causal impacts themselves, suggesting
that long-memory applications in which causal inference is of interest must develop a high
degree of predictive power, even if prediction is not needed for policy purposes. This can
be made more clear by considering the following:

x0 := {x0
t = f xy(yt−1), t ∈ Z}

y0 := {y0
t = f yx(xt−1), t ∈ Z} , (3)

with x0 and y0 defined as x0
t = xt − f xx(xt−1) and y0

t = yt − f yy(yt−1). Given the realized
sequences y(ω) and x(ω) generated by Equation (2), the sequential system of Equation (3)
moves forward in time as the one-step-ahead directly caused parts of y and x that are
filtered from the reverberating effects of f xx and f yy. More specifically, while y partially
consists of memory, there is a part, y0, that, at any point, is directly mapped from the
previous state of x, while, at the same time, x consists partially of memory and a part
x0 directly generated from the last position of y. In this view, directional causality can
be stated in terms of whether (3) produces any values, i.e., diagnosing if there is any
statistically significant signal from initial causal impulses left after all memory properties
have been stripped from the data. Importantly, the system reveals that by the definitions
of x0

t and y0
t , obtaining appropriate estimates for f xy and f yx involves f xx and f yy being

modeled correctly as x0
t and y0

t are not observed and only result as functions from the
observable processes y and x. Moreover, if y(ω) and x(ω) are triggered by an event, then it
is possible, by process of infinite backward substitution, to write Equation (3) as an infinite
chain initialized in the infinite past. Plugging in the equalities xt = x0

t + f xx(xt−1) and
yt = y0

t + f yy(yt−1) and defining the random functions f 0
y (y

0
t , yt−1) = f xy

(
y0

t + f yy(yt−1)
)

and f 0
x (x

0
t , xt−1) = f yx

(
x0

t + f xx(xt−1)
)
, one can write

x0 := {x0
t = f 0

y (y
0
t−1, yt−2), t ∈ Z}

y0 := {y0
t = f 0

x (x
0
t−1, xt−2), t ∈ Z} . (4)

Repeating infinitely, and extending infinitely in the direction T → ∞,

x0 := {x0
∞ = ( f 0

y )
∞(y0

1, y1), t ∈ Z}
y0 := {y0

∞ = ( f 0
x )

∞(x0
1, x1), t ∈ Z} . (5)
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( f 0
y )

∞ and ( f 0
x )

∞ are the maps that generate y0 and x0 infinitely after y and x have been
generated into infinity. Subscript 1 has been used, here, to mark the initialization points.
This shows that x0 can be written as a sequence of iterating functional operations that are all
defined on y, and y0 defined on x in a similar way (Equation (5) reveals that the sequences
that constitute the directly caused parts of x and y are ultimately dependent on the values
at which the observable process has been initialized. That is, the entire causal pathway
depends on the initial impact. In practice, one cannot observe all impacts—including those
that occurred in the infinite past—and assurance is required that the initialization effect of
the causal pathway must, asymptotically, be irrelevant). For ease of notation, let us write

x0 := {x0
t = f0

y(y−∞:t), t ∈ Z}
y0 := {y0

t = f0
x(x−∞:t), t ∈ Z} . (6)

where bold-faced f0 is used to refer to the entire sequence of functional operations f 0 up
to t, starting in the infinite past t = −∞. This highlights that generating the unobserved
quantities x0 and y0 from the observed quantities x and y by back substitution eventually
involves the unobserved quantities x1 and y1. This means that some feasible form of
approximation is needed, since time series data in practice area almost never recorded since
the beginning of the process.

Note first that f0
y : Y → X ⊆ R is a B(Y)/B(X )-measurable mapping, and f0

x :
X → Y ⊆ R is a B(X )/B(Y)-measurable mapping. The sequence x0 thus lives on
(X∞,B(X∞), Px

0 ), where Px
0 is induced according to Px

0 (Bx) = Py ◦ (f0
y)
−1(Bx) ∀ Bx ∈

B(X∞), and y0 lives on (Y∞,B(Y∞), Py
0 ), where Py

0 is induced according to Py
0 (By) =

Px ◦ (f0
x)
−1(By) ∀ By ∈ B(Y∞), see [47] p. 118 and [48] p. 115. The notation shows that the

probability measures underlying the stochastic causal sequences result from the functional
behavior of the entire system. In particular, the causal sequences can be written as recursive
direct effects from another variable that itself consists of memory and causal effects, and the
probability measures underlying the causal sequences are thus induced by the functional
relationships that describe all dynamical dependencies. This is important to the extent that
many causal studies focus on one single marginal dependency, while, from the measure-
theoretic perspective developed here, the wider system within any one single process
operates, is of importance to the analysis. This suggests that researchers must pay attention
to referencing the workings of a broader system when designing their models for inference,
something [33] has also argued. Moreover, it has been argued (see [49] for discussion) that
probabilistic definitions of causality are not strictly causal in the sense that they do not
provide insight in the origin of the probability law that regulates the process of interest, and
that a (correct) time-series model only describes (correctly) the probabilistic behavior as the
outcome of that unknown causal origin. The notation, here, shows, however, explicitly the
relation between the functional behavior of a system and its induced probability measure
that assigns probability to all possible outcomes. This suggests that such critiquing views,
rather, relate to disagreements around the level of detail in the structure of a model,
which in turn would be guided by the research question of interest and the availability
of detailed data. Particularly, dynamical systems in economics are often modeled using
aggregate macro-economic data that do not have the same granularity as micro-economic
data containing information about the behaviors of individual economic agents.

In many cases, a researcher is not able to observe all the relevant variables. When
a third, possibly unobserved external variable, z, with effect f z(z), is considered, the
researcher is confronted with the situation that

x := {xt = f xx(xt−1) + f xy(yt−1) + f xz(zt−1), t ∈ Z}
y := {yt = f yx(xt−1) + f yy(yt−1) + f yz(zt−1), t ∈ Z} . (7)

If z is unobserved, it can still be approximated as a difference combination of x and y. To
obtain an approximated sequence of the true z sequence to condition empirical counterparts
for f xz and f yz on, one can work with:
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z := {zt = f z|xy(xt+1 − ( f xx(xt) + f xy(yt))), t ∈ Z}
z := {zt = f z|yx(yt+1 − ( f yx(xt) + f yy(yt))), t ∈ Z} . (8)

Equation (8) suggests to write Equation (7) in terms of y and x only by defining z as
a difference combination of x and y (Apart from stability conditions imposed on the
endogenous process, one requires also that the exogenous impacts enter the system in
some suitable manner, which, for example, requires that f xz and f yz are appropriately
bounded. Following the same arguments that resulted in Equation (5), the initialization
of the exogenous impacts z1 should similarly not carry information influential in the
empirical estimates of f xy and f yx, conditional on partial information). This allows us to
define the spaces and measures in terms of x and y when the multivariate process includes
further variables, in this case, z. If the process is invertible, one can write, by aggregating
the functions:

x := {xt = f xx(xt−1) + f xy(yt−1) + f xz(xt, xt−1, yt−1), t ∈ Z}
y := {yt = f yx(xt−1) + f yy(yt−1) + f yz(yt, xt−1, yt−1), t ∈ Z} . (9)

x := {xt = f x(xt−1, yt−1), t ∈ Z}
y := {yt = f y(xt−1, yt−1), t ∈ Z} . (10)

x := {xt = f x(wt−1), t ∈ Z}
y := {yt = f y(wt−1), t ∈ Z} . (11)

For every t ∈ Z, the map f x ◦ (yt−1, xt−1) : Ω → X is F/B(X )-measurable and x(ω) lives
on the space (X∞,B(X∞), Px) where the probability measure Px is induced by f x on B(X∞)
according to the point-wise application of Pw and the inverse of f x.
( Px(Bx) = Pw ◦ ( f x)−1(Bx) ∀ (Bx) ∈ B(X∞)). Similar arguments follow for Py. This tells us
that, in the general case of multivariate dependencies and in the presence of possibly unob-
served variables, the probability measures underlying the individual sequences are possibly
a result of those of the other sequences. This means the space of empirical candidates for
the probability measure Pw that underlies the joint process w := {wt = (yt, xt), t ∈ Z} op-
erates on (W∞,B(W∞), Pw). (The sequence realizes under the events ω ∈ Ω, wt(ω) ∈ W ,
where W := Y ×X and w(ω) ∈ W∞, with W∞ := Y∞ ×X∞ ⊆ R

nx+ny
∞ := ×t=∞

t=−∞Rnx+ny ,
and the probability measure of the joint process Pw is thus defined on the product σ-algebra
B(W∞) = B(X∞ ×Y∞) = B(X∞)⊗B(Y∞) :=W∞ ∩B(Rnx+ny

∞ ) (see, [47] p. 119)).
Regardless, the measure Pw is induced by functional relations of Equation (2), which,

as was shown, can be decomposed into memory and causal subsystems. One can thus
state causality conditions, based on the measures that describe the directly caused effects
represented by Equation (6). In particular, one can keep the focus on Px

0 and Py
0 , bearing in

mind that they are lower-level constituents of Pw on which, in turn, the complete estimation
objective will be defined.

Definition 1 (Non-causality). The stochastic sequences x(ω) and y(ω) are not causally related if
Px

0 and Py
0 are null measures, such that x0(ω) ∈ ∅ ∀ (ω, t) ∈ Ω×Z and y0(ω) ∈ ∅ ∀ (ω, t) ∈

Ω×Z.

Definition 2 (Uni-directional Causality). Causality runs uni-directionally from the stochastic
sequence x(ω) to another stochastic sequence y(ω) (visa versa), if Px

0 is a null measure, and Py
0 is

a non-null measure, such that x0(ω) ∈ ∅ ∀ (ω, t) ∈ Ω× Z and y0(ω) ∈ Y ∀ (ω, t) ∈ Ω× Z
(visa versa).

Definition 3 (Bi-directional Causality). The stochastic sequence x(ω) is causal with respect to
y(ω) and y(ω) is causal with respect to x(ω), if Px

0 and Py
0 are both non-null measures, such that

x0(ω) ∈ X ∀ (ω, t) ∈ Ω×Z and y0(ω) ∈ Y ∀ (ω, t) ∈ Ω×Z.

255



Entropy 2022, 24, 92

Respectively, conditioning on impacts in x, these probabilistic causality definitions can
thus be understood broadly as:

1. Whenever an intervention in x occurs, there is no chance that y0 reacts as a result
of that.

2. Whenever an intervention in x occurs, there is positive chance that y0 reacts as a result
of that.

3. Whenever an intervention in x occurs, there is positive chance that y0 reacts as a result
of that. Subsequently there is positive chance that x reacts to this initial reaction, a
probabilistic process that repeats recursively.

Remark 1. With null-measures, it is meant that the stochastic sequence describing the directly
caused effects from one variable to the other takes values in the empty set with probability 1. This is
because the functions that induce the probability measure cancel out, hence, they can be removed
from the equations resulting in a probability measure that is not induced by any remaining rule
or relationship. In practice, one can test whether Px| f xx ≡ Px| f xx f xy or Px| f xx �≡ Px| f xx f xy,
where Px| f xx here denotes the probability measure induced by the functional relationships in
Equation (1) and Px| f xx f xy denotes the probability measure induced by the functional relationships
in Equation (2), to test whether Px

0 exists. A practical test is a Kolmogorov–Smirnov-type test.

3. Limit Divergence on the Space of Modeled Probability Measures

The definitions of causality, in terms of the lower-level components of Pw, suggest that
correct causal statements can be obtained empirically by extracting relevant counterparts
to Px

0 and Py
0 from a relevant counterpart to Pw, and investigating the stochastic sequences

produced by these modeled measures. For such an approach to be of relevance in an
empirical context, one must ensure that the concepts introduced adequately transfer over
from the true measure Pw to a modeled measure Pŵ. The focus is therefore shifted towards
detailing how Pŵ can be approximated as a minimally divergent measure relative to Pw,
and draw on approximation theory to construct equivalence around the true measure under
an axiom of correct specification.

For some event ω ∈ Ω, a realized T-period sequence wT(ω) := (yT(ω), xT(ω))
consisting of sequences {yt(ω)}t=T

t=1 and {xt(ω)}t=T
t=1 can be observed. The true function

f w, consists of our main functions of interest f x and f y that in turn are composed of f xy

and f yx that are of particular interest to the researcher focused on causality, but possibly
also functions f xx and f yy that shape the responses of an initial causal effect. The exact
properties are generally unknown to the observer, but one can design a parameterization
mapping that learns the behavior of f x and f y when exposed to sufficient data. To learn
from the data an approximation of f x and f y, one can postulate a model

ŵ := {ŵt = f (wt−1; θ), θ ∈ Θ, t ∈ Z}, (12)

with f :W × Θ → W as our postulated model function and ŵ as the modeled data. In
the context of parametric inference, the parameter space Θ is of finite dimensionality, but
also in the nonparametric case, the vector θ ∈ Θ indexes parametric models nested by the
nonparametric model, each inducing its own probability measure, and Θ indexes families
of parametric models, each inducing a space of parametric functions generated under
Θ. In this discussion a compact set of potential hypotheses is considered, limiting the
inference to parametric models. The arguments can be extended to the nonparametric
case, by focusing on a compact subset Θs ⊂ Θ of solutions (For example, by letting Θs
grow as T → ∞, hence focusing on the case Θs1 ⊂ Θs2... ⊂ Θs∞ ⊆ Θ, see for example [50]).
For example, by using priors or penalties that discard Θ \ Θs such that any solution of
the criterion necessarily falls within a compact subset space, see [20] p. 210 and [24].
Let f be B(W)-measurable ∀ θ ∈ Θ so that f (wt; θ) : Ω → W is F/B(W)-measurable
∀ θ ∈ Θ and t ∈ Z. FΘ := { f (·; θ), θ ∈ Θ} is our space of parametric functions defined
onW generated under Θ under the injective fW : Θ → FΘ(W) where fW (θ) := f (·; θ) ∈
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FΘ(W) ∀ θ ∈ Θ. Under any true probability measure Pw, every potential parameter vector
included in the parameter space θ ∈ Θ induces a probability measure Pŵ

θ indexed by θ
on B(W∞), according to Pŵ

θ (Bw) = Pw ◦ f−1(Bw, θ) ∀ (Bw, θ) ∈ B(W∞ ×Θ). Thus, for
every potential parameter vector included in the parameter space θ ∈ Θ, there is a triplet
(W∞,B(W∞), Pŵ

θ ) that describes the probability space of modeled data under θ. The triplet
(W∞,B(W∞), Pŵ

θ ) is, thus, itself an element of the measure spaces indexed by θ across
all Θ. Given the true probability measure Pw on B(W), this process is summarized by a
functional P : FΘ(W)→ P ŵ

Θ , that maps elements from the space of parametric functions
generated by the entire parameter space FΘ(W), onto the space P ŵ

Θ of probability measures
defined on the sets of B(W∞) generated by Θ through f (·; θ).

Now, f w is generally not only unknown, but for a finite Θ there is no guarantee
that ∃θ0 ∈ Θ : P ◦ fW (θ0) = Pw, implying that, in many empirical applications, one is
concerned with the situation where Pw /∈ P ŵ

Θ . However, if ∃Pw ∈ P ŵ
Θ , one can learn all

about Pw by uncovering the properties of f , given that a sufficient amount of observations
is available. (As discussed in the literature on miss-specification, even when the axiom of
correct specification is abandoned, f may converge to a function that produces the optimal
conditional density, which may reveal properties of f w). Let

θ̂T := arg min
θ∈Θ

QT(wT ; θ), (13)

θ̂T : Ω → Θ, be the extremum estimate for θ0 as judged by the criterion QT : WT ×Θ → R.
Trivially, WT := YT × XT and wT(ω) ∈ WT . To see that under correct specification it
is possible to approximate the true function f w in terms of equivalence (in the sense of
function equivalence [51] p. 288), one can write the criterion function also as a function of
the true function and the postulated model QT( f w(wT), f (wT ; θ)) in which it is made use
of the fact that f w(wT) := { f w(wt)}T

t=1 := wT and f (wT ; θ) := { f (wt; θ)}T
t=1 := ŵT .

The discussion further evolves toward showing that the element in P ŵ
Θ that is closest

to Pw minimizes a divergence metric that results from a transformation of the limit criterion
that measures the divergence between the true density and the density implied by the
model. Note that P ŵ

Θ is induced by the proposed candidates for Pw; studies on causality
thus rely on flexible model design as the researcher determines which hypotheses are
considered in a study by exerting control over Θ. Naturally, if Θ1 ⊂ Θ2, then Θ2 produces
a larger P ŵ

Θ2
⊃ P ŵ

Θ1
. This suggests that minimizing this divergence metric over a large as

possible P ŵ
Θ results in selecting Pŵ at a point in P ŵ

Θ that attains equivalence to Pw only
when Θ is large enough to produce a correctly specified hypothesis set. Note that the
definition of FΘ := { f (·; θ), θ ∈ Θ}, as our space of parametric functions generated under
Θ, under the injective fW : Θ → FΘ(W) and the functional P : FΘ(W)→ P ŵ

Θ that induces
the space of probability measures, is defined on the sample spaceW . This highlights that
the correct specification argument, Pw ∈ P ŵ

Θ , not only stresses flexible parameterization in
the sense that parameterized dependencies can take on many values, but also in the sense
of using correct data (Indeed, the potential parameters that would interact with data that
is not used are essentially treated as zero, so the focus on using correct data is implicitly
already contained in the standard statements of correct specification that focus directly
on the dimensions of Θ. The distinction is nevertheless useful because nonparametric
models are often popularized as methods to reduce miss-specification bias as Θ becomes
infinite dimensional, but this does not imply that Pw ∈ P ŵ

Θ if important data is missing).
When little is known about f , one is thus not only concerned with flexibility in terms of
the type of parametric functions generated under Θ, but also the variables on which the
modeled measures are defined. When these concerns are appropriately addressed, testing
for causality is deciding based on the approximation Pŵ whether the best approximation
of the true model suggests (1) that x and y live in isolation, (2) unidirectional causality, or
(3) that Pw produces feedback.

To turn this problem into a selection problem that can be solved by divergence mini-
mization w.r.t. the true measure, first introduce the limit criterion by taking T → ∞ and

257



Entropy 2022, 24, 92

working with the modeled data as the minimizer of the criterion. Specifically, let the limit
criterion be Q∞(θ) := QT( f w(wT), f (wT ; arg minθ∈Θ QT(wT ; θ))) evaluated at T → ∞
with Q∞ : Θ → R and Q∞(θ) = QP∞(Pw; Pŵ

θ ) ∀ θ ∈ Θ with the criterion Q∞(θ) = QP∞ as a
measure of divergence dP on the true probability measure and the modeled measure. More
specifically, dP ≡ QP∞ : P ŵ

Θ ×P ŵ
Θ → R≥0. By definition of QP∞ as a divergence on the space

that contains Pw and Pŵ
θ ∀ θ ∈ Θ, the element θ0 is thus the minimizer of that divergence.

Moreover, arg min in the parameter sense, arg min in the function sense (in terms of a
divergence metric on the true function), and arg min in the measure sense (in terms of a
divergence metric on the true probability measure), are equivalent limits under the same
consistency result. To see this, it is convenient to focus once more on the target and write
θ0 = arg minθ∈Θ QP∞ ≡ arg minθ∈Θ QF

∞( f w, fW (θ)), with QF
∞ : F(W)× F(W) → R≥0, to

make clear that the criterion establishes a divergence dF on F(W)× F(W), which is, in
turn, induced by dP through P according to dF( f 1, f 2) = dP (P( f 1), P( f 2)) ∀ ( f 1, f 2) ∈
F(W) × F(W). This ensures that our statement on the probability measure is relevant
under standard consistency results that are focused on the convergence of an estimated
parameter vector toward θ0, while, equivalently, the impulse response functions (IRFs)
converge to the true IRFs at θ0. This implies that deciding between Definitions 1–3 can be
read from the responses produced by the IRF that minimizes divergence w.r.t. the true IRF

Not necessary, but convenient for a proof that holds easily in practical situations, is
to assume the existence of a strictly increasing function r : R → R≥0 that ensures the
existence of a transformation of the limit criterion into a metric, d∗P ≡ r ◦ dP , with r being
a continuously and strictly increasing function. For convenience, all assumptions are
summarized in Assumption 1.

Assumption 1. For a limit criterion Q∞ : Θ → R of the form Q∞(θ) ≡ QP∞(Pw, Pŵ
θ ) ∀ θ ∈ Θ,

dP ≡ QP∞ : Pw×Pw → R≥0 is a divergence. Assume there exists a continuous strictly increasing
function r : R → R≥0 such that d∗P ≡ r ◦ dP is a metric. The functional fW : Θ → FΘ(W) is
injective and θ0 ∈ Θ.

Proposition 1. Assume 1, then the following are equivalent limits:

1. θ0,
2. arg minθ∈Θ Q∞(θ),
3. arg minθ∈Θ d∗F( f w, f ŵ(·, θ)),
4. arg minθ∈Θ QP∞(Pw, Pŵ

θ ),
5. arg minθ∈Θ d∗P (Pw, Pŵ

θ ).

Remark 2. Dropping the axiom of correct specification implies θ̂∞ �= θ0, hence, the equivalences
of 3–5 are now w.r.t. item 2.

The equivalences in Proposition 1 not only ensure that for a correctly specified model
∃θ0 ∈ Θ, the element θ0 results in functional equivalence between the model and the true
model (item 3), but also in zero divergence between the probability measures Pw and Pŵ

θ
(item 4). Moreover, it follows that at θ0, the empirically estimated probability measure Pŵ

is equivalent to Pw in the sense that there is zero distance between the two (item 5).

Remark 3. Proposition 1 is applicable to a large class of extremum estimators, even those not
initially conceived as minimizers of distance. In particular it is often possible to find a divergence on
the space of probability measures. For example, method of moments estimators are naturally defined
in terms of features of the underlying probability measures. In Section 4 and example is given, using
Kullback–Leibler divergence, for which penalized likelihood is an estimator. In this case squared
Hellinger distance can be shown to be a lower bound.

Corollary 1 now delivers that our definitions, set on the true measures, transfer to
modeled probability measures in the limit for correctly specified cases. It is well-known
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that standard consistency proofs apply also to approximate extremum estimators, there-
fore, assuming additionally that supθ∈Θ |QT(wT ; θ) − Q∞(θ)| → 0 a.s., is sufficient for
a consistency result together with the uniqueness of θ0 within the compact hypothesis
space Θ (Note that, under the axiom of correct-specification, consistency results require
suitable forms of stability defined on the process rather than the data. While we have
loosely remarked on the fact that the non-parametric case of an infinite dimensional Θ is
easily allowed, stability of highly nonlinear multivariate time series is a difficult separate
topic. Regardless, Refs. [44,45] provide Ergodicity results for a large class of nonlinear
time series that include non-parametric ones. The conditions require the nonlinearities
to be sufficiently smooth. Specific stability results have also been established for certain
neural network models, for example by [52]). This implies that our causality conditions
on the true measures do not only transfer to the approximate in the limit, but also for
large T under standard regularity conditions. Essentially, this is the setting considered by
Ref. [11]. Summarized:

Corollary 1. Given a true probability measure Pw, and an equivalent modeled probability measure
Pŵ in the sense that d∗Pŵ = r ◦ dP (Pw, Pŵ

θ ) ∼ 0, there are four possibilities for causality:

1. There is no causation if Px̂
0 and Pŷ

0 adhere to Definition 1.
2. x causes y if the probability measure Pŷ

0 adheres to Definition 2.
3. y causes x if the probability measure Px̂

0 adheres to Definition 2.
4. There is bi-directional causality if Px̂

0 and Pŷ
0 adhere to Definition 3.

Finally, in the case of a miss-specified model, Proposition 2 implies that the divergence
between the optimal probability measure as judged by the criterion and the true probability
measure attains a minimum at a strictly positive value d∗Pw > 0. In this case, the quantity
d∗Pŵ determines how “close” the empirical claim is to the true hypothesis about causality.
While it is difficult to make claims about this quantity, it is evident that minimizing d∗Pŵ

may involve widening P ŵ
Θ in the direction of Pw by increasing the dimensionality of Θ and

allow flexibility while investigating a wide range of data. Disregarding the value of d∗Pŵ ,
the following holds.

Proposition 2. If θ0 /∈ Θ, then Pw /∈ P ŵ
Θ . However, θ̂∞ is still the pseudo-true parameter that

minimizes r ◦ dP (Pw, Pŵ
θ ) over Θ. Therefore, Pŵ is the probability measure minimally divergent

from Pw within P ŵ
Θ . As such, it follows that, from all the potential probability measures in P ŵ

Θ , the
measure closest to Pw is supportive of one out of 1− 4 in corollary 1 based on the properties of Px̂

0

and Pŷ
0 as the best approximations. Pŵ provides the best approximation of the true causal measure

across all the hypotheses considered.

This leads to the following collection of results.

Corollary 2. Given a true probability measure Pw, and a non-equivalent, but pseudo-true modeled
probability measure, Pŵ, in the sense that d∗Pw = r ◦ dP (Pw, Pŵ

θ ) has attained a non-zero minimum,
there are four possible optimal hypotheses about causality, as judged by the criterion:

1. There is no causation if Px̂
0 and Pŷ

0 adhere to Definition 1.
2. x causes y if the probability measure Pŷ

0 adheres to Definition 2.
3. y causes x if the probability measure Px̂

0 adheres to Definition 2.
4. There is bi-directional causality if Px̂

0 and Pŷ
0 adhere to Definition 3.

Respectively, conditioning on interventions in x, the results can be understood as:

1. Whenever an intervention in x occurs, our best hypothesis is that there is no chance
that y reacts as a result of that.
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2. Whenever an intervention in x occurs, our best hypothesis is that there is positive
chance that y reacts as a result of that.

3. Whenever an intervention in x occurs, our best hypothesis is that there is positive
chance that y reacts as a result of that, and these interactions continue to repeat with
positive probability.

4. Limit Squared Hellinger Distance

Both Corollaries 1 and 2 assume that an appropriate transformation of the limit
criterion exists that provides us with a metric or norm. This assumption allows us to make
use of the classical theorems on existence and uniqueness of best approximations that
have been naturally obtained for metric, normed, and inner product spaces [53]. While
this retains the simplicity of the argument, it also shows that a direct interpretation of
Corollaries 1 and 2 can be obtained within the framework of maximum likelihood. Let us
first define the criterion function as the maximum likelihood estimator:

arg min
θ∈Θ

QT(wT ; θ) := arg max
θ∈Θ

T

∑
t=1

ln pt(wt|θ). (14)

Note that this is conforming to Q∞(θ) := QT( f w(wT), f (wT ; arg minθ∈Θ QT(wT ; θ)))
with T → ∞ and Q∞ : Θ → R. It can be shown that, under this definition with
Q∞(θ) = QP∞(Pw; Pŵ

θ ) ∀ θ ∈ Θ, the criterion Q∞(θ) = QP∞ is a measure of divergence
dP on the true probability measure and the modeled measure. Specifically, we can intro-
duce a divergence dP ≡ QP∞ : Pw ×Pw → R≥0 as follows. Let pw(wt|θw) and pŵ(wt|θŵ)
be, respectively, the true density evaluated under the true parameter and a modeled den-
sity at θ̂, evaluated under the estimated parameter, both at time t, with respect to the
Lebesque measure (such that they are probability density functions); then the following
is a divergence from the true probability measure to the modeled probability measure
(Kullback–Leibler divergence, see [54]):

KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
=⎧⎨⎩

∫ ∞
−∞ pw(w|θw) ln

pw(w|θw)

pŵ(w|θŵ)
dw ∀ pw(w|θw)� pŵ(w|θŵ)

∞ otherwise
. (15)

Naturally, KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
≥ 0 with equality if and only if pw(w|θw) = pŵ(w|θŵ)

almost everywhere, i.e., when the probability measures are the same (this is known as
Gibb’s inequality and can be verified by applying Jensen’s inequality).

Kullback–Leibler divergence is not a distance metric, as was used in Corollaries 1 and 2
to establish equivalences by partitioning into classes of zero-distance points. In particular,
it is asymmetric

KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
�= KL

(
Pŵ(w|θŵ)||Pw(w|θw)

)
, (16)

and the triangle inequality is also not satisfied. However, it has the product–density prop-
erty

KL(Pw(w|θw)||Pŵ(w|θŵ)) =
T

∑
t

ln KL(pw
t (wt|θw)||pŵ

t (wt|θŵ)), (17)

for pw(w|θw) = pw
1 (w1|θw) · pw

2 (w2|θw) . . . pw
T (wT |θw), and pŵ(w|θŵ) defined similarly.

Hence, the MLE is an unbiased estimator of minimized Kullback–Leibler divergence:

arg min
θ∈Θ

QT(wT ; θ) := arg max
θ∈Θ

T

∑
t=1

ln
pw(wt|θw)

pŵ(wt|θŵ)

= arg min
θ∈Θ

KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
.

(18)
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Note that under standard assumptions, a law of large numbers can be applied to obtain
the convergence, hence, by maximizing log likelihood, we minimize Kullback–Leibler
divergence. Now, we need to either find a continuously scaling function, r, to ensure that it
also minimizes distance between the true measure and the modeled measure so that we may
reach zero at d∗Pŵ = r ◦ dP (Pw, Pŵ

θ ) ∼ 0. Alternatively, we find the distance metric directly.
We argued above that Kullback–Leibler divergence is not a proper distance (in particular, it
is not symmetric and does not satisfy the triangle inequality). However, notably useful is
specifying d∗Pŵ directly as the Hellinger distance between a modeled probability measure
and the true probability measure [55]:

H
(

Pw(w|θw), Pŵ(w|θŵ)
)
=

√
1
2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2
dw. (19)

Specifically, the squared Hellinger distance provides a lower bound for the Kullback–
Leibler divergence. Therefore, maximizing log likelihood implies minimizing Kullback–
Leibler divergence, which implies minimizing the Hellinger distance. This is easily seen by
the following:

Proposition 3. The squared Hellinger distance provides a lower bound to Kullback–Leibler diver-
gence: (

H
(

Pw(w|θw)||Pŵ(w|θŵ)
))2

≤ KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
.

Remark 4 below highlights that these notions do not just apply to the standard real-
valued time series settings considered by Granger, but can apply to the explicit probability
modeling of binary outcomes as well. Remark 4 further clarifies a result that has so far
only been presented implicitly—that the probabilistic truth identified at the discussed
zero-distance point may allow for a base level of entropy to exist even when all functional
relationships in the process have been accounted for in a model.

Remark 4. While the paper has implicitly alluded to modeling continuous real-valued processes
though the notational conventions, the connections between true probability and modeled probability
are also easily made by focusing on an explicit binary outcome problem. Define cross-entropy for
two discrete probability distributions p and q with the same support X :

H(p, q) = Ep[− ln q] = H(p) +DKL(p||q) = − ∑
x∈X

p(x) ln q(x),

in which DKL is Kullback–Leibler divergence, or the relative entropy of q with respect to p, and
H(p) is the entropy of p. Now if p ∈ {y, 1− y} and q ∈ {ŷ, 1− ŷ}, we can rewrite cross-entropy:

H(p, q) = − ∑
x∈X

px ln qx = −y ln ŷ− (1− y) ln(1− ŷ),

or, for predictions generated under a set of parameters θ and a predictor x, as

H(y, x; θ) = −
T

∑
t=1

yt ln pθ(y|xt−1)− (1− yt) ln(1− pθ(y|xt−1)).

Remember that the maximum likelihood estimator maximizes the likelihood of the data under some
probabilistic model. The correct likelihood in the case of binary classification is Bernoulli:

p(y|π) = ΠT
t=1π

yt
t (1− πt)

1−yt ,

which results in the likelihood function

p(y|x; θ) = ΠT
t=1 pθ(y|xt−1)

yt(1− pθ(y|xt−1))
1−yt .
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Taking logs then gives the following log likelihood function

L(θ; x, y) =
T

∑
t=1

yt ln pθ(y|xt−1) + (1− yt) ln(1− pθ(y|xt−1)).

This shows that negative log likelihood is proportional to Kullback–Leibler divergence and differs
by the basic entropy in the data, which is constant. Maximizing the likelihood of a binary model
can, thus, be understood as minimizing statistical distance toward a true probability measure; the
minimum value is determined by the entropy in the observed data.

5. Application

5.1. Practical Considerations

We continue this section first with some notes on practical considerations. Let LT(θ)
denote the sample log likelihood at θ ∈ Θ. Naturally, if Θs ⊂ Θ, it follows that P ŵ

Θ ⊃ P ŵ
Θs

.
In the limit, this means that maximizing likelihood minimizes Hellinger distance over
both P ŵ

Θ and P ŵ
Θs

. Following Corollary 1, if θ ∈ Θs, this results in selecting Pŵ at a
point in P ŵ

Θs
that attains equivalence to Pw. In practice, when finite data is used, two

different points, one in P ŵ
Θ \ P ŵ

Θs
and one in P ŵ

Θs
, may be obtained because the finite

sample log likelihoods LT(θ̂sT) and LT(θ̂T) that are available are both asymptotically
biased estimators of the expected log likelihood ELT(θ0). This is easily shown by using a
quadratic expansion [20,40]

lim
T→∞

E
(

LT(θ̂T)−ELT(θ0)
)
= lim

T→∞
E
√

T(θ̂T − θ0)
′ 1
T

L′′T(θT)
√

T(θ̂T − θ0) �= 0. (20)

Under considerably restrictive conditions, the original work by [56,57] showed that the
right hand-side approaches the dimension of θ̂T and, hence, an asymptotically unbiased
estimator of E�t(θ0) is given by 1

T ∑T
t=2 �t(θ̂T)− k. Akaike also proposed the well-known

AIC given by AIC= 2T
(
k− 1

T ∑T
t=2 �t(θ̂T)

)
. Several authors have shown that the AIC can be

used to consistently rank models according to Kullback–Leibler divergence in considerably
more general settings, including the mis-specified case and have suggested further finite
sample improvements [58–60]. The AIC is also valid to decide between economic theories
for which no test statistics can be found [27]. This highlights that, while maximizing log
likelihood over Θ is not the same objective as minimizing Kullback–Leibler divergence
in finite samples, working with a complexity-penalized log likelihood (i.e., minimizing
the AIC) does select the model that attains the lowest KL-bound of all considered models
generated under Θ. Hence, in practice, a researcher can minimize the AIC as the practical
objective to minimize Hellinger distance, and use specification tests to diagnose which
of Corollaries 1 and 2 is more relevant. Since in-sample fits typically overfit data, a form
of regularization would usually allow better out-of-sample results; see, for instance the
(supplementary) discussion of [61] or the work of [62,63].

The challenge remains, however, that the AIC cannot be computed for all models as
the degrees of freedom used in the correction is generally not a well-defined quantity for
non-parametric models. As opposed to relying on in-sample corrections, cross-validation
may instead be used to obtain unbiased estimates of E�t(θ0) in a setting that is more
attuned to machine learning approaches, see for example [64]. Tests have been developed
by [20,40,65] by following the general strategy of [66] adapted to the log likelihood case.
The work has shown that choosing the model with the highest out-of-sample log likelihood
equals choosing the model configuration that has achieves the highest probability of being
the model that has lower Kullback–Leibler divergence. As the training T and validation
data T̃ grows T, T̃ → ∞, this strategy chooses the model that has achieved the lowest
Kullback–Leibler divergence, with probability converging to one.
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5.2. Application to Treasury Yield Spreads and Bitcoin Spreads

The developed theory is now put into practice using daily data from short-term and
long-term Treasury yield spreads and Bitcoin spreads. This is an interesting problem
because each of these three assets has an important relation to inflation expectations. Rising
inflation is also an acute problem, see [67,68].

The empirical strategy is as follows. First, standard linear Granger causality tests
are performed as a benchmark. Next, non-parametric models will be fit in an effort to
obtain an accurate-as-possible description of the true probability measure. The focus
will be on maximizing out-of-sample log likelihood to minimize KL-divergence. Finally,
Definitions 1 to 3 show that our conclusions about causality should be supported by a
study of the probability measure that describes the causal effects. In particular, it must be
decided whether this measure is a null-measure or produces real-valued data. This will be
done by taking the best approximation of the true probability measure using the potential
causal variable and the best approximation of the true probability measure without the
potential causal variable, and (1) concluding whether the first achieves a lower KL-bound,
and (2) testing whether the first is not stochastically equivalent to the latter. Section 5.2.1
first describes the data.

5.2.1. Data

Dynamic interactions between spreads in short-term and long-term bond yields can
naturally be expected to occur in the data. In the absence of any credit risk, the net
value of future bond payments is a function of the return required based on the inflation
expectation used to discount the cash stream. Each of the Treasury securities typically
caries a different yield, depending on maturity, the ratio between short and long-term
treasury yields signals how investors feel about the economy in the short versus long
term. If the yields vary substantially throughout the day, the market is uncertain about
its expectations. Investigating the flow of causality between long-term and short-term
yields and the interactions with other variables has been the objective of a large number of
studies. To name a few, refs. [69,70] investigate causality between bonds and credit default
swaps, while [71–75] investigate how financial distress propagates throughout connected
bond markets.

Proponents of Bitcoin have argued that it is an important hedge due to its prede-
termined finite supply. While Bitcoin, as an asset class, has only recently attracted the
public attention of large institutional investors, many researchers have already analyzed
the time-series behavior of Bitcoin prices. An overview of recent developments and more
discussion on forecasting Bitcoin prices is by [76]. They investigate a large set of covariates
that cover nearly all important classes of financial assets, except bonds. They conclude
that the intra-day distribution of daily returns follows a nonlinear memory process better
captured by machine learning methods than conventional econometric models, which is
further supported by a large body of literature that has documented related modeling
exorcises [77–83].

If investors treat Bitcoin as an inflation hedge, then the spreads may causally interact
with the U.S. yield spreads. Moreover, spreads in U.S. Treasury yields will arise predomi-
nantly from uncertainty in the expectations about the U.S. economy. Bitcoin, on the other
hand, as a global asset that can be exchanged peer-to-peer by individuals without the need
of a financial intermediary, might react to economic uncertainty in non-U.S. economies
that may have the potential to spill over. Bitcoin also trades 24 h a day, every day of the
year, and so may react to turmoil that happens outside U.S. trading hours and pass it on
when the markets open. At the same time, Bitcoin is a relatively small market and the
large institutional investors that dominate the bond market may not be active in the Bitcoin
market. Causality from Bitcoin to the bond market could, then, be unlikely. Similarly, since
Bitcoin trades non-stop, information assimilates rapidly, and so it may be likely that there
is no causal influence of bond spreads at the daily time frame. The different hypotheses
about the causal flows will be tested first using standard Granger causality tests.

263



Entropy 2022, 24, 92

5.2.2. Estimation Results

The following general system will be considered.

s(Tt) = f 1(L(Tt, Qt, Bt, St))

s(Qt) = f 2(L(Tt, Qt, Bt, St))

s(Bt) = f 3(L(Tt, Qt, Bt, St))

(21)

In which L is a lag operator, s is a function that calculates the spread between daily highs
(ht) and lows (lt) as the log difference o(log(1 + ht) − log(1 + lt)) where 1 is added to
account for negative rates. The function o is a simple outlier replacement function that
replaces the largest observed spread (the Corona-crash) with the second largest value. The
matrices Tt, Qt, Bt are, respectively, the daily data of the ten-year bond, Quarterly bond,
and Bitcoin price at time t, and St is SP500 price data used as a control. The data used in
the analysis runs from 1 January 2017 to 20 December 2021 and were obtained from Yahoo
finance using ticker symbols ^TNX, ^IRX and BTC-USD and ^GSPC.

First, a linear VAR model is considered with lags selected using the AIC. All of the
maximums of 10 considered lags were selected, and stability was confirmed by verify-
ing that the largest eigenvalue of the companion matrix remained below 1 (The largest
eigenvalue was approximately 0.95, indicating that the process was stable but strongly
dependent. Results were also generated using differenced data, which resulted in stronger
causal linkages. Results are implemented in the code available with the paper but not
shown here for compactness. see Supplementary Materials). Conditional Granger tests for
causality are calculated by applying an F-test to the squared residuals of the model with
and without the lags of a variable of interest in the presence of the autoregressive lags and
the other control variables. The table below reports the p-values.

There are two important results in Table 1. First, the AIC, as an in-sample estimator
of KL-divergence, selects a very large number of lags. The BIC is not an estimator of
KL-divergence, see [84], but is a closely related Bayesian alternative to the AIC that is
widely used. It places a larger penalty on the number of parameters and, as such, behaves
somewhat similar to the corrected AIC in finite samples. The table shows that with this
alternative criterion, a vastly different model is chosen. As Equation (20) showed, and the
discussion after mentioned, the in-sample estimator of log likelihood is a biased estimator of
expected log likelihood and, in practice, it is difficult to determine the appropriate penalty.
In Table 1, two vastly different results are obtained. In both cases, however, the p-values
of all causality tests are small. Both models suggest that there are strong causal linkages
between spreads in all three markets. The statistical significance is somewhat dubious: the
VAR(AIC) suggests that the causal flow of financial distress spills over in all directions.
Moreover, Table 1 shows that, by adding more lags the significance of the causality tests
increases, while it is likely that with 10 lags the model is trying to approximate a nonlinear
process and the extremely high number of parameters involved in this approximation are
likely over-fitting the data.

Table 1. p-values for Granger causality tests using VAR methods. Columns indicate the dependent
variables, rows correspond to exogenous lags tested for causality. Each linkage is tested in the
presence of lagged SP500 spreads as a control. Note that the BIC is not an estimator of KL-divergence,
but it is widely used as a Bayesian alternative that places a higher penalty on dimensionality. Blank
entries are intentionally left so, as they refer to endogenous linkages.

AIC (lags = 10) BIC (lags = 3)

s(Tt) s(Qt) s(Bt) s(Tt) s(Qt) s(Bt)

L(s(Tt)) 0 0.0225 0 0.2207
L(s(Qt)) 0 0.0021 0.0183 0.0450
L(s(Bt)) 0.0142 0.0083 0.1093 0.0635
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The section will now use an RF model to better approximate ( f 1, f 2, f 3). The im-
plementation used is that of [85], all possible tuning parameters are considered. The
consistency of the RF in a time-series context under the assumption of data generated
by a nonlinear autoregressive process is developed by [86]. As the previous sections de-
tailed, the out-of-sample estimate of log likelihood is proportional to KL-divergence but
RF models are typically not estimated using an in-sample log likelihood approach. A log
likelihood function can nevertheless still be specified for out-of-sample predictions. To
retain simplicity of the example, the commonly used Gaussian formulation is used:

�(vt, μt, σt) =
T

∑
t

1
2
(2πσ2

t )−
(vt − μt)2

2σ2
t

(22)

In this function, vt are holdout validation samples at time t and μt is the mean parameter,
which will be substituted by the conditional means predicted on the holdout data by
the model. Note that σt, the variance parameter, is allowed to be time-varying. This is
important because spread data is not homoskedastic, and the variance varies over the
time dimension [87,88]. The log likelihood function thus allows for heteroskedasticity, the
standard literature is followed and σt estimated using an ARMA-GARCH model. (The
algorithm is as follows. Consider the time-varying density Ft = (μt, σt, ϑ), where μt is a
conditional mean process. For simplicity, it is defined as an ARMA (1, 1) process

μt = c + φμt−1 + θεt−1 + εt, (23)

and the conditional variance, again for simplicity, is specified as a GARCH process of
order (1, 1):

σ2
t = ω + αε2

t−1 + βσ2
t−1 (24)

with σ2
t as the conditional variance, ω an intercept, and L the back-shift operator. The vector

ϑ specifies any remaining parameters of the distribution, in this case, the log likelihood is
estimated using the Gaussian distribution in line with the validation criterion).

The RF models use three lags of the spread data so that the BIC-selected VAR model is
nested. Several other features are added that may help describe the long-term dependencies
captured by the AIC-selected model more accurately. In particular, a relative strength index
(RSI) of all close values, including the SP500 close, is calculated. This is a standard indicator
on [0, 100], described in many resources that compare average upward movement to
average downward movements over a look-back period. The standard period of 14 days
is used along with a look-back of 14 weeks. The latter is also calculated using the spread
data. This way, the model may learn different dependencies in periods of sustained decline,
increase, or stability, in spreads and prices. The bootstrap sampling algorithm of the RF
allows for case weights, effectively increasing the probability that highly weighted cases are
over-represented in the random base learners, see [85]. This is exploited; σ2

t is standardized
in the training data to be used as case-weights so that observations during more volatile
periods feature more frequently in the sampling scheme.

The out-of-sample log likelihood is cross-validated using Equation (23), using 20 folds
so that each validation sample has approximately 60 observations. The splits are generated
using a stratified sampling approach that conditions on the RSI of the SP500. In other words,
validation samples are chosen so that each validation sample equally represents days of
under-bought, over-bought, and neutral stock market territories. The split is generated
once and kept identical for each model so that the results can be directly compared. In total,
an out-of-sample log likelihood value is generated for each observation so the sum of the
log likelihood is taken to obtain an estimate of total out-of-sample log likelihood.

The results in Table 2 show the following. First, the nonlinear autoregressive models
(indicated by the rows that apply a lag operator to the dependent variable listed in each
column) all out-compete the VAR model that used all variables. According to the theory
of the paper, the causal results obtained using the linear Granger causality tests in Table 1
should thus be discarded in favor of the theory that each variable follows a nonlinear
autoregressive process that only makes possible reference to the SP500 but not the other
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variables of interest. For instance, the VAR of the ten-year Treasury yield spreads reach
an out-of-sample log likelihood of 3916.77, while the nonlinear RF model reached a log
likelihood of 3932.78 without using the lagged quarterly yield spreads or Bitcoin spreads.
The differences in log likelihood are even larger for the models for quarterly Treasuries
spreads and Bitcoin spreads.

Table 2 contains only evidence for two possible causal linkages. First, the model for
the spreads on the ten-year that reached the lowest KL-bound used the lags of the quarterly
yield data. This suggests that causality, in financial distress, may run from the short-term
bonds to the long-term bonds. This is sensible; acute economic fears may impact short-term
expectations more heavily, and the reaction in the short-term yields may trigger further
fears about longer-term economic expectations. The second causal link could run from
the Bitcoin market to the quarterly bonds. This is not far-fetched: Bitcoin trades non-stop
and so any event globally can impact the Bitcoin market immediately, whereupon the
increased fear in the Bitcoin market could then trigger further reactions in the short-term
bond market, which would be more susceptible to short-term economic fears. However,
the point increase in log likelihood that backs this hypothesis is small compared to the
model that only used endogenous lags and control data.

Table 2. Cross-validated log likelihood for different models. Columns indicate the dependent variables,
rows correspond to exogenous lagged data that are used by the models in addition to the control data.
For each dependent variable, the model that achieved the lowest KL-divergence is marked by *.

s(Tt) s(Qt) s(Bt)

VAR 3916.77 4084.68 2204.91

RF
All 3989.14 4239.42 2251.06

L(s(Tt)) 3932.78 4230.44 2251.68
L(s(Qt)) 3991.24 * 4240.54 2251.46
L(s(Bt)) 3932.90 4242.67 * 2251.84 *

Recall Remark 1: to test whether the evidence for causality is strong enough; it is
important to test whether the probability measures that achieved the lowest KL-bound are
stochastically different from those that exclude the causal linkages. A Kolmogorov–Smirnov
test, under the null of distributional equivalence against a two-sided alternative, is com-
puted. For the ten-year yield spread model, the p-value is 0, so the null is overwhelmingly
rejected. The analysis, thus, concludes that the best possible hypothesis is that disruptions
in the short-term bond market cause further disruption in the longer-term bond market.
The test for distributional equivalence between the model with and without Bitcoin data
has a p-value of 0.8591. In other words, the null of equivalence cannot be rejected and, while
the model that used Bitcoin data reached the lowest KL-bound, the analysis does not find
significant evidence for a causal flow from the Bitcoin market to the short-term Treasuries
as the modeled probability measure is not significantly distinguishable from the competing
non-causal measure. This suggests that the probability measure that describes the causal
effects in Definition 2 is not distinguishable from that of Definition 1, and so Corollary 1 or 2
remain inconclusive. The final conclusion that causal flows are thus parsimonious is far
more likely than the result obtained with the VAR, which suggested that causality flows
significantly in all directions.

6. Concluding Remarks

This paper has developed a probabilistic theory of causation using measure-theoretical
concepts. It discussed how probabilistic truths can be approximated by minimizing distance
to the true probability measure over a space of measures in which each element is associated
with a probabilistic theory about causation. This notion is flexible and has allowed for
a wide range of models to be used for causal inference, including linear and nonlinear
dynamical models. The theory has been applied using daily data on yield spreads to
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test how uncertainty around short-term and long-term expectations about future inflation
interact with uncertainty in the daily Bitcoin price. The results were contrasted with those
obtained using standard linear Granger causality tests. While linear Granger causality
relies on models that assume a constant causal influence from one variable onto another,
specified by static parameters, the analysis has shown that time-varying properties of the
auto-regressive process provides a better description of the data. While the linear Granger
causality tests finds significant causal influence in all directions, the suggested measure-
theoretic approach to causality testing, using, in this example, a random forest model,
found only one significant causal link that ran from financial distress in the short-term
bond market to uncertainty in the long-term bond market.

As with Granger’s approach, a convincing theory of how causes produce effect is
not necessarily a prerequisite to making correct causal inferences. Clear hypotheses about
causal relations may, however, help guide the inference by helping design better models.
However, whereas Granger’s definition “is based entirely on the predictability of some
series” [5], the ideas of the current paper start with the notion that true probabilistic laws
exist and can, and should, correctly be approximated to infer causal structures from data. A
conclusion from this is that researchers interested in causal analysis should aim to develop
strong out-of-sample predictions, as Granger’s techniques applied to inaccurate models
may provide an overly enthusiastic description of causal linkages.

The general ideas of the paper differ from the linear Granger tests in terms of result, but
share a similarity in thought process. Granger’s statement about causality followed from the
premises that causes occur before effects and that causes contain unique information about
their effect, and so that any causal variable must help forecast outcomes after other variables
have been used first. For this reason, many refer to Granger causality as predictability.
This paper defined causality directly in terms of the probability measures that define a
stochastic process. This, in turn, places the emphasis on finding the best approximation of
that probability measure. The theory developed here shows that minimizing KL-divergence
implies minimizing distance between a model and the true probability measure and shows
that maximizing out-of-sample log likelihood implies minimizing KL-divergence. This
does not require parametric models or the degrees of freedom to be known. Instead, the
KL-ranking of competing models can be directly read from the out-of-sample log likelihood.
The stochastic equivalence, or difference, between probability measures that are induced
by causal flows, or from autoregressive properties only, can subsequently be tested. The
theory provides practitioners guidance for developing causal models using new machine
learning methods that have, so far, remained relatively underutilized in this context.
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Appendix A. Proofs

Appendix A.1. Proof for Proposition 1

Proof. By construction of the criterion, as stated in Assumption 1, arg minθ∈Θ Q∞(θ) is its
minimizer, and, by assuming θ0 ∈ Θ, it is also equal to θ0. Hence, item 2 is equivalent to
item 1 by definition under correct specification.

The equivalence of the deterministic limit criterion (item 2) as a function describing the
divergence of the underlying probability measures of w and ŵ (item 4) is assumed, however,
given a limit criterion function Q∞ : Θ → R and a flexible definition of divergence (e.g., a
pre-metric, such as the KL-divergence), it is often possible to find a divergence dP : PΘ ×
PΘ → R≥0 on the space of probability measures satisfying arg minθ∈Θ dP (Pw,P ŵ

θ ) =
arg minθ∈Θ Q∞(θ). The KL-divergence example is provided in this paper in the context of
the maximum likelihood criterion.

By the assumption that r exists, the deterministic limit criterion that minimizes diver-
gence, is also the minimizer of a distance metric d∗P (Pw, Pŵ

θ ), hence item 4 is also equivalent
to item 2.

Finally, since fW : Θ → FΘ(W) is injective, (Pw, Pŵ
θ ) ≡ d∗F( f w, f (·, θ)) ∀ θ ∈ Θ and

d∗F is a metric on FΘ(W), θ0 is also the minimizer of d∗F( f w, f (·, θ)) ∀ θ ∈ Θ so that item 3
is equivalent to item 2.

Appendix A.2. Proof for Proposition 2

Proof. The result follows immediately by the arguments used in proposition 1 dropping
only the first equivalence.

Appendix A.3. Proof for Proposition 3

Proof. First, Hellinger distance is

H
(

Pw(w|θw), Pŵ(w|θŵ)
)
=

√
1
2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2
dw,

hence,

(
H(Pw(w|θw), Pŵ(w|θŵ))

)2
=

1
2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2
dw.

Now, the R.H.S. can be written as

1
2

∫
pw(w|θw)dw +

1
2

∫
pŵ(w|θŵ)dw−

∫ √
pw(w|θw)pŵ(w|θŵ)dw.

The integral of a probability density over its domain equals 1, hence the sum of the first
two terms is 1, hence this can be rewritten as

1−
∫ √

pw(w|θw)pŵ(w|θŵ)dw.
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This has an upper bound, provided by the inequality

1−
∫ √

pw(w|θw)pŵ(w|θŵ)dw ≤ − ln
∫ √

pw(w|θw)pŵ(w|θŵ)dw.

Write R.H.S. as − ln
∫ ⎡⎣√ pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

⎤⎦dw and to obtain the upper bound

− ln
∫ ⎡⎣√ pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

⎤⎦dw ≤ −
∫ ⎡⎣ln

√
pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

⎤⎦dw,

by applying Jensen’s inequality, which can be applied to the integral case, since any random
variable whose distribution admits a probability density function has the expected value
represented by the integral over the full range of the density.

Finally, define the R.H.S. as

E
∫ [

ln
pw(w|θw)

pŵ(w|θŵ)
pw(w|θw)

]
dw = −

∫ ⎡⎣ln

√
pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

⎤⎦dw,

and conclude that the last expression is equivalent to the Kullback–Leibler divergence by
an elementary row operation.

E
∫ [

ln
pw(w|θw)

pŵ(w|θŵ)
pw(w|θw)

]
dw ≡ KL

(
Pw(w|θw)||Pŵ(w|θŵ)

)
.
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29. Hlaváčková-Schindler, K. Equivalence of Granger Causality and Transfer Entropy: A Generalization. Appl. Math. Sci. 2011,

5, 3637–3648.
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