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 Abstract 
 Selecting the best model of sequence evolution for a multiple-sequence-alignment (MSA) 

 constitutes the first step of phylogenetic tree reconstruction. Common approaches for inferring 

 nucleotide models typically apply maximum likelihood (ML) methods, with discrimination 

 between models determined by one of several information criteria. This requires tree 

 reconstruction and optimisation which can be computationally expensive. We demonstrate that 

 neural networks can be used to perform model selection, without the need to reconstruct trees, 

 optimise parameters, or calculate likelihoods. 

 We introduce ModelRevelator, a model selection tool underpinned by two deep neural networks. 

 The first neural network, NNmodelfind, recommends one of six commonly used models of 

 sequence evolution, ranging in complexity from JC to GTR. The second, NNalphafind, 

 recommends whether or not a  Γ  --distributed rate heterogeneous model should be incorporated, 

 and if so, provides an estimate of the shape parameter, ɑ. Users can simply input an MSA into 

 ModelRevelator, and swiftly receive output recommending the evolutionary model, inclusive of 

 the presence or absence of rate heterogeneity, and an estimate of ɑ. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.22.473813doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473813
http://creativecommons.org/licenses/by-nd/4.0/


 We show that ModelRevelator performs comparably with likelihood-based methods over a wide 

 range of parameter settings, with significant potential savings in computational effort. Further, 

 we show that this performance is not restricted to the alignments on which the networks were 

 trained, but is maintained even on unseen empirical data. ModelRevelator will be made freely 

 available in the forthcoming version of IQ-Tree (http://www.iqtree.org), and we expect it will 

 provide a valuable alternative for phylogeneticists, especially where traditional methods of 

 model selection are computationally prohibitive. 

 Introduction 
 Modelling the process of sequence evolution is a necessary step in carrying out phylogenetic 

 inference. Jukes and Cantor  (Jukes and Cantor 1969)  introduced the first model of sequence 

 evolution (JC), based on the assumptions that frequency of bases, and pairwise substitutions 

 between each of them, were equally likely. Since then modelling the evolutionary process has 

 been an area of continual and ongoing development and hundreds of models are now available 

 to choose from (K2P  (Kimura 1980)  , F81  (Felsenstein 1981)  , HKY  (Hasegawa et al. 1985)  , 

 TN93  (Tamura and Nei 1993)  , and GTR  (Tavaré and Others 1986)  to name a few). 

 Systematically discriminating between the available models is a problem that has been 

 approached in a variety of ways, including likelihood ratio tests, Bayes factors, and cross 

 validation. Endorsed by Posada and Buckley  (Posada and Buckley 2004)  , the most common 

 current approach is to carry out maximum likelihood (ML) inference under a selection of different 

 models, then use an information criterion such as Akaike’s Information Criterion (AIC), or the 

 Bayesian Information Criterion (BIC)  (Posada and Crandall 1998; Johnson and Omland 2004; 

 Posada and Buckley 2004; Abascal et al. 2005; Posada 2008; Darriba et al. 2012; 

 Kalyaanamoorthy et al. 2017)  . Model selection software such as ModelFinder 

 (Kalyaanamoorthy et al. 2017)  automate the process to a large extent by evaluating models 

 based on BIC (by default), and are employed as a matter of course as part of most phylogenetic 

 analyses. However, there is considerable discussion within the literature about the suitability of 

 information criteria as a discriminating tool within phylogenetics  (Crotty and Holland 2021; 

 Grievink et al. 2010; Jhwueng et al. 2014; Seo and Thorne 2018; Susko and Roger 2020)  . 
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 Theoretical shortcomings aside, the rapid expansion of the size of multiple sequence alignments 

 (MSAs) typically available to empiricists means the computational cost of traditional model 

 selection methods is becoming increasingly prohibitive. Large phylogenomic alignments, 

 consisting of many concatenated genes, should not be assumed to have evolved 

 homogeneously. To address this, different models are often assigned to different sections of the 

 alignment (typically genes or codon positions). Methods like PartitionFinder  (Lanfear et al. 2012; 

 Frandsen et al. 2015)  accomplish this, but they require the repeated estimation of the 

 appropriate model, sometimes across thousands of genes  (Faircloth et al. 2012; Lemmon et al. 

 2012; Jombart et al. 2014)  . Thus, model selection can become a computational bottleneck. 

 Although machine learning methods have found broad application in biology  (Tarca et al. 2007; 

 Kandoi et al. 2015; Leung et al. 2016; Kan 2017; Silva et al. 2019)  , within the field of 

 phylogenetics, they have thus far only been applied to a very limited extent  (Tao et al. 2019; 

 Leuchtenberger et al. 2020; Suvorov et al. 2020; Zou et al. 2020)  . Further refining the scope to 

 model selection within phylogenetics, ModelTeller  (Abadi et al. 2020)  , which utilises a random 

 forest-based machine learning approach, is the only current contribution, although it does not 

 focus primarily on model selection. 

 To address these issues, we have developed ModelRevelator, a machine learning approach to 

 the model selection problem that is based on neural networks with many layers (deep learning) 

 (LeCun et al. 2015)  , with the focus on finding the best model of sequence evolution. Further, in 

 the case that the alignment is best modelled incorporating a  Γ  -distributed rates across sites 

 component  (Yang 1994)  , ModelRevelator provides an estimate of the shape parameter. To show 

 the applicability of deep learning in phylogenomics, we compare the results offered by 

 ModelRevelator to ModelFinder (which is representative of current standard practice) as 

 implemented in IQ-Tree  (Nguyen et al. 2015; Minh et al. 2020)  . Using simulated alignments, we 

 assessed the performance of the two methods based on how often they correctly identified the 

 generative model, as well as the accuracy of topological inference carried out using their 

 recommendations. We find that ModelRevelator can estimate the model of sequence evolution 

 as well as the parameter  α  at a comparable accuracy to ModelFinder, with potential for 

 significant reduction in computational expense. 
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 New Approaches 

 We introduce ModelRevelator, a machine learning-based approach to model selection for 

 phylogenetic inference. Users can input their MSAs to ModelRevelator, and ModelRevelator will 

 advise which model of sequence evolution should be used, whether a  Γ  -distributed rate 

 heterogeneity component should be included, and if so, an estimate of the shape parameter. 

 ModelRevelator consists of two neural networks which operate independently to provide model 

 recommendations that can be adopted to significantly accelerate inference time. The first 

 network, NNmodelfind, was trained to select a model of sequence evolution prior to 

 phylogenetic inference, thereby bypassing the computationally expensive procedure of 

 performing model selection via ML and information criteria. The second network, NNalphafind, 

 was trained to make recommendations with respect to rate heterogeneity, and its output is 

 two-fold. NNalphafind will first recommend whether the alignment is characteristic of substitution 

 rate heterogeneity, or whether a rate homogeneous model will suffice. If the network 

 recommends that a  Γ  -distributed rates across sites  model is appropriate, it will then provide an 

 estimate of the shape parameter which can be incorporated into the inference. Both networks 

 were trained on simulated data based on empirical alignments. We show here that the networks 

 have comparable accuracy to traditional model selection methods, and have significant 

 advantage in terms of computational expense. 

 ModelRevelator will be added to the suite of phylogenetic tools available within IQ-Tree, which 

 can be downloaded from  http://www.iqtree.org  . It will  be included when the next version of the 

 software is released. 

 Results: 

 Generating testing and training data 
 In order to train our neural networks a large number of simulated multiple sequence alignments 

 (MSAs) were required. However, we were mindful that ultimately, we require the neural networks 

 to be useful tools for the analysis of empirical data, and thus we needed our training MSAs to be 

 broadly representative of empirical datasets. To this end we obtained a large database of 
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 empirical MSAs made available to us by the Lanfear group of Australian National University. 

 From the Lanfear MSAs we reconstructed trees via maximum likelihood inference with IQ-Tree, 

 under six different models of sequence evolution, with and without accounting for rate 

 heterogeneity. We thus obtained empirical distributions for internal edge lengths, external edge 

 lengths, substitution rates, and base frequency parameters. We fit cubic splines to these 

 empirical distributions, enabling us to sample random values as required. 

 Figure 1:  Schematic illustration of the workflow followed to produce training and testing data for 
 the neural networks. (1) Edge lengths, substitution rates, and base frequencies are inferred 
 using maximum likelihood for a large number of empirical MSAs, to form empirical distributions 
 of these parameters. (2) For the specified number of taxa a random tree topology is generated 
 following a Yule process. (3) Edge lengths for the tree are drawn randomly from the distribution 
 of internal and external edges obtained in (1). (4) For a given substitution model, the appropriate 
 model parameters are drawn from the distributions obtained in (1). (5) For a given alignment 
 length an MSA is simulated based on the tree and model of sequence evolution obtained from 
 (3) and (4) respectively. 

 We then generated random tree topologies of varying  sizes  , and allocated edge lengths to these 

 topologies by randomly sampling from the external and internal edge distributions. We also 
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 constructed models of sequence evolution by randomly sampling from the substitution rate and 

 base frequency distributions. These tree topologies and substitution models were then used as 

 input to Seq-Gen  (Rambaut and Grassly 1997)  ,  in order  to generate MSAs of 1kbp length  for 

 training of the neural networks. We also generated MSAs incorporating the discrete-  Γ  model of 

 rate heterogeneity, with alpha parameters ranging from 0.001 (extreme rate heterogeneity) up to 

 10 (mild rate heterogeneity). Testing data was generated in essentially the same way, although 

 we tested a wider range of alignment sizes, ranging from 100bp up to 100kbp. 

 Figure 1 illustrates the procedure we adopted for generating alignments. A fuller account of the 

 precise parameter settings and volume of MSAs generated can be found in the methods 

 section. 

 Estimating the evolutionary model: 

 Our first objective was to train a neural network, which we have called NNmodelfind, to 

 successfully estimate the correct model of sequence evolution. As described in the methods 

 section, we trained NNmodelfind on a wide variety of simulated MSAs. The training MSAs were 

 generated according to one of 6 models of sequence evolution (JC, K2P, F81, HKY, TN93, and 

 GTR). We incorporated an equal number of MSAs that were simulated under rate homogeneous 

 (Rhom) and rate heterogeneous (Rhet) conditions. Rate heterogeneous alignments were 

 simulated with the shape parameter, alpha, taking one of 17 potential values between 0.001 and 

 10. MSA size was either 8, 16, 64, or 128 taxa, with each size equally represented in the 

 training data. The length of all training MSAs was 1kbp. Having trained NNmodelfind, we 

 generated  test MSA  s to evaluate its performance.  Test  MSA  s were generated using the same 

 parameter settings as the training MSAs, with additional MSAs generated with higher numbers 

 of taxa (256, and 1024), and different sequence lengths (100bp, 10kbp, and 100kbp) in order to 

 evaluate the generalisability of NNmodelfind. 

 By way of comparison we used a traditional method of model selection via maximum likelihood 

 inference to choose the model of sequence evolution for each  test MSA  . We used the 

 M  odelFinder approach within IQ-Tree, with BIC set  as the discriminating criterion. We refer to 

 this method of model selection as ML+BIC. 
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 Figure 2 shows the accuracy for Rhom test MSAs of length 1kbp. Figure 2a displays the 

 accuracies separately for the individual models and taxa levels. Figure 2b shows confusion 

 matrices for each method and taxa level, detailing the distribution of the inferred model for each 

 true model. Figure 3 shows the analogous information to Figure 2, for Rhet test MSAs. Overall, 

 Figures 2 and 3 indicate that NNmodelfind and ML+BIC are able to estimate the generative 

 model of sequence evolution with similar accuracy. There are modest differences between the 

 two methods, for example ML+BIC is more accurate when the true model is GTR or TN93, 

 whereas NNmodelfind is more accurate when the true model is F81 or HKY. 

 Figure 2: Model selection accuracy of NNmodelfind and ML+BIC on 1,000bp long Rhom MSAs. 
 (A)  Blueish colours indicate results from NNmodelfind,  reddish colours indicate results from 
 ML+BIC. Darkening bars distinguish increasing number of taxa from left to right (8, 16, 64, 128, 
 256 and 1024).  (B)  Confusion matrices for  NNmodelfind  and ML+BIC. Entries along the 
 diagonal indicate the percentage of alignments for which the correct model was identified. 

 Figures 2b and 3b show the confusion matrices associated with the 1kbp test alignments. The 

 confusion matrices reveal an interesting phenomen  on  in relation to the performance of ML+BIC. 
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 For low numbers of taxa, when ML+BIC infers the incorrect model, it almost exclusively selects 

 a model of lower complexity than the true model. Conversely, when the MSAs contain a high 

 number of taxa, ML+BIC tends to err in the direction of more complex models. This is likely a 

 result of the fact that as the number of taxa  increases  ,  the log likelihood scores grow and the 

 influence of the penalty term in the BIC formula is reduced. Thus ML+BIC tends to more 

 complex models as the number of  taxa increases  . By  way of comparison, the error structure 

 displayed by NNmodelfind does not show any strong pattern of preference for models of lower 

 or higher complexity, and this appears to be the case independent of the number of taxa in the 

 alignment. This is likely a result of the fact that the input size of NNmodelfind is fixed and so 

 increasing the number of taxa does not influence the error structure. 

 Figure 3: Model selection accuracy of NNmodelfind and ML+BIC on 1,000bp long, Rhet MSAs. 
 (A)  Blueish colours indicate results from NNmodelfind,  reddish colours indicate results from 
 ML+BIC. Darkening bars distinguish increasing number of taxa from left to right (8, 16, 64, 128, 
 256 and 1024).  (B)  Confusion matrices for NNmodelfind  and ML+BIC. Entries along the 
 diagonal indicate the percentage of alignments for which the correct model was identified. 
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 Generalisation of NNmodelfind 

 Although NNmodelfind was trained strictly on MSAs of length 1,000bp, if it is to be of use to 

 empiricists then it must be reasonably generalisable on MSAs of various lengths. To investigate 

 its capabilities in this regard we generated test alignments that were both shorter (100bp) and 

 longer (10kbp and 100kbp) than the training alignments. Supplementary Figures 1 - 6 show the 

 performance of NNmodelfind and ML+BIC for these data, in the same format as Figures 2 and 

 3. For short sequences of 100bp, the performance of NNmodelfind is poor for all models except 

 GTR. The confusion matrices suggest that NNmodelfind selects GTR for most MSAs, 

 independent of the model used to generate the alignment. Conversely, ML+BIC performs poorly 

 for more complex models such as GTR, but is very reliable for simpler models such as JC and 

 K2P. The confusion matrices suggest that ML+BIC has a tendency to select a simple model 

 regardless of the model used to generate the alignment. The poor performance of both methods 

 is likely a reflection of the high amount of stochastic noise within the short datasets, and is not 

 unexpected. The performance of both ML+BIC for long alignments of 10kbp and 100kbp was 

 excellent. Supplementary Figures 5 and 6 show that for 100kbp MSAs, ML+BIC identified the 

 generative model with accuracies approaching 100%, across all taxa and model combinations. 

 This is not unexpected, as ML is known to be statistically consistent  (Truszkowski and Goldman 

 2016)  , and we would therefore expect ML+BIC to perform well for very long sequences. 

 NNmodelfind however saw no appreciable improvement for these longer sequences. The rate at 

 which NNmodelfind correctly inferred the generative model was similar for 10kbp and 100kbp as 

 it was for 1,000bp. One obvious explanation for this observation is that, irrespective of the actual 

 length of the MSA, the input size for NNmodelfind is fixed. Thus, for long alignments, 

 NNmodelfind samples sites from the alignment up to the required input size, and therefore does 

 not make full use of all the information contained within the alignment. 

 In addition to  generalising  over a wide range of sequence  lengths, the performance of 

 NNmodelfind on varying numbers of taxa is also of interest. NNmodelfind was trained on MSAs 

 which ranged in size from 8 to 128 taxa. To investigate whether the performance of 

 NNmodelfind could be extrapolated to larger datasets, we simulated test MSAs with 256 and 

 1024 taxa, using the parameters estimated from the Lanfear MSAs as before. The results are 

 contained within Figures 2 and 3. Figures 2a and 3a show that the performance of NNmodelfind 
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 is not compromised by increasing the number of taxa beyond that used to train the network. For 

 all generative models, NNmodelfind identified the correct model at rates as good as or slightly 

 higher than for the smaller MSAs. For ML+BIC however, increasing taxa had a detrimental effect 

 on the success rate when the generative model was F81, HKY, and to a lesser extent TN93, 

 both with and without rate heterogeneity. The confusion matrices in Figures 2b and 3b suggest 

 that with these generative models, ML+BIC tended to select more complex models, most often 

 choosing GTR. 

 Estimating the presence and degree of rate heterogeneity 

 The assumption that all sites in an MSA mutate at the same rate has long been regarded as 

 biologically implausible. Rate heterogeneity has become an essential component of models of 

 sequence evolution, and is typically modeled by the discrete  Γ  distribution  (Yang 1994)  . The 

 alpha parameter of the  Γ  distribution determines its  shape and thus the extent of rate 

 heterogeneity. In conjunction with NNmodelfind, a neural network which can accurately estimate 

 the alpha parameter could further expedite phylogenetic reconstruction. We trained a second 

 neural network, NNalphafind, to first estimate whether a rate homogeneous model was 

 appropriate for the MSA, and if not, to then estimate the alpha parameter of the  Γ  -distributed 

 rate heterogeneity component. 

 As described in the methods section, NNalphafind was trained on MSAs containing 8, 16, 64 

 and 128 taxa. Each training MSA was 10kbp long, as opposed to the 1kbp MSAs that were 

 used to train NNmodelfind. NNalphafind was tested on the same  test MSA  s simulated to test 

 NNmodelfind, but for clarity we reiterate the simulation procedure here with the added detail of 

 the alpha parameter levels. The generative models of sequence evolution used were JC, K2P, 

 F81, HKY, TN93, and GTR. The amount of rate heterogeneity in the MSAs was varied by 

 controlling the rate parameter, alpha. In total there were 17 levels of rate heterogeneity, 

 represented by 17 distinct alpha values (0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 2, 3, 4, 5, 6, 7, 8, 

 9 and 10). Small values of alpha correspond to a high degree of rate heterogeneity, whereas 

 large values of alpha correspond to a low degree of rate heterogeneity. With 4 taxa levels, 6 

 generative models, 4 sequence length levels, and 17 levels of rate heterogeneity, there were 4 x 
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 6 x 4 x 17 = 1632 parameter combinations. For each of these parameter combinations we 

 simulated 30  test MSA  s. 

 Preliminary analysis suggested that there was no relationship between the generative model of 

 sequence evolution and the accuracy of the alpha inference. Therefore, for simplicity, we did not 

 stratify the results by generative model. This meant we had 272 (1632 / 6) parameter 

 combinations of interest, with each parameter combination having 180 (30 MSAs for each of the 

 6 different generative models) test MSAs available to evaluate performance. For each of the 272 

 parameter combinations we calculated the mean alpha value inferred by NNalphafind, and also 

 by ML+BIC. Given the range of true alpha values spanned several orders of magnitude, to 

 enable a simple comparison we calculated the ratio of the mean inferred alpha values and the 

 true alpha values. A ratio of 1 would therefore correspond to perfect inference (on average), 

 while scores above or below 1 would correspond respectively to an overestimation or 

 underestimation of the true alpha. The performance of the two methods at estimating the true 

 value of alpha in the generative model are summarised in heatmap form in Figure 4. The colour 

 scheme of the heatmap distinguishes between good inference (white), underestimation (grey), 

 and overestimation (red). In general, the lighter the shading the better the inference of alpha. 

 Figure 4 indicates that NNalphafind generally performs better than ML+BIC at estimating the 

 true alpha value used to generate the data. NNalphafind was able to accurately infer the true 

 alpha, particularly when alpha was less than 1, indicating strong rate heterogeneity. Conversely, 

 ML+BIC performs particularly poorly for low alpha values (< 0.3) and performance in this range 

 is not strongly improved with increasing sequence length. Interestingly, the performance of 

 NNalphafind does clearly improve as sequence length increases, in contrast to the performance 

 of NNmodelfind. This is likely due to the fact that the input size of NNalphafind is larger, and the 

 network was trained on 10kbp alignments, as opposed to 1kbp alignments for NNmodelfind. As 

 such NNalphafind has the capacity to utilise the additional information in the longer  test  MSAs. 

 Generalisation  of NNalphafind 

 As with NNmodelfind, the results indicate that NNalphafind also  generalises  well to sequence 

 lengths that it was not trained on. NNalphafind was trained on 10kbp alignments, and although 
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 its performance does deteriorate somewhat for 1kbp alignments, and then further for 100bp 

 alignment, this is to be expected considering the comparative lack of information contained 

 within these shorter alignments. The same effect is evident in the performance of ML+BIC and, 

 regardless of sequence length, NNalphafind is always more accurate for low values of alpha, 

 and similarly accurate to ML+BIC for higher alphas. Figure 4 does not indicate any parameter 

 combinations where NNalphafind is clearly inferior to ML+BIC. 

 Figure 4: Ratio of mean inferred alpha value and true alpha value, stratified by inference method 
 (ML+BIC or NNalphafind), number of taxa (8, 16, 64, and 128), sequence length (100bp, 1kbp, 
 10kbp, and 100kbp), and true alpha value (17 levels ranging from 0.001 (very strong 
 heterogeneity) up to 10 (very weak heterogeneity)). Values close to 1 indicate accurate 
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 inference. Colour scale distinguishes between overestimation and underestimation of alpha: 
 Dark grey (extreme underestimation) to white (accurate inference) to dark red (extreme 
 overestimation). 

 NNalphafind also  generalised  well to higher numbers  of taxa, although perhaps not as well as 

 NNmodelfind. NNmodelfind saw no drop in performance when tested on 256-taxon and 

 1024-taxon alignments, whereas the accuracy of NNalphafind’s estimates was increasingly 

 compromised with higher taxa. That said, even at high taxa levels NNalphafind outperformed 

 ML+BIC for small alpha values, and was similarly accurate elsewhere. 

 Influence of Model Selection on Phylogenetic Inference 

 The primary goal of phylogenetic inference is to reconstruct accurate trees. In order to compare 

 the performance of ModelRevelator to ML+BIC, we reconstructed trees using the models 

 recommended by the two methods. When reconstructing trees using the output of 

 ModelRevelator, we fixed the alpha parameter (when rate heterogeneity was recommended) to 

 the value estimated by NNalphafind, rather than allowing it to be optimised. For each MSA, we 

 then compared the trees inferred via ModelRevelator and ML+BIC to the tree used to simulate 

 the alignment. For this, we calculated the normalised Robinson-Foulds distance  (Robinson and 

 Foulds 1981)  pairwise between the three trees. Figure 5 shows that when comparing the 

 Robinson-Foulds distances of true trees vs reconstructed trees, we observed similar 

 distributions for both methods. Furthermore, Figure 5 also shows that the reconstructed trees 

 are typically much closer to each other than they are to the simulation tree. This effect is most 

 obvious for short sequences, with the difference diminishing as sequence length increases. 

 Thus, reconstructed trees, irrespective of the reconstruction method, appear more in 

 concordance with each other than they are with the generative trees that were used to simulate 

 the alignment, pointing to the same type of error being made by both model estimation methods. 

 Figure 5 also clearly indicates that sequence length is a strong indicator of the accuracy of tree 

 reconstruction, as one would expect. Interestingly, in contrast to the earlier finding that the 

 performance of NNmodelfind did not improve with increasing sequence length, the accuracy of 

 the resulting trees did improve. This observation might suggest that, for these data at least, the 
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 additional information provided by increasing sequence length is a more critical factor for 

 accurate phylogenetic reconstruction than the chosen model. 

 Figure 5: Estimating concordance in tree reconstruction by calculating the Robinson-Foulds 
 distances  of trees reconstructed using the model recommended  by ModelRevelator or ML+BIC 
 and comparing these results to the trees used to simulate the MSAs. Results for MSAs of length 
 100bp, 1kbp and 10kbp are shown in the top, middle and bottom panel, respectively. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.22.473813doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473813
http://creativecommons.org/licenses/by-nd/4.0/


 Generalisation  to unseen empirical alignments 

 In addition to  generalisation  towards large numbers  of taxa in an MSA, we also wanted to test 

 generalisation  of ModelRevelator to other empirical datasets. This is of obvious practical 

 relevance, but is also important as  generalisation  of neural networks to potentially differently 

 distributed test datasets is a topic of constant discussion  (Ganin and Lempitsky 2015; Sagawa 

 et al. 2019)  . We used 6,453 MSAs from the original PANDIT dataset  (Whelan et al. 2006)  to 

 perform parameter estimation and tree reconstruction by ML under a GTR+G model, with 

 IQ-Tree. Supplementary Figures 7 to 9 show the distributions of the edge length, substitution 

 rate, and base frequency parameters for both the Lanfear and PANDIT datasets. The 

 parameters are clearly differently distributed between the two datasets, most notably in regard 

 to the edge lengths. 

 For each alignment, using the inferred tree and model parameters (including the shape 

 parameter, alpha), we then used Seq-Gen to simulate 10 MSAs (with GTR+G as the generative 

 model), creating 64,530 simulated MSAs in total. On these simulated MSAs we performed 

 model estimation using both ML+BIC and ModelRevelator. Figure 6 shows a concordance 

 matrix for the results of model selection with the two methods. Overall, ML+BIC inferred the 

 correct model of GTR+G in 69% of alignments, compared to just 61% for ModelRevelator. To 

 investigate these results in more depth, we compare the two methods on three measures: (1) 

 the binary determination of whether a rate heterogeneous model should be employed; (2) the 

 decision of which of the six models of sequence evolution should be adopted; and (3) the 

 resulting topological accuracy of trees inferred. 

 With regard to the recommendation to include a rate heterogeneous component in the model, 

 ML+BIC has performed better than ModelRevelator on these alignments. ML+BIC correctly 

 recommended rate heterogeneity in approximately 97% of alignments, compared to 

 approximately 79% for ModelRevelator. This means ModelRevelator is more likely than ML+BIC 

 to make a Type II error, that is to fail to detect the true presence of rate heterogeneity in the 

 data. It is worth considering here that rate heterogeneity is modelled very efficiently by the  Γ 

 distribution, at a cost of only one parameter. This means the penalty in the BIC calculation is 

 quite small, but it gives increased flexibility to the model to fit more of the variability in the data 
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 (whether that variability be phylogenetic signal or stochastic noise). The resulting increase in 

 likelihood is likely to dwarf the small penalty and result in an improved BIC score. We expect 

 that if we generated a complementary cohort of alignments without the rate heterogeneity 

 component, compared to ModelRevelator ML+BIC would have made more Type I errors, that is, 

 falsely detecting the presence of rate heterogeneity in the data. We chose not to do this 

 however, primarily because it is commonly recognised that homogeneous models are not 

 expected to provide a good fit to empirical alignments. One can also envisage that the signal for 

 rate heterogeneity would not have been strong in many alignments, due to the short sequence 

 lengths in the PANDIT data, and possible high alpha values in some datasets (corresponding to 

 weak rate heterogeneity). 
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 Figure 6: Concordance matrix of ModelRevelator and ML+BIC estimates for MSAs simulated 
 under PANDIT trees and parameters. The generative model for all MSAs was GTR+G. Column 
 and row sums indicate proportion of alignments inferred for each model by ModelRevelator and 
 ML+BIC respectively. 

 With respect to the recovered model of sequence evolution (ignoring whether or not rate 

 heterogeneity was recommended), ModelRevelator recovers the correct model of GTR for 

 75.49% of alignments, whereas ML+BIC recovers the correct model for 69.74% of alignments. 
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 However, the intersection of these groups, where both methods identified GTR, amounts to only 

 54.67% of the alignments. This means that the correct generative model was solely identified by 

 ModelRevelator in 20.85% of alignments, and solely identified by ML+BIC in 15.08% of 

 alignments. Interestingly, the two methods clearly diverge on the type of error they make when 

 the alternate method is correct. When NNmodelfind is solely correct, ML+BIC predominantly 

 selects K2P or HKY, and to a lesser extent TN93. These are all models which contain differential 

 pairwise substitution rates between nucleotides. Conversely, when ML+BIC is solely correct 

 ModelRevelator predominantly selects F81 or JC, models that assume the same pairwise 

 substitution rates between all nucleotides. 

 With respect to topological inference, we again calculated the normalised Robinson-Foulds 

 distances  between the simulation tree,  SIM  , and  the trees inferred under the models selected by  𝑇 

 ModelRevelator and ML+BIC,  NN  and  BIC  respectively.  As before, where ModelRevelator  𝑇  𝑇 

 recommended the inclusion of a rate heterogeneous model, the estimated alpha parameter was 

 fixed during the inference, so that only other model parameters and edge lengths were 

 optimised  . In order to more clearly visualise any  difference between the methods, we omitted 

 the alignments for which both methods resulted in the same topology. This left 22,990 (35.6%) 

 alignments for which the two methods returned different trees. Figure 7 displays the densities of 

 normalised Robinson-Foulds distances for these alignments. The densities show that the results 

 are similar between the two methods, although a marginal advantage to using ModelRevelator 

 over ML+BIC is observed for lengths greater than 1kbp. Given the fact that the PANDIT 

 datasets were dissimilar to the Lanfear training data (in terms of distribution of generating 

 parameters), this is a very encouraging sign that ModelRevelator may perform well on new 

 empirical alignments generally. 
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 Figure 7: Robinson-Foulds distances to the simulation tree for the PANDIT-based simulations. 

 Only MSAs for which use of ModelRevelator and ML+BIC led to discordant tree reconstructions 

 were included. MSAs were binned into three groups according to sequence length. MSAs 

 shorter than 100bp were not included. 
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 Time measurements for ModelRevelator vs ML+BIC: 

 Given a fixed input size, the computational expense of inference using a trained neural network 

 is only dependent on the size of the network (number of parameters and operations). 

 Consequently, the time required for performing inference with NNmodelfind and NNalphafind is 

 independent of alignment size. Considering ModelRevelator in its entirety however, the same 

 cannot be said. Prior to carrying out inference with the networks, the MSA needs to be 

 preprocessed in order to convert it into the correct format for input. As described in the methods 

 section, this entails calculating summary statistics for randomly sampled taxon pairs, and the 

 computation cost of this step grows with sequence length. By comparison, computation time for 

 ML+BIC theoretically grows linearly with sequence length, and exponentially with number of 

 taxa in the alignment. In Figure 8, we compare the computation time for our method (MSA 

 preprocessing + NNmodelfind inference + NNalphafind inference) to that of the ML+BIC 

 method. 

 Figure 8:  Mean computation time for ModelRevelator (MR) (MSA preprocessing + NNmodelfind 
 + NNalphafind) vs ML+BIC (BIC) (full model estimation, including rate parameter estimation). 

 We observe that for small MSAs (100bp to 1kbp and 8 to 16 taxa), ML+BIC is typically faster 

 than ModelRevelator, but the difference is somewhat negligible. For large alignments (100kbp 

 and 128 taxa) ModelRevelator is approximately 14 times faster than ML+BIC. 
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 Discussion 

 The neural network-based ModelRevelator appears to perform comparably to the 

 well-established approach of using ML inference and an information criterion (in this case BIC) 

 to discriminate between models. Phylogenetic estimation was found to marginally improve using 

 the neural networks compared to ML+BIC, with the additional benefit of significant potential 

 savings in computation time, depending on the size of the alignment. 

 Encouragingly, both neural networks which underpin ModelRevelator were found to generalise 

 well when tested on alignments that differed to those on which they were trained. No 

 appreciable deterioration in performance was observed when performing estimation on longer 

 sequences, or with larger numbers of taxa. Additionally, our method outperformed ML+BIC (in 

 terms of accuracy of phylogenetic reconstruction) when tested on the PANDIT alignments, a set 

 of empirical alignments that the networks had not seen during training. This finding is of 

 particular interest, as it is an indication that ModelRevelator can be used with confidence by the 

 community more broadly. 

 One area in which we envisage a particular benefit of our approach is in conjunction with 

 partition models. Large alignments are often partitioned by gene, and/or codon position, into 

 hundreds or even thousands of independent blocks. PartitionFinder  (Lanfear et al. 2012)  relies 

 on information criteria to merge blocks that can be effectively modelled together, and selects 

 models of sequence evolution to be applied to each block. Selecting a model on a large number 

 of blocks can be accomplished efficiently by NNmodelfind running on a GPU, but ML+BIC would 

 require parallelisation on available CPU cores. Depending on the hardware available, it is likely 

 that the ML+BIC would be significantly slower for large projects. 

 Before deciding on the final architecture for NNmodelfind and NNalphafind, we experimented 

 widely with a range of architectures. For NNmodelfind we tried conventional multi-layer 

 perceptrons and convolutional neural networks as architectures, before settling on the final 

 ResNet-18 architecture  (He et al. 2016)  . For NNalphafind, we tried LSTMs with or without 

 convolution layers for encoding, or with or without the attention layer. We found that both the 

 convolution encoding layers and the attention layer were crucial for achieving reasonable 
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 estimates for alpha. We also explored using the ResNet-18 to estimate alpha but the results 

 were not satisfactory. Another aspect which lent itself to experimentation was how to represent 

 MSAs of varying size and length so that they could be input to the networks. We restricted 

 ourselves to a fixed input size for both networks, but experimented with different input sizes, as 

 well as different ways of transforming variably-sized MSAs into a fixed size input. An obvious 

 drawback of the fixed size input is that it is not always possible for the network to utilise all the 

 information available in large alignments. A promising avenue to address this might be networks 

 that accept graph-based representations of MSAs as their input, as explored in  (Drucks 2021)  . 

 The only other tool currently employing a machine learning approach for model estimation is 

 ModelTeller, which uses random forests for identifying the correct model of sequence evolution 

 (Abadi et al. 2020)  . However, ModelTeller and our approach are sufficiently different in aim and 

 methodology to make direct comparison meaningless. While our networks are chiefly concerned 

 with estimating the model of sequence evolution and alpha parameter for topology inference, 

 ModelTeller focuses on finding the model that yields the most accurate edge lengths. Tree 

 estimation is a required step in the ModelTeller procedure which is computationally expensive, 

 meaning it is much slower than our neural network approach by definition. However, it also 

 produces topology and branch length estimates, whereas our method only yields a model and 

 alpha estimate. 

 Notwithstanding our extensive explorations, we recognise the available options for potential 

 neural network architectures is vast. It is therefore likely that neural net architectures exist which 

 might yield better performance than those we present here. This fact, combined with the 

 recognised shortcomings of information theoretic approaches, and the absence of directly 

 comparable tools currently available, suggests that machine learning approaches to model 

 selection represent fertile ground for ongoing investigation and development. 

 Methods: 

 Empirical Lanfear dataset: 

 For testing and evaluation of the neural networks and ML+BIC on empirical data, we used a 

 database of MSAs,  collected from the literature  by  Rob Lanfear, and available at 
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 https://github.com/roblanf/cladistic-data  . This collection consists of protein and nucleotide 

 MSAs, from which we selected alignments consisting of DNA alignments of multiple genes. 

 These alignments originated from 31 publications, a full list of which can be found in the 

 supplementary material. We split the 31 multi-gene alignments by gene, resulting in 1,843 

 individual loci alignments, ranging from 3 to 4,836 taxa. Table 1 shows the distribution of trees 

 with different taxa, trees with 3 to 100 and 101 to 200 taxa being the most frequent trees in the 

 dataset. The length of the individual alignments range from 12bp to 11,049bp with a median 

 length of 261bp (see Table 2). 

 # of taxa  # of trees in bin 

 3 - 100  877 

 101 - 200  910 

 201 - 300  31 

 301 - 400  2 

 401 - 500  4 

 501 - 600  8 

 601 - 700  1 

 701 - 1000  1 

 1001 - 2000  4 

 2001 - 5000  5 

 Table 1: Distribution of tree sizes in the empirical Lanfear dataset. Histogram with 200 bins. 
 Column ‘# of taxa’ indicates the range of a tree size bin, column ‘# of trees in bin’ indicates the 
 number of trees in each bin. 

 # of bp  # of MSAs 

 12-100  50 

 101-200  483 

 201-300  548 

 301-400  231 

 401-500  166 
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 501-600  91 

 601-700  75 

 701-1000  100 

 1001-2000  64 

 2001-4000  16 

 4001-12000  3 

 Table 2: Distribution of MSA length of original Lanfear MSAs. Bins for histogram = 200, Median 
 length: 261bp, Minimum length = 12bp, Maximum length = 11,049bp. Column ‘# of bp indicates 
 the range of MSA length bin, column ‘# of MSAs in bin’ indicates the number of MSAs in each 
 bin. 

 We used IQ-Tree to carry out ML inference on the 1,843 loci alignments under a GTR model of 

 evolution. From the results of these analyses we constructed distributions for the five relative 

 substitution rate parameters (G<->T is fixed to a value of 1, with the remaining rates expressed 

 relatively), the empirical base frequency parameters, and the internal and external edge length 

 parameters. We fit splines to these distributions  using the AstroML Python package  (VanderPlas 

 et al. 2012)  , as shown in Supplementary Figures 7 - 9. 

 Simulation of training and test datasets: 

 We simulated all MSAs used for training and testing the neural networks using  Seq-Gen 

 (Rambaut and Grassly 1997)  . We generated alignments using six models of sequence evolution 

 with  Γ  -distributed rate heterogeneity across sites  (Rhet): JC+G, K2P+G, F81+G, HKY+G, 

 TN93+G, and GTR+G; and their rate-homogeneous (Rhom) versions: JC, K2P, F81, HKY, TN93 

 and GTR. We ensured that an equal number of training alignments were simulated for each of 

 the 12 models of sequence evolution considered. To avoid overfitting, we performed early 

 stopping when we were satisfied with the convergence of NNmodelfind as well as NNalphafind. 

 In total 242,688 MSAs were used to train the networks. 

 We simulated trees by generating a random tree topology with 8, 16, 64, or 128 taxa. We then 

 added internal and external edge lengths drawn randomly from the edge length distributions 
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 constructed from the Lanfear data. Depending on which model of sequence evolution was 

 being used to generate the MSA, we drew substitution rate and base frequency parameters as 

 required, from the appropriate Lanfear-based parameter distributions.  For NNmodelfind, all 

 training MSAs were of length 1kbp. For NNalphafind, all training MSAs were of length 10kbp. 

 For simulating the 6 Rhet models (JC+G, K2P+G, K81+G, HKY+G, TN93+G and GTR+G), we 

 used a continuous  Γ  rate heterogeneity model of  Seq-Gen  with 17 distinct alpha parameter 

 values (0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10). We generated an 

 equal number of MSAs for each of those individual alpha parameters. 

 To test NNmodelfind, NNalphafind, as well as ML approaches, a common test dataset was 

 created. This test dataset consisted of 8, 16, 64 and 128 taxa MSAs, and sequence lengths of 

 100bp, 1kbp, 10kbp and 100kbp. For the 1kbp test dataset, we also generated MSAs with 256 

 and 1,024 taxa. For all combinations of taxa and sequence lengths, 512 MSAs were generated 

 for each Rhom model. For Rhet models, we generated 2,048 MSAs per Rhet model and 

 sequence length combination. These 2,048 MSAs were then divided among the 4 taxa levels 

 and then randomly distributed among the 17 distinct alpha parameter values, yielding, on 

 average, 30 MSAs per taxa level and distinct alpha parameter combination. This resulted in a 

 total of 98,304 MSAs in our test dataset. 

 Model selection, alpha estimation and tree reconstruction by ML: 

 Two different analyses have been performed using the classical ML approach, namely model 

 selection and parameter estimation. 

 For model selection, we ran ModelFinder as implemented in IQ-TREE, but restricted the pool of 

 available models to the 12 models on which the networks were trained: JC, K2P, F81, HKY, 

 TN93, GTR, JC+G, K2P+G, F81+G, HKY+G, TN93+G, and GTR+G. As decision criterion we 

 used BIC as is default in IQ-Tree. To explicitly estimate the alpha parameter, we ran 

 ModelFinder for each alignment, but restricted the pool to include only the heterogeneous 

 models. We then took the reported alpha value from the best heterogeneous model as our 

 estimate of alpha. 
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 According to the IQ-TREE documentation, IQ-TREE applies a lower limit of 0.02 for the shape 

 parameter alpha. To allow the estimation of lower alpha values we reset this limit to 0.0001 

 using the command line flag -amin 0.0001. For some alignments there were errors caused by 

 numerical issues especially for very low alpha values. We resolved these by re-running with the 

 -safe option as suggested by the error message of IQ-TREE. 

 In order to reconstruct trees for comparison, we ran IQ-Tree independently with the model of 

 sequence evolution chosen by ModelRevelator and ML+BIC respectively. If the model chosen 

 by ModelRevelator included heterogeneous rates then the alpha parameter was fixed to the 

 recommended value. If the model chosen by ML+BIC included heterogeneous rates then the 

 alpha parameter was  optimised  in the tree reconstruction  process. 

 Data preprocessing for NN: 

 To be able to use the variably-sized simulated MSAs as input for training and testing of 

 NNmodelfind and NNalphafind, we converted each alignment into a format of fixed-sized. 

 For NNmodelfind, we used summary statistics of sequence pairs of an MSA. To maximise the 

 information in the input, we decided to use 10,000 randomly drawn sequence pairs, ensuring 

 that the same sequence was not chosen for both sequences of a summary statistic to be 

 calculated. These 10,000 summary statistics consisted of 26 features each (substitution counts: 

 A-C, A-G, A-T, C-G, C-T, and G-T, in both directions = 12 features; invariant site counts: A-A, 

 C-C, G-G, T-T = 4 features; 4 nucleotide counts per sequence = 8 features; total transition count 

 and total transversion count = 2 features). This yields a total feature count for each MSA of 

 10,000 x 26. All of these summary statistics are  normalised  by the sequence length of the MSA. 

 For more efficient processing of the convolution layers of the ResNet-18, we reshaped these 

 input features into an input tensor of shape 40 x 250 x 26. 

 For NNalphafind, we generated  normalised  base composition profiles of 10,000 sites and the 4 

 possible bases, yielding an input size of 10,000 x 4. For both networks, for all MSAs which were 

 smaller or larger than 10,000 positions, we randomly over or undersampled the MSA to achieve 

 the required dimension for the input. 
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 NNmodelfind architecture 

 Figure 9 shows the architecture of NNmodelfind. It is based on a ResNet-18 architecture  (He et 

 al. 2015a)  , but with an adapted input strategy. The input, as described above, has dimensions 

 40 x 250 x 26. We replaced the initial pooling layer of a  ResNet-18  with 4 encoding 2D 

 convolution layers, with 2x1 kernels and 32, 64, 96 and 96 channels. The output of the last 2D 

 encoding layer is then passed to 4 standard  ResNet-18  blocks with 3x3 convolutions and 96, 

 192, 384 and 768 channels. The output layer has 6 categories, one for each generative model 

 (JC, K2P, K81, HKY, TN93, GTR). The loss function used was a categorical cross entropy loss 

 function. We used Batch Normalisation  (Ioffe and Szegedy 2015)  , L2 Regularisation  (Cortes et 

 al. 2012)  to improve ResNet-18 training. Additional parameters used were a learning rate of 

 1x10^-5, Adam optimiser  (Kingma and Ba 2014)  for gradient descent, He Normal initialisation 

 (He et al. 2015b)  for the weights and zeros initialisation for biases. 
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 Figure 9: Schematic of NNmodelfind. The architecture follows a ResNet-18, with a modified 

 input strategy. 

 NNalphafind architecture 

 As shown in figure 10, NNalphafind is a combination of 1D convolutions for feature encoding 

 and a bidirectional LSTM with an  Attention  layer  (Raffel and Ellis 2015)  . The input consists of 

 profiles of 10,000 positions by 4 base frequencies. The 3 layers of 1D convolutions have 256, 

 512 and 768 channels, followed by a bidirectional LSTM with 1,200 steps, a 1D pooling layer 

 with a pooling window of 4, and an  Attention  layer  with a step dimension of 2,498. NNalphafind 

 has 2 outputs, a categorical output and a scalar output. The categorical output estimates 

 whether an MSA should be modelled with or without rate heterogeneity. The loss function is also 

 a categorical cross entropy loss function. The scalar output estimates the alpha parameter, 

 achieved by a mean absolute percentage error function. 

 Weights of NNalphafind were initialised using Glorot Uniform initialisation  (Glorot and Bengio 

 2010)  and biases were initialised with zeros. 
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 Figure 10: Schematic of NNalphafind. 

 Training NNmodelfind and NNalphafind: 

 We trained NNmodelfind, as well as NNalphafind, with the training dataset described above, 

 using a batch size of 40 and a learning rate of 1x10^-5 for both neural networks. For 

 NNmodelfind, we required 76 epochs for convergence and for NNalphafind, we required 341 

 epochs for convergence. 
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 We used Tensorflow 1.15  (Abadi et al. 2016)  as a framework for training and testing of our 

 neural networks. As GPUs for training, we used Nvidia Tesla V100 with 32Gb of memory, or 

 Nvidia RTX2080Ti with 11Gb of memory. 

 Testing NNmodelfind and NNalphafind: 

 For testing the neural networks, we used the datasets described earlier and the trained models 

 for NNmodelfind and NNalphafind. Testing was either performed using the Keras predict() 

 function or ONNXRuntime 1.9.0 (https://github.com/microsoft/onnxruntime). ONNXRuntime is a 

 dedicated neural network execution library for the open ONNX neural network exchange format 

 (https://onnx.ai/). In order to use ONNXRuntime, we first exported the Keras/Tensorflow neural 

 network graphs to the ONNX format using the tools keras2onnx and tf2onnx of the Python 

 package onnx 1.9.0. This removes all parameters only required for training from the graph and 

 thus decreases its size. 

 Time measurements for ModelRevelator and ML: 

 For the neural networks, we performed all measurements using ONNXRuntime 1.9.0 

 (https://github.com/microsoft/onnxruntime) for CPUs, thus no GPU was used for inference. We 

 allowed ONNXRuntime to dynamically allocate CPU cores. In one inference step, it would briefly 

 use up to a maximum of 16 cores for NNmodelfind and 7 for NNalphafind. All benchmarks were 

 run on the same machine equipped with two 32 core AMD Epyc 7551 CPUs on the operating 

 system OpenSuSE Linux 15.0. 

 All IQ-Tree analyses were run on the same hardware as the neural network runtime 

 measurements, using only one CPU core each. All runtime measurements for ModelRevelator 

 as well as ML+BIC were performed using a 10% representative subset of alignments sampled 

 from the test dataset. The reported runtimes are the averages of the measured runtimes. 

 Data availability 

 Python source code for generating training, validation and test datasets and the Tensorflow 

 implementations of NNmodelfind and NNalphafind of ModelRevelator are available from 

 https://github.com/cibiv/ModelRevelator/  . NNmodelfind and NNalphafind of Model  Revelator  are 
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 also available in ONNX format in the same repository. Due to the amount of data, the MSAs in 

 phylip format and the corresponding tree files from the common test dataset are available upon 

 request from the authors. 
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