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Abstract 

Background: Recent population studies are ever growing in number of samples to 
investigate the diversity of a population or species. These studies reveal new polymor-
phism that lead to important insights into the mechanisms of evolution, but are also 
important for the interpretation of these variations. Nevertheless, while the full catalog 
of variations across entire species remains unknown, we can predict which regions 
harbor additional not yet detected variations and investigate their properties, thereby 
enhancing the analysis for potentially missed variants.

Results: To achieve this we developed SVhound (https:// github. com/ lfpau lin/ SVhou 
nd), which based on a population level SVs dataset can predict regions that harbor 
unseen SV alleles. We tested SVhound using subsets of the 1000 genomes project 
data and showed that its correlation (average correlation of 2800 tests r = 0.7136) is 
high to the full data set. Next, we utilized SVhound to investigate potentially missed or 
understudied regions across 1KGP and CCDG. Lastly we also apply SVhound on a small 
and novel SV call set for rhesus macaque (Macaca mulatta) and discuss the impact and 
choice of parameters for SVhound.

Conclusions: SVhound is a unique method to identify potential regions that harbor 
hidden diversity in model and non model organisms and can also be potentially used 
to ensure high quality of SV call sets.
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Background
The advent of next generation sequencing has enabled us to characterize genomic vari-
ations between and within species on an unprecedented scale [1, 2]. This has produced 
various novel insights based on sequence complexity and previously underestimated 
genomic variability between individuals within the same species [3]. Since then, reports 
have described an ever-increasing number of novel genomic variations and their associ-
ated allele frequency estimates [3–8]. These findings are important for many fields in 
research and clinical applications, ultimately providing a better understanding of pheno-
type to genotype relationships [1, 9, 10].
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Over the past years, genomic studies emerged targeting even higher sample numbers 
to obtain deeper insights into allele frequencies and diversity (genomic variation) among 
humans or other species [3–5, 11]. One of the spearheading projects in the past years 
was the 1000 Genomes Project (1KGP), which cataloged single nucleotide variations 
(SNV) and structural variations (SV) among 2504 individuals from different ethnicities 
around the world [3]. While it is clear that the 1KGP catalog is incomplete, it is still one 
of the most valuable datasets and it is widely used as control data [3]. More recent initia-
tives such as gnomadSV investigated the presence of SVs across 14,891 human genomes 
and thus deepened our knowledge of human genome diversity (discovering ~ 445 k SVs) 
and allele frequencies that are important for multiple aspects [5], such as ranking and 
annotating variations or identifying population structure. However, even larger studies 
are underway (e.g. Topmed [12], CCDG [11]) that will identify many new SNVs/SVs in 
presumably healthy individuals and lead to even more robust ancestry specific allele fre-
quencies and also to a better understanding of variability with respect to diseases [13].

The detection of genomic variations is often promoted by technological and methodo-
logical advances in computational methods [9, 14]. As an example, microarrays enabled 
the first identification of so-called large copy number variations (CNV), in the range 
of kbp to Mbp, at scale [15]. Subsequently, short read sequencing technologies (whole 
exome or whole genome sequencing) detected these large alterations and SNVs simul-
taneously. Many developments in computational methods led to a better characteriza-
tion of large events (e.g. CNV of multiple kbp) and identification of even more complex 
structural variations [9]. The continuous advance of better benchmark datasets (e.g. 
GIAB [16]) and software will lead to many newly identified variations in currently hard 
to assess regions (e.g. dark regions) of the genome [17].

Despite these developments and the increased number of studies sequencing hundreds 
to thousands of humans, we still expect an unknown number of undetected genomic 
variations including rare or even common alleles. This is especially true for ethnicities 
that have not yet been extensively sequenced (e.g. non-European) [7]. Thus, the ques-
tions arise: which genomic regions carry novel yet undetected variations in our enlarged 
datasets? Can we predict such genomic regions based on existing sequencing data, and 
if so where are these regions located in the genome and what else can we learn about the 
mechanisms generating SVs?

To address these questions, we utilized large genomic SV datasets from the 1KGP [3] 
and CCDG [4] cohorts and applied a population genetic approach that computes the 
likelihood to observe novel genomic variations, if we had sequenced more individuals. 
To this end we developed SVhound, which scans the genome for regions of hidden diver-
sity. Thus, by continuing sequencing of a certain population one can expect to find new 
alleles in this population which we refer to clairvoyant SV (clSV). This is to better distin-
guish clSV from novel or additional SV that are often reported by e.g. long read sequenc-
ing of the same sample set. In the following we demonstrate the predictive power of 
SVhound based on the analysis of the 1KGP dataset. Next, we applied SVhound to the 
CCDG cohort composed of a collection of 19,652 human samples [4]. Finally, SVhound 
is applied to uncover regions of undetected genomic variability in genomes from 150 
rhesus macaques (Macaca mulatta), an important model species for human diseases 
and evolutionary studies. Currently, little is known about SVs in rhesus macaques [18, 
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19]. SVhound introduces a novel prediction framework to identify genomic regions that 
are lacking genotypes from current large-scale sequencing and studies the properties of 
these regions and their potential role. Finally, we provide an easy to use R package freely 
available at https:// github. com/ lfpau lin/ SVhou nd.

Results
Statistical identification of highly variable genomic regions in the human population

Here we present SVhound, a tool to predict potential regions where additional Struc-
tural Variation (SV, defined as genomic variation greater than 50 bp) can be expected if 
more genomes were sequenced.

In short, SVhound partitions a genome into non-overlapping windows. For each win-
dow, SVhound counts the number of different SV-alleles that occur in a sample of n 
genomes (see “Methods”). Based on the number of distinct SV-alleles, SVhound predicts 
regions that can potentially harbor new structural variants (clairvoyant SV, clSV) by esti-
mating the probability of observing a new SV-allele (see “Methods”). Note these are not 
SV that are detected within the same sample set by deeper coverage or utilization of long 
reads, but SV that belong to not yet sequenced samples. Thus, clairvoyant SVs (clSVs) 
are defined as previously undetected SV of unknown genotype. SVhound assigns prob-
abilities to each region to find a clSV. Thus, regions with a high probability will produce 
more SV if more samples are sequenced.

Figure 1A exemplifies this for three windows and a sample of n = 100 genomes. In win-
dows w1, w2, w3, we detected k = 3, 5, 2 SV-alleles, leading to diversity parameter esti-
mates θ(w1) = 0.430, θ(w2) = 0.948, θ(w3) = 0.204 and the probabilities to find a clSV 
in the respective windows, if an additional genome or sequence from the respective win-
dow is sequenced, equal pnew(w1) = 0.00430, pnew(w2) = 0.009390, pnew(w3) = 0.00205.

To investigate the power of SVhound to predict clSVs and to study the influences of 
the window-length and sample size, we randomly sub-sampled 50 (2.00%), 100 (4.00%), 
500 (19.97%) and 1000 (39.34%) human genomes from the 2504 genomes of the 1KGP 
[20] for a variety of window lengths (5, 10, 50, 100, 200, 500 and 1000 kbp). For each of 
the 28 combinations of window lengths and sample sizes we compared the pnew esti-
mates with the fraction fundetected of SV-alleles that do not occur in the respective sub-
sample, but are present in the full 1KGP data (see “Methods”).

Figures 1B displays the association between pnew and fundetected for sub-samples of size 
n = 100 (Fig. 1B top panel) and n = 1000 genomes (Fig. 1B bottom panel) and window 
lengths of 10kbp and 100kbp, respectively. We observed that the window length had a 
bigger impact on the performance of SVhound by evaluating pnew ; for example the cor-
relation coefficient (r) for 10kbp window is r = 0.3976 and r = 0.1698 for 100 and 1000 
genomes respectively (Fig. 1B top panel), while for 100kbp window the performance of 
SVhound greatly improves with r = 0.8519 for 100 genomes and r = 0.9524 for 1000. We 
also noticed that the sample size only improved the correlation coefficient for window 
lengths of at least 50kbp. The scatterplots of the 28 window-sample size combinations 
are shown in Additional file 1: Fig. S1.

While the above analysis was based on one simulation, we performed 100 simula-
tions for each of the 28 parameter combinations. Additional file  1: Fig. S2 and Addi-
tional file 1: Fig. S3 show the distribution of the correlation coefficients, the coefficients 

https://github.com/lfpaulin/SVhound
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of determination ( r2 ) and the slopes for the 100 simulations and the observations exem-
plified in Fig. 1B are corroborated.

Additional file 6: Table S1.1 shows the average correlation coefficients for the 100 sim-
ulations for each of the 28 window-sample size combinations. If the window length is 
large and the sample size is large then we observe a high correlation between pnew and 
fundetected , with large window lengths we have more data to estimate the model param-
eter and thus the predictions improve. But not only the correlation is high for large win-
dows, also the slope of the regression line approaches one with increasing sample size 
and window length (Additional file 6: Table  S1.2). This indicates that pnew is indeed a 
good predictor of fundetected .

We note that, with increasing window length pnew increases (see also Fig. 1C), which 
can be explained with the infinite allele assumption almost being met and thus the 
probability to find clSVs increases. Contrary, the increase in sample size has the oppo-
site effect (Additional file 1: Fig. S4). With increasing window length the chances also 
increase to find SV-alleles that occur exactly once, high numbers of such singletons will 
increase the diversity parameter, θ , and subsequently pnew (see “Methods”). However, 

Fig. 1 Overview and evaluation of SVhound based on 1000 genomes data set. A Computing the 
probabilities of detecting new SV-alleles in a window. First, the chromosome is divided into non overlapping 
windows. For each window the number of distinct observed SV-alleles is counted and the diversity 
parameter is estimated Eq. 2 (see “Methods”). Finally, the probability of detecting a clairvoyant SV (clSV) 
( pnew ) for each particular window is computed using Eq. 3 (see “Methods”). B Scatterplots showing predictive 
power (correlation) between pnew and the fraction of undetected SV for a 10kbp and 100kbp window and 
two sample sizes 100 genomes (top panels) and 1000 genomes (bottom panels), sub-sampled from the 
1KGP data. The x-axis shows the prediction made by SVhound (probability of new SV-allele, pnew ) and the 
y-axis shows the proportion of undetected SV-alleles in the non-sampled individuals ( fundetected ). Be aware 
that the axis ranges have been adopted to better visualize the results. Note that regardless of sample size, 
SVhound performs better in the 100kbp window when comparing both window lengths. C Distribution of 
the probabilities of detecting a clSV ( pnew ) for different window lengths
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with larger window lengths the resolution and thus the genomic location of the pre-
dicted additional SV-alleles is reduced.

We further investigate what drives the increase in predictiveness with the increase of 
window length. We note that for small window lengths the average number of SV-alleles 
per window was low and thus affects the diversity-parameter estimation. Additional 
file  1: Fig. S1 shows that 100kbp was the smallest window length were an increase in 
sample size improves the correlation ( r2 ) and the slope approaches one. We computed 
the average number of SV-alleles for the 100kbp window using the whole 1KGP dataset 
and found that genome-wide we have on average 10 SV-alleles per window, which we 
use in all following analyses to estimate the appropriate window size to each dataset.

Identification of polymorphic candidate regions across 2504 human genomes 

from the 1000 genome project

We applied SVhound to the 2504 genomes of 1KGP SV calls to identify likely regions 
(loci) with clSV. SVhound automatically calibrated the window length to 100kbp. The 
human genome was then partitioned into 18,397 windows from which we analyze 
the top candidate loci, representing 1% of the windows with the highest probability of 
detecting clSVs ( pnew ≥ 0.34% ). Figure  2A shows the probabilities of detecting a clSV 
for each window. The red dots mark the top 1% (188) windows with the highest pnew 
for clSVs (here thereafter candidate windows). The most noticeable candidate window is 
located on chromosome 15 with pnew = 25.77% of detecting a clSV if one new sample is 
added. The remaining windows with pnew < 0.34% are not considered in the analysis (in 
dark/light gray).

We are particularly interested where in the human genome the 188 candidate win-
dows occur. To achieve this, we overlapped the candidate windows to several annota-
tion databases. First, we investigate whether these candidate windows are identified only 
in intergenic regions or if these windows are actually preferentially located near genes. 
As windows are large enough, each window can overlap with more than one annotated 
element. We found 107 candidate windows that overlap with 204 protein coding genes 
(Additional file  6: Table  S2), 148 candidate windows overlapping non coding genetic 
elements (Additional file  1: Fig. S5) and 24 windows in intergenic regions. Next, to 
understand the biological role of the 204 genes we performed an enrichment analysis 
with PANTHER [21], and found enrichment for biological processes related to: cellular 
detoxification of nitrogen compound, xenobiotic catabolic process, interferon-gamma-
mediated signaling pathway, regulation of immune response and sensory perception of 
smell (Additional file 6: Table S2 and Additional file 6: Table S3). The noticeable candi-
date window that we observed on chromosome 15 contains two olfactory receptor pro-
teins and four olfactory receptor pseudogenes (Fig. 2A).

Next, we investigate whether SVhound is suggesting regions containing repeats that 
are known to show many structural variants [9]. For this we analyzed the overlap of 
the candidate windows with annotated repeat elements from the RepeatMasker track 
[22], simple tandem repeat elements [23] and segmental duplications [24]. First, we 
found that the LINE and LTR repeat families were the most often observed in candi-
date windows, with the L1-LINE repeat [23] being the most abundant, followed by LTR-
ERV1 (Additional file 6: Table S4.1 and Additional file 6: Table S4.2). Next, for the case 
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of simple tandem repeat elements, we found all but one candidate window overlapped 
with at least one of these elements, which coincides with their abundance in the human 
genome. We observed that these ubiquitous elements were not present more abundantly 
within the candidate windows when compared to the rest of the genome (T-test of dif-
ference in means p-value = 0.314, Kolmogorov–Smirnov test p-value = 0.2378, Addi-
tional file 1: Fig. S6). Finally, for the segmental duplications [24] we found 101 candidate 
windows overlap with at least one segmental duplication, from which 88 overlapped 
with multiple ones (Additional file 6: Table S5).

Next, we wondered if SVhound actually only identifies repeats or indeed regions that 
will harbor undetected SV. Low complexity repeats, for example, are often the cause 
of falsely identified SV and thus maybe do not always harbor these clSV. To assess 
this we focused on non repetitive regions such as the high confidence regions defined 
by the Genome in a Bottle Consortium (GIAB, [16, 25]) representing reliable regions 
for structural variation detections using short reads (e.g. outside of segmental duplica-
tions, low mapping quality regions) and thus potential targets for experimental valida-
tion. We found that only 18 out of the 188 candidate windows (9.57%) did not overlap 
with the high confidence regions annotated by the GIAB Consortium [16] (Additional 

Fig. 2 A Genome wide distribution of pnew for the 2504 genomes (100 kbp window) from the 1KGP data 
set. Red dots show the 188 candidate windows ( pnew ≥ 0.34% ) along the 22 human autosomes (hg19), 
gray/black (alternating shades by chromosome) dots display the pnew for the remaining windows. Note the 
window on chromosome 15 with a pnew = 25.77% , contains two olfactory receptor proteins, four olfactory 
receptor pseudogenes, multiple CNVs and an LINE1 insertion. B Distribution of 468 candidate windows 
when decomposing the 1KGP data set into the five super-population: African, AFR; Admixed American, AMR; 
European, EUR; East Asian EAS; South Asian, SAS. The black dots below each bar display the occurrences of 
the candidate windows in each population. Ancestry specific windows, i.e. present in one population are 
blue, ubiquitous windows are red
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file  6: Table  S6). Therefore, SVhound indeed reports loci with biological significance 
rather than enriching for artifacts or regions known to be variable in the genome (e.g. 
intergenic). Finally, we compared the results of SVhound to two different approaches of 
investigating SV in a population: (1) a classic approach of detecting SV hotspots in the 
genome and (2) a comparison to rare alleles (MAF < 1%, see “Methods”).

For the first case, we used the hotspot analysis of Lin and Gokcumen [26], which 
divided the genome in 100 kb windows and then we used the same coordinates to iden-
tify candidate windows with SVhound. We found that 83 windows were considered both 
a hotspot and a candidate window by SVhound (34.6%, Additional file 1: Fig. S7). More-
over, 157 (65.4%) of the candidate windows were not cataloged hotspots, thus showing 
that SVhound detects both hotspots and non-hotspots as candidates for further analysis. 
This result is not surprising, because SVhound computes the probability to find a new 
SV. This probability depends on the number of SVs in the window and the sample size 
(see “Methods”) in a non-linear way. For the second approach, we performed a compari-
son between rare observed SVs (low frequency SV, MAF < 1%) and the candidate win-
dows proposed by SVhound. We found 22,386 SV that fall in the category of having “rare 
alleles”, from which only 967 of such “rare alleles” overlapped with a candidate window. 
These results clearly indicate a difference between the results one can expect from these 
two approaches when compared to SVhound.

Next, we applied SVhound to identify SV confined to particular human ancestries 
defined in the 1000 genomes project (African (AFR), Admixed American (AMR), Euro-
pean (EUR), East Asian (EAS) and South Asian (SAS)). We split the 2504 genomes into 
five so-called “super-populations” (661 AFR, 347 AMR, 503 EUR, 504 EAS, 489 SAS) 
and scanned for candidate windows by repeating the previous analysis for each ancestry. 
Additional file 1: Fig. S8 shows the candidate windows (top 1% with highest pnew ) for 
each of the five studied populations. From the collection of all top 1% candidate win-
dows (total number of distinct windows: 468) we investigated those present in a single 
population (ancestry-specific windows) and thus identified potential regions of high 
polymorphism specific to a particular population; and those that occurred in all popula-
tions (ubiquitous windows) and thus represent regions of high polymorphism in the all 
humankind (Fig. 2B, Additional file 6: Table S7).

We detected 45 (9.62%) ubiquitous windows, whereas 264 (56.41%) windows were 
ancestry-specific, which break down as follows: South Asian, 61; African, 60; European, 
57; East Asian, 53; Admixed American, 33. Finally, the remaining 159 (33.97%) candidate 
windows occurred in two to four populations.

Next, we investigated the role of the genes in the ubiquitous and the ancestry-specific 
windows (Additional file 6: Table S8). For the genes in the ubiquitous windows, we found 
enrichment in biological processes also found in the 1KGP full data set (nitrobenzene 
metabolic process, cellular detoxification of nitrogen compound, xenobiotic catabolic 
process, interferon-gamma-mediated signaling pathway, antigen processing) (Additional 
file 6: Table S9.1). When analyzing the ancestry-specific windows, we only found gene 
enrichment in the South Asian population for 8 biological processes related to keratini-
zation (tissue development, Additional file 6: Table S9.6).

Finally, we analyzed if repeat elements overlap with ubiquitous and ethnic specific 
candidate windows. Here, the L1 (LINE), ERV1 (LTR) and ERVL-MaLR (LTR) repeats 
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were the most abundant among both ubiquitous and ancestry specific candidate win-
dows (Additional file 6: Table S10.1). Next, when analyzing the repeat elements present 
in a single ethnic group, LTR Gypsy-like is an example that overlaps with the ancestry 
specific windows of the African population [27]. Similarly, an ERVL-like (LRT) repeat is 
restricted to ancestry specific windows for European population, the TcMar-Tc2 (DNA 
repeat) was found in ancestry specific windows for the Admixed American population 
and Satellite-telo in the South Asian population (Additional file 6: Table S10.2).

Identification of polymorphic candidate regions across 19,652 human genomes in the USA

To extend our work further, we applied SVhound to detect regions with undetected SVs 
in 19,652 genomes of US residents (CCDG data) that include 8969 European-American, 
8099 Hispanic or Latino-American and 2584 African-American genomes [4]. SVhound 
automatically estimated the optimal window length to be 10kbp. We again considered 
as candidate windows those representing 1% with the highest probability of detecting 
a clSV ( pnew ≥ 0.081% ). Figure 3 shows the distribution of the probabilities to detect a 
clSV when splitting the genomes in 126,185 windows, highlighting in red the 1282 the 
candidate windows.

Next, we used a similar annotation strategy to the 1KGP over the 1282 candidate win-
dows, overlapping them to several databases. We found 381 candidate windows that 
overlapped with 331 protein coding genes (Additional file  6: Table  S11), 396 overlap-
ping non coding genetic elements (Additional file 1: Fig. S9) and 599 windows in inter-
genic regions. Again, we performed an enrichment analysis with PANTHER using the 
331 genes and found gene enrichment for 27 biological processes, all of them related 
to immune response, e.g. phagocytosis, homophilic cell adhesion via plasma membrane 
adhesion molecules, complement activation, B cell receptor signaling pathway, positive 
regulation of B cell activation among others (Additional file 6: Table S12).

Next, we analyzed the repeat elements that lay within the candidate windows (Addi-
tional file  6: Table  S13.1 and Additional file  6: Table  S13.2) and observed an overall 
increase in the number of repeats overlapping with candidate windows. The LINE and 
LTR families were found in 44.2% and 30.66% of the candidate windows, which repre-
sent a decrease of 20.67% for the LINE and 23.6% for the LTR when compared to the 
1KGP data. In addition, the DNA repeats were found in 23.79%% of the candidate win-
dows, while the rest of repeat elements are found in less than 3% of the windows.

Fig. 3 Genome wide analysis of the CCDG data set. Red dots display the top 1% candidate windows (1282) 
along the 22 autosomes of the human genome (hg38)



Page 9 of 20Paulin et al. BMC Bioinformatics           (2023) 24:23  

Next, we analyzed the presence of simple tandem repeats within the candidate win-
dows of the CCDG dataset. Here, we found significant differences in the average num-
ber and the distribution of simple tandem repeats across the 1282 candidate windows 
(T-test p-value < 2.2e−16, Kolmogorov–Smirnov test p-value = 1.453e−08, Additional 
file 1: Fig. S10), result that deviates again from our analysis of 1KGP data. We found that 
the candidate windows from the CCDG dataset overlapped with centromeric and peri-
centromeric regions, which tend to be abundant in highly repetitive sequences [28] and 
repeat elements and were likely inaccessible/filtered from the 1KGP dataset.

Finally, we noticed consecutive clusters of candidate windows (ten or more consecu-
tive windows cataloged as candidates) along some genomic regions (Additional file  6: 
Table S14). We found such clusters of candidate windows in chromosomes 5 (two clus-
ters of size 12), 7 (three cluster sizes 17, 16 and 28), 9 (cluster size 12), 11 (cluster sizes 
12 and 13), 12 (cluster size 12), 14 (cluster sizes 11 and 10), 17 (cluster size 16), and 19 
(cluster size 25). One cluster is located near the telomere (chromosome 5) and seven in 
pericentromeric regions (chromosomes 5, 7, 11, 12) which are well known for having a 
high density of simple repeats, satellite repeats, and repeat elements in general (LINE, 
LTR, etc.) and coincide with the instability of such regions in genome assemblies, which 
are known to be hard to resolve due to their repetitive nature.

Further, five clusters are within coding regions in chromosomes 9, 14, 17 and 19. 
Here, it is prominent the case of a 155kbp region in chromosome 9 that overlaps with 
a novel lncRNA (ENSG00000285784). Next, we found a 169kbp region on chromo-
some 14 that include eight olfactory receptor genes, a 123kbp region on chromosome 14 
which include 4 immunoglobulin genes (IGHA2, IGHE, IGHG4, IGHG2) two miRNA 
(MIR8071-1, MIR8071-2) and a lncRNA (COPDA1), a 185kbp region in chromosome 17 
which include the KAT8 regulatory NSL complex (KANSL1, also observed in the GWAS 
analysis) and a 301 kbp region in chromosome 19 where we found six pregnancy specific 
beta-1-glycoprotein and two lncRNA (PSG8-AS1, ENSG00000282943). Thus, many of 
these clusters of candidate genomic regions are already well known to be highly variable.

We then focused on segmental duplications overlapping candidate windows. Here, 
we observed a slight decrease in the number of candidate windows overlapping with a 
segmental duplication (41.5%) when compared to the 1KGP (53.7%) (Additional file 6: 
Table S15). We identified the candidate windows that overlapped with the GIAB high 
confidence regions that exclude regions where short reads cannot reliably identify SV. 
Overall, 69.4% (890) of candidate windows overlapped with these “high-confidence” 
regions and thus indicate that reliable SV calling can be achieved in such regions [16]. 
(Additional file 6: Table S16).

Finally, we compared the results of the two independent human datasets, (1KGP, 
CCDG) that we analyzed with SVhound to examine the similarities in the prediction. 
As each dataset was analyzed with distinct genome reference, we compared the shared 
genes that overlapped with candidate windows. Surprisingly, we found only 41 genes 
present in candidate windows of both the 1KGP and CCDG data sets, representing 
approx 8.3% of the 495 genes associated with at least one of the candidate windows from 
the 1KGP or CCDG data (Additional file 6: Table S17). This small intersection may be 
related to the fact that the CCDG dataset focuses on the US population while the 1KGP 
dataset comprises 26 different ethnicities [20], coupled with the difference in number of 
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candidate windows (188 in the 1KGP dataset to 1282 in the CCDG dataset, see Addi-
tional file 6: Table S18.1).

Identification of SV and further polymorphic candidate regions across 150 Rhesus 

Macaques

Finally, we applied SVhound to 150 whole genome sequences from the rhesus macaque 
(Macaca mulatta), a widely used primate model of human disease that has not been well 
studied with respect to SV [18, 19]. For this we created a novel catalog of SV for rhe-
sus macaques by comparing 150 genomes to the reference Mmul_8 (see “Methods”, [8]). 
We identified SVs among the genomes of these 150 rhesus macaques that came from 
several US research colonies (see “Methods” for details). The largest proportion of SVs 
were deletions (45.84%) followed by insertions (36.88%), inversions (11.45%) and tandem 
duplications (5.82%) (Additional file 6: Table S19.1 and Additional file 6: Table S19.2). 
This follows roughly the distribution expected from human SV datasets [9]. Interest-
ingly, we found a high number of SVs on chromosome 19 (Additional file 6: Table S19.3). 
Chromosome 19 includes tandem repeats of olfactory receptors, KIR (killer cell immu-
noglobulin-like receptor) loci and other immunology genes and was previously shown to 
have a higher rate of both CNV and SNV polymorphism than other macaque chromo-
somes [18, 29]. Figure 4A shows the minor allele frequency (MAF) spectrum. The MAF 
spectrum for the genome wide SVs follows the same distributions as in other popula-
tions (e.g. human), with the majority of the 102,572 SVs (53.7%) exhibiting low frequency 
(MAF < 0.05). We observe 5946 SV having an MAF > 45%, which might be because the 
reference genome contains an array of low frequency SVs. Interestingly, we noticed a 
profound peak for Alu insertions (Fig. 4B) that highlights Alu activity in this species.

Fig. 4 A Logarithmic scale of allele frequency distribution of the SV called in 150 rhesus macaque genomes 
for all SV types. B length distribution of the insertions (positive) and deletions (negative) called in the 
rhesus macaque genome (truncated at ± 1000 bp, see the full binned table in Additional file 6: Table S19). C 
Genome wide analysis of the rhesus macaque (Macaca mulatta, Mmul_8) data set. In red are shown the 1101 
candidate windows ( pnew ≥ 22.3% ) along the 20 autosomes of the macaque genome, in gray (alternating 
shades by chromosome) are shown the rest of the windows
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We applied SVhound to identify candidate regions that may contain undiscovered 
variation. First, we observed that the rhesus raw data contained a larger number of SVs 
when compared to the human dataset (Additional file 6: Table S18.1), even though the 
number of genomes was an order of magnitude smaller when compared to the 1KGP 
and two orders of magnitude smaller when compared to the CCDG. This time SVhound 
estimated a window length of 27kbp. Here, given the small sample size, the non can-
didate windows presented higher pnew discovery probabilities when compared to the 
two full human datasets and similar to those in the subsamples (e.g. 100 individuales of 
1KPG in Fig. 1B, top panels).

We extracted the top 1% candidate windows from the 75,554 windows (pnew ≥ 22.3% , 
Fig. 4C). Then, we extracted 479 annotated rhesus genes that overlap with a candidate 
window and performed an enrichment analysis with PANTHER (unmapped ID not 
counted, Additional file  6: Table  S20). We did not find any significant enrichment for 
biological processes (Additional file  6: Table  S21) probably also because of the small 
sample size.

Utilization of SVhound for quality control (QC) of population studies

Given SVhounds ability to automatically adjust and determine regions of clSV, we next 
investigated if it can also be leveraged to QC population SV data sets. By utilizing the 
SV-density coupled with the number of different SV-alleles, k , one can assess the quality 
of a given dataset. As an example, we compare a subset of 150 genomes from the 1KGP 
and the rhesus dataset (also 150 genomes). Even when both datasets have the same sam-
ple size, the window length selected for rhesus is 27kbp, while for the 1KGP dataset is 
319kbp (Additional file 6: Table S18.2).

First, we noticed that the distribution of the pnew values is similar with an average 
pnew = 1.85% for the 1KGP and pnew = 2% for the rhesus dataset (median pnew = 0.9% , 
pnew = 0.73% , and max pnew = 94.7% and pnew = 97.3% respectively) which show 
consistency on the pnew values, regardless of the dataset, when the desired SV-density 
remains the same.

Next, we included in the analysis a total of 100 random samples of 150 individuals 
from the 1KGP and 100 random samples of 150 individuals from the CCDG. We observe 
that for each dataset, the selected window length lies in its own distribution (Fig.  5). 
These window lengths reflect two important aspects of the dataset: first, the overall 
number of SV in each particular dataset, with 1KGP having 66,626, the CCDG dataset 
304,533 and the rhesus 493,188 (Additional file 6: Table S18.1). When randomly remov-
ing SVs from the CCDG dataset, we observe an increase in the window length (Addi-
tional file 2: Fig. S11). This is also observed in the 1KGP dataset. Second, given a fixed 
SV-density, the distribution of the number of different SV-alleles, k , reflects a similar 
distribution despite the difference in window length. This distribution mimics the allele 
frequency spectrum, where most windows have few SV-alleles and only a small num-
ber of windows (the candidate ones) have a high number of SV-alleles (Additional file 3: 
Fig. S12, Additional file 4: Fig. S13, Additional file 5: Fig. S14). We can use this expected 
distribution of k to detect possible errors and biases in the data that can be caused by 
a defined population structure, an increase in the number of falsely called SV or possi-
ble contamination. Given these insights, SVhound indeed can be utilized also to QC SV 
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population catalogs and will identify a deviation from the expected “L” shaped distribu-
tion of the number of different SV-alleles, k . Finally, we can examine the probability of 
detecting new SV-alleles to identify saturation and focus the efforts in specific genomic 
loci or new species.

Discussion
We developed SVhound to investigate regions along the genome that are likely to har-
bor SV across yet unsequenced samples (clairvoyant SV or clSV), exemplifying the 
method with an analysis of human and rhesus genomes. We demonstrate that SVhound 
finds regions of undetected variation that harbor genes and are not simply enriched 
for repeats or intergenic regions along the genome. Moreover, many of these regions 
are accessible by short reads, which would allow the design of a targeted strategy to 
sequence these regions with both short and long read technology [30]. This undetected 
variation indicates the likely importance of such regions where we are missing alleles 
that may have an impact in evolution and medicine, which may contribute to missing 
heritability [31]. Nevertheless, future studies will need to conduct broader investigations 
if these clSV candidate windows represent further signals of evolution or other impact 
across these populations. SVhound utilizes a sampling scheme approach derived from 
population genetics (Ewens 1972) to model the SV-allele distribution and to predict 
genomic regions with high probability of clSV. SVhound showed a high accuracy over 
the 1KGP data when assessing its prediction power with a high correlation coefficient 
across multiple parameters (median correlation across 24 tested parameters = 0.913, 
best r = 0.993) and slopes close to 1. Apart from the obvious observation that increas-
ing the window length would increase the probability of detecting a clSV (for a 100Mbp 
window length of course there will be a clSV), we found that the lack of SV in windows 
(e.g. very low SV-density) lead to imprecise predictions, likely due to violations of the 

Fig. 5 Window length selection for the 1KGP, CCDG and rhesus datasets. Random samples of 150 individuals 
were taken from the 1KGP and CCDG datasets and window length selection was calculated for an average 
SV-density of 10 SV per window. In black (furthest left) is the rhesus data with a selected window length of 
27kbp that represents the noisiest dataset. Next, we see in orange the distribution for the CCDG data and 
finally, in blue for 1KGP (most curated)
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model assumptions. Across the 1KGP datasets, the method performed well for an SV-
density = 10, which corresponds to 100kbp windows (average correlation of 0.894 of 
400 evaluations) and even better when considering SV-densities ≥ 10 (window lengths 
200kbp, 500kbp, 1Mbp) where the average correlation was > 0.95 for more than half the 
evaluations (min. correlation = 0.8189). Remarkably the prediction to find clSVs is sam-
ple dependent. The CCDG data with a large sample of 19,000 human genomes exhibited 
smaller pnew values compared to 1KGP (Additional file 6: Table S22.2). This difference is 
resolved when the data processing of each dataset is taken into account. For the CCDG 
dataset 304,533 SVs were determined, compared to 66,626 SVs for the 1KGP. This differ-
ence might reflect the way SVs were called in the 1KGP project, where the majority of 
genomes had low coverage (3-5x) and likely suffered from a low SV sensitivity, thus lead-
ing to an underestimation of the general variability. A conservative SV-calling approach 
will lead to an underestimation of θ and thus the probability to detect new SVs is also 
reduced.

The SV-calling procedure in the CCDG project used genomes with a much higher 
read coverage, thus had more power to detect SVs. These two data sets are hard there-
fore to compare and clearly shows that SVhound accuracy also relies on the experimen-
tal design of the underlying data. The difference might be reduced in the recently posted 
1KGP data set where all samples had ~ 30 × coverage [32]. For rhesus macaques we used 
the same strategy of utilizing the SV-density as the driving factor to determine the win-
dow length. Even when we had a smaller cohort (only 150 genomes), a high number of 
SVs were identified (493,188 SVs), with a different composition (e.g. we identified an 
abundance of SV especially insertions).

SVhound successfully identified for all three genome projects (1KGP, CCDG, rhesus) 
genomic regions with a substantial probability to harbor clSVs. It is noteworthy that 
SVhound does not require any other annotations than SV coordinates in a region. Sev-
eral candidate regions were confined to well-known regions of high genomic diversity 
like immune regulatory genes for antigen processing and antigen binding genes (HLA), 
olfactory genes, regions overlapping repeat elements (LINE, LTR) and regions with an 
overrepresentation of simple repeat elements (telomeric and pericentromeric regions). 
Moreover, we identified other genomic loci with high probabilities of harboring new SV-
alleles that contained for example a pregnancy specific beta-1-glycoprotein and novel 
lncRNA genes.

It is of course not only interesting which regions SVhound predicts will likely harbor 
additional not yet observed SV. Thus the question is also what these regions represent. It 
is clear from our analysis that regions with a high probability of clSV represent areas that 
have not completely been characterized nor sampled. Thus including additional muta-
tions with potentially high impact as shown with overlaps with immune related loci/
genes. The regions identified here might also correlate with increased instability in the 
genome. We have tested here the correlation with repeats directly and did not identify 
a significant correlation. We can also ask what are the implications? After sequencing 
hundreds of thousands of genomes, the question might arise whether whole genome 
sequencing is indeed the most efficient strategy to obtain a more complete set of varia-
tions within a particular population of a species. An alternative strategy would be to use 
a capture (e.g. Cas9 [30] or selective sequencing [33]) design to investigate the identified 
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regions that provide the largest likelihood of containing additional SV-alleles. However, 
it remains challenging to design these panels for certain regions (e.g. MHC). Neverthe-
less, it would indeed represent a more efficient strategy to design capture reagents for 
certain regions and use them to perform targeted sequencing in additional samples to 
improve the catalog of human population variations. The obvious downside of such an 
approach is of course that we would likely miss other (rare) SV-alleles in the regions out-
side of these panels and we don’t know yet if SNV would follow the same trend that we 
observed for SV. Thus, the challenge remains to obtain a full catalog of common varia-
tions across the human population, and also for other important research species.

SVhound can assist with prioritizing regions independently of the organism that is 
being studied (e.g. non model organism). In addition, SVhound can also indicate that 
a given population is under-investigated for SV (e.g. rhesus data in this manuscript). 
While this may be obvious given our sample size of 150, we observe it not so obvious 
in the 1KGP for the same sample size, and it might not be as obvious in many cases, 
when the sample size reaches thousands. Here SVhound can again assist in estimating 
the quality of an SV call set for a given population by means of its estimated window 
length. Datasets that are excessively curated, or present bias towards certain genotypes 
will present large window lengths, while too noisy datasets will present smaller ones.

Conclusions
SVhound shows high prediction accuracy for highlighting regions of the genome where 
additional SV should be found. Such regions are not only present in well known vari-
able regions (e.g. centromere, HLA-locus) and can help scientists to focus their efforts in 
understudied regions. This can be resolved either via additional sequencing or improved 
analysis methods across the data sets in these regions.

Methods
Summarization of the structural variants (SV)

We study the genomic variation of a sample of completely sequenced individuals in dis-
joint fixed windows and analyze each window as follows.

To simplify wording, think of a window as a locus, then each distinct SV (particular 
set of SV present in a given window) is considered as SV-allele. For a sample of n indi-
viduals from this window, we count how often individuals with exactly the same SV 
in the window occur. With ai we count the number of different SV-alleles, that occur 
exactly i-times, where 

∑n
i=1 iai = n. We call a = (a1, a2, . . . , an) SV-occupancy vector. a1 

describes the number of different SV-alleles each occurring exactly once in the sample. If 
an = n , then all individuals carry the same SV-allele in the window. Finally n

i=1 ai = k 
describes the number of different SV-alleles in the window.

We notice that the SV-occupancy vector assumes the role of the allele frequency spec-
trum (AFS) in population genetics [34]. However, the AFS is computed for alleles from 
a gene, whereas the SV-occupany vector is computed from the different SV-alleles in a 
window. Since the potential number of SV-alleles in a large enough window is big, the 
infinite allele assumption is not severely violated and the well known Ewens Sampling 
Formula [34] that describes the probability to observe a SV-occupancy vector:



Page 15 of 20Paulin et al. BMC Bioinformatics           (2023) 24:23  

holds, where θ is a measure for the genetic diversity of the population. Although Ewens 
(1972) developed the theory to understand the sampling theory of neutral alleles, we 
note that the EWS is relevant in very diverse scientific disciplines (see: Harry Crane 
(2016) The ubiquitous Ewens sampling formula. Statistical Science 31:1–19). Equa-
tion  (1) and the SV-occupancy vector can be used to compute a maximum likelihood 
estimator for θ , since this is numerically challenging, we used a simpler approach.

To estimate parameter θ based on a sample of n individuals, it suffices to apply the 
method of moment by replacing E(K ) , the expected number of SV-alleles by the 
observed number of alleles k and then numerically solve the next equation

for θ . In fact, θ̂ is the maximum likelihood estimate for the data.
Having an estimate, θ̂ , we use this value to compute the “predictive” probability to find 

a clairvoyant SV (clSV, defined as a new or previously undetected SV-allele of unknown 
genotype) if a new window from an individual is sequenced as:

Equation 18 in Ewens [34].
Please, note that if θ is small we expect a small number of SV-alleles, a large θ implies 

that each SV-allele occurs once. However, for such cases to occur θ must be extremely 
small/large. Finally, notice that pnew = 0 if a window has the same sequence across the 
entire sample (k = 1).

To validate SVhound, we partitioned the human genome in non-overlapping windows 
of size 5, 10, 50, 100, 200, 500, and 1000 kbp. For each window, we randomly re-sam-
pled n = 50, 100, 500, 1000 individuals without replacement from the 2504 individuals in 
the 1000 human genome project [20] version hg19. This re-sampling was repeated 100 
times.

For each subsample, we estimated θ̂ from Eq. (2) and then estimated the probability to 
find a clSV, pnew , based on Eq. (3). pnew was subsequently compared to the proportion of 
individuals that were not in the subsample and that carried SV-alleles not yet detected, 
fundetected that is we computed.

Automatic window length selection

Based on the evaluation of the window and sample sizes described above in “validation of 
SVhound”; we opted automatically select the window size, such that we select the short-
est window length with enough information to accurately estimate the model parameter 

(1)Pr(a1, . . . , an; θ) =
n!

θ(θ + 1) . . . (θ + n− 1)

n∏

j=1

θaj

jaj aj!
,

(2)E(K ) =
θ

θ
+

θ

θ + 1
+ ...+

θ

θ + n− 1

(3)pnew =
θ̂

θ̂ + n
,

(4)fundetected =
# of individuals with SV − alleles not in the subsample

# individuals not in subsample
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θ̂ . During the validation we observed that 100kbp was the point where increasing the 
sample size, greatly improved the SVhound prediction ( pnew ). Next, we computed the 
genome-wide average number of SV when using the 100kbp window length in the 1KGP 
dataset (SV-density). We identified that for this window size (100kbp), the SV-density 
is 10, meaning on average a window has 10 SV-alleles. We then used the SV-density of 
10 to compute the appropriate window length in the rest of the paper. First, we start at 
10kbp window size and use the first 1000 SV from the VCF file to compute the SV-den-
sity. Then, if the SV-density is not close to 10 (10 ± e, with e = 0.2 by default but can be 
user defined), we adjust the window size using a bisection method, with a lower bound 
of 10kbp and an upper bound of 1Mbp.

Identifying SV variability in the human genomes

We performed a genome-wide analysis to identify genomic regions with a high prob-
ability of harboring new SV-alleles. We used two human datasets: a sample of 2504 
individuals for the case of the 1KGP dataset and 19,652 individuals from the Centers 
for Common Disease Genomics project dataset [4]. For both datasets we estimated the 
window length for a SV-density of 10. The estimated window length for the 1KGP data-
set was 100kbp and 10kbp for the CCDG dataset. We used the script vcf_autoparser_
for_svhound.py (see Data access) to parse the VCF files into a tab-separated table 
input of SVhound. We then estimated the diversity parameter θ̂ for each window using 
Eq. 2 to then calculate the probability of observing a new allele in the next individual 
using Eq. 3. We selected candidate windows as the 1% windows with the highest prob-
ability of detecting a clSV in the next sequenced individual (pnew) . From these regions 
we extracted genomic features information from the proper annotation of the human 
genome [22, 35, 36] (depending on the reference used) to detect what type of genetic ele-
ments may be affected.

We performed the enrichment analysis with PANTHER [21]. We also used data of the 
position of repeat elements, simple tandem repeats [23], segmental duplications [24],ref-
erence “high-confidence” regions from the GIAB project [16, 25] and SNP information 
from the GWAS catalog [37].

Identifying SV variability in the macaque genomes

We performed a genome-wide analysis to identify genomic regions with a high prob-
ability of harboring new SV-alleles. We used a rhesus macaque dataset composed of 
150 genomes, for which we estimated the window length as with the human datasets 
(genome-wide average SV-density = 10). We used a window length of 27 kbp and used 
the script vcf_autoparser_for_svhound.py to parse the VCF files into a tab-separated 
table input of SVhound. Then we estimated θ̂ for each window using Eq. 2 to then calcu-
late the probability of observing a new allele in the next individual using Eq. 3.

Then, we selected candidate windows as the 1% windows with the highest probabil-
ity of detecting a clSV in the next sequenced individual ( pnew ). From these regions we 
extracted genomic features information from the rhesus macaque genome annotation 
from Ensembl release 97 (Mmul_8) [38].
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Annotation for the human genome

We used the respective gencode annotation for each of the two versions of the human 
genomes: genocode 19 for hg19 and genocode 29 for hg38. We complemented the 
annotation of the genes with the information provided by PANTHER utilizing the 
Ensemble ID as the gene identifier. We removed all annotated elements (present in 
gencode) that were marked as unmapped IDs in PANTHER.

Upset plot

All top candidate windows from the five populations (African, American, European, 
East Esian, South Asian) were pooled. Then for each window its presence/absence 
was computed for each population (Additional file 6: Table S7). Finally for each win-
dow the intersection was computed based on the presence/absence binary table. This 
table was then fed to the upset function of the UpSetR library [39] according to the 
reference manual and example.

Rhesus macaque

We mapped the reads from 150 rhesus macaque individuals sampled from the Tulane 
National Primate Research Center, Covington, LA to the reference rhesus macaque 
genome Mmul_8 using BWA-mem with default parameters. These sequence data are 
described in Petty et  al. (2021; PMID 33386679).Subsequently, we identified can-
didate SVs using Manta [40] for each of the bam files separately. Next we computed 
the region of low mapping quality by extracting reads with MQ < 5 and generated 
a per sample region file by requiring 5 reads of MQ < 5 in order to define an inter-
val. The per sample VCF was subsequently filtered by these intervals to account for 
mapping artifacts and repetitive regions. The resulting VCF files were analyzed and 
merged using SURVIVOR [41] merge requiring a SV to be at least 50 bp long and up 
to 1000 bp wobble on the start or stop breakpoint.

Comparison of SVhound clSV candidates to hotspots in the 1000genomes data

We used the hotspots described by Lin and Gokcumen [26] and compared them to 
the candidate windows suggested by SVhound. We parsed the 1000genomes VCF 
file fixing the window size to 100  kb to have the same windows described in the 
hotspot analysis using vcf_autoparser_for_svhound_fix_windows.py. As the same 
genomic coordinates were used in both analyses, we compared their classification: “is 
it hotspot” from Lin and Gokcumen (number of SV ≥ 6) and “is it candidate” from 
SVhound (belongs to the top 1% windows with the highest probabilities of new SV) to 
then compute the intersection with a Venn diagram in R.

Comparison of SVhound clSV candidates to rare alleles in the 1000genomes data

For each SV 1000genomes dataset we classified whether or not it contained a rare 
allele (MAF < 1%) using the AF tag from the VCF file using rareSV_detect_1kgp.py. 
Next, we associated each SV classified as having a rare allele with a genomic win-
dow dividing the genome into 100  kb windows using vcf_autoparser_for_svhound_
fix_windows.py from the previous analysis. Finally, we used SVhound on the 100 kb 
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windows and compared the windows containing rare SV with the clSV candidate win-
dows to then compute the intersection with a Venn diagram in R.

Abbreviations
SVs  Structural Variations/Structural Variants
1KGP  1000 Genomes Project
CCDG  Centers for Common Disease Genomics
SNV  Single Nucleotide Variations
CNV  Copy Number Variations
kbp  Kilobases
Mbp  Megabases
bp  Bases
GIAB  Genome in a Bottle
clSV  Clairvoyant SV
MAF  Minor Allele Frequency
QC  Quality Control
FP  False Positive
MHC  Major Histocompatibility Complex
AFS  Allele Frequency Spectrum
ESF  Ewens Sampling Formula
MQ  Mapping Quality
VCF  Variant Call Format
LINE  Long interspersed nuclear elements
LTR  Long terminal repeat
ERV  Endogenous retroviral sequence
DNA  Deoxyribonucleic acid
lncRNA  Long non-coding Ribonucleic acid
AFR  African
AMR  Admixed American
EUR  European
EAS  East Asian
SAS  South Asian

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 022- 05046-6.

Additional file 1: Fig. S1 - S10.

Additional file 2: Fig. S11. Window length distribution.

Additional file 3: Fig. S12. Distribution of the number of detected SV-alleles for a fix sample size of 150, for the 
1KGP data set.

Additional file 4: Fig. S13. Distribution of the number of detected SV-alleles for a fix sample size of 150, for the 
CCDG data set.

Additional file 5: Fig. S14. Distribution of the number of detected SV-alleles for a fix sample size of 150, for the 
Macaque data set.

Additional file 6: Supplementary Tables 1 - 21.

Acknowledgements
This work was supported in part by the US National Institutes of Health (UM1 HG008898 to FJS), DK RNA (UW: 
W1207-B09) to A.v.H. and NIH Grant R24-OD-11173 to J.R. We thank the Tulane National Primate Research Center and NIH 
grant P51-OD011104 for access to rhesus macaque DNA samples.

Author contributions
LFP developed SVhound; LFP performed all benchmark analysis and analysis of the 1000 g data; FJS performed the 
analysis of CCDG data, MR, AH and JR performed the analysis of the rhesus macaque data; AvH and FJS conceived the 
algorithms and supervised the work; all authors contributed to the writing of the manuscript. All authors read and 
approved the final manuscript.

Funding
This work was supported in part by the US National Institutes of Health (UM1 HG008898 to FJS), DK RNA (UW: 
W1207-B09) to A.v.H. and NIH Grant R24-OD-11173 to J.R. The funding bodies did not play any role in the design of the 
study and collection, analysis, and interpretation of data nor in writing the manuscript.

Availability of data and materials
Rhesus VCF files (https:// github. com/ lfpau lin/ SVhou nd) and the R package contain the information of the sources used. 
1000 genomes VCF file is available at: https:// ftp. 1000g enomes. ebi. ac. uk/ vol1/ ftp/ phase3/ integ rated_ sv_ map/ ALL. wgs. 

https://doi.org/10.1186/s12859-022-05046-6
https://github.com/lfpaulin/SVhound
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz


Page 19 of 20Paulin et al. BMC Bioinformatics           (2023) 24:23  

merge dSV. v8. 20130 502. svs. genot ypes. vcf. gz. CCDG data is available at: https:// ftp. ncbi. nlm. nih. gov/ pub/ dbVar/ data/ 
Homo_ sapie ns/ by_ study/ tsv/, nstd223.GRCh38.variant_call.tsv.gz, nstd223.GRCh38.variant_region.tsv.gz.

Declarations

Ethics approval and consent to participate
Not applicable, human data is publicly available.

Consent for publication
Not applicable.

Competing interests
FJS has received sponsored travel by Phase genomics, Oxford Nanopore and PacBio.

Received: 25 August 2022   Accepted: 8 November 2022

References
 1. Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic analysis in the age of human genome sequencing. Cell. 

2019;177:70–84. https:// doi. org/ 10. 1016/j. cell. 2019. 02. 032.
 2. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. 

Nat Rev Genet. 2016;17:333–51.
 3. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural 

variation in 2,504 human genomes. Nature. 2015;526:75–81.
 4. Sedlazeck FJ, Yu B, Mansfield AJ, Chen H, Krasheninina O, Tin A, et al. Multiethnic catalog of structural variants and 

their translational impact for disease phenotypes across 19,652 genomes. Genomics bioRxiv. 2020;6:733.
 5. Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, et al. A structural variation reference for medical and 

population genetics. Nature. 2020;581:444–51.
 6. Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ, et al. Haplotype-resolved diverse human 

genomes and integrated analysis of structural variation. Science. 2021. https:// doi. org/ 10. 1126/ scien ce. abf71 17.
 7. Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M, Welch AE, et al. Characterizing the major struc-

tural variant alleles of the human genome. Cell. 2019;176:663-75.e19.
 8. Warren WC, Harris RA, Haukness M, Fiddes IT, Murali SC, Fernandes J, et al. Sequence diversity analyses of an 

improved rhesus macaque genome enhance its biomedical utility. Science. 2020. https:// doi. org/ 10. 1126/ scien ce. 
abc66 17.

 9. Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long 
and the short of it. Genome Biol. 2019;20:246.

 10. Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21:171–89.
 11. Abel HJ, Larson DE, Chiang C, Das I, Kanchi KL, Layer RM, et al. Mapping and characterization of structural variation 

in 17,795 deeply sequenced human genomes. Genomics bioRxiv. 2018;2018:508515.
 12. Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al. Sequencing of 53,831 diverse genomes from 

the NHLBI TOPMed Program. Genomics bioRxiv. 2019;590:203.
 13. Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. Environ Mol 

Mutagen. 2015;56:419–36.
 14. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read 

sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37:1155–62.
 15. Sebat J. Large-scale copy number polymorphism in the human genome. Science. 2004. https:// doi. org/ 10. 1126/ 

scien ce. 10989 18.
 16. Zook JM, Hansen NF, Olson ND, Chapman L, Mullikin JC, Xiao C, et al. A robust benchmark for detection of germline 

large deletions and insertions. Nat Biotechnol. 2020. https:// doi. org/ 10. 1038/ s41587- 020- 0538-8.
 17. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and 

mapping. Nat Rev Genet. 2018;19:329–46.
 18. Brasó-Vives M, Povolotskaya IS, Hartasánchez DA, Farré X, Fernandez-Callejo M, Raveendran M, et al. Copy number 

variants and fixed duplications among 198 rhesus macaques (Macaca mulatta). PLoS Genet. 2020;16:e1008742.
 19. Thomas GWC, Wang RJ, Nguyen J, Harris RA, Raveendran M, Rogers J, et al. Origins and long-term patterns of copy-

number variation in rhesus macaques. Mol Biol Evol. 2020. https:// doi. org/ 10. 1093/ molbev/ msaa3 03.
 20. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference 

for human genetic variation. Nature. 2015;526:68–74.
 21. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim 

and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47:D419–26.
 22. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc 

Bioinform. 2009;Chapter 4:Unit4.10.
 23. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
 24. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, et al. Recent segmental duplications in the human 

genome. Science. 2002;297:1003–7.
 25. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive sequencing of seven human genomes to 

characterize benchmark reference materials. Sci Data. 2016;3:160025.

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
https://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_study/tsv/
https://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_study/tsv/
https://doi.org/10.1016/j.cell.2019.02.032
https://doi.org/10.1126/science.abf7117
https://doi.org/10.1126/science.abc6617
https://doi.org/10.1126/science.abc6617
https://doi.org/10.1126/science.1098918
https://doi.org/10.1126/science.1098918
https://doi.org/10.1038/s41587-020-0538-8
https://doi.org/10.1093/molbev/msaa303


Page 20 of 20Paulin et al. BMC Bioinformatics           (2023) 24:23 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 26. Lin Y-L, Gokcumen O. Fine-scale characterization of genomic structural variation in the human genome reveals 
adaptive and biomedically relevant hotspots. Genome Biol Evol. 2019;11:1136–51.

 27. Havecker ER, Gao X, Voytas DF. The diversity of LTR retrotransposons. Genome Biol BioMed Central. 2004;5:1–6.
 28. Aldrup-Macdonald ME, Sullivan BA. The past, present, and future of human centromere genomics. Genes. 

2014;5:33–50.
 29. Harris RA, Raveendran M, Worley KC, Rogers J. Unusual sequence characteristics of human chromosome 19 are 

conserved across 11 nonhuman primates. BMC Evol Biol. 2020;20:33.
 30. Gilpatrick T, Lee I, Graham JE, Raimondeau E, Bowen R, Heron A, et al. Targeted nanopore sequencing with Cas9-

guided adapter ligation. Nat Biotechnol. 2020;38:433–8.
 31. Theunissen F, Flynn LL, Anderton RS, Mastaglia F, Pytte J, Jiang L, et al. Structural variants may be a source of missing 

heritability in sALS. Front Neurosci. 2020;14:47.
 32. Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, et al. High coverage whole genome sequencing of 

the expanded 1000 Genomes Project cohort including 602 trios. Cold Spring Harbor Lab. 2021. https:// doi. org/ 10. 
1101/ 2021. 02. 06. 43006 8v1. abstr act.

 33. Payne A, Holmes N, Clarke T, Munro R, Debebe BJ, Loose M. Readfish enables targeted nanopore sequencing of 
gigabase-sized genomes. Nat Biotechnol. 2021. https:// doi. org/ 10. 1038/ s41587- 020- 00746-x.

 34. Ewens WJ. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972;3:87–112.
 35. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human 

genome annotation for The ENCODE Project. Genome Res. 2012;22:1760–74.
 36. Karolchik D, Hinrichs AS, Kent WJ. The UCSC Genome Browser. Curr Protoc Bioinform. 2009;Chapter 1:Unit1.4.
 37. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of 

published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 
2019;47:D1005–12.

 38. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res. 
2020;48:D682–8.

 39. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. 
Bioinformatics. 2017;33:2938–40.

 40. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural vari-
ants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–2.

 41. Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, et al. Transient structural variations have strong effects on 
quantitative traits and reproductive isolation in fission yeast. Nat Commun. 2017. https:// doi. org/ 10. 1101/ 047266.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/2021.02.06.430068v1.abstract
https://doi.org/10.1101/2021.02.06.430068v1.abstract
https://doi.org/10.1038/s41587-020-00746-x
https://doi.org/10.1101/047266

	SVhound: detection of regions that harbor yet undetected structural variation
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Statistical identification of highly variable genomic regions in the human population
	Identification of polymorphic candidate regions across 2504 human genomes from the 1000 genome project
	Identification of polymorphic candidate regions across 19,652 human genomes in the USA
	Identification of SV and further polymorphic candidate regions across 150 Rhesus Macaques
	Utilization of SVhound for quality control (QC) of population studies

	Discussion
	Conclusions
	Methods
	Summarization of the structural variants (SV)
	Automatic window length selection
	Identifying SV variability in the human genomes
	Identifying SV variability in the macaque genomes
	Annotation for the human genome
	Upset plot
	Rhesus macaque
	Comparison of SVhound clSV candidates to hotspots in the 1000genomes data
	Comparison of SVhound clSV candidates to rare alleles in the 1000genomes data

	Acknowledgements
	References


