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Identification of two early blood 
biomarkers ACHE and CLEC12A 
for improved risk stratification 
of critically ill COVID‑19 patients
Simone Kattner 1,5, Jan Müller 2,3,4,5, Karolina Glanz 2, Mehdi Manoochehri 2, 
Caroline Sylvester 2, Yevhen Vainshtein 2, Marc Moritz Berger 1, Thorsten Brenner 1* & 
Kai Sohn 2*

In order to identify biomarkers for earlier prediction of COVID‑19 outcome, we collected blood samples 
from patients with fatal outcomes (non‑survivors) and with positive clinical outcomes (survivors) 
at ICU admission and after seven days. COVID‑19 survivors and non‑survivors showed significantly 
different transcript levels for 93 genes in whole blood already at ICU admission as revealed by 
RNA‑Seq. These differences became even more pronounced at day 7, resulting in 290 differentially 
expressed genes. Many identified genes play a role in the differentiation of hematopoietic cells. For 
validation, we designed an RT‑qPCR assay for C‑type lectin domain family 12 member A (CLEC12A) 
and acetylcholinesterase (ACHE), two transcripts that showed highest potential to discriminate 
between survivors and non‑survivors at both time points. Using our combined RT‑qPCR assay we 
examined 33 samples to accurately predict patient survival with an AUROC curve of 0.931 (95% 
CI = 0.814–1.000) already at ICU admission. CLEC12A and ACHE showed improved prediction of 
patient outcomes compared to standard clinical biomarkers including CRP and PCT in combination 
(AUROC = 0.403, 95% CI = 0.108–0.697) or SOFA score (AUROC = 0.701 95% CI = 0.451–0.951) at day 
0. Therefore, analyzing CLEC12A and ACHE gene expression from blood may provide a promising 
approach for early risk stratification of severely ill COVID‑19 patients.

In March 2020 the World Health Organization (WHO) declared a pandemic due to severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2)1. By January 2022, SARS-CoV-2 infected about 349 million people and 
caused more than 5.6 million  deaths2. The coronavirus disease 2019 (COVID-19) causes several respiratory 
and systemic symptoms with widely varying degrees of severity, ranging from mild common cold up to the 
development of severe hypoxemia with acute respiratory distress syndrome (ARDS) and multiple organ failure 
(MOF)3. Dramatic progressions of the disease are hallmarked by an overwhelming innate inflammatory response 
in both, the lungs as well as the bloodstream, which is mainly driven by immune cells such as neutrophils or 
monocytes/macrophages. These cells recognize a broad range of pathogen- and damage-associated molecular 
patterns (PAMPS, DAMPS) via cell-surface bound pattern recognition receptors (PRR), promoting multisystemic 
immune dysregulation with an uncontrolled cytokine release (such as interleukin (IL)-6, tumor necrosis factor 
(TNF)-α or interferons (IFN)). This cytokine storm leads to a clinical picture of viral sepsis and is characterized 
by local death of epithelial cells and immune thrombosis in the lungs of patients suffering from severe COVID-19. 
Accordingly, the extent of this cytokine storm is known to be associated with disease severity and is inversely cor-
related with patient’s  outcome4,5. Therefore, immune-inflammatory biomarkers such as IL-6, C-reactive protein 
(CRP), or procalcitonin (PCT) have already been used for predicting the extent of lung involvement and clinical 
outcomes in patients with COVID-196–11. For better adaptation of the host response to a disease-causing virus 
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and to reduce collateral damage, the proinflammatory response is accompanied by an interferon (IFN)-mediated 
antiviral  response12. However, these innate antiviral responses (including type I interferons (IFNα/β) or type III 
IFN (IFNλ) have been shown to be impaired in the early phase of COVID-19, contributing to a viral persistence 
with an overwhelming host-damaging proinflammatory  response12. Consequently, patient’s immune balance is of 
crucial importance for further disease progression. Accordingly, in-depth knowledge of patient’s immune status 
might be helpful for risk stratification and outcome prediction in COVID-19. In this context, Next-Generation 
Sequencing (NGS)-based RNA-Seq analyses of patient-specific RNA signatures allow for detailed profiling of the 
host response on the transcriptional level during viral infections. It is therefore hypothesized, that NGS-based 
gene expression analyses might allow for reliable risk stratification, prognosis estimation, and treatment guidance 
in patients suffering from COVID-1913–15.

Therefore, the aims of the present study were (i) identification of host signatures on the transcriptomic level 
for risk assessment and prognostic potential in COVID-19 patients using comprehensive NGS-based RNA-Seq 
analyses of survivors and non-survivors at the ICU, (ii) to compare RNA-signatures with standard of care diag-
nostics including C-reactive protein (CRP), procalcitonin (PCT), and sequential organ failure assessment (SOFA) 
score as well as to (iii) establish an easy to implement RT-qPCR approach for identified prognostic transcripts.

Results
Differences of COVID‑19 survivors compared to non‑survivors on the transcriptomic level. In 
an exploratory phase of this study, we performed RNA Next-Generation Sequencing (RNA-Seq) on intracellular 
mRNA from whole blood of patients to identify transcriptomic differences in the host-response of COVID-19 
survivors and non-survivors (Supplementary Figure S1). Survivors and non-survivors were also tested for puta-
tive co-infections by analyzing microbial cell-free DNA (cfDNA) from blood plasma through NGS-based high-
throughput sequencing. Recently, this approach proved to be the most sensitive and specific method for patho-
gen detection compared to standard microbiological culturing methods 16,17. However, co-infections occurred 
only sporadically, showing no significant difference between survivors and non-survivors. The vast majority of 
microbes detected are known contaminating species. At day 0, for only two patients of COVID-19 survivors, we 
detected a significant microbial signal, of which one microbe is not known to cause infections in humans (Cupri-
avidus necator). Only one patient of COVID-19 non-survivors was found to have a significant signal for Human 
betaherpesvirus 5, reflecting rather an incompetent immune response and the severity of the underlying disease 
than a co-infection (see Supplementary Data). On the contrary, RNA-Seq analysis for coding genes revealed sig-
nificant differential expression for 93 genes at day 0 with at least a twofold increase or decrease and an adjusted 
p-value ≤ 0.01 when comparing survivors with non-survivors (Fig. 1a). At day 7, the number of differentially 
expressed genes (DEGs) increased to 290, indicating a more significant difference in host responses correlating 
with severity and outcome between the two cohorts at later time points (Fig. 1b). Principal component analysis 
(PCA) based on these DEGs for each time point showed a clear separation of patients with different clinical 
outcomes (Fig. 1c, d). The PCA provides a first indication that differences in the transcriptomes of both patient 
groups can be used for reliable classification and that these markers thus provide discriminatory power. In line 
with a higher number of DEGs at day 7, the separation of both groups was even more pronounced at day 7 with 
a higher intra-conditional variance for non-survivors compared to survivors (Fig. 1c, d). In order to identify 
biological processes involved in different clinical outcomes, functional enrichment analysis was performed using 
DEGs from both time points. At admission to the ICU, several significantly overrepresented pathways indicated 
changes in  O2/CO2 exchange in erythrocytes and cellular differentiation of erythrocytes (adj. p = 5.6⋅10–9). All 
DEGs involved were more highly expressed in non-survivors, suggesting an adaptation to overcome an oxygen 
deficiency by increasing the gas exchange potential of erythrocytes and the production of additional erythro-
cytes (Fig. 2a). After seven days on the ICU, several signaling pathways indicated altered cellular differentia-
tion, particularly of hematopoietic stem cells, including erythrocyte development genes that were more highly 
expressed in non-survivors (adj. p = 0.00096). Additionally, non-survivors showed a higher expression of genes 
involved in hypertrophic cardiomyopathy (Fig. 2b).

Early biomarkers for the prediction of outcome in patients suffering from severe COVID‑19. As 
COVID-19 progression is unique to each patient admitted to the ICU, we aimed to identify early biomarkers 
that might discriminate survivors from non-survivors at various time points. Therefore, we considered DEGs 
that were differentially expressed in the same manner at both time points and with mean expression levels 
which did not differ significantly between day 0 and day 7 (Supplementary Figure S2). Of the 359 DEGs, 24 
met these criteria and two were higher expressed in COVID-19 survivors, whereas 22 were higher expressed 
in non-survivors (|log2FC|≥ 1 and adjusted p-value ≤ 0.01, Fig.  3a-c, Supplementary Table  S3). To determine 
the potential of DEGs to predict patients’ outcomes, we applied receiver operating characteristic (ROC) analy-
ses (Fig. 3d, e). The area under the ROC curves (AUROC) using data from both time points for all 24 DEGs 
are summarized in Supplementary Table S3. The four most promising biomarker genes to predict clinical out-
come in COVID-19 patients were C-type lectin domain family 12 member A (CLEC12A, AUROC = 0.908, 95% 
CI = 0.822–0.994), rhesus blood group CcEe antigen (RHCE, AUROC = 0.875, 95% CI = 0.774–0.976), C-type 
lectin domain family 12 member B (CLEC12B, AUROC = 0.863, 95% CI = 0.754–0.972), and acetylcholinest-
erase (ACHE, AUROC = 0.837, 95% CI = 0.722–0.951). CLEC12A and CLEC12B showed higher expression in 
survivors, whereas RHCE and ACHE were more highly expressed in non-survivors. Evaluation of the prognostic 
potential of COVID-19 severity biomarkers CRP, PCT and the SOFA score showed, that these readily available 
standard of care markers were not able to reliably predict patient outcome at day 0, with AUROC curve values 
comparable to random classification (CRP AUROC = 0.507 95% CI = 0.261–0.753, PCT AUROC = 0.654 95% 
CI = 0.416–0.892, SOFA AUROC = 0.698 95% CI = 0.492–0.904). Only on day seven, standard of care markers 
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are strong predictors of patient outcome (CRP AUROC = 0.941 95% CI = 0.844–1.000, PCT AUROC = 0.841 95% 
CI = 0.647–1.000, SOFA AUROC = 0.969 95% CI = 0.914–1.000); Fig. 4).

Figure 1.  Differential expression analysis and principal component analysis of COVID-19 patients at day 0 
and day 7 of ICU admission. (a) Volcano plot showing the transcriptomic differences of COVID-19 patients 
upon ICU admission (day 0, n = 24 (survivor n = 12, non-survivor n = 12)). (b) Volcano plot showing the 
transcriptomic differences of COVID-19 patients at day 7 in ICU (n = 24 (survivor n = 12, non-survivor n = 12)). 
Blue dots represent differentially expressed genes with a significantly increased expression level in survivors, 
while red dots represent genes with a significantly increased expression level in non-survivors (adjusted 
p-value ≤ 0.01 and a  log2 fold change ≤  − 1 or ≥ 1). (c) Principal component analysis using the differentially 
expressed genes between COVID-19 patients with different outcomes at day 0 (% variance explained: 
PC1 = 72.44, PC2 = 7.69, PC3 = 4.15). (d) Principal component analysis using the differentially expressed genes 
between COVID-19 patients with different outcomes at day 7 (% variance explained: PC1 = 43.17, PC2 = 13.29, 
PC3 = 9.37). Blue spheres indicate survivors and red pyramids represent non-survivors. A centroid is shown for 
both conditions, connected to each data point by a line.



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4388  | https://doi.org/10.1038/s41598-023-30158-1

www.nature.com/scientificreports/

Establishment of an RT‑qPCR test for CLEC12A and ACHE. For clinical validation and a poten-
tial translation from bench to bedside of the testing procedure, we developed a targeted RT-qPCR assay for 
CLEC12A and ACHE, as their classification performance (AUROC) in combination with signal difference at 
day 0 (FC) was the strongest. The RT-qPCR assay confirmed our RNA-Seq results, and differences between both 
clinical outcome groups were significant for CLEC12A and ACHE (CLEC12A, median  log2FC = -1.89, p = 0.024 
(day 0) and median  log2FC = − 1.18, p = 0.007 (day 7); ACHE, median  log2FC = 2.30, p = 0.011 (day 0) and median 
 log2FC = 1.53, p = 0.016 (day 7), Fig. 5a, b). The expression of CLEC12A was shown to be significantly lower in 
independent healthy control samples than in COVID-19 survivors or non-survivors at day 0 and day 7 (healthy 
controls vs. COVID-19 survivors:  pday0 = 0.00097,  pday7 = 0.00028; healthy controls vs. COVID-19 non-survi-
vors:  pday0 = 0.005,  pday7 = 0.039; Supplementary Figure S3b, d). The same applies to ACHE, except for COVID-
19 survivors at day 0 (healthy controls vs. COVID-19 survivors:  pday0 = 0.064,  pday7 = 0.015; healthy controls 
vs. COVID-19 non-survivors:  pday0 = 7.6⋅10–5,  pday7 = 0.00088; Supplementary Figure  S3a, c). Time-combined 
AUROC of ACHE and CLEC12A were comparable to RNA-Seq data (ACHE, AUROC = 0.848, 95% CI = 0.708–
0.988; CLEC12A, AUROC = 0.874, 95% CI = 0.756–0.992; Supplementary Figure S4). Combining both biomark-
ers with a generalized linear model (GLM) as proposed by Mazzara et al. further improved the classification 
performance (AUROC = 0.963, 95% CI = 0.908–1.000; Fig. 5c)18. Comparison of CLEC12A, ACHE, and the com-
bination thereof with CRP and PCT in combination showed a significantly better classification performance at 
day 0  (GLMACHE,CLEC12A AUROC = 0.931 95% CI = 0.814–1.000,  GLMCRP,PCT AUROC = 0.403 95% CI = 0.108–

Figure 2.  Pathway enrichment analysis for differentially expressed genes. (a) 93 differentially expressed genes 
at day 0 between COVID-19 survivors and non-survivors were evaluated for enrichment of pathways. (b) 290 
differentially expressed genes at day 7 between COVID-19 survivors and non-survivors were evaluated for 
enrichment of pathways. GeneOntology (Biological Processes), KEGG, Reactome, and Wikipathways were 
used in this over-representation analysis for both DEG sets. Only pathways with an adjusted p-value ≤ 0.05 for 
enrichment are shown.
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Figure 3.  Identification of the putative biomarkers CLEC12A and ACHE. (a) Venn diagram comparing DEGs of COVID-19 patients 
at day 0 and day 7. 24 out of 359 DEGs were identified at both time points. Blue circles indicate genes with high expression in 
survivors and red triangles represent genes with high expression in non-survivors. (b) Boxplot showing the significantly decreased 
mean expression of CLEC12A in the blood transcriptome of non-survivors (red) separately for day 0 and day 7. (c) Boxplot showing 
the significantly increased mean expression of ACHE in the blood transcriptome of survivors (blue) separately for day 0 and day 7. 
Two-sided Wilcoxon test with n = 24 (survivor n = 12, non-survivor n = 12) was performed for both time points. Additionally, unequal 
variance t-tests were performed for both time points  (pACHE,day0 = 0.0019,  pACHE,day7 = 0.0063,  pCLEC12A,day0 = 0.0002,  pCLEC12A,day7 = 0.0001). 
(d) ROC curves for predicting the outcome of COVID-19 patients using CLEC12A at day 0, day 7, and for both time points combined. 
(e) ROC curves for predicting the outcome of COVID-19 patients using ACHE at day 0, day 7, and for both time points combined.
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Figure 4.  ROC curve analysis and boxplots for the evaluation of three standard of care markers for patients 
with different clinical outcomes. (a) Evaluation for C-reactive protein (CRP) for survivors and non-survivors 
at different sampling times. Values are shown in mg/dL. (b) Evaluation for procalcitonin (PCT) for survivors 
and non-survivors at different sampling times. Values are shown in ng/mL. (c) Evaluation for sequential organ 
failure assessment (SOFA) score for survivors and non-survivors at different sampling times. ROC curve 
analysis was performed for both time points separately (day 0 = long dashed line, day 7 = short dashed line) and 
combined (day 0 + 7 = solid line). Both sampling time points are shown separately in two boxplots. Differences 
between the mean values of the two outcome groups (survivors and non-survivors) were assessed with a 
two-sided Wilcoxon test separately for day 0 and day 7 with n = 24 (survivors n = 12, non-survivors n = 12). 
Additionally, unequal variance t-tests were performed  (pCRP,day0 = 0.96,  pCRP,day7 = 1.45⋅10–5,  pPCT,day0 = 0.72, 
 pPCT,day7 = 0.02,  pSOFA,day0 = 0.09,  pSOFA,day7 = 1.14⋅10–6).
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0.697; Fig. 5d;  GLMACHE,CLEC12A vs.  GLMCRP,PCT: p-value = 0.0017). Additionally, our newly identified biomarkers 
CLEC12A and ACHE demonstrated in combination a significantly larger AUROC curve than the SOFA score 
at day 0 (SOFA AUROC = 0.403 95% CI = 0.108–0.697; Fig. 5d;  GLMACHE,CLEC12A vs. SOFA: p-value = 0.0469). 
Hence, the two-gene-signature CLEC12A and ACHE could provide an accurate tool for stratifying COVID-19 
patients already upon ICU admission and at least one week earlier than CRP, PCT, and SOFA.

Discussion
This study identified clear differences in blood cell transcriptomes from COVID-19 patients with fatal out-
comes compared to COVID-19 patients who recovered at the ICU. Additionally, we revealed robust biomarkers 
for clinical stratification that are already discriminatory at ICU admission and thus account for differences in 
COVID-19 disease progressions. RNA-Seq data from an exploratory phase of this study with 24 patients revealed 
93 differentially expressed genes at day 0 and 290 differentially expressed genes at day 7 between survivors and 
non-survivors, indicating a more pronounced separation of both groups as disease progressed. We performed 
a functional enrichment analysis for a better understanding of the underlying physiological differences that 
lead to the observed transcriptomic differences. We found that  O2/CO2 exchange capacity in erythrocytes and 
the cellular differentiation to erythrocytes were mainly affected. These changes likely reflect acute respiratory 

Figure 5.  RT-qPCR validation of biomarkers CLEC12A and ACHE. (a) Boxplot showing significantly decreased 
mean abundance of CLEC12A transcripts in the blood of non-survivors in comparison to survivors (two-
sided Wilcoxon test with a total n = 33 (survivors n = 18 (day 0 n = 8, day 7 n = 10), non-survivors n = 15 (day 0 
n = 9, day 7 n = 6)); unequal variance t-test  (pCLEC12A = 0.017,  pACHE = 0.007)). (b) Boxplot showing significantly 
increased mean abundance of ACHE transcripts in the blood of non-survivors in comparison to survivors 
(two-sided Wilcoxon test with a total n = 33 (see a); unequal variance t-test  (pCLEC12A = 0.001,  pACHE = 0.005)). 
The RT-qPCR values of CLEC12A and ACHE were normalized to the two housekeeping genes FPGS and PEX16 
to calculate a normalized  2-ΔΔCT value. (c) ROC curves for predicting the outcome of COVID-19 patients at 
day 0 using ACHE, CLEC12A, and a generalized linear model (GLM) that combines both biomarkers. (d) 
ROC curves for predicting the outcome of COVID-19 patients at day 0 using a GLM based on CRP and PCT 
 (GLMCRP,PCT = I), SOFA score (II), and a GLM of ACHE and CLEC12A  (GLMACHE,CLEC12A = III).
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distress syndrome (ARDS)-associated hypoxemia in non-survivors, promoting the development of megakary-
oerythroid progenitor cells and proerythroblasts into erythrocytes and affecting hemoglobin levels in erythrocyte 
progenitor  cells19. Seven days later, the transcriptomic differences between the different patient outcome groups 
mainly pointed towards cellular differentiation, especially of hematopoietic stem cells, which was still induced by 
hypoxemia. In the context of COVID-19, the relationship between different degrees of hypoxemia and mortality 
has already been  demonstrated20. However, we found that the most promising classifiers for clinical outcome, 
CLEC12A, and ACHE, were not directly linked to hypoxia, but were involved in the regulation of the patient’s 
immune response.

We demonstrated decreased expression of CLEC12A in COVID-19 non-survivors in the ICU. CLEC12A 
belongs to the dectin gene cluster and is a transmembrane cell surface receptor expressed mainly on myeloid cells 
that binds monosodium urate (MSU) crystals. MSU crystals are DAMPs formed after the release of soluble uric 
acid from dead cells. Whether there is a causal link between the recently reported low serum uric acid levels of 
COVID-19 patients, which appear to be strongly associated with disease severity and its progression to death, and 
the decreased expression of CLEC12A cannot be fully  answered21. Still, such a physiological alteration could affect 
expression of CLEC12A. Alternatively, a reported reduction in CLEC12A expression upon inflammatory stimuli 
could also be a possible cause for the lower expression levels in COVID-19 patients with worse  outcome22,23. 
CLEC12A acts anti-inflammatory by limiting the neutrophil recruitment to damaged tissue through inhibition 
of CXCL1 and CXCL10 production. In addition, IL-8 and reactive oxygen species (ROS) production in activated 
neutrophils is limited by inhibition of tyrosine-protein kinase SYK. Thus the NF-κB pathway is inhibited by 
the CLEC12A-recruited tyrosine phosphatases SHP-1 and SHP-224,25. For example, critically ill patients have 
excessive levels of ROS, leading to tissue damage, thrombosis, and red blood cell dysfunction, which in turn 
contribute to the severity of COVID-1926. On the other hand, CLEC12A enhances the IFN response following 
viral infection, thereby enhancing the antiviral immune response, which is diminished and delayed in patients 
with COVID-19 and is only observed in patients developing critical  illness12,27. A recent study found that the 
SARS-CoV-2 S protein can bind to the C-type lectin receptors (CLRs) DC-SIGN, L-SIGN, and CLEC10A. The 
binding promotes the expression of inflammatory cytokines in myeloid cells, which correlates with disease 
 severity28. CLRs act in concert with Toll-like receptors (TLRs), thereby promoting inflammation and contribut-
ing to the pathological amplification of inflammatory  responses29. These findings highlight the importance of 
CLRs and their effect on the immune response for COVID-19. By detecting cell death, CLEC12A constitutes an 
immune checkpoint that provides a negative feedback mechanism for immune regulation and tissue protection 
from an excessive inflammatory  response30. Protection from an overwhelming immune response in COVID-19 
is critical for patient survival and the regulation of inflammatory factors, like IL-8, ROS, or CXCL10 by CLEC12A 
might play an important functional role, besides its utility as a biomarker for outcome prediction in critically 
ill COVID-19 patients.

In addition to CLEC12A, we also identified the time-independent increased expression of ACHE in COVID-
19 patients with a worse outcome. Like CLEC12A, ACHE affects the regulation of immune response intensity. 
The substrate of ACHE, acetylcholine (ACh) also acts as an anti-inflammatory molecule in addition to its func-
tion as a neurotransmitter. ACh can activate the cholinergic anti-inflammatory pathway (CAP) by binding to 
the α7 nicotinic acetylcholine receptor (α7 nAChR), which inhibits the TLR-activated NF-κB pathway and thus 
the expression of inflammatory cytokines such as IL-6, IL-8, and TNFα31. The observed increased expression of 
ACHE would lead to a decrease in ACh levels as it is metabolized, and thus ACHE might have a proinflamma-
tory effect in COVID-19 patients leading to a worse outcome. Farsalinos et al. hypothesized that some clinical 
manifestations of COVID-19 (anosmia, cytokine storm, and thromboembolic complications) may also be associ-
ated with dysfunction of the nicotinic cholinergic system or CAP, but no clear evidence of a connection between 
COVID-19 severity and CAP has been described  yet32. On the other hand, the increased ACHE expression in 
patients with a worse clinical outcome could be a manifestation of the observed increased differentiation of 
hematopoietic stem cells into erythrocytes since ACHE is primarily expressed in neuronal cells or erythrocytes. 
Nevertheless, the demonstrated potential of ACHE to predict the severity of COVID-19, especially in combina-
tion with CLEC12A holds great potential. The identified biomarkers CLEC12A and ACHE might both examine 
the ability of an individual to inhibit upstream activation of the NF-κB pathway, albeit by different mechanisms, 
and thus the ability to prevent an overwhelming immune response in COVID-19. It should be explicitly noted, 
that both patient groups received immunosuppressive drug treatment (e.g. dexamethasone) in a comparable 
measure. In principle, the increased expression of ACHE in COVID-19 non-survivors and the increased expres-
sion of CLEC12A in COVID-19 survivors could be due to either COVID-19 itself or might represent an unknown 
predisposing factor for the development of severe COVID-19. The significantly lower expression of CLEC12A 
and ACHE in healthy controls compared to the two COVID-19 patient groups suggests that the expression of 
these genes might be induced during severe COVID-19 and is probably not a predisposing factor. However, this 
finding still needs to be validated within larger groups of COVID-19 patients and healthy controls for a more 
robust evaluation.

Several publications characterize the blood transcriptome and host-response of COVID-19 patients, but their 
main focus is not the identification of biomarkers for risk stratification or outcome  prediction33–36. So far, no study 
on blood transcriptome biomarkers for outcome prediction of COVID-19 has been published, but an interesting 
prospective validation study has been  announced37. The presented results in this study might improve the ability 
to determine which COVID-19 patients are at high risk of death in the ICU based on intracellular transcription 
levels of two proteins. The ability of ACHE and CLEC12A to discriminate between a favorable and unfavorable 
outcome for COVID-19 patients showed better performance than that of existing biomarkers, like CRP and 
PCT independent of the sampling time, and better than the SOFA score at day 0. Comparison of our blood 
transcriptome biomarkers with other recently reported novel biomarkers for outcome prediction in COVID-19 
patients using nasal swabs or ELISA assays will provide considerable value for patient  stratification38,39. The main 
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limitation of the presented study are the small sample sizes. To overcome some of the resulting drawbacks, the 
comparably small sample size of the RT-qPCR verification experiments should be increased to evaluate more 
accurately the classification performance of CLEC12A and ACHE biomarkers. In addition, the clinical utility also 
needs to be evaluated to determine whether early identification of COVID-19 patients in the ICU who are at high 
risk of mortality can improve outcomes. Given the recent development and approval of drugs such as Paxlovid or 
Molnupiravir that reduce mortality in COVID-19 patients when administered early, this issue is of great interest.

Methods
Study design. This study included COVID-19 patients of the first, second, and beginning third wave of 
the pandemic in Germany, who were treated on the ICU of University Hospital Essen between April 2020 and 
August  202140. In addition, healthy individuals were included as controls. Study protocols were approved by 
the ethics committee of the medical faculty of the University Duisburg-Essen (17-7824-BO and 20-9216-BO). 
Patients and healthy controls were enrolled after detailed information and written informed consent. All experi-
ments were performed in accordance with the approved protocols. Participating patients were assessed by the 
WHO Ordinal Scale of Clinical Improvement (score 0–10) and were grouped into two groups according to their 
disease severity and clinical outcome (worst rating during hospitalization): survivors (WHO 5–6) and non-sur-
vivors (WHO 10)3. All patients received a guideline conform COVID-19 therapy according to the valid AWMF 
guideline or the COVRIIN  recommendations41–43. In total, 12 surviving patients with a WHO score of 5 or 6 
(belonging to the moderate or severe disease group) and 12 non-surviving patients with a WHO score of 10 were 
matched according to age, gender, BMI, and SOFA-score at day 0 (Supplementary Table S1). For all 24 patients, 
blood samples were collected at admission to the ICU (day 0) and seven days after admission (day 7), resulting 
in a total sample size of n = 48 (day 0: n = 24 (survivor n = 12, non-survivor n = 12), day 7: n = 24 (survivor n = 12, 
non-survivor n = 12)). The same sample sizes apply to the clinical standard of care markers analyzed, namely 
CRP, SOFA, and PCT. Following identification of differentially transcribed genes with prognostic potential by 
RNA-Seq, a reverse transcription quantitative PCR (RT-qPCR) approach was established for clinical validation 
(Supplementary Figure S1). Additionally, RT-qPCR assays were performed with blood samples from independ-
ent healthy individuals (n = 13).

RNA extraction. Blood of all patients was collected in PAXgene Blood RNA tubes (BD, Heidelberg, Ger-
many), incubated at room temperature for 2 h to achieve complete lysis of blood cells, and frozen at − 80 °C until 
further processing. Before nucleic acid isolation, tubes were thawed at room temperature for 2 h. Nucleic acid 
isolation was performed using the QIAcube (Qiagen, Hilden, Germany) and the PAXgene blood miRNA kit 
according to the manufacturer’s protocol to extract gene-encoding mRNAs. On QIAcube, part A of the standard 
PAXgene blood miRNA protocol was used. Nucleic acids were eluted in 2 × 40 µL Buffer BR5. The quantity and 
quality of the isolated RNA was determined with a Qubit Fluorometer 3.0 (Life Technologies, California, USA) 
and a Fragment Analyzer (Agilent, Santa Clara, California, USA), respectively.

Reverse transcription quantitative PCR. 500 ng of total RNA was converted into cDNA using Quan-
tiNovaTM Reverse Transcription Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. 
The utilized kit includes a genomic DNA elimination step. Reverse transcription quantitative PCR (RT-qPCR) 
was performed using the LightCycler®480 (Roche, Mannheim, Germany). A 20 μL reaction contained 10  µl 
2 × QuantiTect SYBR Green PCR Master Mix (QIAGEN, Hilden, Germany), 3 μL  ddH2O, 6 μL cDNA template, 
and 2.5 μM of each primer. The primer sequences are provided in Supplementary Table S2. The following ther-
mal conditions for amplification were applied: 95 °C for 15 min, followed by 45 cycles at 94 °C for 15 s, 60 °C 
for 30 s and 72 °C for 30 s, and final 72 °C for 5 min. Melting curves were obtained by slow heating (0.5 °C/s) at 
temperatures in the range of 65 to 95 °C. The  2-ΔΔCT method was performed for relative quantification analysis 
using the housekeeping genes PEX16 and FPGS44. For PEX16, the PCR product was analyzed using Fragment 
Analyzer (Agilent, Santa Clara, California, USA) to ensure that only a single PCR product was obtained (Sup-
plementary Figure S6). Samples were excluded from RT-qPCR if less than 400 ng of RNA remained after NGS. 
This resulted in a reduced sample size of n = 33 (survivors n = 18 (day 0 n = 8, day 7 n = 10), non-survivors n = 15 
(day 0 n = 9, day 7 n = 6).

Preparation of NGS libraries and sequencing. Library preparation and sequencing were performed 
using 200 ng RNA with the TruSeq RNA library prep kit v2 (Illumina, San Diego, CA, USA), using a Biomek 
FXP liquid handling robot (Beckman Coulter, Brea, CA, USA). Sequencing of the libraries was performed with 
NextSeq2000 (Illumina, San Diego, CA, USA), resulting in an average of 50 million 50 bp single-end reads per 
sample.

Differential gene expression analysis. Raw sequencing reads were processed with BBTools (bbduk.
sh) to remove sequencing artifacts and poor-quality  reads45. Reads were mapped against the human reference 
genome assembly GRCh38.80 using NextGenMap (v. 0.5.5) with default  settings46. Downstream quantification 
of genes in raw read counts as well as in TPM (= transcripts per million mapped reads according to Wagner 
et al.47.) was carried out exclusively with uniquely mapped reads using Gencode annotation v22 (Ensembl release 
80) with the python script “rpkmforgenes.py” by Ramskold et al. (available at https:// bit. ly3262/ QgQ48 . Identifi-
cation of DEGs was done with the R package DEBrowser (v. 1.2.0) using the implemented DESeq2 method with 
raw read counts and default  settings49,50. Genes were considered as differentially expressed between two condi-
tions (12 biological replicates per condition) with an adjusted p-value (FDR, false discovery rate) ≤ 0.01 and a 
 log2 fold change ≤  − 1 or ≥ 1. Boxplots were created with the R package ggpubr (available at https:// github. com/ 

https://bit.ly3262/QgQ
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kassa mbara/ ggpubr). Volcano plots for the differential expression analysis were generated with  VolcaNoseR51. 
The dimensions of the identified DEGs were reduced by principal component analysis (PCA), and the first three 
principal components were visualized in R with pca3d (v. 0.10.2). In addition, the biological functions of the 
DEGs were analyzed using g:Profiler with default settings (over-representation analysis, ORA), and pathways 
with an adjusted p-value ≤ 0.05 were considered  significant52.

Biomarker classification performance. DEGs of the surviving and non-surviving comparisons at day 
0 and day 7 were compared using DiVenn (v. 2.0.0) to identify time-independent  DEGs53. The time-independ-
ent DEGs were evaluated and ranked based on their ability to classify patients into survivors or non-survivors 
regardless of the time point. For this purpose, the non-normalized TPM value of the respective gene was used 
as a predictor for ROC curve analysis in R with pROC (v. 1.17.0.1)54. For improved classification power, two 
biomarkers were combined in a binomial generalized linear model (GLM) as proposed by Mazzara et al.18. The 
GLM has the following regression Eq. (1):

where β are the coefficients determined by the model and X the independent variables, which are the biomarker 
readouts (e.g.  2−ΔΔCT (gene)). To predict the outcome probability of a patient, the following sigmoid function 
(2) was used:

where p(X) is the probability that a patient survives. Differences between AUROC curves were tested for statisti-
cal significance with the "roc.test" function from the R package pROC using the bootstrap method and 10.000 
permutations, while the remaining parameters were set to default values (one-sided test, α = 0.05).

Detection of infectious microorganisms in blood plasma of patients. Library preparation and 
sequencing were carried out as previously described from 1 ng cell-free deoxyribonucleic acid (cfDNA) using 
the NEXTFLEX Cell Free DNA-Seq Library Prep Kit 2.0 (Perkin-Elmer, Waltham, MA) with a Biomek FXP liq-
uid handling robot (Beckman Coulter, Brea, CA)16. Sequencing of the libraries was performed on a NextSeq2000 
(Illumina, San Diego, CA), resulting in 25–30 million 100 bp single-end reads, on average, per sample. Bioinfor-
matic processing and sepsis indicating quantifier (SIQ) score calculation were carried out as described  before16.

Data availability
The utilized raw RNA-Seq data is deposited in the sequence read archive (SRA) of the national center for bio-
technology information (NCBI) under the following accession number: PRJN815981. All data are fully available 
without restriction.
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