
Parallel Inference of Phylogenetic Stands
with Gentrius

Anastasis Togkousidis1,2, Olga Chernomor3, Alexandros Stamatakis4,1,2

1Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies
2Institute for Theoretical Informatics, Karlsruhe Institute of Technology

3Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories,

University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC),Vienna, Austria
4Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology - Hellas

Email: anastasis.togkousidis@h-its.org

Abstract—Multi-locus datasets are frequently used to infer
phylogenies instead of using single locus. Missing data constitute a
common challenge in such datasets as they can lead to stands, that
is, sets of trees that are compatible with the incomplete per-locus
trees. Under many common criteria the trees from one stand have
identical score. Hence, identifying stands and determining their
sizes is of crucial importance for a robust phylogenetic analysis.
Recently, Chernomor et al. published Gentrius, a branch-and-
bound algorithm that enumerates all stand trees given a set of
unrooted incomplete locus trees. Despite its efficiency, the pattern
and proportion of missing data in multi-locus datasets can still
induce extremely long execution times.

Here, we introduce the parallel version of the Gentrius algo-
rithm. Our parallelization deploys a thread-pooling mechanism
that maintains threads that finish early in busy-wait mode, such
that they can contribute to solving long-running tasks. Thereby,
we substantially reduce load imbalance and attain high parallel
efficiency. Our performance assessment up to 16 cores yields lin-
ear parallel speedups on both, simulated, and empirical data. The
parallel version of Gentrius is available as open source code under
GNU GPL at https://github.com/togkousa/iqtree2/tree/terragen.
All data we used for our analyses, are available for download at
https://cme.h-its.org/exelixis/material/gentrius-parallel.tar.gz.

Keywords-phylogenetic stands, phylogenetic terraces, multi-
locus data, parallel computing, shared memory parallelism

I. INTRODUCTION

Standard phylogenetic methods infer trees from multiple

sequence alignments (MSAs), for instance using the Maxi-

mum Likelihood (ML) criterion [1]. It is common practice to

construct MSAs from a single gene/locus, comprising the se-

quences of distinct species. One may assume that this genome

region constitutes a valid proxy for the evolutionary history

of the respective species. However, different genes might have

evolved under different models and parameters [2] and exhibit

a distinct evolutionary history than the underlying species tree.

Thus, phylogenetic inferences conducted on distinct genes

might yield incongruent tree topologies.

Two alternative approaches to reconstructing phylogenies

are the so-called supermatrix and supertree methods. In the

first case, per-gene MSAs are assembled/concatenated into

a large supermatrix that is typically divided into disjoint

partitions, often representing the distinct genes/loci. The phy-

logenetic tree is then inferred from this supermatrix, where

each gene is typically assumed to evolve under its own model

of evolution while all genes share the same underlying tree

topology. Second, in supertree methods separate gene trees

are initially inferred for each gene and, then, are reconciled

into a species tree by maximizing appropriate criteria, such

as the reconciliation likelihood [3] or the quartet-consistency

score [4].

Multi-locus datasets often exhibit patches of missing data.

That is, a species may have no data present in a specific

locus, either due to sampling issues, or because the target

locus is simply absent in species genome. The presence and

absence of data can be represented by a presence-absence
species per locus matrix (PAM). The pattern and amount

of missing data in PAM can lead to the so-called stands -

collections of all species trees compatible with a set of cor-

responding induced per locus subtrees (Section II-A). Under

many scoring criteria typically used in phylogenetics (e.g.

likelihood, parsimony in supermatrix, or quartet-consistency

score in supertree approaches), all trees from the stand have

identical scores. In such cases, stand is called a terrace. The

concept of terraces was first used implicitly in [5] and was

explicitly described in [6], [7] for supermatrix and in [8], [9]

for supertree approaches.

Missing data are rather common in multi-locus empirical

datasets. In the RAxML Grove v0.7 database [10], we counted

7, 295 empirical, partitioned multi-gene datasets, 4, 959 (68%)

of which had a non-zero proportion of missing data and 1, 390
(19%) a missing data proportion exceeding 30%. Identifying

stands/terraces in such datasets constitutes an important step,

both when searching tree space, and when post-analyzing the

tree inference results. The presence of terraces indicates that a

single inferred tree only represents one of many equally good

solutions. The first systematic attempt for detecting stands

was the implementation of the SUPERB algorithm [11] in a

python tool called terraphy [12]. Thereafter, Biczok et al. [13]

developed two efficient and independent C++ implementations

of the same algorithm. The main limitation is that the original

SUPERB algorithm is defined on rooted trees. In practice,

almost all ’classic’ phylogenetic inference tools and methods

return unrooted trees. In order to consistently root these

unrooted trees, tools implementing the SUPERB algorithm

139

2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-1199-0/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPSW59300.2023.00035

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
79

-8
-3

50
3-

11
99

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

W
59

30
0.

20
23

.0
00

35

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

require the input dataset to contain at least one so-called

comprehensive taxon, that is, a taxon that has data for all
partitions of the MSA.

Recently, Chernomor et al. developed the Gentrius algo-

rithm [14], a novel approach for enumerating trees on a

stand from a set of unrooted, incomplete trees (i.e., trees

not containing all taxa). Gentrius is a branch-and-bound type

algorithm (Section II-B). It improves upon two aspects over

the previous methods; it directly operates on unrooted trees

and does not rely on the presence of a comprehensive taxon

to conduct the enumeration. Gentrius is implemented in IQ-

TREE 2 [15] in C++ and is executed sequentially. However,

the computational complexity of building stands for unrooted

trees is intractable [16]. Moreover, the number of trees on

the stand can be also exponential [17]. Both these aspects,

depending on the input tree and PAM, contribute to excessive

running times to obtain even a lower bound on stand size.

To this end, we developed a parallel shared memory version

of Gentrius that deploys a thread-pooling approach. That is,

active threads continuously create and push new tasks into a

queue, while inactive threads - those that have finished their

jobs - remain in waiting mode until a new task becomes

available in the queue. Essentially, each thread enumerates a

fraction of the overall trees on stand, and the entire stand size is

determined by summing up those individual calculations. Our

experimental results (Section IV) yield linear parallel speedups

up to 16 cores on both simulated and empirical data.

In this paper we present the parallelization of the Gentrius

algorithm. The sequential algorithm and its practical applica-

tions are discussed in the original manuscript. The paper is

organized as follows: In Section II, we present the underlying

idea of the Gentrius algorithm, while in Section III we intro-

duce our parallelization approach and its implementation via

thread-pooling. We conduct a thorough parallel performance

evaluation of Gentrius in Section IV. We conclude in Section

V and indicate directions of future work.

II. OVERVIEW OF GENTRIUS

A. Background

Data availability in multi-locus datasets is typically summa-

rized via a binary PAM. Its elements are 1’s and 0’s, indicating

the presence or absence of data for each species and locus.

Let X be the full set of species/taxon labels in the PAM.

Consider any binary tree T on X and let Yi ⊆ X be the

subset of available taxa for locus i. Hence, X =
⋃m

i=1 Yi,

where m is the number of loci. Further, let Ti be a tree on

Yi. We say that T displays Ti if T |Yi = Ti, where the vertical

bar denotes the subtree induced by restricting/pruning T to the

taxa contained in Yi. Two trees are compatible if there exists a

tree that displays both of them. In other words, T ′
1 and T ′

2 are

compatible if there is a single tree T ′
0 from which both T ′

1, T
′
2

can be derived by a sequence of edge contractions. Such a tree

exists if and only if two trees have identical induced subtrees

for their common taxa. A stand is defined as the set of all trees

on X that are compatible with all trees Ti, each one defined

on Yi for locus i.

Gentrius is a deterministic, branch-and-bound algorithm that

generates all trees on a stand, given a set of incomplete,

unrooted subtrees. One of these subtrees serves as the initial

tree, which we will call the agile tree. The algorithm uses the

principle of stepwise taxon insertion, meaning that taxa which

are not present in the initial agile tree are inserted sequentially

into it, until it comprises all taxa contained in the set of

subtrees. The incomplete subtrees are also called constraint
trees, since they restrict taxon insertion positions to comply

with the compatibility condition. There might be multiple

edges where the non-present taxon can be inserted into the

agile tree. For the enumeration of all stand trees, Gentrius

tests all possible edges by successively inserting, removing,

and re-inserting taxa into the agile tree. The standard output

of the Gentrius algorithm is the number of trees on the stand

and their topologies in the Newick tree format.

A second input option of Gentrius is to provide a complete

species tree inferred with any phylogenetic method, together

with a PAM. Gentrius will then extract the set of induced sub-
trees from the species tree. Each induced subtree is obtained

by removing the taxa with zero entries for the corresponding

locus in the PAM. This set of induced trees now constitutes

the initial set of constraint trees described above and serves

as a starting point for the algorithm.

A new taxon can be inserted only into admissible branches.

A branch is called admissible, if after the taxon insertion

the agile tree extended thereby is pairwise compatible with

each constraint tree. We can effectively identify the set of

admissible branches for each taxon using the so-called double-

edge mapping approach which is described in detail in the

Supplementary material of [14]. For each agile tree/constraint

tree pair, Gentrius constructs their common subtree and maps

the branches of the agile tree and constraint tree onto the

branches of the common subtree. The mappings follow precise

rules to comply with the compatibility criteria. Both mappings

are surjective, meaning that for every branch in the common

subtree, there is at least one branch in the agile tree (and

the constraint tree as well) that is being mapped onto it.

Multiple branches, though, from the agile/constraint tree can

be mapped onto a signle branch in the common subtree. For

taxon insertion, Gentrius maps its incident branch from the

constraint tree onto a branch b̂ in the common subtree. Next,

the set of admissible branches is determined via the inverse

mapping of b̂ onto the agile tree. In case a taxon occurs in

many constraint trees, the intersection of the corresponding

individual branch sets is taken. After each taxon insertion or

removal, these mappings are updated. We define a state of the

algorithm to be the current agile tree, together with the set of

constraint trees, the common subtrees, and the corresponding

mappings at a given point in time. An intermediate state is

a state in which the current agile tree is still incomplete (i.e.

some of the taxa have not been inserted yet).

B. Algorithm

The core of the Gentrius algorithm is the recursive pseu-

docode function in Algorithm 1. The functions, in the order

140

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 1: Schematic overview of the Gentrius workflow. (a) A simple example where only two taxa, a, and b are missing from the initial
tree. The admissible insertion branches for taxon a are {1, 2} and {3, 4} for taxon b, respectively. There is no overlap between the two
insertion branch sets. Gentrius initially inserts taxon a and then proceeds to taxon b. Arrows 1 − 12 illustrate the sequence of alternating
states, generated by the recursive function of Algorithm 1. (b) A simple example showing that we cannot know a priori the set of admissible
branches for all taxa. Here, taxa a and b can be both inserted into branch 1 of the initial tree. The two sets of admissible branches overlap.
Following the insertion of taxon b, taxon a can now be inserted into branches {1, 2, 3} of the new tree, without violating the compatibility
condition.

they appear, are:

• generateStandTrees(): The main recursive func-

tion. Its arguments are the state of the algorithm, the

list of taxa to be inserted and an integer step which

indicates the recursion depth.

• getNextTaxon(): Takes as input the state of the

algorithm, the list of taxa to be inserted and the integer

step. It returns the next taxon to be inserted into the

agile tree.

• getAllowedBranches(): Takes as input the state

of the algorithm and the taxon to be inserted. Returns

the set of admissible branches based on the double-edge

mappings.

• extendTaxon(): Takes as input the state of the algo-

rithm, the taxon to be inserted and the admissible branch.

It inserts the taxon into the agile tree, updates the double-

edge mappings and returns the new state.

• removeTaxon(): Takes as input the state of the algo-

rithm and the taxon to be deleted. It removes the taxon

from the agile tree, updates the double-edge mappings,

and returns the new (previous) state.

Algorithm 1 generateStandTrees (state, list_of_taxa, step)

1: taxon ← getNextTaxon (state, list_of_taxa, step)
2: branches ← getAllowedBrances (state, taxon)
3: for branch in branches do
4: new_state ← extendTaxon (state, taxon, branch)
5: generateStandTrees (new_state, list_taxa, step + 1)
6: if no more taxa then
7: standTrees ← standTrees + 1
8: end if
9: state ← removeTaxon (new_state, taxon)

10: end for

An example of the Gentrius workflow is provided in Figure

1a. Under this simple scenario, Gentrius inserts taxa a and

b, which are initially missing from the incomplete agile tree,

into all possible combinations of admissible branches, starting

from taxon a and continuing with taxon b. Here, the algorithm

counts four stand trees in total.

Based on Figure 1b, we can argue that it is impossible to

know the set of admissible branches for all taxa, a priori.

Chernomor et al. argue that the choice of the initial agile

tree and the order of taxon insertion substantially affect the

efficiency of Gentrius [14]. The efficiency is determined by

the number of all generated intermediate states and the number

of dead ends encountered. A dead end is defined as an

intermediate state where at least one of the remaining taxa

cannot be inserted into the agile tree without violating the

compatibility condition. In this case, the algorithm removes

the last inserted taxon from the agile tree and re-inserts it into

a distinct admissible branch, if such a branch exists. Thus, an

"unlucky" choice of the initial tree and an unfavorable taxon

insertion order can induce visiting numerous irrelevant inter-

mediate states leading to dead ends. While the algorithm will

nonetheless correctly generate all stand trees, the execution

time will be noticeably longer.

To accelerate the enumeration of stand trees, Gentrius uses

two heuristics. The first one is to chose a "good" initial tree.

Gentrius selects the constraint tree, which shares the largest

number of taxa with all remaining constraint trees. The second

heuristic is called dynamic taxon insertion. At each step, Gen-

trius selects the taxon with the smallest number of admissible

branches, to be inserted next. To illustrate the validity of both

heuristics, we tested them on dataset emp-data-42370. The

number of stand trees on this dataset is 2, 448, 225. When both

heuristics were applied, Gentrius visited 547, 786 intermediate

states and 0 dead ends. This translates into 14 seconds of

serial execution time1. By deactivating the initial tree selection

1on an 11th Gen Intel(R) Core(TM) i7-1165G7 processor @ 2.8 GHz

141

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Fig. 2: (a) First division of the total process into multiple parallel
threads. The green state is the state of the initial split. Parallel
execution is initiated when the algorithm encounters the first taxon to
be inserted into multiple branches. (b) An alternative splitting scheme
where the number of admissible branches in the initial split state
(green state) exceeds the number of threads.

Fig. 3: An example of an unbalanced work distribution among
threads. Thread 1 chooses the path that leads to the left subtree that
only consists of a single dead end. The right subtree comprising a
substantially larger amount of work is assigned to Thread 2. This
imbalance occurs as we can not predict the structure of the workflow
tree a priori.

heuristic and starting from a random constraint tree, Gentrius

visited 6, 829, 128 intermediate states and 0 dead ends in

50 seconds (3.5x slowdown). By deactivating the dynamic
taxon insertion heuristic and randomly shuffling the taxon

order, Gentrius visited 30, 124, 986 intermediate states and

1, 547, 640 dead ends in 174 seconds (12x slowdown).

In the worst-case scenario, the number of trees on a stand

can be exponentially many [17]. Moreover, generating even a

single tree from the stand is also computationally intractable

[16]. To prevent excessive runtimes Gentrius employs three

stopping rules:

1) when the algorithm counted more than N stand trees

2) when more than M intermediate states have been visited

3) when the execution requires more than T hours

The default values for these stopping rules are: N := 106

stand trees, M := 107 intermediate states and T := 168
hours. The algorithm terminates when either, all stand trees

have been enumerated, or when one of the stopping conditions

is satisfied.

III. PARALLEL GENTRIUS

In this section we introduce a parallelization scheme for

Gentrius which is based on a thread pooling approach.

Thereby, we attain "good" load balance and a substantial

parallel speedup for Gentrius.

A. Underlying idea

Figure 1a illustrates the tree-like structure of the Gentrius

workflow. Intuitively, we can split the entire process into two

threads by assigning the left subtree of the workflow - rooted

at State 1 - to one thread and the right subtree to a second

thread. The final set of stand trees will then be the union of

the disjoint trees counted by each thread independently.

In principle, we parallelize by generalizing this idea to Nt

threads. All threads begin operating concurrently and each

thread independently parses the entire input set of constraint

trees. This redundant input parsing and storage by all threads is

necessary as each thread requires some degree of flexibility to

insert and remove taxa on its own agile tree. Since Gentrius

is a deterministic algorithm and the input is fixed, the first

stages of execution are identical across all threads. They all

select the same initial agile tree and begin by adding the exact

same taxa to it. For representative datasets (i.e. with relatively

small amount of missing data), the first couple of taxa can

be inserted into a single branch only, due to the dynamic

taxon insertion heuristic that is used to accelerate Gentrius.

However, at some point, Gentrius reaches a state where the

next taxon can be inserted into multiple branches. We define

this to be the state of initial split, where the first division

of the algorithm into independent subprocesses (concurrent

threads) takes place. Our parallel algorithm assigns the set

of admissible branches for a given taxon as uniformly as

possible among threads. For example, if there are 5 admissible

branches and four threads are being used, Gentrius will assign

two branches to one thread and one branch to each one of

the remaining threads, respectively. Thereafter, each thread

proceeds by adding the remaining taxa independently. In other

words, after this initial parallel split of the workload each

thread operates in a distinct branch of the branch-and-bound

algorithm. In cases where the very first taxon already needs to

be inserted into multiple branches, the initial split takes place

at the root of the workflow (branch-and-bound) tree. The idea

is outlined in Figure 2a.

A substantially distinct splitting scheme example is provided

in Figure 2b, where the state of the initial split has two

admissible branches for inserting the next taxon. If parallel

Gentrius is executed with three threads, the thread number

exceeds the cardinality of this set. Gentrius assigns the right

subtree of the workflow to one thread. The two remaining

threads both operate on the left subtree and their task sep-

aration occurs at a later stage when they encounter the first

taxon with two or more admissible branches. We define a path
that connects two states on the branch-and-bound graph to be

142

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

a sequence of taxon insertions/removals that, when applied

to the agile tree of a thread being in one state, it becomes

topologically equal to the agile tree of a second thread in a

different state. In Figure 1a, for example, if two threads are

in States 2 and 4 respectively, for the first thread to reach

the state of the second, taxa b and a shall first be removed

from its agile tree (from branches 3 and 1 respectively) and,

then, taxon a must be re-inserted into branch 2. Since double-

edge mappings are automatically updated after each taxon

insertion/removal, synchronization between the states of the

two threads is achieved. This idea is crucial for the second

part of our parallelization scheme.

As outlined in Section II-A through Figure 1b, the set of

allowed branches for taxon insertion is highly dependent on

the insertion position of the previous taxon. The main problem

that arises from this a priori uncertainty (i.e., simply not

knowing the structure of the workflow graph in advance) is,

that the initial division of the load can be unbalanced. For

instance, it is likely that we assign a part of the workflow tree

with a high number of stand trees, intermediate states, and

dead ends to one thread, and a separate path with substantially

less work to another. Figure 3 illustrates such an extreme

example.

To alleviate this load imbalance we devise a thread-pooling

parallelization scheme. A thread-pool maintains active threads

that have completed their task early, instead of terminating

them. The concept we deploy is also known as work-stealing.

In analogy to the initial split case, the division of the workload

among threads requires them to be in the exact same state,

and is accomplished by assigning a distinct subset of the

next taxon’s admissible branches to each thread. Our work-

stealing mechanism relies on the same idea. The first step such

that early finished threads can attain the state of the working

threads is to remove all taxa from their agile tree up to the

state of the initial split (state I0), which is the last common and

consistent state. Thereafter, these threads switch into busy-wait

mode. A task consists of the following components:

1) a path from state I0 to a desired intermediate state,

including the set of taxa to be added, their exact insertion

order, and positions

2) the remaining taxa, the very next taxon to be inserted

and a precomputed subset of admissible branches

Having passed state I0, working threads are allowed to

create and push tasks into a task queue. Each time a work-

ing thread moves between intermediate states by adding or

removing taxa, it keeps track of the path that connects I0
with its current state Ic. For creating a task, it calculates the

set of admissible branches for the next taxon and divides

it in half. The first half is submitted into the task queue,

together with the path that connects states I0 and Ic. The

working thread proceeds by executing the second half. An

inactive busy-waiting thread in the pool detects the new task

and switches into working mode. It sequentially inserts all

taxa into the predefined branches on its own agile tree, to

reach state Ic. The next taxon and the corresponding subset

Fig. 4: Schematic overview of the parallelization scheme.

of admissible branches are already specified in the dequeued

task. The new thread skips line 2 in Algorithm 1 (Section

II-B) and directly proceeds with the recursive function. Figure

4 provides a summary of the entire parallelization strategy.

The following implementation details need to be considered.

Our parallelization scheme requires each thread to exclusively

work on its own copy of the agile tree. When threads assume

independent tasks, they concurrently insert the exact same

taxa into different branches of the agile tree, to generate

all possible combinations of complete trees. This would be

infeasible, on an agile tree that is shared by multiple threads,

since concurrent insertion of the same taxon into multiple

branches would cause an assertion to fail in the code due to

inconsistency. Also, regarding the additional time required for

one thread to reach the state of another, Gentrius processes

hundreds of thousands of states per second2. For datasets

comprising up to a few thousand taxa, this translates into a

few milliseconds.

Finally, we have implemented some restrictions to the

generation and submission of tasks to avoid task overload.

There is an upper limit in the number of tasks that the task-

queue can hold concurrently. We define this limit to be Nt+1,

if Nt < 8, and Nt/2 otherwise (where Nt is the number of

threads). The second restriction is that threads whose current

state is deep down in the workflow tree, that is, threads

that have less than three remaining taxa to insert, are not

allowed to submit a new task, because counting the stand trees

beneath their current state is fast and hence will not benefit

from additional parallelization (work stealing). We selected the

values for both thresholds based on the results of preliminary

experiments.

B. Implementation

Our implementation combines the OpenMP API with the

C++ Thread library, for two reasons. First, OpenMP provides

convenient parallelization features at an abstract level, that is,

easy creation/destruction of threads and basic synchronization

primitives such as locks and barriers. The Thread library, on

the other hand, provides advanced synchronization primitives,

such as conditional variables, which are of crucial importance

in our design.

2on an 11th Gen Intel(R) Core(TM) i7-1165G7 processor @ 2.8 GHz

143

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

We create/destroy threads using the OpenMP API. More-

over, threads going into busy wait mode, wait for a condition

to be satisfied to assume a new task. To implement this

functionality and facilitate inter-thread communication we use

a combination of the std::condition_variable and

std::mutex classes from the C++ Thread library. This syn-

chronization primitive blocks a thread, until a shared variable

is modified by another thread (the condition). In our case,

this shared variable is the task-queue. Each time a working

thread submits a new task into the queue, it thereby notifies

all inactive threads, and one of them will subsequently dequeue

the task. To guarantee that the queue is accessed or modified

by a single thread at a time, we use OpenMP locks.

Mixing the OpenMP API with the Thread Library is not

problematic in our case, since the creation/destruction of

threads is exclusively controlled by OpenMP, while the use

of the Thread Library is limited thread synchronization via

conditional variables. Furthermore, Gentrius remains portable

in all currently compliant devices, because it is implemented

in IQ-TREE 2 [15], which in turn is written in C/C++ and

requires OpenMP as a prerequisite to compile.

In the original sequential version of Gentrius, the number

of stand trees, intermediate states, and dead ends is stored

in global variables. Each time the algorithm generates a new

state by inserting a new taxon, it updates the respective

global variable and checks if one of the stopping rules is

satisfied. To maintain this functionality in the parallel version,

we deploy shared-memory atomic integer variables via the

std::atomic template. We use them to protect the counters

for stand trees, intermediate states, and dead ends. While

the dead ends do not form part of the stopping rules, they

are printed in the output. Note that, as it was mentioned in

Section III-A, a single thread approximately visits hundreds

of thousands of states per second, depending on the number

of constraint trees and their corresponding topologies. This

translates into hundreds of thousands shared-memory writes

per second, or one write every few micro-seconds. In modern

multiprocessing systems architectures, the cost of atomic prim-

itives is estimated to require up to a few thousand CPU cycles

[18]. This translates into a time requirement to update these

counters in the order of hundreds to thousands nanoseconds.

As the number of threads increases, the probability of lock

congestion when updating these counters increases as well.

To avoid lock congestion we modified the counter updates.

Each thread only updates the global stand trees counter each

time it has counted 210 stand trees. For the global intermediate

states counter the restriction is 213 states, while for the global

dead ends counter the increment interval is, again set to 210.

Those settings have been empirically determined. We observed

an average parallel speedup improvement of 2 − 5% among

datasets when 16 threads were used. For example, in dataset

emp-data-3802 the speedup improved by 4%. Each time a

thread updates a global variable, it also checks whether the

stopping rule for the corresponding variable is satisfied and, if

so, notifies all threads to terminate. Evidently, this might lead

parallel Gentrius to occasionally exceed the limits specified by

the stopping rules. This does not constitute a problem, how-

ever, due to the capacity of Gentrius to process hundreds of

thousand states per second. In practice, the stopping rules are

exceeded by a few thousand stand trees/intermediate states or a

few milliseconds of execution time, while the actual specified

boundaries are in the order of millions stand trees/intermediate

states and hours of execution time.

The required data structures for our analysis are stored in

an object of type Terrace class, comprising the agile tree,

the constraint trees and the double-edged mappings. Func-

tionalities for taxon insertion/removal and mapping updates

are also implemented in the Terrace class. The trees are

implemented based on the respective IQ-TREE 2 template.

As mentioned before, at startup, each thread initializes its own

private Terrace object and operates on it consistently. Fi-

nally, a task is a structure of arrays containing the information

about the taxa that need to be inserted.

IV. PERFORMANCE EVALUATION

To evaluate the performance of parallel Gentrius, we ran

experiments on both simulated (Section IV-B) and empirical

(Section IV-C) datasets, up to 16 threads. In Section IV-A we

discuss the difficulties we encountered in our performance as-

sessment, since the Gentrius stopping rules distort the results.

In some cases, and depending on the dataset, one encounters

slowdowns, speedup plateaus, sub-linear, or even super-linear

speedups. We explain why this is the case via simple examples.

In Section IV-D we present a short analysis on how stopping

rules 1 and 2 affect the parallel efficiency. Finally, in Section

IV-E we anecdotally test scalability when more than 16 threads

are used. As test platform we used an Intel(R) Xeon(R)

Platinum 8260 48 double-core processor running at 2.4 GHz.

Initially, we thoroughly verified that the sequential and

parallel versions yield the exact same results for all datasets,

that is, the same number of stand trees, intermediate states, and

dead ends. For some datasets, we also verified that the stands

generated by the serial and parallel versions are identical, that

is, they comprise the exact same trees.

A. Variance in Speedups

In general, small datasets yield slowdowns in parallel Gen-

trius. We consider a dataset as being "small" when the serial

execution takes less than 1 second, although based on Figures

6 and 7 we could argue that the distinction between small and

big data is more fuzzy. Such small datasets typically comprise

up to a few thousand stand trees. Unsurprisingly, the slowdown

is caused by the thread creation and destruction overhead,

as well as inter-thread communication and task distribution,

which are time consuming in relation to the small sequential

runtime.

Apart from these slowdowns, we observed speedup plateaus

as well as sub-linear and super-linear speedups in parallel

Gentrius. The main cause for this behavior are the stopping

rules and the unbalanced structure of the Gentrius branch-

and-bound tree. A simple example for such an unbalanced

branch-and-bound tree is depicted in Figure 5a. In this simple

144

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

example, one encounters a speedup plateau, as the unbalanced

workflow structure forbids the working thread to create and

push new tasks into the queue. We recall that, for threads to

create new tasks, our parallelization scheme requires them to

be in a state with two or more admissible branches for the

next taxon, while two additional conditions need to hold; the

number of tasks in the queue should not exceed a pre-specified

upper limit, and the thread creating the task should be in a

state with more than two remaining taxa to be inserted into

its agile tree. In Figure 5a, if we assume an execution with

two threads, the first thread chooses the left path on the initial

split state, faces a dead-end and directly switches into busy-

wait mode. On the other hand, the second thread chooses the

right path and, after a sequence of intermediate states where

each intermediate state only comprises one admissible branch,

the second thread reaches the deepest levels of the workflow

tree with less than three remaining taxa, where task creation

for work-stealing is disallowed. Hence, the second thread is

unable to push new tasks into the queue, neither during the

sequence of intermediate states, nor after attaining the task

creation threshold. Irrespective of the number of threads being

used, the parallel runtime will be almost equal to the serial

runtime. In this case we have reached a speedup plateau.

We have observed such speedup plateaus of around 3x and

5x in simulated datasets sim-data-1511, sim-data-1792,

sim-data-1795. The serial runtime for those datasets is

below 10 seconds.

A second example of an unbalanced workflow structure is

shown in Figure 5b. In serial execution, after the initial split

state, the algorithm first descends into workflow subtree A.

Since this part of the workflow graph contains zero stand

trees, the algorithm can exceed the maximum intermediate

state limit (second stopping rule) and terminate. When exe-

cuting parallel Gentrius with two threads, the second thread

concurrently proceeds to the workflow subtree B and counts

more than a million stand trees. We observed this branch-and-

bound workflow structure in dataset sim-data-5001 under

the default stopping rule parameter settings. In serial execution

the algorithm terminates after 113 seconds, having counted 10
million intermediate states but zero stand trees. However, when

executed in parallel using two threads, the algorithm counts

1 million stand trees within 5 seconds, resulting in a 22.6x

speedup. Notably, even when the threshold is raised to 100
million intermediate states, serial execution is still unable to

count any stand trees and terminates after reaching this state

threshold in 1104 seconds, leading to a 220x speedup.

We can also apply Figure 5b when the first stopping

rule is satisfied, assuming that in serial execution Gentrius

first descends into workflow subtree B and terminates, after

counting 1 million stand trees. In parallel execution, however,

the speedup depends on the number of threads executing tasks

from the workflow subtree B, where more than 1 million

stand trees are detected, compared to the number of threads

descending into workflow subtree A. In such cases the user

might encounter speedups or plateaus. Overall, this behavior

is a result of the concurrent parallel descent into different

(a) (b)

Fig. 5: (a) First example of an unbalanced workflow structure which
induces a speedup plateau. (b) Second example of an unbalanced
workflow structure, which induces a super-linear speedup or speedup
plateau.

TABLE I: Adapted speedups of five datasets that reached the time
limit under serial execution.

Number of Threads

Dataset 2 4 8 12 16

emp-data-5873 1.9 3.8 6.9 8.8 12.2

emp-data-43820 2.4 3.9 8.7 9.7 11.2

emp-data-55114 2.3 4.5 8.1 9.6 9.1

sim-data-4666 1.9 3.8 7.0 8.1 11.1

sim-data-4843 1.6 3.0 6.9 8.8 10.1

branches of the branch-and-bound workflow in conjunction

with the stopping rules.

Finally, the third stopping rule sets an execution time thresh-

old. We discuss one dataset that exhibited apparent unexpected

behavior while running the main experiments on empirical data

(Section IV-B), that is emp-data-5873. The stopping rule

was set to five hours of execution time. The serial execution

terminated, due to the stopping condition, after five hours

(18, 000 seconds) having counted 387, 985, 999 stand trees.

In contrast, parallel Gentrius managed to enumerate the entire

stand, consisting of 485, 240, 625 trees, without triggering any

stopping rule; the execution with two threads required 11, 333
seconds. In this context, claiming that the speedup for two

threads is 18, 000/11, 333 = 1.58x underestimates the actual

speedup. Because the direct comparison of execution times in

such cases is inaccurate, we introduce the adapted speedup as

a more appropriate metric. We thus define the adapted speedup

for N threads (ASPN) as

ASPN =
STN/TN

ST1/T1
=

STN

ST1
× SPN

where STk, Tk denote the number of enumerated stand trees

and the execution time when k threads are used, and SPN

is the standard speedup metric for N threads, calculated by

simply dividing the corresponding execution times. Table I

shows these adapted speedups for five datasets that reached

the time limit threshold in serial execution.

B. Simulated data

To assess the performance improvement on simulated data,

we used the simulated instances from the original Gentrius

145

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 6: Per thread speedup distributions on simulated data. The mean speedups are depicted by a dashed line (s.e.t. stands for ’serial execution
time’). Speedup rates were calculated for: (a) 443 datasets have more than 1 second of s.e.t. (b) 234 more than 10 seconds s.e.t. (c), 147
more than 50 seconds s.e.t.

(a) (b) (c)

Fig. 7: Per thread speedups on empirical data, the mean speedup values are depicted by a dashed line (s.e.t. stands for ’serial execution
time’). Speedups were calculated for: (a) 162 datasets with more than 1 second s.e.t. (b), 116 with more than 10 seconds s.e.t. (c), 86 with
more than 50 seconds s.e.t.

manuscript. The set comprises 4, 997 instances with varying

sizes, different proportions of as well as distinct missing data

patterns; more specifically, taxon numbers ranged between 50
and 300, locus numbers between 5 and 30, and the proportion

of missing data ranged between 30% and 50%. We set the

stopping rule parameters to N := 109 stand trees, M := 109

intermediate states, and T := 5 hours for all executions (both

serial and multi-threaded). The reason why the values on rules

1 and 2 are equal is because, although it seems plausible

to expect more intermediate states, in the vast majority of

instances we end up counting more stand trees, due to the

dynamic taxon insertion heuristic.

To avoid the difficulties described in Section IV-A and

establish a fair base comparison, we filtered the datasets to

extract instances that do not trigger any stopping rules. We

did this by initially running parallel Gentrius for all datasets

with 16 threads and keeping only those datasets for which

we successfully calculated the entire stand. For these datasets

we then re-ran the analysis using Nt = {12, 8, 4, 2, 1} threads,

making sure the time limit was not exceeded as the number of

threads decreased. For the aforementioned reasons (see Section

IV-A), small datasets were also excluded, resulting in 443 final

datasets with serial execution times ranging from 1 second up

to 4 hours.

The results of our analysis on simulated data are summa-

rized in Figure 6. In Figures 6b and 6c we have raised the

threshold for small datasets from 1 second up to 10 and 50
seconds, respectively. We observe linear speedups with respect

to the number of threads/cores used.

C. Empirical data

We used the RAxML Grove database as an empirical dataset

source. We extracted 3, 097 datasets for our experiments. We

applied the exact same pipeline as for simulated data to

filter datasets and post-process results. This yielded 162 final

datasets with serial execution times ranging between 1 second

up to 3 hours. The results of our empirical data analysis are

summarized in Figure 7. The results indicate a linear with

respect to the number of threads/cores, when serial execution

time is greater than 50 seconds.

D. Stopping rule cases

Next, we analyze the impact of stopping rules on parallel

efficiency in more detail. We conducted short analyses of

datasets that encounter stopping rules 1 or 2. We characterize

these analyses as short, since we reduced the threshold value to

10 million stand trees and intermediate states respectively, so

as to minimize the runtime requirements of these experiments.

We collected 50 datasets of each type (empirical/simulated)

and measured the speedups by dividing the serial by the

146

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 8: Speedup distribution on datasets that trigger stopping rules 1
or 2. Short analysis on: (a) 50 simulated datasets. (b) 50 empirical
datasets.

TABLE II: Speedups for two large datasets, when more than 16
threads are used. The serial execution times for the two datasets are
11, 199.6 (emp-data-60587) and 17, 163.4 (sim-data-4677)
seconds respectively

Number of Threads

Dataset 16 32 48

emp-data-60587 12.0 20.37 26.18

sim-data-4677 13.43 23.01 29.46

parallel execution times, although as we argued in Section

IV-A this comparison might sometimes be misleading.

Figure 8 summarizes the results of our analysis. The

distribution of speedups on both simulated and empirical

data is substantially distorted, particularly so in the case of

simulated data where we observe a super-linear speedup for

a few datasets, for example in sr_sim-data-44. The tree-

like workflow structure of this specific dataset turns out to

be highly unbalanced, yielding a misleading impression that

it must comprise a plethora of dead ends and no stand trees,

when being analyzed with Nt = {1, 2} threads. In contrast,

when we use Nt = {4, 8, 12, 16} threads, the algorithm

terminates having counted 10 million stand trees, yielding

speedups of 5x, 25x, 41x and 59x for 4, 8, 12 and 16
threads, respectively. This striking variance among results is

an outcome of the unbalanced branch-and-bound workflow

structure combined with how threads chose their paths along

the workflow. The more threads are being used, the more

efficient and faster the exploration for stand trees becomes

for this specific dataset.

E. Scalability on more than 16 threads

To anecdotally test scalability when more than 16 threads

are used, we selected two datasets with comparatively

long sequential execution times. The two datasets are

emp-data-60587 and sim-data-4677, with sequential ex-

ecution times of 11, 199.6 and 17, 163.4 seconds, respec-

tively. The calculated speedups for executions using Nt =
{16, 32, 48} threads are shown in Table II.

V. DISCUSSION

We described, implemented, evaluated, and made available

an efficient parallel open-source version of Gentrius. Fast

threads that finish their own tasks early can subsequently

contribute to accelerating slower threads in completing their

tasks via a thread pooling mechanism that implements work

stealing. The parallel version of Gentrius now allows for

seamless computation of stands on large datasets using off-

the-shelf multi-core desktop and server systems.
Apart from the fact that we provide a faster solution for

counting trees on a stand, in some cases the multi-threaded

execution identifies trees on a stand that the serial execution

fails to detect in reasonable time. This is due to the parallel

descent into the distinct branches of the branch-and-bound

algorithm in conjunction with the implemented stopping rules.

Thus, multi-threaded execution allows for a potentially faster

and more efficient exploration of the workflow graph.
In terms of future work, we intend to explore different

heuristics for the taxon insertions order that can potentially fur-

ther increase parallel efficiency. Finally, we aim to redesign the

data structure and functions for mappings between branches

of trees, since, based on profiling results with Valgrind,

updating these mappings to add or remove taxa consumes

15− 30% of total runtime, depending on the dataset.
Summarising, identifying stands constitutes a crucial step

in species tree inference from multiple loci and investigation

of the uncertainty due to missing data. Hence, efficient bioin-

formatic tools such as parallelised Gentrius implementation

presented in this paper can be very helpful for pipelines and

methods predicting the difficulty of a phylogenetic analysis

such as recent systematic attempt by Haag et al. [19].

ACKNOWLEDGMENT

This work was financially supported by the Klaus Tschira

Foundation and by the European Union (EU) under Grant

Agreement No 101087081 (Comp-Biodiv-GR).

REFERENCES

[1] J. Felsenstein, “Evolutionary trees from dna sequences: A maximum
likelihood approach,” Journal of Molecular Evolution, vol. 17,
p. 368–376, 11 1981. [Online]. Available: https://doi.org/10.1007/
BF01734359

[2] Z. Yang, Molecular Evolution: A Statistical Approach. OUP
Oxford, 2014. [Online]. Available: https://books.google.gr/books?id=
T-LoAwAAQBAJ

[3] B. Morel, A. M. Kozlov, A. Stamatakis, and G. J. Szöllősi, “GeneRax:
A Tool for Species-Tree-Aware Maximum Likelihood-Based Gene
Family Tree Inference under Gene Duplication, Transfer, and Loss,”
Molecular Biology and Evolution, vol. 37, no. 9, pp. 2763–2774, 06
2020. [Online]. Available: https://doi.org/10.1093/molbev/msaa141

[4] M. Rabiee, E. Sayyari, and S. Mirarab, “Multi-allele species
reconstruction using astral,” Molecular Phylogenetics and Evolution,
vol. 130, pp. 286–296, 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1055790317308424

[5] A. Stamatakis and N. Alachiotis, “Time and memory efficient
likelihood-based tree searches on phylogenomic alignments with
missing data,” Bioinformatics, vol. 26, no. 12, pp. i132–i139, 06 2010.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btq205

147

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

[6] M. J. Sanderson, M. M. McMahon, and M. Steel, “Terraces in
phylogenetic tree space,” Science, vol. 333, no. 6041, pp. 448–
450, 2011. [Online]. Available: https://www.science.org/doi/abs/10.
1126/science.1206357

[7] M. J. Sanderson, M. M. McMahon, A. Stamatakis, D. J. Zwickl, and
M. Steel, “Impacts of Terraces on Phylogenetic Inference,” Systematic
Biology, vol. 64, no. 5, pp. 709–726, 05 2015. [Online]. Available:
https://doi.org/10.1093/sysbio/syv024

[8] I. T. Farah, M. M. Islam, K. T. Zinat, A. H. Rahman, and M. S.
Bayzid, “Phylogenomic terraces: presence and implication in species
tree estimation from gene trees,” bioRxiv, 2020. [Online]. Available:
https://www.biorxiv.org/content/early/2020/04/20/2020.04.19.048843

[9] M. Habib, A. H. Rahman, and M. S. Bayzid, “Terraces in species
tree inference from gene trees,” bioRxiv, 2022. [Online]. Available:
https://www.biorxiv.org/content/early/2022/11/24/2022.11.21.517454

[10] D. Höhler, W. Pfeiffer, V. Ioannidis, H. Stockinger, and
A. Stamatakis, “RAxML Grove: an empirical phylogenetic tree
database,” Bioinformatics, vol. 38, no. 6, pp. 1741–1742, 12 2021.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btab863

[11] M. Constantinescu and D. Sankoff, “An efficient algorithm for
supertrees,” Journal of Classification, vol. 12, p. 101–112, 3 1995.
[Online]. Available: https://doi.org/10.1007/BF01202270

[12] “Terraphy tool,” https://github.com/zwickl/terraphy, accessed: 2022-10-
13.

[13] R. Biczok, P. Bozsoky, P. Eisenmann, J. Ernst, T. Ribizel, F. Scholz,
A. Trefzer, F. Weber, M. Hamann, and A. Stamatakis, “Two C++
libraries for counting trees on a phylogenetic terrace,” Bioinformatics,
vol. 34, no. 19, pp. 3399–3401, 05 2018. [Online]. Available:
https://doi.org/10.1093/bioinformatics/bty384

[14] O. Chernomor, C. Elgert, and A. von Haeseler, “Identifying equally
scoring trees in phylogenomics with incomplete data using gentrius,”
bioRxiv, 2023. [Online]. Available: https://doi.org/10.1101/2023.01.19.
524678

[15] B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D.
Woodhams, A. von Haeseler, and R. Lanfear, “IQ-TREE 2: New Models
and Efficient Methods for Phylogenetic Inference in the Genomic Era,”
Molecular Biology and Evolution, vol. 37, no. 5, pp. 1530–1534, 02
2020. [Online]. Available: https://doi.org/10.1093/molbev/msaa015

[16] M. Bordewich, C. Semple, and J. Talbot, “Counting consistent
phylogenetic trees is #p-complete,” Advances in Applied Mathematics,
vol. 33, no. 2, pp. 416–430, 2004. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0196885804000107

[17] S. Böcker, “Exponentially many supertrees,” Applied Mathematics
Letters, vol. 15, no. 7, pp. 861–865, 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S089396590200054X

[18] F. Hoseini, A. Atalar, and P. Tsigas, “Modeling the performance of
atomic primitives on modern architectures,” in Proceedings of the
48th International Conference on Parallel Processing, ser. ICPP 2019.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3337821.3337901

[19] J. Haag, D. Höhler, B. Bettisworth, and A. Stamatakis, “From Easy
to Hopeless—Predicting the Difficulty of Phylogenetic Analyses,”
Molecular Biology and Evolution, vol. 39, no. 12, 11 2022, msac254.
[Online]. Available: https://doi.org/10.1093/molbev/msac254

148

Authorized licensed use limited to: Vienna University Library. Downloaded on August 14,2023 at 14:43:30 UTC from IEEE Xplore. Restrictions apply.

