
Modeling Obfuscation Stealth
through Code Complexity

Sebastian Schrittwieser1, Elisabeth Wimmer2, Kevin Mallinger1, Patrick
Kochberger1,3, Caroline Lawitschka1, Sebastian Raubitzek2, and Edgar R.

Weippl1

1 University of Vienna, Austria, {firstname.lastname}@univie.ac.at
2 SBA Research, Vienna, Austria {ewimmer,sraubitzek2}@sba-research.org
3 St. Pölten University of Applied Sciences patrick.kochberger@fhstp.ac.at

Abstract. Code obfuscation is often utilized by authors of malware to
protect it from detection or to hide its maliciousness from code analysis.
Obfuscation stealth describes how difficult it is to determine which pro-
tection technique has been applied to a program and which parts of the
code have been protected. In previous literature, most of the presented
obfuscation identification methods analyze the program code itself (for
example, the frequency and distribution of opcodes). However, simple
countermeasures such as instruction substitution can have a negative im-
pact on the identification rate. In this paper, we present a novel approach
for an accurate obfuscation identification model based on a combination
of multiple code complexity metrics. An evaluation with 4124 samples
protected with 11 different obfuscations, combinations of obfuscations,
and various compiler configurations demonstrates an overall classification
accuracy of 86.5%.

Keywords: software obfuscation · stealth · code complexity

1 Introduction

Malware authors use various types of code obfuscations to make their code more
difficult to detect and analyze. A Black Hat survey by Brosch et al. [4] from
2006 suggested that more than 90% of all malware samples identified in the wild
use packing obfuscation to protect themselves from detection. In a more recent
study from 2017, Rahbarinia et al. [33] found that 58% of all malware samples
are protected with off-the-shelf packers (not taking into account custom packers
which are used by about 35% of packed malware [27]). But also other obfuscation
techniques, such as virtualization, data encoding/encryption, and library hiding,
are frequently used to hide malicious code.

On the other hand, malware analysts and researchers aim to analyze un-
known malware samples efficiently and understand how they work. An essential
step in the analysis of obfuscated code is the identification of the obfuscation
method. It significantly simplifies the analysis as tailored de-obfuscation meth-
ods often already exist. Obfuscating transformations complicate code merely in

2 S. Schrittwieser et al.

its semantic representation and thus can often be undone if the exact obfuscation
method (e.g., the obfuscator tool and its configuration) is known.

The stealth of an obfuscation indicates how opaque the application of an
obfuscation is, both in terms of the type of obfuscation and the exact location in
the code to which the obfuscation is applied. In previous literature, obfuscation
stealth was mainly described in terms of code structures, such as for example,
the frequency of opcodes. In contrast, this paper presents a novel approach that
can detect obfuscation with high accuracy using a combination of different code
complexity metrics. For our approach it is not required to know the relative
changes in code complexity after applying an obfuscation. Instead, it is based
purely on absolute values and the insight that the different obfuscations generate
a characteristic pattern of increases, but also reductions of the various observed
complexity metrics.

In particular, our main contribution in this paper is the introduction of a
novel model for obfuscation stealth based on two obfuscators, 11 obfuscation
combinations, and 4124 obfuscated programs.

The remainder of this paper is structured as follows. Section 2 discusses re-
lated work, while in Section 3 the fundamentals of code obfuscation, obfuscation
stealth, and code complexity are presented. Section 4 introduces our novel ap-
proach to obfuscation identification. In Section 5, we show the results which we
then discuss in Section 6. Section 7 concludes the paper.

2 Related work

In previous literature, a protection technique was described as stealthy if the
resulting code resembles the original code as much as possible [8]. One major
problem with quantifying stealthiness is that it highly depends on the original
program whether or not a technique can be applied in a stealthy way. Sometimes
a specific technique might produce code that fits perfectly into the original code.
Other times however, the protection might generate code sections that clearly
differ from the rest of the code, for example, in terms of its structure. Collberg
et al. [29] described two types of obfuscation stealth. Local stealth measures
the difficulty of identifying the exact location of an obfuscation applied to code,
whereas steganographic stealth describes the difficulty of detecting that a specific
obfuscation was applied at all.

Previous approaches to obfuscation detection are mainly based on code struc-
tures such as opcode frequencies. Kanzaki et al. [18] proposed an artificiality met-
ric that measures the degree to which protected code can be distinguished from
unprotected code. Their results showed that while some types of obfuscations
strongly impact code artificiality, such as code encryption, others, for example
control-flow modifying obfuscations such as CFG flattening, have a minimal ef-
fect. In 2017 Wang et al. [39] proposed a method for identifying the obfuscation
tool, the applied obfuscation, and its configuration for protected Android appli-
cations. The method is based on machine learning using a feature vector from
the Dalvik bytecode of the app. A related methodology was presented by Bacci

Modeling Obfuscation Stealth through Code Complexity 3

et al. [2] in 2018. It utilizes features extracted from the Smali representation of
the application’s bytecode.

LOM by Kim et al. [20] uses a neural network-based classifier on the opcode
distribution of binary code for obfuscation identification.

3 Preliminaries

3.1 Code obfuscation

Obfuscating transformations convert code – either in the form of source, byte,
or executable code – into code that is unintelligible in some form, either by a
human code analyst or by an automated code analysis tool. The development
of new code obfuscation techniques is mainly driven by the desire to hide the
specific implementation of a program. This includes malware authors, who aim
at hiding the malicious purposes of their code. Thus, breaking obfuscations is a
fundamental prerequisite of malware detection. Code obfuscations can be cate-
gorized into various classes, such as layout transformations (which modify the
superficial structure of the code) or control flow transformations (which alter
the control flow path of a program while retaining its semantics [35]).

Obfuscations are usually applied to code through automatic tools. Some com-
mercial source code protection solutions are on the market (e.g., Cloakware by
Irdeto4), but also many freely available tools and online services. In the scientific
community, the Tigress obfuscator 5 by Collberg et al. is widely used. Tigress
was developed based on CIL [30] and MyJit6 and is able to protect C source code
with a variety of obfuscation methods. However, considerable uncertainty exists
as to whether – and, if so, to what extent – the software protection is transferred
to the binary program during compilation. Already in 2006, Madou et al. [23]
were able to demonstrate empirically that not all types of protection survive
the compilation process. To some extent, this undesired effect results from the
fact that software protections intentionally make code more complicated, but a
compiler attempts to generate efficient binary code through various optimization
strategies. Thus, it often removes the protections or at least significantly reduces
their strength.

In recent years, it was demonstrated that code obfuscation can also be ap-
plied to intermediate code representations during the compilation process after
the optimizations have been conducted. With the Obfuscator LLVM (OLLVM)
framework [17] it was prototypically demonstrated that compile-time protection
of code is feasible.

In this work, we use obfuscations from both Tigress and Obfuscator LLVM
to train our identification model. 6 different types of obfuscations and 4 combi-
nations of obfuscation were used in our work. As one obfuscation is available in
both obfuscators, a total of 11 obfuscation classes were defined. Table 1 describes
the applied obfuscations.
4 https://irdeto.com
5 https://tigress.wtf
6 https://myjit.sourceforge.net

4 S. Schrittwieser et al.

Table 1. Applied obfuscations.

Technique Obfuscator Description
Opaque predicates Tigress Adds difficult to evaluate expressions to con-

ditional jumps
Self-modifying code Tigress Adds code that modifies itself at runtime
Virtualization Tigress Transforms binary code to byte code of a cus-

tom virtual machine
Bogus control flow OLLVM Opaque predicates to make control flow less

obvious; similar to Tigress opaque predicates
CFG flattening both Redirects all control-flow transfers to a central

dispatcher
Instruction substitution OLLVM Replaces instructions with semantically equal

ones

3.2 Obfuscation stealth

Obfuscation stealth describes how well-obfuscated code can be distinguished
from untransformed code. Collberg et al. [7] have defined two different types
of stealth. With local stealth, an attacker cannot determine a particular in-
struction as being affected by an obfuscating transformation. In contrast, with
steganographic stealth, an attacker cannot determine whether a program has
been transformed at all with a particular transformation or not.

At first glance, the coverage, i.e., how much code is actually modified, seems
particularly relevant for the stealthiness of an obfuscation. In instruction substi-
tution, for example, occurrences of certain instructions are replaced by semanti-
cally equivalent instructions or sequences of instructions. It is possible to specify
how many of the occurrences are replaced. Coverage correlates with the number
of code modifications. The smaller the coverage of an obfuscation, the smaller
the modifications to the code.

However, the number of code modifications does not indicate how easily it
can be distinguished from untransformed code. For example, a packer modifies
the complete binary by encoding or encrypting the program’s entire code as data.
This fundamental structural modification of the binary seems more difficult to
hide than protections with lower coverage. However, current literature proposes
approaches such as using Huffman encodings [41] to make the packed code look
structurally like actual binary code or shell code that looks like English prose [24].
While English prose can clearly be distinguished from actual shell code, the
context where shell code is utilized makes it a perfect camouflage. Thus, coverage
alone is not a good indicator of the stealthiness of an obfuscation.

3.3 Code complexity

As Collberg et al. [7] mentioned, code complexity metrics were initially created
to help build reliable, readable, and maintainable software constructs. Generally,
most of them can be summarized as describing a respective aspect of software,

Modeling Obfuscation Stealth through Code Complexity 5

typically textual, from which a complexity measure is derived. If this measure
increases within a program, this program is then described as being more com-
plex in relation to the measured properties. A property often utilized for this is
obfuscation potency, i.e., how well humans are able to comprehend the code [9].
In contrast, obfuscation stealth has not been measured yet with code complexity
metrics.

Over the last decades, various methodologies for code complexity measure-
ments have emerged. For source code, the three most influential and widely used
are the Halstead Complexity Metrics, Lines of Code, and Cyclomatic Complexity
Metric [42, 19, 15]. These are also called classic methods as they were invented
in the 1960s and 1970s; they are still highly relevant today, albeit primarily used
in modified form and/or in tandem.

Halstead Complexity Metrics As an early pioneer of software science, Mau-
rice Halstead was one of the first to quantitatively analyze software. His work
resulted in the formalization of the Halstead complexity metrics [13], which con-
sist of several sub-metrics.

– The Halstead difficulty measures how difficult it is to write or understand
the code of a program. It is defined as D = n1

2 · N2

n1
, where n1 is the number

of distinct operators, n2 is the number of distinct operands and N2 is the
total number of operands.

– Halstead volume estimates the required space for storing the program and is
defined as V = N · log2 n.

– Halstead level defines the implementation level L =
Vp

V where Vp is the
potential or minimal volume Vp = (2 + n2) · log2(2 + n2).

– Halstead effort estimates the effort required for writing or understanding the
program. It is defined as E = D · V .

– Halstead time estimates the time required for writing the program and de-
fined as T = E

18 .

Lines of code The Lines of Code metric is a measure for the length of a
program, whereby only executable lines are factored in [42, 37, 40, 14, 3]. Al-
though being a basic metric, this brings several advantages, like being language-
independent, fast to compute, and easy to comprehend [42]. The simplicity of
the metric comes with several problems, though. For example, the content of
the lines is completely disregarded so that a very simple and a highly complex
line count as equal for the calculation. Furthermore, the program’s structure is
neglected with respect to jumping and branching. Finally, although size itself
is not an immediate indicator of complexity within a software project, we can
infer that larger programs contain more constructs and control structures and,
therefore, more paths through the code. Thus, for the purpose of this work, the
Lines of Code metric is considered a complexity metric.

6 S. Schrittwieser et al.

Cyclomatic Complexity and Myer’s interval Cyclomatic Complexity, the
third of the classic metrics, describes the structure of software through the num-
ber of possible independent paths in its control flow graph [25, 16, 36, 10, 1, 34,
22]. This also functions as a measure of the nesting level and can be computed
with binary code [5]. To calculate it, a flow graph G is created, and its cyclo-
matic value v is generated by v(G) = e − n + 2p. Here, e denotes the number
of edges, n the number of nodes, and p the number of connected entities in G.
This measure can be helpful in providing a good abstraction of the module’s
structure and works well in predicting future bugs, but it is completely blind to
the length of a tested module. Because of extreme cases, like a single line of code
potentially being able to have the same cyclomatic value as parts with hundreds
of lines, Cyclomatic Complexity is often combined with other length-sensitive
measures like Halstead metrics or Lines of Code. Similarly, McCabe’s cyclomatic
complexity [26] measures the complexity of a program by analyzing its control
flow. The complexity v(G) = E −N + 2p where v(G) is the cyclomatic number
of a graph G, E is the number of edges, N the number of nodes and p the num-
ber of connected components. Myer’s interval [28] is an extension of McCabe’s
cyclomatic complexity. The Myer’s interval v(G) : v(G) +L adds the number of
logical operators L to McCabe’s cyclomatic complexity.

ABC metric Despite its traditional categorization as a size metric, the ABC
metric [11] lends itself to the assessment of code complexity, given the quanti-
tative focus on the evaluation of software components. Furthermore, the three
components utilized within the ABC metric are fundamental constructs for any
programming language, making them relevant in understanding the overall com-
plexity of a software project. The three components, number of assignments (A),
branches (B), and conditions (C), as a triplet, build the first representation
(vector) of the ABC metric. The other possible representation is a number (Eu-
clidean norm, L2 norm) calculated by the square root of the sum of the squared
individual numbers: |ABC| =

√
A2 +B2 + C2. Assuming there is at least one

assignment, branch or condition, the ABC metric consequently is always a pos-
itive number |ABC| > 0.

Maintainability Index As the name already suggests, the maintainability
index [31, 32, 6] was originally designed to measure how maintainable code is.
It is based on the Halstead difficulty metric and is defined as MIwoc = 125 −
10 · log(HE), where HE is the Halstead effort. A more complex variant is the
maintainability index without comments, which combines the Halstead volume,
McCabe’s cyclomatic complexity, and LoC. It is defined as MIwoc = 171− 5.2 ·
ln(HV)− 0.23 · CC − 16.2 · ln(LOC).

4 Approach

Depending on the obfuscation type, code complexity is affected to varying de-
grees. Furthermore, an obfuscation type does not contribute to all code com-

Modeling Obfuscation Stealth through Code Complexity 7

plexity metrics equally. For example, cyclomatic complexity is only increased by
obfuscations that make structural changes at the control flow or call graph level.
We also observed that obfuscations often significantly reduce individual code
complexity metrics, thus the opposite of what would intuitively be expected.
Our approach uses these characteristic patterns of increases and decreases in
code complexity measurements to identify the implemented obfuscation tech-
nique. We discovered that absolute measurements are sufficient for identifying
obfuscation techniques with ample accuracy and that relative changes from the
original code are not required. To build our model, we assembled a set of 179
programs, which we then compiled in 52 different build and obfuscation con-
figurations each. As the Tigress obfuscator can only handle single-file C source
code, the set consists mainly of programs implementing one particular algorithm
(e.g., hash function, sorting algorithm, units converter, etc.). Not all build and
obfuscation configurations resulted in valid binary programs, as the obfuscators
sometimes fail on specific program structures. The final set of training data con-
tained 4124 binaries. We calculated the 14 code complexity metrics introduced
in Section 3.3 for each. We combined eight from the initial 52 classes into a class
no-obfuscation since all of them correspond to the different compilation variants
of clang and gcc-musl without employing any obfuscation.

LO
C

AB
C A B C

Cy
clo

m
at
ic_

Co
m
pl
ex
ity

Ha
lst
ea
d_
Vo
lu
m
e

Ha
lst
ea
d_
Le
ve
l

Ha
lst
ea
d_
Di
ffi
cu
lty

Ha
lst
ea
d_
Ef
fo
rt

Ha
lst
ea
d_
Ti
m
e

M
Iw
oc

Si
ng
le
_M

I

M
ye
rs
_In

te
rv
al

LOC

ABC

A

B

C

Cyclomatic_Complexity

Halstead_Volume

Halstead_Level

Halstead_Difficulty

Halstead_Effort

Halstead_Time

MIwoc

Single_MI

Myers_Interval

0.88

0.8 0.81

0.83 0.94 0.63

0.77 0.93 0.56 0.93

0.82 0.93 0.64 0.99 0.91

0.87 0.84 0.75 0.81 0.73 0.8

-0.71 -0.61 -0.5 -0.62 -0.55 -0.63 -0.45

0.94 0.91 0.82 0.88 0.78 0.88 0.92 -0.67

0.68 0.64 0.64 0.61 0.52 0.59 0.92 -0.23 0.74

0.68 0.64 0.64 0.61 0.52 0.59 0.92 -0.23 0.74 1

-0.91 -0.9 -0.68 -0.92 -0.84 -0.93 -0.75 0.85 -0.9 -0.51 -0.51

-0.87 -0.79 -0.65 -0.79 -0.71 -0.8 -0.65 0.94 -0.86 -0.41 -0.41 0.96

0.77 0.93 0.56 0.93 1 0.91 0.73 -0.55 0.78 0.52 0.52 -0.84 -0.71 −1.0

−0.5

0.0

0.5

1.0

Fig. 1. Correlation coefficients for all complexity metrics.

8 S. Schrittwieser et al.

We then pooled the classes corresponding to the same obfuscator and tech-
nique, i.e., combining the various optimization levels per obfuscation class. Thus,
we ultimately ended up with 12 classes, where each obfuscation method has
300 to 336 observations, whereas we obtained 680 samples associated with no-
obfuscation. We noticed that some metrics are highly correlated by analyzing the
feature set. However, this is not surprising since several metrics are combinations
or extensions of one another as described in Section 3.3. For example, the ABC
metric is composed of A, B, and C, which are also part of the original feature
set. We visualized the exact coefficients in the correlation matrix depicted in
Figure 1.

We decided to fit models using both the whole feature set and a smaller
set of values from five complexity metrics with a Pearson correlation coefficient
|ρ| ≤ 0.9. The features included in the smaller feature set were the following:
Lines of Code, ABC, number of assignments (A), Halstead Volume, and Halstead
Level. From here on, we refer to the respective feature sets as All features and
5/14 features.

The following steps in preprocessing included shuffling the data and perform-
ing a stratified split into train and test data using the class proportions present.
Here, we chose a split such that we ended up with 80% training data and 20%
test data, with a corresponding random_state = 42. Finally, we standardized
all features using the StandardScaler-function from sklearn, i.e., shifting the
data to a mean of zero and a standard deviation of 1. As part of the hyper-
parameter search, we used 5-fold cross-validation to show the reliability of each
model. We evaluated the models with respect to classification accuracy, F1 score,
precision, and recall in order to get a holistic view of the model performances.

Accuracy =
Correct Classifications

All Classifications
(1)

F1 Score =
2× Precision × Recall

Precision + Recall
(2)

Precision =
True Positive

True Positive + False Positive
(3)

Recall =
True Positive

True Negative + False Positive
(4)

After finding well-performing parameter sets for the machine learning models
with each feature set respectively, we ran all models 100 times, using a new seed
in each iteration. In addition to the best value of each performance metric, we
also calculated the mean values over these runs to show the statistical validity
of the results.

5 Evaluation

5.1 Model Selection

For the initial model selection, we employed the Lazy Learner framework lazypredict
to get an overview of how different models perform on the data set under study.

Modeling Obfuscation Stealth through Code Complexity 9

Lazy Learner provides a fast way to test many different algorithms without fur-
ther time-consuming parameterization. ExtraTreesClassifier, LGBMClassifier,
and RandomForestClassifier performed best on our initial test with respect to
the models’ accuracy. Based on this result, we decided to investigate these three
models further. To explore the potential of different algorithms in the context
of obfuscation stealth, and because neural networks are known to perform well
on classification problems [21, 12], we also included an MLPClassifier (Multi-
Layer Perceptron). All applied models are part of scikit-learn, except for the
LGBMClassifier, which is part of the lightgbm package.

5.2 Hyperparameter Tuning

For all models, we performed the hyperparameter tuning with Bayesian optimiza-
tion using the BayesSearchCV function from Scikit-optimize. The sequential
model-based optimization algorithm utilizes all previous loss observations in or-
der to arrive at a well-performing set of parameters for the respective model.
The incorporation of prior knowledge makes Bayesian optimization much more
efficient than a grid search or random search [38]. We explored 100 parameter
settings for each model, which we evaluated using a 5-fold cross-validation.

5.3 Model Results

As shown in Table 2, the prediction results on the test set were best for the
MLPClassifier, achieving a maximum accuracy of 86.5% and an average accu-
racy of 83.9% over 100 runs respectively, using all features. The neural network
outperforms the other classifiers, showing better results across all performance
metrics. However, the ExtraTreesClassifier, the LGBMClassifier, and the
RandomForestClassifier accomplish only slightly poorer results. In general,
we observed that including all features in the model led to considerably better
average performance, as seen from the accuracy values in Table 2 and Table 3.
The severe difference in the accuracy scores implies that the nine complexity
metrics we removed from the smaller feature set due to high correlation with
other features carry information significant for the models.

Table 2. Maximum and average performance using all features for 100 iterations.

Accuracy F1 Score Precision Recall
Extra Trees 0.833 (∅ 0.813) 0.833 (∅ 0.813) 0.836 (∅ 0.815) 0.833 (∅ 0.813)
LGBM 0.834 (∅ 0.806) 0.834 (∅ 0.807) 0.837 (∅ 0.810) 0.834 (∅ 0.806)
Random Forest 0.827 (∅ 0.800) 0.826 (∅ 0.799) 0.828 (∅ 0.801) 0.827 (∅ 0.800)
MLP 0.865 (∅ 0.839) 0.865 (∅ 0.839) 0.868 (∅ 0.842) 0.865 (∅ 0.839)

The model specifications of the respective best models per classifier and fea-
ture set based on accuracy can be found in Table 4 in the Appendix A. The

10 S. Schrittwieser et al.

Table 3. Maximum and average performance using 5/14 features for 100 iterations.

Accuracy F1 Score Precision Recall
Extra Trees 0.770 (∅ 0.743) 0.771 (∅ 0.742) 0.773 (∅ 0.744) 0.770 (∅ 0.743)
LGBM 0.752 (∅ 0.716) 0.752 (∅ 0.717) 0.755 (∅ 0.721) 0.752 (∅ 0.716)
Random Forest 0.772 (∅ 0.729) 0.772 (∅ 0.728) 0.772 (∅ 0.730) 0.772 (∅ 0.729)
MLP 0.764 (∅ 0.728) 0.764 (∅ 0.726) 0.766 (∅ 0.727) 0.764 (∅ 0.728)

boxplots in Figure 2 depict the accuracy ranges over 100 unique runs for all clas-
sifiers fitted on the data using all features. While Table 2 shows the superiority
of the MLPClassifier concerning maximum accuracy, Figure 2 demonstrates
where most predictions are located precisely. More than 50% of the predictions
made by the MLPClassifier are better than all of the predictions made by the
other three classifiers. Due to its good maximum accuracy and consistency over
all runs, we conclude that using all features, the MLPClassifier is the best
model choice when using all features.

Extra Trees LGBM Random Forest MLP
Classifier

0.78

0.80

0.82

0.84

0.86

Ac
cu
ra
cy

Fig. 2. Accuracy results over 100 runs
for classifiers using all features.

Extra Trees LGBM Random Forest MLP
Classifier

0.68

0.70

0.72

0.74

0.76

Ac
cu
ra
cy

Fig. 3. Accuracy results over 100 runs
for classifiers using 5/14 features.

Figure 3 shows that when using the smaller feature set consisting of only 5 out
of the 14 complexity metrics, the performance of the classifiers decreases. The
accuracy score corresponding to the multilayer perceptron classifier particularly
suffers from excluding the strongly correlated variables. The best results were
achieved by the RandomForestClassifier and the ExtraTreesClassifier,
where the latter also performs best on average and therefore represents the most
suitable model for our approach. The comparatively bad results achieved by the
neural network might be due to MLPs relying on complex relationships and high-
dimensional interactions between features. When removing features, the MLP
model may lose more information as compared to the other models.

To further assess the performance of the selected best models, we constructed
the normalized confusion matrices, which are depicted in Figure 4 and Figure 5

Modeling Obfuscation Stealth through Code Complexity 11

below. They visualize which classes are detected well and which techniques are
often mistaken for one another.

�
�
��
$"
��
#�
�

�
��
��

��

�
��
��

��
�

�
��
��

��
�"

�
��
��

��
"

�
��
��

��

�
��
��

��"

�
��
��

�"

��
�!
�"
"�
�

��
�!
�"
"�

��
�!
�"
"�
"

��
�!
�"
"�
%

�!����#��������

� � ��$"��#� �

�������

��������

��������"

�������"

�������

�������"

������"

���!�""��

���!�""�

���!�""�"

���!�""�%

�!
$�
���
��
�

���� ���� ��� ���� ���� ��� ���� ���� ���� ���� ��� ���

���
 ���� ���� ��� ��� ��� ���� ���� ���� ��� ��� ���

��� ��� ���� ���� ��� ���
 ��� ��� ��� ��� ��� ���

��� ��� ���� ��� ��� ���� ��� ���� ��� ��� ��� ���

��� ��� ��� ��� ���
 ��� ��� ���� ��� ��� ��� ���

��� ���� ��� ��� ��� ��
� ���� ��� ��� ��� ��� ���

��� ���
 ���� ��� ��� ���
 ���� ��� ��� ��� ��� ���

���� ���� ���� ��� ���� ��� ���� ���� ��� ��� ��� ���

���� ��� ��� ��� ��� ���� ��� ���� ���� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ���� ���	 ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

� !����'��� ��$"� ����#!�&

���

���

���

��	

���

���

Fig. 4. Confusion matrix for results of
the best model using all features.

�
�
��
$"
��
#�
�

�
��
��

��

�
��
��

��
�

�
��
��

��
�"

�
��
��

��
"

�
��
��

��

�
��
��

��"

�
��
��

�"

��
�!
�"
"�
�

��
�!
�"
"�

��
�!
�"
"�
"

��
�!
�"
"�
%

�!����#��������

� � ��$"��#� �

�������

��������

��������"

�������"

�������

�������"

������"

���!�""��

���!�""�

���!�""�"

���!�""�%

�!
$�
���
��
�

���� ���� ��� ��� ���� ���� ���� ���� ���� ���� ��� ���

���
 ��	� ���� ���
 ���� ���� ���� ���� ���� ��� ��� ���

���� ���� ��	
 ���� ��� ��� ���� ���� ��� ��� ��� ���

��� ���� ���� ��
� ���� ���� ���
 ���� ��� ���� ��� ���

���� ���� ��� ���� ���� ��� ��� ���� ��� ��� ��� ���

��� ���� ���� ���� ��� ���� ���� ��� ���� ��� ��� ���

���� ���� ���� ���
 ��� ���� ���
 ���� ��� ��� ��� ���

���
 ���� ��� ���� ��� ��� ��� ��	� ���� ��� ��� ���

���	 ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ���

���� ��� ���� ��� ��� ��� ��� ��� ��� ���� ��� ����

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���

� !����'��� ��$"� ����#!�&

���

���

���

��	

���

���

Fig. 5. Confusion matrix for results of
the best model using 5/14 features.

On closer examination of the confusion matrix shown in Figure 4, we found
that concerning Obfuscator-LLVM samples, the MLPClassifier has difficulties
distinguishing between techniques that are combinations of one another. Most
misclassifications occur between OLLVM-f (flattening) and OLLVM-fs, combin-
ing flattening and instructions substitution. There is a higher percentage of cor-
rect predictions for the classes corresponding to Tigress. In particular, the model
can detect virtualization and self-modifying code exceedingly well. While some
wrong classifications exist across compiler classes, most correspond to the same
or related obfuscation methods. The model can generally differentiate between
the two obfuscators, Tigress and Obfuscator-LLVM, and the no-obfuscation class
quite well, showing only a few misclassifications. Indeed, most of those mistakes
stem from the model wrongly classifying 12% of Tigress-f as no-obfuscation.

We also analyzed the normalized confusion matrix obtained when fitting the
model using only 5/14 features. Looking at the results shown in Figure 5, the
difficulties regarding the distinction of certain classes become more pronounced.
In particular, differentiating between different techniques of the LLVM obfus-
cator seems to be harder for the model using only 5/14 features. Overall, the
percentage of correct predictions decreases significantly. The drop in accuracy is
particularly high for OLLVM-b, OLLVM-bf, OLLVM-f, and OLLVM-s, amount-
ing to at least 20%. The precise numbers are depicted in the confusion matrix
in Figure 5.

While even more samples from the class Tigress-f are mistakenly predicted as
no-obfuscation when using fewer features, it can still classify Tigress-o, Tigress-s,
and Tigress-v correctly more than 90% of the time. It appears that the identifi-

12 S. Schrittwieser et al.

cation of these techniques does not rely on the additional information provided
by the omitted features as much as the identification of other methods.

6 Discussion

From the results, some interesting insights regarding obfuscation stealth can be
gained, which we discuss in this section.

6.1 Stealthiness of obfuscations

The results show that the evaluated obfuscations have very different levels of
stealthiness with respect to our model. The Tigress obfuscations virtualization
(1.0), self-modifying code (1.0), and opaque predicates (0.96) could be identified
best when making use of all features. The least identifiable protection classes
were the Obfuscator LLVM classes OLLVM-fs (combination of flattening and
self-modifying code, 0.45) and OLLVM-f (flattening, 0.73). As already pointed
out in Section 5.3, this mainly results from the fact that the combinations of ob-
fuscations are often confused with the standalone classes of the obfuscations they
contain. However, significant differences can also be seen here. While LLVM-s
and LLVM-fs can be distinguished from each other very well (0.02 and 0.0), in
contrast, LLVM-f and LLVM-fs are often confused (0.25 and 0.47). This can be
explained by the characteristics of the two obfuscations, instruction substitution
and CFG flattening. CFG flattening modifies the structure of a program and,
thus, its complexity significantly more than instruction substitution. For exam-
ple, the cyclomatic complexity is directly affected by CFG flattening, whereas
instruction substitution has no impact on it. This makes it easier to distinguish
the combination of the two obfuscations from the one with less impact on code
complexity.

It is also noteworthy that misclassifications are almost exclusively made
within the classes of an obfuscator. The algorithmically very similar obfusca-
tions LLVM-b and Tigress-o (bogus control flow using opaque predicates) and
LLVM-f and Tigress-f (CFG flattening) are never or very rarely confused.

In Figure 4, the details of all obfuscations can be retrieved from the normal-
ized confusion matrix.

6.2 Impact of compiler optimization levels

By extending the 11 obfuscation classes in our model by the compiler optimiza-
tion levels O0 to O3 (i.e., a total of 44 instead of 11 obfuscation classes), the
model’s overall accuracy drops significantly to about 59%. Note that the hyper-
parameter tuning was performed for the pooled classes, though. The confusion
matrix shows that the misclassifications occur mainly between classes with the
same technique but different optimization levels. The approach including the op-
timization levels, thus significantly complicates the detection of the obfuscation
technique in that model. In practice, however, the detection of the optimization

Modeling Obfuscation Stealth through Code Complexity 13

level has no relevance, which allowed us to combine the obfuscation classes in
our model.

We also analyzed within which optimization levels the detection of obfusca-
tions works best. We independently tested our model with only the programs
from each of the four optimization levels (O0 to O3). While optimization level
O0 is mainly used for debugging a program, the most frequently used optimiza-
tion level for finished code is O2. In level O2, which is most commonly used
in real-world programs, our model achieves an identification accuracy of 87.6%,
while in level O0, it performs slightly better, reaching 89%.

Making a distinction between the optimization levels for the model prediction
also provides insights into the level of stealthiness of each technique. For example,
applying OLLVM-b with optimization level O0 makes it most challenging for the
model to classify the obfuscation method correctly. We also observe an increase
in obfuscation stealth when using optimization level O2 for Tigress-f as well as
level O3 for Tigress-o.

7 Conclusions

In this paper, we have presented a novel methodology for identifying obfusca-
tion techniques applied to code with high accuracy using a combination of static
code complexity metrics. Unlike previous approaches, our methodology is not
based on a direct analysis of the program code. It is thus more robust to se-
mantic methods for increasing obfuscation stealth (e.g., normalization of opcode
distribution). An evaluation with 11 obfuscation techniques and combinations
of obfuscations in a total of 4124 programs has shown that the correct obfusca-
tion technique can be predicted with an accuracy of 86.5%. Moreover, based on
the classification results, we concluded that while tree-based methods are well
suited for predicting obfuscation methods using code complexity, a well-trained
neural network classifier can achieve even better results. Therefore, we chose the
MLPClassifier as our best model, which can predict the underlying obfuscation
method with an average accuracy of 83.9%. In future work, generating more data
to fit the models could further improve predictability.

Our model can be applied within the scope of malware analysis. Due to a
large number of new malware samples daily, efficient methods for obfuscation
identification are needed to select suitable deobfuscation concepts.

Acknowledgments

This research was funded in whole, or in part, by the Austrian Science Fund
(FWF) I 3646-N31. For the purpose of open access, the author has applied a CC
BY public copyright license to any Author Accepted Manuscript version arising
from this submission.

14 S. Schrittwieser et al.

References

1. Abran, A., Lopez, M., Habra, N.: An analysis of the mccabe cyclomatic complexity
number. In: Proceedings of the 14th International Workshop on Software Measure-
ment (IWSM) IWSM-Metrikon. pp. 391–405 (2004)

2. Bacci, A., Bartoli, A., Martinelli, F., Medvet, E., Mercaldo, F.: Detection of obfus-
cation techniques in android applications. In: Proceedings of the 13th International
Conference on Availability, Reliability and Security. pp. 1–9 (2018)

3. Basili, V.R., Perricone, B.T.: Software errors and complexity: an empirical inves-
tigation0. Communications of the ACM 27(1), 42–52 (1984)

4. Brosch, T., Morgenstern, M.: Runtime packers: The hidden problem. Black Hat
USA (2006)

5. Canavese, D., Regano, L., Basile, C., Viticchié, A.: Estimating software obfusca-
tion potency with artificial neural networks. In: Security and Trust Management:
13th International Workshop, STM 2017, Oslo, Norway, September 14–15, 2017,
Proceedings 13. pp. 193–202. Springer (2017)

6. Coleman, D., Oman, P., Ash, D., Lowther, B.: Using metrics to evaluate software
system maintainability. Computer 27(08), 44–49 (08 1994)

7. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Tech. rep., Department of Computer Science, The University of Auckland,
New Zealand (1997)

8. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. pp. 184–196 (1998)

9. Ebad, S.A., Darem, A.A., Abawajy, J.H.: Measuring software obfuscation quality–a
systematic literature review. IEEE Access 9, 99024–99038 (2021)

10. Ebert, C., Cain, J., Antoniol, G., Counsell, S., Laplante, P.: Cyclomatic complexity.
IEEE software 33(6), 27–29 (2016)

11. Fitzpatrick, J.: Applying the abc metric to c, c++, and java. Tech. rep., C++
Report (06 1997)

12. Gibert, D., Mateu, C., Planes, J., Vicens, R.: Classification of
malware by using structural entropy on convolutional neural net-
works. Proceedings of the AAAI Conference on Artificial Intelli-
gence 32(1) (Apr 2018). https://doi.org/10.1609/aaai.v32i1.11409,
https://ojs.aaai.org/index.php/AAAI/article/view/11409

13. Halstead, M.H.: Elements of Software Science (Operating and Programming Sys-
tems Series). Elsevier Science Inc., USA (1977)

14. Hatton, L.: Re-examining the defect-density versus component size distribution.
IEEE Software p. 110 (1997)

15. Honglei, T., Wei, S., Yanan, Z.: The research on software metrics and software
complexity metrics. In: 2009 International Forum on Computer Science-Technology
and Applications. vol. 1, pp. 131–136. IEEE (2009)

16. Ikerionwu, C.: Cyclomatic complexity as a software metric. International Journal
of Academic Research 2(3) (2010)

17. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-llvm–software pro-
tection for the masses. In: 2015 ieee/acm 1st international workshop on software
protection. pp. 3–9. IEEE (2015)

18. Kanzaki, Y., Monden, A., Collberg, C.: Code artificiality: a metric for the code
stealth based on an n-gram model. In: 2015 IEEE/ACM 1st International Work-
shop on Software Protection. pp. 31–37. IEEE (2015)

Modeling Obfuscation Stealth through Code Complexity 15

19. Khan, A.A., Mahmood, A., Amralla, S.M., Mirza, T.H.: Comparison of software
complexity metrics. International Journal of Computing and Network Technology
4(01) (2016)

20. Kim, J., Kang, S., Cho, E.S., Paik, J.Y.: Lom: Lightweight classifier for obfuscation
methods. In: Information Security Applications: 22nd International Conference,
WISA 2021, Jeju Island, South Korea, August 11–13, 2021, Revised Selected Papers
22. pp. 3–15. Springer (2021)

21. Kurtukova, A., Romanov, A., Shelupanov, A.: Source code authorship identifica-
tion using deep neural networks. Symmetry 12(12) (2020)

22. Madi, A., Zein, O.K., Kadry, S.: On the improvement of cyclomatic complexity
metric. International Journal of Software Engineering and Its Applications 7(2),
67–82 (2013)

23. Madou, M., Anckaert, B., De Bus, B., De Bosschere, K., Cappaert, J., Preneel,
B.: On the effectiveness of source code transformations for binary obfuscation. In:
Proceedings of the International Conference on Software Engineering Research and
Practice (SERP06). pp. 527–533. CSREA Press (2006)

24. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceed-
ings of the 16th ACM conference on Computer and communications security. pp.
524–533 (2009)

25. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering
(4), 308–320 (1976)

26. McCabe, T.: A complexity measure. IEEE Transactions on Software En-
gineering SE-2(4), 308–320 (1976). https://doi.org/10.1109/TSE.1976.233837,
https://doi.org/10.1109/TSE.1976.233837

27. Morgenstern, M., Pilz, H.: Useful and useless statistics about viruses and anti-virus
programs. In: Proceedings of the CARO Workshop (2010)

28. Myers, G.J.: An extension to the cyclomatic measure of program complexity. SIG-
PLAN Not. 12(10), 61–64 (10 1977)

29. Nagra, J., Collberg, C.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection: Obfuscation, Watermarking, and Tam-
perproofing for Software Protection. Pearson Education (2009)

30. Necula, G.C., McPeak, S., Weimer, W.: Cil: Intermediate language and tools for
analysis and transformation of c programs (2002)

31. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintain-
ability. In: Proceedings Conference on Software Maintenance 1992. pp. 337–344
(1992)

32. Oman, P., Hagemeister, J.: Construction and testing of polynomials predicting
software maintainability. Journal of Systems and Software 24(3), 251–266 (1994),
oregon Workshop on Software Metrics

33. Rahbarinia, B., Balduzzi, M., Perdisci, R.: Exploring the long tail of (malicious)
software downloads. In: 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). pp. 391–402. IEEE (2017)

34. Sarwar, M.M.S., Shahzad, S., Ahmad, I.: Cyclomatic complexity: The nesting
problem. In: Eighth International Conference on Digital Information Management
(ICDIM 2013). pp. 274–279. IEEE (2013)

35. Sebastian, S.A., Malgaonkar, S., Shah, P., Kapoor, M., Parekhji, T.: A study &
review on code obfuscation. In: 2016 World Conference on Futuristic Trends in
Research and Innovation for Social Welfare. pp. 1–6. IEEE (2016)

36. Sellers, B.H.: Modularization and mccabe’s cyclomatic complexity. Communica-
tions of the ACM 35(12), 17–20 (1992)

16 S. Schrittwieser et al.

37. Shen, V.Y., Yu, T.j., Thebaut, S.M., Paulsen, L.R.: Identifying error-prone soft-
ware—an empirical study. IEEE Transactions on Software Engineering (4), 317–324
(1985)

38. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems 25 (2012)

39. Wang, Y., Rountev, A.: Who changed you? obfuscator identification for android.
In: 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering
and Systems (MOBILESoft). pp. 154–164. IEEE (2017)

40. Withrow, C.: Error density and size in ada software. IEEE Software 7(1), 26–30
(1990)

41. Wu, Z., Gianvecchio, S., Xie, M., Wang, H.: Mimimorphism: A new approach to
binary code obfuscation. In: Proceedings of the 17th ACM conference on Computer
and communications security. pp. 536–546 (2010)

42. Yu, S., Zhou, S.: A survey on metric of software complexity. In: 2010 2nd IEEE
International conference on information management and engineering. pp. 352–356.
IEEE (2010)

A Specifications

Table 4. Best parameter combinations found per classifier and feature set.

All features 5/14 features

Extra Trees

n_estimators = 80
min_samples_split = 3
min_samples_leaf = 1
max_features = None
max_depth = 33
criterion = ’gini’
bootstrap: ’False’

n_estimators = 200
min_samples_split = 2
min_samples_leaf = 1
max_features = None
max_depth = 24
criterion = ’entropy’
bootstrap: ’False’

LGBM

subsample = 1
objective = ’multiclass’
num_leaves = 30
max_depth = -1
learning_rate = 0.2
colsample_bytree = 1
boosting_type = ’gbdt’

subsample = 0.5
objective = ’multiclass’
num_leaves = 250
max_depth = 30
learning_rate = 0.10923689091995176
colsample_bytree = 1
boosting_type = ’gbdt

Random Forest

n_estimators = 80
min_samples split = 2
samples_leaf = 1
max_features = ’sqrt’
max_depth = 50
criterion = ’entropy’
bootstrap: ’False’

n_estimators = 164
min_samples split = 3
min_samples leaf = 1
max_features = ’sqrt’
max_depth = 27
criterion = ’entropy’
bootstrap: ’False’

MLP

hidden_layer_sizes = (50, 100)
activation = ’tanh’
solver = ’lbfgs’
batch_size = 64
learning_rate = ’invscaling’
alpha = 0.08745094461679037
learning_rate_init = 0.0001
early_stopping = True

hidden_layer_sizes = (75, 100)
activation = ’tanh’
solver = ’lbfgs’
batch_size = 16
learning_rate = ’invscaling’
alpha = 0.1
learning_rate_init = 0.0033083971654978557
early_stopping = True

