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Abstract

Background: Machine learning and artificial intelligence have shown promising results in many areas and are driven by the
increasing amount of available data. However, these data are often distributed across different institutions and cannot be easily
shared owing to strict privacy regulations. Federated learning (FL) allows the training of distributed machine learning models
without sharing sensitive data. In addition, the implementation is time-consuming and requires advanced programming skills and
complex technical infrastructures.

Objective: Various tools and frameworks have been developed to simplify the development of FL algorithms and provide the
necessary technical infrastructure. Although there are many high-quality frameworks, most focus only on a single application
case or method. To our knowledge, there are no generic frameworks, meaning that the existing solutions are restricted to a
particular type of algorithm or application field. Furthermore, most of these frameworks provide an application programming
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interface that needs programming knowledge. There is no collection of ready-to-use FL algorithms that are extendable and allow
users (eg, researchers) without programming knowledge to apply FL. A central FL platform for both FL algorithm developers
and users does not exist. This study aimed to address this gap and make FL available to everyone by developing FeatureCloud,
an all-in-one platform for FL in biomedicine and beyond.

Methods: The FeatureCloud platform consists of 3 main components: a global frontend, a global backend, and a local controller.
Our platform uses a Docker to separate the local acting components of the platform from the sensitive data systems. We evaluated
our platform using 4 different algorithms on 5 data sets for both accuracy and runtime.

Results: FeatureCloud removes the complexity of distributed systems for developers and end users by providing a comprehensive
platform for executing multi-institutional FL analyses and implementing FL algorithms. Through its integrated artificial intelligence
store, federated algorithms can easily be published and reused by the community. To secure sensitive raw data, FeatureCloud
supports privacy-enhancing technologies to secure the shared local models and assures high standards in data privacy to comply
with the strict General Data Protection Regulation. Our evaluation shows that applications developed in FeatureCloud can produce
highly similar results compared with centralized approaches and scale well for an increasing number of participating sites.

Conclusions: FeatureCloud provides a ready-to-use platform that integrates the development and execution of FL algorithms
while reducing the complexity to a minimum and removing the hurdles of federated infrastructure. Thus, we believe that it has
the potential to greatly increase the accessibility of privacy-preserving and distributed data analyses in biomedicine and beyond.

(J Med Internet Res 2023;25:e42621) doi: 10.2196/42621
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Introduction

The Problem of Scattered Data
Machine learning (ML) and artificial intelligence (AI) have
increased in popularity over the last decade, leading to
discoveries in various fields, including biomedicine [1-3]. The
utility of ML and AI models depends on the size and quality of
the available training data. However, data sources are often
scattered across multiple facilities, and privacy regulations
restrict data sharing, rendering large-scale, centralized ML
infeasible. Particularly in biomedicine, the collection of
molecular and clinical data is becoming ubiquitous with the
successful applications of ML in diagnostics [4] or drug
discovery [5]. Privacy concerns hinder even faster advances
because of the small sample size of the individual data sets
available, such as in the case of rare diseases.

Federated Learning and Privacy-Enhancing
Technologies
One way to overcome these challenges is federated learning
(FL). FL allows distributed data analysis by only exchanging
model parameters and local models instead of sensitive raw
data [6]. Hence, analyses can benefit from considerably larger
data sets and be exploited with a lower risk of revealing primary
data. FL can be divided into several subcategories that address
different problems in decentralized computation and differ in
their requirements [7]. First, FL can be categorized according
to how the data are distributed among the clients. Horizontal
FL addresses the training of a model on distributed data that
has the same features but different samples. Vertical FL, in
contrast, trains a model for the same samples but distributed
features. Second, FL is distinguished by the number of clients
that participate. Training a model on decentralized data from
several organizations or data silos, such as hospitals or
companies, is called cross-silo FL. If model training involves

thousands or millions of clients, such as mobile phones or
internet of things devices, we speak of cross-device FL. A
typical FL setup consists of several clients and a central
aggregator. Each client updates a local model based on its local
data and sends it to a central aggregator. Here, the local models
are aggregated into a common global model by an aggregation
function, such as federated average [6]. This global model is
then broadcasted to each client again. The entire process is
repeated for the iterative algorithms.

Although other techniques, such as homomorphic encryption
(HE), also allow for the analysis of distributed data by enabling
calculations on encrypted data directly, they are computationally
expensive compared with FL. In addition, they often require
drastic changes to their original ML algorithm. In contrast, FL
alone cannot always fulfill strict privacy requirements [8,9].
Therefore, to improve data privacy, FL can be combined with
privacy-enhancing technologies (PETs) [10], such as secure
aggregation [11] or differential privacy (DP) [12,13]. A recent
study demonstrated that federated algorithms could achieve
comparable or identical results compared with centralized ML
[14-18].

Prior Work
Several frameworks have recently been developed to make FL
available for a broader user group. Backend frameworks provide
developers with methods to simplify the implementation of
federated and privacy-aware algorithms [19-22]. They are
limited to users with a strong background in software
development or programming experience. Such skills are usually
not expected from clinical experts and researchers, which
considerably restricts their usability. All-in-one frameworks
bring privacy-aware analyses to users without in-depth
programming skills by providing a graphical user interface
(GUI) [23-26]. However, most existing all-in-one frameworks
are either not extendible or highly specific, focusing on a certain
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type of algorithm (eg, deep learning [DL] only) or application
(eg, neuroimaging and genomics).

Existing Shortcomings
Although the available frameworks demonstrate that FL is
applicable and accelerates research in health care or
biomedicine, the focus on 1 specific application or algorithm
is also a huge restriction, especially in the collaboration of
different fields. To the best of our knowledge, a generic,
low-code, and open-source platform that can be driven and
extended openly by the community to cover different algorithms
and fields has been unavailable. However, such a platform is
needed to enable FL across different applications and to make
it applicable for users without technical knowledge of FL
infrastructure or coding skills.

Goal of This Work
To close this gap, we present FeatureCloud, a comprehensive
platform covering all the required steps from project
coordination and workflow execution for the development of
algorithms for cross-silo FL [27]. It incorporates and facilitates
the development and deployment of federated algorithms and
alleviates the technical difficulties of end users by providing a
complete and ready-to-use infrastructure. Contrary to existing

programming frameworks, FeatureCloud provides a running
all-in-one platform that eliminates the need for developers and
users to arrange a server deployment to conduct a federated
study.

Methods

Overview
FeatureCloud was developed as a unified platform to increase
the accessibility of FL for two large user groups as follows: (1)
end users running FL algorithms to train ML models on
distributed data sets and (2) developers implementing federated
algorithms for statistics or ML that are not easily accessible in
federated environments yet. As illustrated in Figure 1, the
interface between developers and end users is our integrated AI
store. Application developers can easily implement their own
applications and publish them in the AI store, making them
easily accessible to end users. Out of a broad collection of
applications in the AI store, end users can assemble tailored
workflows, invite collaborators, and perform FL on
geographically distributed data. Therefore, FeatureCloud
provides a complete infrastructure, including secure
state-of-the-art communication, no raw data sharing, and several
mechanisms to keep the actual data private.

Figure 1. Outline of the FeatureCloud system. Medical institutions collaborate in a federated study with all primary or raw data remaining at their
original location. FeatureCloud handles the distribution, execution, and communication of certified artificial intelligence (AI) applications from the
FeatureCloud AI store and addresses developers and end users.

Implementation
In this section, we present our implementation of the
FeatureCloud platform: its system architecture, the FeatureCloud
application programming interface (API) for developers, and
the FL scheme and PETs used. Furthermore, we present the FL
algorithms used for the evaluation of our platform.

System Architecture
FeatureCloud was developed as a system consisting of several
interacting parts distributed between the participants and a
central server. The central components include the backend
(Python and Django), frontend (Angular), and Docker registry.
The local components include the controller (Golang), the
Docker engine, and the application instances (Docker images).
Figure 2 shows the system components and the communication
channels between them. Further details regarding their
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implementation and technology used can be found in Multimedia
Appendix 1.

The frontend is a web application running on a web browser. It
uses the FeatureCloud backend API (link 1 in Figure 2) to offer
all the features of the AI store and for collaborative project
management. It is also connected to the controller to allow for
monitoring and handing over data for workflow runs (link 2 in
Figure 2).

The controller is responsible for orchestrating the local part of
the workflow execution. It receives information via the
FeatureCloud backend API (link 3 in Figure 2), indicating which
applications to execute next, and reports about the progress.
Contrary to the relay server traffic, this traffic only contains
metainformation about the execution and no data used in the
algorithms themselves. It uses the Docker API (link 4 in Figure
2) to instruct the Docker engine to manage containers that serve
as isolated application instances and pulls the images of the
required applications for a workflow from the Docker registry
(link 5 in Figure 2). When pushing new application versions,
the Docker registry ensures that the user is entitled to do so by
verifying their credentials through the backend (link 6 in Figure
2). In addition, the controller is an integral part of the security
and privacy system of FeatureCloud. It handles local data
processing and is the only part of FeatureCloud that has access
to the local computer system. The controller runs in a Docker
container to prevent random access to data on the system.
Therefore, it only has access to selected data sets that were
actively chosen by a system administrator or a user through a
FeatureCloud application.

The participants of a federated workflow must also agree on a
common relay server. The relay server, implemented in Go, is
responsible for transmitting all traffic of the federated algorithms
via a secure socket connection (link 7 in Figure 2). This central
communication hub is aware of all the participants and their
roles in the federated execution. It follows the required
communication pattern, sending aggregated models to all the
participants and local model parameters to the coordinating
party only. Although FeatureCloud provides a relay server
instance used by default, it is possible to use a private instance
to completely shield the traffic from anyone outside the
collaboration by adjusting the configuration file for the
controller.

As FeatureCloud applications are a dynamic system component,
partly contributed by external developers, it is necessary to
isolate their implementation. This is achieved by using Docker,
which ensures that they cannot access system resources other
than required, especially the filesystem and network, and allows
for limiting resource use, such as central processing unit or
memory. They receive their input data inside a Docker volume
and communicate with the controller through a defined API
(link 8 in Figure 2). This API is the main interface between
externally developed applications and the FeatureCloud system.
It is http based and requires the application to act as a web
server, which means that it needs to wait for the controller to
query for data and cannot actively send data by itself; thus,
active network access can be forbidden.

Figure 2. System architecture of FeatureCloud with 2 participants. The controller, frontend, Docker engine, and application instances run locally at
each participant’s site. The FeatureCloud backend and Docker registry are running on FeatureCloud servers. The relay server can be run on a separate
server, or participants can use a provided instance from FeatureCloud. The components are connected via transmission control protocol/IP connections
(straight lines). All links are http based, except for link 7, which uses a raw socket connection. Links 1 to 3 use JSON for serialization, and links 4 to 6
use the Docker application programming interface.
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The FeatureCloud API for Developers
To avoid restricting end users to the current selection of
applications, FeatureCloud invites external developers to
implement their own federated applications and publish them
in our AI store. A FeatureCloud application is a program isolated
inside a Docker container that communicates with other
instances using the FeatureCloud API [28]. Several templates
and example applications are provided to further facilitate the
implementation by directly explaining the API with code.

In addition to the AI store and the API, FeatureCloud provides
tools to accelerate the development of federated applications.
When developing a new federated method, application
developers can directly start with the federation of the AI logic
by using an existing template. To verify that the API has been
implemented correctly, a simulation tool aids the developer in
testing their application before publishing. Each test run
specifies the number of participants, test data, and
communication channels and subsequently starts the
corresponding instances, simulating a real-world execution on
multiple machines. During the test run, it shows logs and results
for each participant and the network traffic to monitor the
execution and identify bugs and potential communication
bottlenecks.

After the development phase, applications can be published in
the FeatureCloud AI store. Developers need to fill out a form
prompting all relevant information about the application, which
is displayed to the end users and used for the search and filter
functions. Subsequently, they can push their Docker image into
the Docker registry of the FeatureCloud platform. For end users
collaborating with the developer, who explicitly enables
uncertified applications, it is already usable and can be tested
in a real-world scenario. For other end users, we enforce a
certification process to increase the hurdle for malicious
applications and maintain high privacy standards in the AI store.
To this end, the developer must provide the necessary
documentation and details regarding the implemented privacy
mechanism. Furthermore, the application’s source code must
be accessible so that the application can be exhaustively tested
and vetted by the FeatureCloud team and community for
possible privacy leaks. When the certification process has been
successfully completed by a member of the FeatureCloud
consortium according to a defined checklist (Multimedia
Appendix 1), the application will be displayed in the AI store
and can be used by all end users. If the certification process is
unsuccessful, the developer is notified and requested to address
the issues raised. Upon each update of an application, a new
certification procedure is triggered.

As FeatureCloud does not impose restrictions on the types of
algorithms it supports, the running environment of the federated
applications is kept very general. It allows the implementation
of any type of ML algorithm and an optional custom GUI for
user interaction in the form of a web-based frontend. This GUI
can be used to receive input parameters, indicate the current
progress, or display the results. No direct internet access is
granted to the applications to avoid security risks.

FL Scheme and PETs
FL generally involves two possibly alternating operations as
follows: (1) local optimization and (2) global aggregation. In
FeatureCloud, all running instances of a federated application
have 1 of 2 roles (participant and coordinator) performing the
respective federated operation. FeatureCloud expects precisely
1 coordinator and an arbitrary number of participants, leading
to a star-based architecture. We chose this architecture over
others because it mirrors the general design of a FL scheme
with a central aggregator and clients with local data sets.

After the local learning operation has been completed by a
participant, it sends the local parameters to the coordinator. The
coordinator collects these parameters and aggregates them into
a collective (global) model, which is shared with the participants
again. Depending on the type of ML algorithm, these 2
operations can alternate multiple times, for example, until
convergence or a predefined number of iterations has been
reached (Figure S1 in Multimedia Appendix 1). For some
algorithms (eg, random forest [RF] and linear regression), only
1 iteration is necessary. However, this strict separation between
optimization and aggregation is not actively enforced by
FeatureCloud. In many cases, aggregation can start after the
first parameters have been received, thereby increasing
efficiency through parallelization of the computation. During
the implementation of a federated application, the distinction
between the coordinator and the participant is of conceptual
relevance. However, in practice, the coordinator can also obtain
local data that can be used for training. Therefore, FeatureCloud
allows the coordinator to simultaneously adopt the role of a
participant.

Although FL improves privacy, it can still leak information to
the coordinator, who can see all individual models before
aggregating them. Local updates of the model based on a
previously distributed global model may reveal information
regarding the primary data [29]. Secure aggregation techniques
can address this problem. In FeatureCloud, we integrated
additive secret sharing as a mitigation method to obtain the
global sum without revealing the local submodels. Application
developers can use this method with minimal or no added
complexity to their algorithms. More details can be found in
Multimedia Appendix 1.

Federated Algorithms

Comparing Federated Algorithms
As there are unique challenges for federating individual
algorithms, each ML model needs to be developed independently
and, therefore, needs to be based on a different underlying
federation mechanism. This means that each algorithm has
challenges regarding effectiveness, privacy, or scalability that
need to be solved by the application developers. For the
evaluation of our platform in this work, we used 4 FeatureCloud
FL applications: the linear and logistic regression applications,
a RF, and a DL application.

Federated Linear and Logistic Regression
For the implementation of the linear and logistic regression
applications, the methods introduced by Nasirigerdeh et al [17]
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have been adapted from genome-wide association studies
(GWAS) to a general ML use case. For linear regression, the

local XTX and XTY matrices are computed by each participant
individually, where X is the feature matrix and Y is the label
vector. Then, they are sent to the coordinator, aggregating the
local matrices to the global matrices by adding them. Using
these global matrices, the coordinator can calculate the beta
vector through the federated method in such a way that it is
identical to the beta vector calculated through the nonfederated
method.

Logistic regression was implemented as an iterative approach.
On the basis of the current beta vector, the local gradient and
Hessian matrices of each participant are calculated and shared
with the coordinator in each iteration. The coordinator
aggregates the matrices again by adding them, updates the beta
vector, and broadcasts it back to the participants. This process
is repeated until convergence or the maximum number of
iterations (prespecified for each execution) is achieved.

Internally, the scikit-learn model API has been used to
implement the applications [30,31]. In the performance
evaluation, we used the default scikit-learn hyperparameters for
the linear regression models. For logistic regression, the penalty
was set to none; the maximum number of iterations was set to
10,000; and the “lbgs” solver was used to fit the models.

Federated RF
We used the popular RF classifier and RF regressor as the
second algorithm for our evaluation. As an ensemble algorithm,
RF can be easily federated in a naive manner [32]. Our
implementation trains multiple classification or regression
decision trees on the local primary data of each participant. The
fitted trees are then transmitted to the coordinator and merged
into a global RF. To account for the different number of samples
for each participant, each of them contributes a portion of the
merged RF proportional to the number of samples. To achieve
a similar behavior as the centralized implementation, the size
of the merged RF is kept constant, meaning that an increasing
number of participants decreases the number of required trees
per participant. The federated computation occurs in three steps,
each involving data exchange as follows: (1) participants
indicate the number of samples and receive the total number of
samples; (2) participants train the required number of trees, and
the aggregator merges them into a global RF; and (3)
participants receive the aggregated model to evaluate its
performance on their data and share the results to obtain a global
summary.

As the aim is not to achieve the highest possible accuracy but
to compare the federated version with the nonfederated version,
the hyperparameters were set to the default values of sklearn,
namely, 100 decision trees, Gini impurity minimization as the
splitting rule, and feature sampling equal to the square root of
the features. Prepruning parameters such as maximum depth,
minimum samples per node, and other constraints were not
applied.

Federated DL
Our federated DL application is based on the federated average
algorithm [6]. In the training phase, the weights and biases

update is performed iteratively, where each iteration implies
the parameter aggregation performed in three steps as follows:
(1) the local weights and biases are computed by every
participant individually and shared with the coordinator, (2) the
coordinator averages the parameters and broadcasts them back
to participants, and (3) the participants receive the new values
of weights and biases and update the weights and biases of their
model accordingly. After the final number of iterations is
reached, the model performance of each participant is
independently assessed using their data. The local weights and
biases update is performed with the back-propagation algorithm,
applied to data batches of a specified size. The neural network
model architecture and training were implemented using the
PyTorch library [33]. The application enables the
implementation of any architecture and provides a centralized
version of a PyTorch code. The application also enables
federated transfer learning to be applied to a pretrained model,
whose specified layers are trained in the same federated fashion.

Results

The results comprise the unified platform and an evaluation
demonstrating the technical capabilities of FeatureCloud to run
different workflows. The platform consists of the open AI store,
development and debugging tools, and an execution environment
for federated workflows.

Unified Platform
The unified platform (Figure 1) provides developers with an
API to quickly develop privacy-enhancing FL applications. This
supports a hybrid communication scheme for FL and secure
aggregation (additive secret sharing). The integrated AI store
is the interface between developers and end users, displaying
and describing all available applications. Developers can publish
(deploy) their applications in the AI store that are then available
for use in federated workflows for the end users, for example,
biomedical researchers. They can quickly create projects,
assemble federated workflows with the applications from the
AI store, invite other sites to the study, and view and download
the results of each run. The interface of end users with the
complicated federated architecture is reduced to only a web
frontend and the FeatureCloud controller, running in the
background and responsible for the local processing of sensitive
data. Moreover, all applications and the entire architecture of
FeatureCloud are open source, making it the first unified and
open-source FL platform that considers all steps including
development, deployment, and execution.

AI Store
The integrated AI store provides an intuitive and user-friendly
interface for biomedical researchers and developers. It offers a
variety of applications and displays basic information about
them, including short descriptions, keywords, end-user ratings,
and certification status. Users can easily find applications of
interest via a textual search and filter them by type
(preprocessing, analysis, and evaluation) and their
privacy-enhancing techniques (FL, DP, and HE). End users can
review the applications and provide feedback. The application
pages display a method summary, description, user reviews,
developer name, and contact details to report bugs. Each

J Med Internet Res 2023 | vol. 25 | e42621 | p. 6https://www.jmir.org/2023/1/e42621
(page number not for citation purposes)

Matschinske et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


application provides either a GUI or a configuration file to set
the application parameters and adapt them to different contexts.
This reduces technical details and makes applications user
friendly for end users, independent of their background. When
users add applications to their library, they can assemble them
into a workflow and manage the execution with other
collaborators on the FeatureCloud website without having to
download any additional software.

The AI store has a broad selection of popular ML models, as
listed in Table 1. The applications are categorized into

preprocessing, analysis, and evaluation. Some analysis
applications, such as linear regression and RF, are generic and
suitable for different data types and application scenarios. These
applications can be easily integrated into a federated workflow
with preprocessing and evaluation applications, such as a
federated standardization of the input data and a final evaluation
of the trained classifier with several performance metrics. Other
applications, such as the sPLINK [17] application for federated
GWAS, integrate all the necessary steps of an
application-specific workflow and do not require combination
with other applications.

Table 1. Applications in the FeatureCloud artificial intelligence (AI) storea.

DescriptionTypeApplication

Classification model based on boosting treesMachine learningAda boost

Random forest classifying patients into their CACSMachine learningCACSb forest

Survival regression based on the lifelines librarySurvival analysisCox PHc model

Local splits for a k-fold cross-validationPreprocessingCross-validation

Deep neural networks implemented in PyTorchMachine learningDeep learning

Evaluation with various classification metrics (eg, accuracy)EvaluationEvaluation (Classification)

Evaluation with various regression metrics (eg, mean squared error)EvaluationEvaluation (Regression)

Evaluation of survival or time-to-event predictionsEvaluationEvaluation (survival)

Differential expression analysis based on limma-voomDifferential expressionFlimma

Random forest classification, regression, and survival based on graphsMachine learningGraph-guided random forest

Survival function estimation and log-rank testSurvival analysisKaplan-Meier estimator

Regression modelMachine learningLinear regression

Classification modelMachine learningLogistic regression

Hazard function estimation and log-rank testSurvival analysisNelson-Aalen estimator

Standardizing input dataPreprocessingNormalization

One-hot encoding for categorical variablesPreprocessingOne-hot encoder

Classification and regression model based on decision treesMachine learningRandom forest

Survival prediction based on scikit-survivalSurvival analysisRandom survival forest

SVD for dimensionality reductionMachine learningSVDd

GWAS based on PLINKGWASfsPLINKe

Survival prediction based on scikit-survivalSurvival analysisSurvival SVMg

aThe growing list of applications available in the AI store covers preprocessing, analysis, and evaluation. All-in-one applications cover the entire
workflow for a more specific domain and can be executed without other applications.
bCACS: coronary artery calcification score.
cPH: proportional hazard.
dSVD: singular value decomposition.
esPLINK: secure PLINK.
fGWAS: genome-wide association studies.
gSVM: support vector machine.

Multi-institutional Federated Workflows
FeatureCloud offers easy project management for the execution
of FL workflows. In these workflows, users can select from a
large variety of applications in the AI store and connect them

to the entire workflow. Before collectively running a federated
workflow, all collaborating sites (participants) must download
and start the client-side FeatureCloud controller on their
machines. It only requires Docker, which is freely available for
all the major operating systems. Users also need to create an
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account on the FeatureCloud website, which serves as a web
frontend and is used to coordinate the FeatureCloud system
(refer to the Methods section and Multimedia Appendix 1 for
details on the architecture). Each collaborative execution of
applications is organized into so-called projects on the web
frontend. They contain a description of the planned analysis,
connect the collaborating partners by allowing invited
participants to join, and show the current status of the workflow
(Figure S2 in Multimedia Appendix 1).

Workflows are composed of 1 or multiple applications from
the AI store that are to be executed consecutively. Each
application produces intermediate results that serve as input for
the consecutive application. Intermediate results are maintained
on the respective machines and are not shared with other
participants. The last application produces the final results,
which are then shared with all the project participants. During
the execution of a workflow, its progress can be monitored on
the FeatureCloud website, showing the current stage,
computational progress, and intermediate results from each
application. Applications can provide their own user interface,
allowing for user interaction if necessary and for showing
specific reports. Users can monitor application logs and react
in case something unexpected occurs (eg, stop and rerun the
workflow with other data or a different configuration). When
the last application in the workflow successfully completes its
computation, the final results are automatically shared with all
project participants. Intermediate results and application logs
remain available on the local machines to allow for later
verification. For example, the results may include a report
showing the effectiveness of the trained model and the model
itself. The latter can also be used outside of FeatureCloud. For
example, if a project fails because a participant drops out, it can
be restarted quickly after the problem has been solved. During
the entire process, no programming knowledge or command-line
interaction is required, making the system especially suited for
medical personnel without technical education.

Evaluation

Methods and Data Sets
To evaluate the practical applicability of FeatureCloud, multiple
workflows operating on different data sets were created. Except
for DL, each workflow consists of a cross-validation (CV)
application (10-fold CV), a standardization application, a model
training application, and a final evaluation application (Figure
3). For DL, we evaluated a 20% test set, as this is more common
for big data to reduce the training time. Individual applications
are data-type agnostic and are suitable for various applications.
Classification analyses were performed on the Indian Liver
Patient Dataset [34] with 579 samples and 10 features and the
Cancer Genome Atlas Breast Invasive Carcinoma [35] data set
with 569 samples and 20 features. For regression analyses, they
were evaluated on the Diabetes [36] data set with 442 samples
and 10 features and the Boston [37] house prices data set with
506 samples and 13 features, both provided by scikit-learn [30].
Finally, for DL regression, we used a large data set from the
Survey of Health, Aging, and Retirement in Europe [38], with
12 questionnaire variables and the target 12-item critical
assessment of protein structure prediction quality of life score.
After dropping samples with “Refusal” and “Don’t know” type
values in those 12 variables and nonavailable 12-item critical
assessment of protein structure prediction quality of life score,
we were left with 42,894 (91.79%) out of 46,733 samples.
Further details regarding the network architecture are provided
in Multimedia Appendix 1.

For each workflow, we split the central data set into 5
participants with uneven data distribution. Participants 1, 2 and
3, and 4 and 5 each had 10% (4289/42,894), 15% (6434/42,894),
and 30% (12,868/42,894) of the samples, respectively. We used
the F1-score to evaluate the classification models and the root
mean squared error for the regression models, as both are
common metrics used to evaluate ML models. Furthermore, we
also investigated the scalability concerning runtime and network
traffic for 2 to 8 participants as well as a larger number of
participants and iterations.
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Figure 3. Workflow structure used for evaluation. The first application (purple—Cross-Validation) creates splits for cross-validation (CV). All following
applications perform their tasks on each split individually, in a federated fashion, only transmitting model parameters. The gray dots represent intermediate
training and test data. The second application (green—“Normalization”) performs normalization, and the third application (blue—“Random Forest”)
trains the models, generating a global model based on the output of the normalization application. The resulting global model is evaluated in the evaluation
application (orange—“Evaluation [Classification]”). The evaluation results are finally aggregated to obtain an evaluation report based on the initial CV
splits.

Performance
Previous studies have shown that FL can achieve similar
performance to centralized learning in many scenarios
[14,15,39]. To verify the approach used in FeatureCloud, we
compared the performance of 4 federated FeatureCloud
applications integrated into an ML workflow with their
corresponding centralized scikit-learn [30] models. The results
are shown in Figure 4. For logistic regression and linear
regression, the FeatureCloud workflow achieved a performance
identical to that of scikit-learn, which is consistent with the
previous results of federated linear and logistic regression
applications [17,40]. A similar performance was achieved for
the RF regression and classification models. Owing to the simple
aggregation method that combines the local trees into 1 global
tree, identical results were not obtained or expected. Owing to
the bootstrapping mechanism and its attached randomness, the
federated RF sometimes performs slightly better than the
centralized approach. As a final example, our federated DL
model trained in 300 epochs produced a very close root mean
squared error compared with the centralized model.

Furthermore, we compared the federated models with the
individual models trained and evaluated by each participant
(10-fold CV, except DL). Here, we distinguish between the
central evaluation of the models on the overall test splits (central
test data), identical to the test splits for the centralized and
federated models, and the local evaluation of the models on the
local test splits only (local test data). As shown in Figure 4, the
local evaluation performance varies widely but is worse on
average than the federated models. For classification, the local

evaluation performed worse than the federated models.
However, for the regression models, the locally evaluated
models of the individual participants sometimes outperformed
the centralized model. Nevertheless, compared with the central
test data, it is obvious that these models did not generalize well
and only performed well for the individual participants with a
very small test set. This can be deceptive, as in this case, even
the 10-fold CV cannot be trusted. Furthermore, our DL model
evaluated on a 20% test set performs much more reliably than
individual client models, which can have drastically worse
results than the federated or centralized models. This highlights
the effectiveness of FL, as these models use more training and
test data, resulting in more generalized models. Our RF
application is based on a previously published implementation
[32] and confirms that our platform yields comparable results,
including scenarios in which the data are neither independent
nor identically distributed (nonindependent and identically
distributed). It performed much more reliably than only using
individual client data.

As an additional example of clinical data analysis, we evaluated
the Kaplan-Meier estimator application that implements an
already published approach for federated survival curves and a
log-rank test for multi-institutional time-to-event analyses [18].
The application, implemented and run in FeatureCloud,
produced identical results to the centralized analysis (Table S1
in Multimedia Appendix 1) on the lung cancer data set of the
North Central Cancer Treatment Group [41]. Similarly, we
evaluated the Flimma application for differential gene expression
analysis [16] as an example of biomedical data on a subset of
152 breast cancer expressions from the Cancer Genome Atlas
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repository [42] with 20,536 features. Our Flimma application
produced highly similar results to those of the centralized
analysis (Figure S3 in Multimedia Appendix 1). These 2

examples further show that FeatureCloud has the capability of
implementing and running different approaches and bringing
them into a production system.

Figure 4. Performance evaluation of federated artificial intelligence methods. The box plots show the results of a 10-fold cross-valuation for the different
classification and regression models and data sets in multiple settings. Only the deep learning model was evaluated on a test set. The centralized results
are shown in orange, the corresponding federated results in blue, and the individual results obtained locally at each participant in gray. Each model was
evaluated on the entire test set (dark gray) such as the centralized and federated models and on the individual (local) parts of the test set (light gray).
The federated logistic and linear regressions perform in identical fashion to their centralized versions, and the federated random forest and deep learning
models perform in similar fashion to their centralized versions. BRCA: Breast Invasive Carcinoma; ILDP: Indian Liver Patient Dataset; SHARE: Survey
of Health, Aging and Retirement in Europe.

Runtime and Network Traffic
Multiple executions with varying numbers of clients were
performed to assess the scalability of the FeatureCloud platform
and the federated methods. RF and linear regression classifiers
were chosen as the iterative and noniterative methods,
respectively, and both were applied to the Indian Liver Patient
Dataset. Both were tested with 2, 4, 6, and 8 clients and the
same number of samples to ensure comparability across the
executions. To investigate the impact of network bandwidth on
runtime, all executions were performed on a normal and throttled
internet connection with a maximum transmission of 100 kB
per second.

Figure 5 shows that runtime mildly increases for logistic
regression but decreases for RF. This is because the logistic
regression models are of equal size for all clients, whereas the
size of the RF models depends on the number of trees. In our
implementation of federated RF, the global model is of a fixed
size (100 trees), which means that each client contributes a
portion that decreases with a higher number of participants. The
throttling bandwidth significantly increases the runtime for RF
but leaves the runtime for logistic regression almost unaffected.

This is because the transmitted data for RF are more extensive
and come in 1 chunk, whereas logistic regression requires
approximately 10 iterations, each exchanging a few parameters.
The centralized versions take 2 to 3 seconds to complete for
both logistic regression and RF, implying that their federated
versions take 10 to 20 times longer to complete.

In this setting, an increasing number of participating parties has
a weak impact on the duration of the aggregation part for these
methods, compared with the total runtime. The local
computations occur in parallel such that an increasing number
of participants does not have a huge impact. However, because
the aggregation step cannot be completed before all participants
send their models, the runtime of each aggregation step depends
on the slowest participant, which poses a potential problem for
large federations. FeatureCloud primarily focuses on being used
in a tightly regulated medical research environment. Therefore,
there is currently no automatic “matchmaking” in place, but all
participants must join each project actively. In this context,
running an analysis with data sets of >8 participants is still an
uncommon scenario. To demonstrate its scalability and
robustness for more sophisticated scenarios, we evaluated the

J Med Internet Res 2023 | vol. 25 | e42621 | p. 10https://www.jmir.org/2023/1/e42621
(page number not for citation purposes)

Matschinske et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


FeatureCloud platform using the logistic regression application
for 1, 5, 10, 15, 20, 25, and 30 clients on simulated data, with
each client containing 1000 samples and 1, 5, and 10 iterations.
Our analysis shows that the FeatureCloud platform is also

computationally suitable for larger numbers of clients and higher
numbers of iterations, confirming the results of our runtime
analysis for a small number of clients (Figure S4 in Multimedia
Appendix 1).

Figure 5. Runtime and network traffic. The left plots show runtime for unlimited and throttled connections, the right plots show network traffic for the
coordinator and participants evaluated on the ILPD. The lines represent the median values measured over 10 executions. The areas show the 25% and
75% quartiles to illustrate variance across the executions. ILPD: Indian Liver Patient Dataset; s:second; B: byte; M: million.

Discussion

In this section, we summarize our main findings and provide a
discussion about its comparison with prior work, its limitations,
the potential for future work, and conclusions of our work.

Summary of Results
In this study, we presented the FeatureCloud platform, a
comprehensive platform for the application and development
of privacy-preserving FL workflows in biomedicine and beyond.
Through its high generalization, it allows the application of
various ML workflows to a variety of data types. In addition,
it offers prebuilt solutions for common-use cases in the form
of applications in the AI store or application templates for
developers. The concept of freely composing applications in a
workflow is challenging because of the need for a standard data
format, which is not always available and can reduce flexibility.
The same applies to the initial data, which need to be provided
in a form that is processable and understandable by the desired
application. As FL adaptation is still in its early stages, it is
necessary to understand which functionality and types of data
will be used, which ML techniques prove to be most prevalent
in federated settings, and which challenges arise when using
the platform. Therefore, several assumptions can be made in
advance.

Comparison With Prior Work
One main goal of FeatureCloud was to keep the platform as
flexible and extensible as possible, to align new functionality
closely to the demand of its users. The possibility of integrating
additional PETs, such as DP or additive secret sharing, on the
application layer of the API demonstrates the versatility of this
approach. Although the current implementation of additive
secret sharing has a quadratic increase in network traffic, it
shows that flexible communication can be achieved through
asymmetrical encryption and can serve as a blueprint for similar
scenarios and future developments.

The prediction performance of our FL workflows is consistent
with the current research, with some performing equally well
compared with the central implementations (linear and logistic
regression and normalization) or highly similar (RF).
Computational and communication overheads are acceptable
for an ordinary FL. In our opinion, it plays a smaller role than
the additional overhead related to human-to-human coordination
of federated projects. We demonstrated that the currently
available applications and the platform scale well for up to 8
participants.

The main novelty, in contrast to prior work, is the high flexibility
of the AI store, ranging from prebuilt task-centered applications,
such as GWAS, to generic method-centered applications, such
as RF. Therefore, we address a broad spectrum of end users and
developers. Less experienced users without deeper
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methodological or statistical knowledge benefit from the ease
of use of a task-centered application. Advanced users can tailor
the workflow to their needs. In contrast, application developers
can use our API to develop FL applications that can be easily
deployed into the AI store and reach a broad user base. They
are incentivized to build their applications to be compatible
with existing ones (eg, a new AI method that processes data
preprocessed by an existing normalization application) to
maximize their utility. Thus, the FeatureCloud AI store aims to
become an ecosystem for FL, driving collaborative research.

Limitations
In addition to the huge potential of FeatureCloud, some issues
still need to be addressed. Our secure aggregation approach,
directly implemented into the developer API, only applies to
≥3 participants. Its application on workflows with only 2
participants would allow the coordinator to reveal the local
parameters of the other participant and therefore has no benefit.
In addition, as it is currently implemented, our additive
secret-sharing approach only supports addition and
multiplication and is, therefore, not applicable to more complex
types of calculations. Although the open AI store accelerated
the development and deployment of FL applications and
workflows, it is the responsibility of the application developers
to provide proof that their implementations provide accurate
results. FeatureCloud certifies applications that provide a
reasonable amount of privacy and security measures but cannot
check the prediction quality of every application. However,
through its open-source design, the community can exchange
experiences, provide feedback, and enhance applications and
algorithms to keep them up to date with the current state of the
art.

Future Work
The generic and extendable design of FeatureCloud makes it
highly interesting for future studies. FeatureCloud envisions
being driven by an emerging community whose features are

closely aligned to their needs. As FeatureCloud is entirely open
source, it can be quickly maintained and extended and it can
accelerate the development, deployment, and execution of
privacy-preserving FL workflows in biomedicine and other
areas. FeatureCloud applications can be developed by anyone
using the developer API and easy-to-start templates. One part
could focus on integrating more PETs into the API for the
application developers to ease their use and increase adoption
in federated algorithms. Although FeatureCloud already
integrates an additive secret-sharing scheme, there are many
more PETs, such as DP or HE schemes, that can be
implemented. Other potential enhancements could focus on
nonlinear workflows, the integration of the AIMe registry [43]
into the certification process of FeatureCloud applications, and
reducing Docker dependency by also supporting other secure
containerization systems such as Singularity [44]. To address
the problem of data harmonization and preprocessing of different
formats at different sites, it may be useful to add a federated
database with a common ontology to the FeatureCloud controller
[45]. Through this, the problem of different data formats
between sites is solved, as the input data for workflows can be
directly created from the database. Integrating local data into
this database can be performed using predefined
Extract-Transform-Load scripts for the most common data
formats and standards.

Conclusions
In conclusion, FeatureCloud provides an all-in-one platform
for privacy-preserving FL. In contrast to other FL frameworks,
FeatureCloud considers every aspect of FL from development
and deployment to the execution and project planning of
federated analyses. Furthermore, it is highly generic to support
all types of algorithms and is not restricted to only DL or a
certain application. Thus, we believe that it has a huge potential
to accelerate the development of FL workflows and the
application of federated analyses in biomedicine.
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