
Extracting the Architecture of Microservices:
An Approach for Explainability and Traceability

Pierre-Jean Quéval1,2 and Uwe Zdun1

1 University of Vienna, Faculty of Computer Science, Vienna, Austria
2 University of Vienna, Doctoral School Computer Science, Vienna, Austria

Abstract. The polyglot nature of microservice architectures and the
need for high reliability in security analyses pose unique challenges that
existing approaches to automatic architecture recovery often fail to ad-
dress. This article proposes an approach for extracting detailed architec-
ture models from polyglot microservice source code focusing on explain-
ability and traceability. The approach involves abstracting code naviga-
tion as a tree structure, using an exploratory algorithm to detect ar-
chitectural aspects, and providing a set of generic detectors as input.
The architecture models are automatically annotated with detailed in-
formation that makes them useful for architecture conformance checking
and violation fixing. Our case studies of microservice software systems
validate the usefulness of our approach, providing insights into its com-
pleteness, accuracy, and effectiveness for software architecture tasks.

Keywords: Architecture · Explainability · Microservices · Polyglot

1 Introduction

Understanding software architecture is essential for ensuring software systems’
maintainability, scalability, and evolution. However, with the increasing com-
plexity and diversity of modern software systems, extracting a comprehensive
view of the architecture has become challenging. This is particularly true for
polyglot microservice architectures [6, 5], which are becoming more prevalent in
the industry. Existing approaches to automatic architecture recovery [3, 11] must
address the unique challenges such architectures pose, leading to incomplete or
inaccurate architecture models. In addition, existing approaches often need more
explainability and traceability for extracting models from the source code.

To address these challenges, we present an approach for extracting detailed
architecture models with security annotations from polyglot microservice source
code, focusing on explainability and traceability, making them useful for tasks
such as architecture conformance checking [9] and violation fixing [7] concerning
microservice-specific patterns and best practices.

2 Related Works

Software architecture reconstruction is particularly challenging for decentral-
ized and polyglot systems such as microservices [2]. Static analysis can be per-



2 Pierre-Jean Quéval and Uwe Zdun

formed on a system before deployment, extracting information from existing
artifacts [3, 2]. Such analyses can help to provide formal verification, generate
test cases, support program or architecture comprehension (e.g., by generating
UML models [10]), and maintain programs (e.g., by identifying code clones [12]).
Rademacher et al. [11] propose a model for microservices that address their in-
creased architectural complexity. Bushong et al. [1] present a method to analyze
a microservice mesh and generate a communication diagram, context map, and
microservice-specific limited contexts. Granchelli et al. [4] introduce MicroART,
an architecture recovery approach for microservice-based systems. Ntentos et
al. [8] extract an accurate architecture model abstraction approach for under-
standing component architecture models of highly polyglot systems. Like these
studies, our study focuses on static analyses and polyglot systems, but in con-
trast, our approach aims to support traceability and explainability.

3 Our Approach

Our approach splits the process of extracting a software architecture model into
three independent and decoupled steps. It allows us to work on the different con-
cerns involved in each step separately and achieve better control and accuracy:

1. Tree abstraction: By abstracting ubiquitous structures, like folder hierar-
chies, lines in a text file, nested brackets inside a code file, or widespread file
formats like XML or YAML, the detection logic can be expressed agnostically
and applied to various languages and paradigms.

2. Exploration: The core of our approach is the exploration of the source code
based on a minimal set of generic and configurable detectors representing the
knowledge about the project in a concise and readable manner.

3. Scan: By decoupling the generation of a specific representation from the
detection, the detection logic is focused on architectural and security features
common to many projects rather than on the specific concerns of a single
analysis.

3.1 Tree Structure Abstraction

In the tree structure abstraction approach, we use a TreeReader class to rep-
resent the tree’s current position and navigate to other nodes in the tree. The
TreeReader class has three public methods: MoveDown() moves the reader to the
first child of the current node, ReadNext() reads the next sibling, and MoveUp()
moves the reader to the parent node. The Value property holds the content of
the current node as a string, which works well for handling string-based elements
in source code.

The Path property represents the path to the current node from the root. A
Path itself consists of two attributes. The Name attribute serves as an identifying
value for a specific type of navigation, e.g., a folder hierarchy. The Children
attribute represents which child node was selected from the current node in the



Extracting the Architecture of Microservices 3

path. For example, a path P = { “Directory” [2, 1, 2] } means, from the root
of a folder hierarchy, move to the second child node, then move to the first child
node of the previous node, and finally move to the second child node of the
previous node.

3.2 Generic Exploratory Algorithm

Overview Rather than directly generating a diagram, our generic exploratory
algorithm aims to create a model of the source code that captures its architec-
tural aspects. The model is represented as a tree structure, where each node in
the tree corresponds to a localized part of the source code, known as an “In-
stance.” An instance can be a function, a class, a file, or any specific part of the
source code with a specific location. A branch in this tree is the Path from a
parent Instance to its children. An Instance can have many Aspects associated
with it. Aspects are semantic elements representing a particular characteristic
or property of the Instance that are relevant to the analysis.

Fig. 1. Simplified model of a Repository

Figure 1 is an example of a simple model. It pinpoints six locations of interest
in the source code:

– the root folder of the repository (a),
– a docker-compose file (b),
– two folders corresponding to a specific service. (c,d),
– a Java file (e), and
– a specific line in the Java file that declares a link (f).

An Aspect is a simple label that may contain a value. For instance, (e) has
the aspect “JavaFile:AuthServiceClient,” which can be understood as: “Here is



4 Pierre-Jean Quéval and Uwe Zdun

an instance of a Java file named AuthServiceClient.” An instance can exhibit
more than one Aspect, e.g., as it is the case for the Instance (d), which is both
the folder of a service called “config” and the root of a specific archetype called
“config service.” An Instance is automatically created for the root repository
with the Aspect ”root.” Still, apart from this, labels and values of Aspects have
no further meaning for the algorithm. They only serve as inputs and outputs for
the detectors.

If the location of an Instance is contained within the location of another
Instance, it is considered its child, and the branch contains the Path from the
parent Instance to the child. The Paths in Figure 1 are written in a readable
format for better reading, such as the link “line 13” between (e) and (f), which
would be a Path structure P = { “Text file,” [12] } with zero-based indexing.

Detector-based algorithm The purpose of a detector is, from an Instance
with a given Aspect, to detect another Instance with another Aspect. Using
Figure 1, creating the Instance (f) from the Instance (e) could be done with a
detector like “From a JavaFile, detect a FeignLink by using a Text File Tree
Reader and detect a node whose value satisfies a regex expression.”

The algorithm in Figure 2 can thus extract a complete model, starting from
a root instance. Note that the detectors are automatically ordered according
to their dependencies. The exploratory algorithm also makes tracing how each
aspect was detected straightforward. When an aspect is detected, our tool keeps
a trace of the originating detector in the instance.

3.3 Scanner

The next step is to scan the model into a specific format. The Component and
Connector (C&C) view is generated from the model, a high-level abstraction
of the system’s components and their relationships. The C&C view clearly and
concisely represents the system’s architecture, allowing for more straightforward
analysis and evaluation. The scanner for the C&C also receives parameters in
input, such as which aspects to include or what constitutes a component. This
two-step process maintains a decoupling between the detection of architectural
aspects and the specific view of the architecture.

4 Case study

We based our study on our prior work [13], which studies case studies of 10 mi-
croservices from Github repositories to automatically assess their conformance
to a set of Architectural Design Decisions. The Component & Connector views
were manually modeled based on line-by-line inspection of their source, and in-
dustrial experts confirmed the assessment scheme conformed to the most widely
used security tactics for microservices today. Using the Component & Connec-
tor views of the study 3, we ensure that we have a ground truth of models that

3 https://zenodo.org/record/6424722



Extracting the Architecture of Microservices 5

Fig. 2. Exploration

are accurate and relevant to the security analysis of the given repositories. The
study’s full results cannot be directly presented within the scope of this short
paper but a replication package is provided online4.

Our case study focuses on analyzing the architecture of the Piggymetrics ap-
plication, a widely known microservices-based system. Piggymetrics is a financial
management platform demonstrating the complexities and challenges associated
with polyglot microservice architectures. We aim to answer the following ques-
tions:

– RQ1 Can the approach extract an accurate Component & Connector View?
This would mean extracting the same components and connectors as the
manual view.

4 https://zenodo.org/record/8100928



6 Pierre-Jean Quéval and Uwe Zdun

– RQ2 Can the approach extract accurate security annotations? This would
mean extracting the same annotations as the manual view.

– RQ3 Can the approach explain its result? This would mean providing each
annotation a link to a location in the source code.

4.1 Comparison of manually derived and automatically extracted
views

The automatic extraction detected the same components as the manual one, but
the names are less informative. For instance, a component referred to as “Oauth2
Server” in the manual model becomes “auth-service” in the automatic one. This
is an interesting finding since formalizing the naming conventions was not con-
sidered when starting this study, but it would be beneficial in improving the
usefulness of the generated views. This work would primarily affect the scanner
transforming the model into a Component & Connectors view. The extracted
annotations for the components are the same, which is not highly significant
since we used the manual view as a reference for the desired features. However,
it shows that these features could be translated neatly into our detectors.

Our automatic tool detected an additional link among the connectors, from
“auth-service” to “config”, compared to the manual one. Since it was adequately
justified in the traces, we consider this a correct result by our automatic ex-
tractor. The most noteworthy difference lies in the security annotations on the
connectors. The manual view presents not only the intrinsic attributes of the
connector, e.g., that a given connector is a database connection and uses plain
text credentials, but also contextual information, like “authentication scope /
all request” that was often missing in the automatic view.

The automatic extraction of features that can be traced back to a location
in the source code is more straightforward than identifying features deduced
from multiple sources of information in the repository. While some of these con-
textual features are also automatically extracted, e.g., to identify internal links
between services or external configuration files, these rely on multiple detectors
and require more fine-tuning.

4.2 Detectors

The automatic generation of a model for Piggymetrics requires 65 atomic detec-
tors, not counting the one required to transform the model into a Component
and Connector View. Most are very generic, for instance, identifying an XML
file or an ArtefactId inside a POM file. While not each of these detectors will
be relevant to every single source code, they are, as a whole, describing patterns
widely prevalent among microservices projects.

20 detectors were more specific, encoding information related to the Spring
framework used in Piggymetrics. For instance: “@EnableDiscoveryClient in a
Java file denotes a registry link.” These specific detectors were of two types: (1)
recognizing one or more specific values in a single node; (2) recognizing a specific
path for a node. That detecting specific features is so straightforward is promising
since it opens the possibility of generating these detectors automatically.



Extracting the Architecture of Microservices 7

4.3 Traces

The purpose of the trace is to allow a human to quickly verify a specific element
of the view. Each annotation, whether from a component or a connector, is listed
with the locations in the source code explaining it. Traces are exported as a Json
file, which list the code location for each element’s annotation (component or
link.) For instance: “element: gateway { annotation: csrf scope all requests { lo-
cation: /piggymetrics/auth-service/[...]/auth/config/WebSecurityConfig.java, line
28”

These work well for most annotations but would become cumbersome for
those requiring multiple detectors, as the number of concerned locations can
quickly become combinatorially too important; therefore, these annotations are
currently not traced.

5 Discussion

As of RQ1, the case study demonstrated the ability of our approach to extract
a component and connector view from the source code. Our approach provided
the needed detectors to produce an accurate component and connector view of
the system’s architecture. The only shortcoming here is the absence of a naming
system that makes the names less informative than in a manual view.

Considering RQ2 and RQ3, while we achieve promising results, they are less
satisfying. Some security features can only be detected by analyzing multiple
locations in the source code. It makes the definition of detectors and the tracing
less straightforward.

Future research could explore ways to address the limitations of our approach
and further improve its accuracy and scalability. One promising direction is
to rely on a common core of generic detectors and automatically produce the
specifics with an analyzer and a higher-level description of the expectations. Such
an improvement could reduce the dependence on manually crafted detectors and
increase the system’s coverage under study.

6 Conclusion

This paper presented an approach for extracting a component and connector
view from source code. We evaluated our approach using case studies in microser-
vices and demonstrated its effectiveness in extracting a clear and understandable
representation of the system’s architecture. Our approach has limitations, par-
ticularly its dependence on the quality of the detectors provided as input. Future
research could address these limitations by automatically generating the detec-
tors from a higher-level expectation description and may make our approach a
helpful tool for software architects and developers.



8 Pierre-Jean Quéval and Uwe Zdun

7 Acknowledgements

Our work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 952647 (AssureMOSS
project). This work was supported by: FWF (Austrian Science Fund) project
API-ACE: I 4268; FWF (Austrian Science Fund) project IAC²: I 4731-N.

References

1. Bushong, V., Das, D., Al Maruf, A., Cerny, T.: Using static analysis to address
microservice architecture reconstruction. In: 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE

2. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice
architecture reconstruction and visualization techniques: A review. In: 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE). IEEE

3. Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-oriented
taxonomy. IEEE Transactions on Software Engineering

4. Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L., Di Salle,
A.: Towards recovering the software architecture of microservice-based systems. In:
2017 IEEE International conference on software architecture workshops (ICSAW).
IEEE

5. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility
and reliability in e-commerce. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). IEEE

6. Newman, S.: Building microservices. O’Reilly Media, Inc.
7. Ntentos, E., Zdun, U., Plakidas, K., Geiger, S.: Semi-automatic feedback for im-

proving architecture conformance to microservice patterns and practices. In: 2021
IEEE 18th International Conference on Software Architecture (ICSA). IEEE

8. Ntentos, E., Zdun, U., Plakidas, K., Genfer, P., Geiger, S., Meixner, S., Hasselbring,
W.: Detector-based component model abstraction for microservice-based systems.
Computing

9. Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., Geiger, S.: Assessing architec-
ture conformance to coupling-related patterns and practices in microservices. In:
Software Architecture: 14th European Conference, ECSA 2020, L’Aquila, Italy,
September 14–18, 2020, Proceedings 14. Springer

10. Papotti, P.E., do Prado, A.F., de Souza, W.L.: Reducing time and effort in legacy
systems reengineering to mdd using metaprogramming. In: Proceedings of the 2012
ACM Research in Applied Computation Symposium

11. Rademacher, F., Sachweh, S., Zündorf, A.: A modeling method for systematic ar-
chitecture reconstruction of microservice-based software systems. In: Enterprise,
Business-Process and Information Systems Modeling: 21st International Confer-
ence, BPMDS 2020, 25th International Conference, EMMSAD 2020, Held at
CAiSE 2020, Grenoble, France, June 8–9, 2020, Proceedings 21. Springer

12. Rattan, D., Bhatia, R., Singh, M.: Software clone detection: A systematic review.
Information and Software Technology 55(7)

13. Zdun, U., Queval, P.J., Simhandl, G., Scandariato, R., Chakravarty, S., Jelic, M.,
Jovanovic, A.: Microservice security metrics for secure communication, identity
management, and observability. ACM Trans. Softw. Eng. Methodol.


