
A Tight Characterization of Fast Failover Routing:
Resiliency to Two Link Failures is Possible

Wenkai Dai

Faculty of Computer Science and

UniVie Doctoral School Computer

Science DoCS, University of Vienna

Klaus-Tycho Foerster

TU Dortmund

Stefan Schmid

TU Berlin and University of Vienna

ABSTRACT

To achieve fast recovery from link failures, most modern communi-

cation networks feature local fast failover mechanisms in the data

plane. These failover mechanisms typically rely on pre-installed

static rerouting rules which can depend only on local failure infor-

mation. The locally limited failure information renders the problem

of providing a high resilience algorithmically challenging. In this

paper, we are interested in algorithms which tolerate a maximal

number of 𝑘 simultaneous link failures to guarantee packet deliv-

ery, as long as source and destination remain connected afterwards.

Prior work showed that 𝑘=1 link failure can always be tolerated

in general networks, but already the question of 𝑘=2 remained an

unresolved problem.

This paper closes this gap by presenting a tight characterization

of fast failover routing: We show that 2-resiliency is possible with

pre-installed static routing rules on general topologies, but that

3-resiliency is impossible already in relatively simple networks. Our

2-resilient routing scheme can be computed efficiently and relies

on a careful kernelization and subdivision of the network topology

into sparse subgraphs.

CCS CONCEPTS

• Theory of computation → Routing and network design

problems; • Networks→ Network reliability.

KEYWORDS

Network resilience, local failover, routing, fast reroute, date plane

ACM Reference Format:

Wenkai Dai, Klaus-Tycho Foerster, and Stefan Schmid. 2023. A Tight Char-

acterization of Fast Failover Routing: Resiliency to Two Link Failures is

Possible. In Proceedings of the 35th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA ’23), June 17–19, 2023, Orlando, FL, USA.ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3558481.3591080

1 INTRODUCTION

Communication networks are a critical infrastructure of our dig-

ital society. To meet their stringent dependability requirements,

networks need to be able to quickly deal with link failures, which

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9545-8/23/06.

https://doi.org/10.1145/3558481.3591080

are unavoidable and likely to become more frequent with the in-

creasing scale of networks [21]. It has been shown that even short

disruptions of connectivity can cause severe degradation in service

quality [1, 36, 38].

Traditionally, when confronting a failure, routing protocols such

as OSPF [30] and IS-IS [23] are invoked to recompute routing tables.

Such reactions to link failures in the control plane are usually

unacceptably slow for critical applications [1, 20, 21, 36, 38]. For

a more rapid response to failures, most modern communication

networks additionally feature local fast failover techniques in the

data plane, where, upon a link failure, packets are locally rerouted

to pre-installed alternative paths without waiting for global route

re-computation. This can be orders of magnitude faster [13, 29].

For example, many networks rely on IP Fast Reroute [24, 25, 32]
or MPLS Fast Reroute [31] to deal with failures on the data plane,

SDNs provide FRR functionality in terms of OpenFlow fast-failover
groups [34], BGP relies on BGP-PIC [9] for quickly rerouting flows,

to name a few.

Fast re-routing of flows in the data plane however introduces an

algorithmic challenge: How to pre-define the static failover rules

such that reachability on the routing level is preserved, even under

failures? In particular, routing rules can only depend on local failure

information, and not on possible further failures downstream.

The fundamental question is: Can we design a 𝑘-resilient failover
routing, which tolerates any 𝑘 simultaneous link failures, as long

as the underlying topology remains connected?

The question of how to design robust failover mechanisms has

received much attention over the last years [6]. While randomiza-

tion [5, 8] (e.g., with a random walk) can always overcome failures

in a graph as long as it is connected, similar to graph exploration,

standard routers and switches do not support efficient random-

ized forwarding [19, 28]; randomization usually also results in long

routes and may lead to packet reorderings. Similar disadvantages

hold for packet duplication algorithms, such as, e.g., flooding, which

also impose heavy additional load on the network.

Regarding deterministic algorithms, Feigenbaum et al. [13] gave

a DAG-based construction s.t. 1-resilient failover routing is always

possible, however, resilience to arbitrarily many link failures is

already impossible on graphs with eight nodes [14]. While Chiesa et

al. [7] have shown that 2-resilience is impossible when disregarding

source information, standard IP-headers contain both the source

and destination address, raising the question of how much more

resilience fast failover routing can provide. Most further existing

solutions either only provide heuristic guarantees, rely on packet

header modifications, or require densely connected networks [5, 6,

18, 37]. Hence, even the question of 2- or 3-resilience is unresolved

so far, except for weaker routing models [7] or dense connectivity

https://doi.org/10.1145/3558481.3591080
https://doi.org/10.1145/3558481.3591080

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Dai et al.

Table 1: Summary of related previous and new results

Resiliency results for static & deterministic Assuming graph Local information matched for routing at each node

routing without packet header modification 𝑘-edge-connected Per-source Per-destination Per-incoming Port Incident Links

1-resilience impossible [27] no

1-resilience possible [13], 2-resilience impossible [7] no

(𝑘 − 1)-resilience possible for 𝑘 ≤ 5 [7] yes

(⌊𝑘/2⌋)-resilience possible for 𝑘 ≥ 6 [7] yes

(𝑘 − 1)-resilience [19] yes

arbitrary 𝑘-resilience impossible [18] no

2-resilience possible, 3-resilience imposs. [this paper] no

assumptions [7, 19], e.g., 𝑘-edge-connectivity against 𝑘 − 1 link

failures. However, many real-world communication networks have

relatively low all-to-all connectivity, with some dense parts [11, 15],

and hence fast failover routing algorithms without connectivity

assumptions are desirable.

Hence, in this paper, we are interested in approaches giving

provable and deterministic worst-case resilience guarantees on

general topologies, which do not require packet header rewriting

or convergence mechanisms. In this sense, our work is most closely

related to Feigenbaum et al. [13], Chiesa et al. [7], and Foerster et

al. [16–19, 33], which consider deterministic algorithms for static

failover routing. We give an overview of the directly related results

in Table 1. A main conceptual difference in our work to the above is

the choice and computation of the underlying topological routing

structure. Previous algorithms which focused on special graph

classes could leveragewell-understood graph structures, namely the

classic right-hand rule on outerplanar graphs for face routing [3, 26],

disjoint paths or trees [2], respectively routing on a directed acyclic

graph created by, e.g., depth-first search. We on the other hand need

to devise a novel subgraph structure in §4-§6 that retains topological

resilience, but also allows for efficient local failover routing.

Contributions. This paper presents a tight characterization of

𝑘-resilient local failover routing, by showing that on the one hand,

a 3-resilient or better failover routing is impossible in general, but

that on the other hand, a 2-resilient failover routing scheme always

exists and is in fact, polynomial-time computable on every network

topology. The main technical challenge is to find a representative

topological structure that is sufficient to retain 2-resilience. To this

end, we show that the problem can be reduced to subgraphs with

virtual sources 𝑠 and destinations 𝑡 connected by two node-disjoint

paths, in which we can derive further component subdivisions that

preserve the same level of connectivity between 𝑠 and 𝑡 . These

subdivisions can be combined into one subgraph of the original

topology, for which we prove that the same level of connectivity

against two link failures is retained, resulting in an algorithm for

2-resilient failover routing problem.

Organization. We present a formal model in §2 and prove the

impossibility of 3-resilience in §3. We then present intuitions, chal-

lenges, and reductions for solving the 2-resilient failover routing

problem on general graphs in §4, followed by showing how these

reduced components can be computed and present their connectiv-

ity properties in §5. The proof that failure resilience is maintained

in the resulting subgraph is given in §6, along with a corresponding

2-resilient failover routing algorithm. We conclude in §7 with some

open questions.

2 PRELIMINARIES

We represent the given network as an undirected (multigraph) 𝐺 =

(𝑉 , 𝐸), where each router in the network is modeled by a node in𝑉

and each bi-directed link between two routers 𝑢 and 𝑣 is modeled

by an undirected edge {𝑢, 𝑣} ∈ 𝐸. Henceforth, we assume that

multi-edges between any two nodes in 𝑉 are distinguishable. Let
𝐹 ⊆ 𝐸 denote failed links in 𝐺 , which fail in transferring packets

in both directions. For a set of edges 𝐸 ′ ⊂ 𝐸, let 𝐺 \ 𝐸 ′ denote a
subgraph of 𝐺 obtained by removing edges 𝐸 ′ in 𝐺 . For a set of

nodes𝑉 ′ ⊂ 𝑉 , let𝐺 \𝑉 ′
be a subgraph of𝐺 generated by removing

𝑉 ′
and all incident edges of 𝑉 ′

in 𝐺 . For a graph 𝐺 ′ ⊆ 𝐺 and a

node 𝑣 ∈ 𝑉 (𝐺 ′), we use 𝑁𝐺′ (𝑣), 𝐸𝐺′ (𝑣), Δ𝐺′ (𝑣) to denote the

(open) neighbors (excluding 𝑣), incident edges, and the degree of 𝑣
respectively in 𝐺 ′

, where 𝐺 ′
can be omitted when the context is

clear.

Failover Routing: For failover routing, each 𝑣 ∈ 𝑉 stores a pre-
defined and static forwarding (routing) function, which makes a

forwarding decision deterministically for each incoming packet

only relying on the local information at 𝑣 , i.e.,

• the source 𝑠 and the destination 𝑡 of the incoming packet,

• the incoming port (in-port) of the packet at node 𝑣 ,
• and the set of non-failed links incident on 𝑣 .

More specifically, given a graph𝐺 , a source 𝑠 ∈ 𝑉 , and a destination

𝑡 ∈ 𝑉 , a forwarding function for a source-destination pair (𝑠, 𝑡) at a
node 𝑣 ∈ 𝑉 is defined as 𝜋

(𝑠,𝑡)
𝐺,𝑣

: 𝑁𝐺 (𝑣) ∪ {⊥} × 2
𝐸𝐺 (𝑣) ↦→ 𝐸𝐺 (𝑣),

where ⊥ represents the empty in-port, i.e. sending a packet orig-

inated at 𝑣 (for multigraphs, the function can be extended appro-

priately). When 𝐺 and the source-destination pair (𝑠, 𝑡) are clear,
𝜋
(𝑠,𝑡)
𝐺,𝑣

(
𝑢, 𝐸𝐺\𝐹 (𝑣)

)
can be abbreviated as 𝜋𝑣

(
𝑢, 𝐸𝐺\𝐹 (𝑣)

)
, where

𝑢 ∈ 𝑁𝐺\𝐹 (𝑣) ∪ {⊥}. Let 𝐹𝑣 denote the failed edges incident on a

node 𝑣 ∈ 𝑉 . With a slight abuse of notation, the forwarding function

𝜋
(𝑠,𝑡)
𝐺,𝑣

(
𝑢, 𝐸𝐺\𝐹 (𝑣)

)
can be also denoted by the form 𝜋

(𝑠,𝑡)
𝐺,𝑣

(𝑢, 𝐹𝑣)
since 𝐸𝐺\𝐹 (𝑣) = 𝐸𝐺 (𝑣) \ 𝐹𝑣 . Especially, when 𝑣 does not lose

any link under 𝐹 , i.e., 𝐸𝐺\𝐹 (𝑣) = 𝐸𝐺 (𝑣), its forwarding func-

tion is simplified as 𝜋𝑣 (𝑢). The collection of forwarding functions:

Π (𝑠,𝑡) =
⋃

𝑣∈𝑉 \{𝑡 }
(
𝜋
(𝑠,𝑡)
𝑣

)
is called a forwarding scheme for (𝑠, 𝑡).

A Tight Characterization of Fast Failover Routing: Resiliency to Two Link Failures is Possible SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Definition 2.1 (𝑘-Resilient Failover Routing Problem). Given a

graph𝐺 = (𝑉 , 𝐸), the 𝑘-resilient failover routing problem is to com-

pute a 𝑘-resilient forwarding scheme for each source-destination

pair (𝑠, 𝑡) in𝐺 . A forwarding scheme for (𝑠, 𝑡) is called 𝑘-resilient, if
this scheme can route a packet originated at 𝑠 ∈ 𝑉 to its destination

𝑡 ∈ 𝑉 as long as the set of failed links 𝐹 ⊆ 𝐸 is of cardinality at

most 𝑘 , i.e., |𝐹 | ≤ 𝑘 , and 𝑠 − 𝑡 remains connected in 𝐺 \ 𝐹 .

We will focus on computing 𝑘-resilient forwarding scheme for

a given pair (𝑠, 𝑡), as our algorithm for (𝑠, 𝑡) can be applied to any

two nodes 𝑢, 𝑣 ∈ 𝑉 .

Dead-Ends, Loops, and Circular Routing: Next, we introduce

some commonly-used concepts of forwarding function in failover

routing. We say that a node 𝑣 bounces back a packet 𝑝 , if 𝑣 sends

the incoming packet 𝑝 back via its incoming port. Given a graph

𝐺 ′ ⊆ 𝐺 , if a node 𝑣 ∈ 𝑉 (𝐺 ′) has only one neighbor, i.e., Δ𝐺′ (𝑣) = 1,

it is called a dead-end, any forwarding function at 𝑣 must bounce

back packets received from its unique neighbor, otherwise packets

must be stuck after arriving at 𝑣 . A forwarding loop arises when

the same direction of an undirected link is repeated in a path of

a packet. Both directions of an undirected link can be traversed

once without generating a loop. A packet cannot be sent from

𝑢 to 𝑣 anymore, if its path contains a forwarding loop or if the

packet is stuck at a node. A forwarding function at a node 𝑣 ∈ 𝑉 is

called link-circular if packets routed by 𝑣 are based on an ordered
circular sequence ⟨𝑢1, . . . , 𝑢𝑙 ⟩ of the open neighbors {𝑢1, . . . , 𝑢𝑙 } of 𝑣
as follows: a packet 𝑝 received from a node 𝑢𝑖 is forwarded to 𝑢𝑖+1;
if the link {𝑣,𝑢𝑖+1} is failed, then 𝑝 is forwarded to 𝑢𝑖+2 and so on,

with 𝑢1 following 𝑢𝑙 [7]. Obviously, for circular routing, bouncing

back is only allowed on dead-ends.

Further Notations and Graph Theory Concepts: In the fol-

lowing, we also state some related concepts in graph theory and

notations that we will use. A path 𝑃 from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 in 𝐺

is called an 𝑢 − 𝑣 path in 𝐺 . Two paths are edge-disjoint if they
do not have any joint edge, but they may have common (joint)

nodes. Two edge-disjoint 𝑢 − 𝑣 paths 𝑃1 and 𝑃2 are node-disjoint if
𝑉 (𝑃1) ∩𝑉 (𝑃2) \ {𝑢, 𝑣} = ∅. In this paper, we are often interested

in the edge-connectivity, henceforth simply denoted by connectivity.
In a graph 𝐺 = (𝑉 , 𝐸), two nodes 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 are 𝑘-connected
(interchangeably, 𝑢 − 𝑣 is 𝑘-connected) if there exist 𝑘 edge-disjoint
𝑢 − 𝑣 paths in 𝐺 , and 𝐺 is called 𝑘-connected if any two nodes in 𝑉

are 𝑘-connected. Particularly, 𝑢 and 𝑣 are called exactly 𝑘-connected
if 𝑢 − 𝑣 is 𝑘-connected but not (𝑘 + 1)-connected. An 𝑢 − 𝑣 ar-
ticulation point of a graph 𝐺 = (𝑉 , 𝐸), where 𝑢, 𝑣 ∈ 𝑉 , is a node

𝑤 ∈ 𝑉 \{𝑢, 𝑣}whose removal breaks all𝑢−𝑣 paths of𝐺 . Given a path

𝑃 = (𝑥0, 𝑥1, . . . , 𝑥𝑘), where 𝑥𝑖 ∈ 𝑉 (𝑃) for 0 ≤ 𝑖 ≤ 𝑘 , then 𝑥𝑖𝑃𝑥 𝑗 ⊆ 𝑃

denotes a sub-path of 𝑃 from 𝑥𝑖 to 𝑥 𝑗 , where 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 . Let

𝑃 = (𝑥0, . . . , 𝑢, . . . , 𝑥𝑘) and 𝑄 = (𝑦0, . . . , 𝑢, . . . , 𝑦ℓ) be two paths

with a joint node 𝑢 , where 𝑥𝑖′ = 𝑢 and 𝑦 𝑗 ′ = 𝑢, then 𝑥𝑖𝑃𝑢𝑄𝑦 𝑗 ,

where 0 ≤ 𝑖 < 𝑖 ′ and 𝑗 ′ < 𝑗 ≤ ℓ , denotes a path from 𝑥𝑖 to 𝑦 𝑗 by

joining sub-paths 𝑥𝑖𝑃𝑢 ⊂ 𝑃 and 𝑢𝑄𝑦 𝑗 ⊂ 𝑄 on the node 𝑢. Given

𝑉 ′ ⊆ 𝑉 , then𝐺 [𝑉 ′] denotes a subgraph of𝐺 induced by𝑉 ′
, where

an edge {𝑢, 𝑣} ∈ 𝐸 is contained in 𝐺 [𝑉 ′] iff 𝑢, 𝑣 ∈ 𝑉 ′
.

3 IMPOSSIBILITY OF 3-RESILIENCE

In this section, we start our characterization of the feasibility of fast

failover routing by showing the impossibility of 3-resiliency. We

give a counter-example in Fig. 1, where no 3-resilient forwarding

scheme exists that can guarantee to route from the source 𝑠 to the

destination 𝑡 after three link failures.

𝑡𝑠

𝑣1 𝑣2

𝑣3 𝑣4 𝑣8

𝑣7

𝑣6

𝑣5
𝑣11𝑣10 𝑣0 𝑣9

𝑢1 𝑢2
𝑢10 𝑢0

𝑢3 𝑢4

𝑢5

𝑢6

𝑢7

𝑢8

𝑢11𝑢9

Figure 1: Counter-example topology 𝐺 for 3-resilient for-

warding schemes, where 𝑠 is the source and 𝑡 is the destina-

tion. We can show that each node must use a link-circular

forwarding function, which has only two possible order-

ings for its neighbors, i.e., clockwise and anti-clockwise

for the shown drawing. For instance, the clockwise and an-

ticlockwise orderings for 𝑣0 are ⟨𝑣10, 𝑣5, 𝑣6⟩ and ⟨𝑣10, 𝑣6, 𝑣5⟩,
respectively. Setting {𝑠,𝑢10} ∈ 𝐹 , let {𝑣1, 𝑣2}, {𝑣3, 𝑣4} ∈ 𝐹

(both top blue links failed) if 𝑣0 and 𝑣9 have the same

type of orderings (clockwise or anti-clockwise), otherwise

let {𝑣1, 𝑣4}, {𝑣2, 𝑣3} ∈ 𝐹 (both top red links failed). Then a

forwarding loop, which does not traverse {𝑣9, 𝑣11}, always

occurs in 𝐺 [𝑉 ∗] even if 𝑠 − 𝑡 is connected, where 𝑉 ∗ =

{𝑠, 𝑡, 𝑣0, 𝑣1, . . . , 𝑣11}. For example, if 𝑣0 and 𝑣9 use forwarding

functions of clockwise and anti-clockwise orderings, respec-

tively, and 𝐹 = {{𝑠,𝑢10}, {𝑣1, 𝑣4}, {𝑣2, 𝑣3}}, then a forwarding

loop: (𝑠, 𝑣10, 𝑣0, 𝑣5, 𝑣1, 𝑣2, 𝑣7, 𝑣9, 𝑣8, 𝑣4, 𝑣3, 𝑣6, 𝑣0, 𝑣10, 𝑠, 𝑣10) appears.
Analogous arguments can be given for {𝑠, 𝑣10} ∈ 𝐹 by symme-

try.

Theorem 3.1. The network in Fig. 1 does not permit a 3-resilient
forwarding scheme.

Proof. We first assume that a 3-resilient forwarding scheme

Π (𝑠,𝑡)
exists in the graph𝐺 shown in Fig. 1. Then, for contradiction,

we show that a packet originated at 𝑠 cannot be routed to the

destination 𝑡 anymore, but is forwarded in a loop after removing at

most 3 edges 𝐹 in 𝐺 , even if 𝑠 has a path to 𝑡 in 𝐺 \ 𝐹 .
Let 𝑉 ′ = {𝑣𝑖 : 𝑖 ∈ {0, . . . , 11}}, 𝑉 ∗ = 𝑉 ′ ∪ {𝑠, 𝑡}, and 𝑈 ′ =

{𝑢𝑖 : 𝑖 ∈ {0, . . . , 11}}. For each 𝑣 ∈ 𝑉 (𝐺), we define a forwarding
function 𝜋𝑣 (𝑢, 𝐹𝑣) at the node 𝑣 , where 𝐹𝑣 denotes the failed edges

incident on 𝑣 and the source-destination (𝑠, 𝑡) is used implicitly in

this proof. Clearly, the induced graphs 𝐺 [𝑈 ′] and 𝐺 [𝑉 ′] are sym-

metric. By symmetry, when 𝐹𝑠 = ∅, an arbitrary node in {𝑣10, 𝑢10}
can be chosen as the outgoing port for the packet originated at 𝑠 .

Without loss of generality, we assume that 𝑣10 is chosen.

Let 𝐹 ⊆ 𝐸 (𝐺) denote a set of arbitrary links, s.t., |𝐹 | ≤ 3 and 𝐹

can be empty. Next, we claim that for each node 𝑣 ∈ 𝑉 (𝐺) \ {𝑡},
its forwarding function must be link-circular. If 𝑣 ∈ 𝑉 (𝐺) \ {𝑡}
has Δ𝐺\𝐹 (𝑣) = 1, then 𝜋𝑣 (𝑢, 𝐹𝑣) = 𝑢, where 𝜋𝑣 ∈ Π (𝑠,𝑡)

and

𝑢 ∈ 𝐸𝐺\𝐹 (𝑣) denotes its unique neighbor in 𝐺 \ 𝐹 , otherwise pack-
ets get stuck at 𝑣 . This case can be thought as a special case of the

link-circular forwarding. If 𝑣 ∈ 𝑉 (𝐺) \ {𝑡} has Δ𝐺\𝐹 (𝑣) = 3, i.e.,

Δ𝐺 (𝑣) = Δ𝐺\𝐹 (𝑣) and 𝐹𝑣 = ∅, a non-link-circular forwarding func-
tion at 𝑣 must imply ∃𝑥,𝑦 ∈ 𝑁𝐺\𝐹 (𝑣) : 𝜋𝑣 (𝑥) = 𝑦 and 𝜋𝑣 (𝑦) = 𝑥 ,

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Dai et al.

where 𝑁𝐺\𝐹 (𝑣) = {𝑥,𝑦, 𝑧}. However, a non-link-circular forward-
ing function cannot be 3-resilient if the only 𝑠 − 𝑡 path remained

in 𝐺 \ 𝐹 has to go through the link {𝑣, 𝑧}. For example, when

𝐹 = {{𝑠,𝑢10}, {𝑣5, 𝑣1}} and Δ𝐺\𝐹 (𝑣0) = 3, if a non-link-circular

forwarding function has 𝜋𝑣0 (𝑣10) = 𝑣5 and 𝜋𝑣0 (𝑣5) = 𝑣10, then

a packet starting at 𝑠 cannot approach 𝑡 anymore even if 𝑠 − 𝑡

is connected via {𝑣0, 𝑣6}. A similar argument can be established

if 𝜋𝑣0 (𝑣10) = 𝑣6 and 𝜋𝑣0 (𝑣6) = 𝑣10, and 𝐹 = {{𝑠,𝑢10}, {𝑣6, 𝑣3}}.
Moreover, for each 𝑣 ∈ 𝑉 (𝐺) \ {𝑡} having Δ𝐺\𝐹 (𝑣) = 2, a non-

link-circular forwarding function at 𝑣 must imply ∃𝑥 ∈ 𝑁𝐺\𝐹 (𝑣) :
𝜋𝑣 (𝑥) = 𝑥 for 𝑁𝐺\𝐹 (𝑣) = {𝑥,𝑦}, which can make 𝑣 become a

dead-end node, i.e., a packet cannot traverse from one neighbor

of 𝑣 to the other neighbor to approach 𝑡 anymore. Therefore, each

𝑣 ∈ 𝑉 (𝐺) \ {𝑡} must have a link-circular forwarding function.

If 𝑣 ∈ 𝑉 (𝐺) \{𝑡} has Δ𝐺\𝐹 (𝑣) = 2, then its link-circular forward-

ing function is unique, i.e., from one neighbor to the other neighbor.

If 𝑣 ∈ 𝑉 (𝐺) \ {𝑡} has Δ𝐺\𝐹 (𝑣) = 3, where 𝐹𝑣 = ∅, then there are

two possible circular orderings for its neighbors 𝑁𝐺\𝐹 (𝑣), i.e., one
clockwise and the other anti-clockwise based on their geometric

locations in Fig. 1. For example, at 𝑣0, the clockwise ordering of

𝑁𝐺 (𝑣0) is ⟨𝑣10, 𝑣5, 𝑣6⟩ and the anti-clockwise ordering of 𝑁𝐺 (𝑣0)
is ⟨𝑣10, 𝑣6, 𝑣5⟩. Thus, for each 𝑣 ∈ 𝑉 (𝐺) \ {𝑡} that has Δ𝐺\𝐹 (𝑣) = 3,

its link-circular forwarding function can choose one of two options:

clockwise and anti-clockwise, arbitrarily.

Fixing {𝑠,𝑢10} ∈ 𝐹 , let {𝑣1, 𝑣2}, {𝑣3, 𝑣4} ∈ 𝐹 (blue links failed) if

𝑣0 and 𝑣9 have the same type (clockwise or anti-clockwise) of link-

circular forwarding function, otherwise let {𝑣1, 𝑣4}, {𝑣2, 𝑣3} ∈ 𝐹

(red links failed). In this case, even if 𝑠, 𝑡 are connected in 𝐺 [𝑉 ∗],
a packet originated at 𝑠 will enter a forwarding loop but never

traverse the link {𝑣9, 𝑣11} to arrive at 𝑡 . For example, if 𝑣0 and 𝑣9
take forwarding functions of clockwise and anti-clockwise order-

ings respectively and {𝑠,𝑢10}, {𝑣1, 𝑣4}, {𝑣2, 𝑣3} ∈ 𝐹 , then a forward-

ing loop: (𝑠, 𝑣10, 𝑣0, 𝑣5, 𝑣1, 𝑣2, 𝑣7, 𝑣9, 𝑣8, 𝑣4, 𝑣3, 𝑣6, 𝑣0, 𝑣10, 𝑠, 𝑣10) occurs.
Moreover, a similar discussion can be applied when {𝑠, 𝑣10} ∈ 𝐹 .

Thus, no 3-resilient forwarding scheme for (𝑠, 𝑡) exists in Fig. 1. □

To complement Theorem 3.1, we will apply our algorithm to

compute a 2-resilient forwarding scheme for the graph 𝐺 of Fig. 1

in §4.1.

4 FIRST ALGORITHMIC INSIGHTS OF

2-RESILIENCE

Given our impossibility result, the question arises, whether at least

2-resilience is feasible—previous work only showed that 1-resilience

is possible [13]. We answer this question positively by presenting an

algorithm, which operates on the minimum topologies (subgraphs)
that can preserve the same s-t connectivity as the original network

against two failures, but will not be prone to forwarding loops.

We will call these subgraphs gadgets (Def. 4.4), and a process we

denote as kernelization in the following. In particular, our algo-

rithm designs a 2-resilient forwarding scheme on a kernel graph,
i.e., a subgraph of the original network, consisting of gadgets. We

summarize these algorithmic procedures in Algorithm 1.

4.1 An Intuition of 2-Resiliency for Fig. 1

The challenge of our algorithm is to find the appropriate minimum

topology (subgraph), which can guarantee enough 𝑠−𝑡 connectivity

Algorithm 1: Compute a 2-resilient forwarding scheme

Input: A graph 𝐺 with a source-destination pair (𝑠, 𝑡)
Output: A 2-resilient forwarding scheme Π (𝑠,𝑡)

for 𝐺

1 Reductions on 𝐺 by Claims 1 and 2, s.t., 𝑠 − 𝑡 is 2-connected

in 𝐺 and 𝐺 contains elementary paths 𝑃1 and 𝑃2 (Def. 4.1);

2 Let 𝐸𝑐 := {{𝑒, 𝑒 ′} : {𝑒, 𝑒 ′} is an 𝑠 − 𝑡 cut in 𝐺};
3 Compute a gadget (Def. 4.4) for each component𝐶ℓ ∈ 𝐺 \ 𝐸𝑐

according to its type (Def. 4.3) (see §5);

4 Obtain a kernel graph G ⊆ 𝐺 of 𝐺 by combining the gadget

of each 𝐶ℓ ∈ 𝐺 \ 𝐸𝑐 , e.g., Fig., 9;
5 return a 2-resilient forwarding scheme Π (𝑠,𝑡)

computed on

the kernel graph G according to Def. 6.2 (see §6);

against two failures, but also avoid forwarding loops. To better

understand the inherent challenge, we will compute a 2-resilient

forwarding scheme for the network 𝐺 of Fig. 1 by Algorithm 1, see

Fig. 2.

For the graph 𝐺 = (𝑉 , 𝐸) as shown in Fig. 1, Algorithm 1 will

return its kernel graph (subgraph) G ⊆ 𝐺 (details in Fig. 2), where

the induced subgraph G [{𝑣1, 𝑣2, 𝑣3, 𝑣4}] ⊂ G contains either the

red (crossing) links {{𝑣1, 𝑣4}, {𝑣3, 𝑣2}} or the blue (parallel) links
{{𝑣1, 𝑣2}, {𝑣3, 𝑣4}}, but not both, and similarly in the induced sub-

graph G [{𝑢1, 𝑢2, 𝑢3, 𝑢4}] ⊆ G. Note that if 𝑠 − 𝑡 is connected in

𝐺 \ 𝐹 , then 𝑠 − 𝑡 is also connected in G \ 𝐹 for any 𝐹 ⊆ 𝐸 that

has |𝐹 | ≤ 2. It moreover holds that a forwarding scheme Π (𝑠,𝑡)
by

Def. 6.2, which defines a link-circular forwarding function on each

node in G, is 2-resilient in G. Thus, Π (𝑠,𝑡)
is also a 2-resilient for-

warding scheme for𝐺 since the 𝑠 − 𝑡 connectivity in𝐺 \ 𝐹 remains

in G \ 𝐹 for any |𝐹 | ≤ 2.

This is in contrast to the situation for three link failures, which

we discussed in the previous section: For three link failures 𝐹 ⊆ 𝐸,

no subgraph 𝐺 ′ ⊂ 𝐺 (𝐺 shown as Fig. 1) can guarantee the same

𝑠 − 𝑡 connectivity in 𝐺 ′ \ 𝐹 as in 𝐺 \ 𝐹 . Thus, a kernel graph of

𝐺 must be𝐺 itself, whose topology was shown to be not resilient

against three failures in Theorem 3.1, no matter what local fast

failover routing is used.

4.2 Challenges in General Graphs and Problem

Reductions

As we saw in the impossibility proof against three failures in Fig. 1,

we are posed with the dilemma of either maintaining the 𝑠 − 𝑡 con-

nectivity against failures, which prefers to include as many nodes

and links as possible for resilient routing, or of yielding to the

limited power of local forwarding functions, which easily induce

forwarding loops under failures. Given a specific and small graph,

it might be possible to determine an appropriate subgraph and its

2-resilient routing functions by means of brute force. However, in

general, such an approach is not practical due to the combinatorial

explosion of possibilities, which both makes the analysis cumber-

some and the algorithmic runtime high. Moreover, a brute force

approach also does not solve the underlying fundamental question

if 2-resiliency is always possible. Given the heterogeneity of gen-

eral graphs, we must thus reduce the problem complexity to provide

a tractable solution, which is one of our main building blocks to

A Tight Characterization of Fast Failover Routing: Resiliency to Two Link Failures is Possible SPAA ’23, June 17–19, 2023, Orlando, FL, USA

𝑡𝑠

𝑣1 𝑣2

𝑣3 𝑣4 𝑣8

𝑣7

𝑣6

𝑣5
𝑣11𝑣10 𝑣0 𝑣9

𝑢1 𝑢2
𝑢10 𝑢0

𝑢3 𝑢4

𝑢5

𝑢6

𝑢7

𝑢8

𝑢11𝑢9

Figure 2: Example of applying Algorithm 1 to the graph 𝐺

shown as Fig. 1 to obtain its kernel graph G (shown as this

figure). The dotted lines denote the links in the set 𝐸𝑐 . Given

nodes 𝑉0,9 = {𝑣0, . . . , 𝑣9} and 𝑈0,9 = {𝑢0, . . . , 𝑢9}, the induced

subgraphs𝐺 [𝑉0,9] ⊂ 𝐺 and𝐺 [𝑈0,9] ⊂ 𝐺 are two components

in 𝐺 \ 𝐸𝑐 . Given components 𝐺 [𝑉0,9] ⊂ 𝐺 and 𝐺 [𝑈0,9] ⊂ 𝐺

of Type-4 (see Def. 4.3), we can compute two gadgets: two

induced (chordless) cycles G[𝑉0,9] ⊂ G and G[𝑈0,9] ⊂ G re-

spectively (see Fig. 5), s.t., each cycle contains either par-

allel links, i.e., {{𝑣1, 𝑣2}, {𝑣3, 𝑣4}} (resp., {{𝑢1, 𝑢2}, {𝑢3, 𝑢4}}) or
crossing links, i.e., {{𝑣1, 𝑣4}, {𝑣3, 𝑣2}} (resp., {{𝑢1, 𝑢4}, {𝑢3, 𝑢2}}
in 𝐸 (𝐺) but not both. By Def. 6.2, we obtain a forwarding

scheme Π (𝑠,𝑡)
, which defines a link-circular forwarding func-

tion at each node of G, and we can easily verify Π (𝑠,𝑡)
as 2-

resilient. In this figure, Π (𝑠,𝑡)
is illustrated by solid (red) arcs,

dotted (green) arcs, and dashed (blue) arcs respectively, s.t., at

a node 𝑣 , a packet from an incoming arc (𝑢, 𝑣) is forwarded to

an outgoing arc (𝑣,𝑤) that has the same dash pattern (color)

as (𝑢, 𝑣) If an outgoing arc (𝑣,𝑤) is failed, then the arc (𝑤, 𝑣)
is considered as an incoming arc to continue forwarding on

the dash pattern (color) of (𝑤, 𝑣), while a packet originated

at 𝑠 can select either the solid (red) arc (𝑠, 𝑣10) or the dashed
(blue) arc (𝑠,𝑢10) arbitrarily to start. For example, if the link

{𝑣1, 𝑣2} has failed, we might route from 𝑠 to 𝑣1 along the solid

(red) arcs, then use dotted (green) arcs until we hit 𝑣2, and

then use solid (red) arcs again to reach 𝑡 .

obtain 2-resilience. To this end, in the following, we first give some

insights that the 2-resilient failover routing problem on general

graphs can be reduced to a restricted problem, where 𝑠 − 𝑡 is exactly
2-connected in 𝐺 .

Claim 1. The 2-resilient fast failover routing problem with a given
source-destination pair (𝑠, 𝑡) can be reduced to versions, where source
and destination are exactly 2-connected.

Proof. Consider a graph 𝐺 = (𝑉 , 𝐸) with 𝑠, 𝑡 ∈ 𝑉 . If 𝑠 − 𝑡 is at

least 3-connected in 𝐺 , then we can find three edge-disjoint 𝑠 − 𝑡

paths P = {𝑃1, 𝑃2, 𝑃3} in 𝐺 . Since there are |𝐹 | ≤ 2 failed links,

there must be a path 𝑃 ∈ P always connected in𝐺 \ 𝐹 . Let Π (𝑠,𝑡)
be

a forwarding scheme working as follows: first send packets along

𝑃1 starting at 𝑠 , and when encountering a link failure, then bounce

back to 𝑠 and try the next path 𝑃2 and then 𝑃3 until arriving at 𝑡 .

Hence, Π (𝑠,𝑡)
is 2-resilient, as observed in [19].

When 𝑠 − 𝑡 is 1-connected in 𝐺 , let 𝑃 be an 𝑠 − 𝑡 path in 𝐺 . Let

𝐸 ′ ⊆ 𝐸 be a set of 𝑠 − 𝑡 bridges, s.t., ∀𝑒 ∈ 𝐸 ′, 𝑠 − 𝑡 is disconnected in

𝐺 \ {𝑒}. Hence, for each 𝑒 ∈ 𝐸 ′, it implies 𝑒 ∈ 𝐸 (𝑃), otherwise 𝑠 − 𝑡

is still connected by 𝑃 in 𝐺 \ {𝑒}. For each connected component

𝐺𝑖 ⊆ 𝐺 \ 𝐸 ′, let 𝑠𝑖 ∈ 𝑉 (𝐺𝑖) (resp., 𝑡𝑖 ∈ 𝑉 (𝐺𝑖)) be the node in 𝑉 (𝑃)

𝑠

𝑣1

𝑢1

𝑣2

𝑢2

𝑎 𝑏

𝑣3

𝑢3

𝑣4

𝑣4

𝑣5

𝑢5

𝑡

𝑃1

𝑃2

Figure 3: An example graph𝐺 for Claim 2, where 𝑏 is an 𝑠 − 𝑡

articulation point of 𝐺 but 𝑎 is not: as 𝑠 − 𝑡 is connected after

removing 𝑎 in𝐺 , there are two edge-disjoint 𝑠 − 𝑡 paths 𝑃1 and
𝑃2, that do not both contain 𝑎, by including the edge {𝑣1, 𝑢3}
in 𝑃1. But, since 𝑠 − 𝑡 is disconnected in 𝐺 \ {𝑏}, any two 𝑠 − 𝑡

edge-disjoint paths must both contain 𝑏. Thus, the problem

is split into two sub-problems with source-destination pairs

(𝑠, 𝑏) and (𝑏, 𝑡) respectively, s.t., each sub-problem has two

edge-disjoint paths 𝑃1 and 𝑃2, which are node-disjoint except

for source and destination.

that is closest to the source 𝑠 (resp., the destination 𝑡) in 𝑃 . If each

component 𝐺𝑖 has a 2-resilient forwarding scheme Π (𝑠𝑖 ,𝑡𝑖)
, then a

2-resilient forwarding scheme Π (𝑠,𝑡)
exists in 𝐺 . Now, the problem

becomes to find Π (𝑠𝑖 ,𝑡𝑖)
for each 𝐺𝑖 . If 𝑠𝑖 and 𝑡𝑖 are 3-connected in

𝐺𝑖 , Π
(𝑠𝑖 ,𝑡𝑖)

can be computed as mentioned above by 3 edge-disjoint

paths already.

Thus, the 2-resilient failover routing problem can be reduced to

a simplified version, where 𝑠 − 𝑡 is exactly 2-connected in 𝐺 . □

For a graph 𝐺 that has its 𝑠 − 𝑡 edge-connectivity at exactly 2,

there must be two edge-disjoint 𝑠 − 𝑡 paths, but it is not mandatory

to have two node-disjoint 𝑠 − 𝑡 paths. However, node-disjoint 𝑠 − 𝑡

paths can effectively simplify our algorithms. Thus, by Claim 2,

we show that the reduced problem can be further simplified into

subproblems, s.t., source and destination are 2-node-connected.

Claim 2. The 2-resilient fast failover routing problem, where 𝑠−𝑡 is
exactly 2-connected in𝐺 , can be reduced to versions, where there exist
two node-disjoint 𝑠−𝑡 paths 𝑃1 and 𝑃2, s.t.,𝑉 (𝑃1)∩𝑉 (𝑃2) \{𝑠, 𝑡} = ∅,
implying that 𝑠 − 𝑡 is at least 2-node-connected in 𝐺 .

Proof. If 𝑠 − 𝑡 is already 2-node-connected in 𝐺 , then we can

directly compute two node-disjoint 𝑠−𝑡 paths 𝑃1 and 𝑃2 in𝐺 within

𝑂 (|𝑉 |) [22]. In the following, we consider that 𝑠−𝑡 is exactly 2-edge-
connected but 1-node-connected in𝐺 , e.g., Fig 3. An 𝑠−𝑡 articulation
point of𝐺 is a node 𝑣 ∈ 𝑉 \ {𝑠, 𝑡}, s.t., 𝑠−𝑡 is disconnected in𝐺 \ {𝑣},
and we can compute the set 𝐽 of all 𝑠 − 𝑡 articulation points of 𝐺

within 𝑂 (|𝑉 | + |𝐸 |) [4]. Clearly, any two edge-disjoint 𝑠 − 𝑡 paths

𝑃 and 𝑃 ′ in 𝐺 must have 𝐽 ⊆ 𝑉 (𝑃) ∩ 𝑉 (𝑃 ′) \ {𝑠, 𝑡} (see Fig 3),

otherwise there must be a node 𝑢 ∈ 𝐽 but 𝑢 ∉ 𝑉 (𝑃) ∩ 𝑉 (𝑃 ′),
contradicting that 𝑠 − 𝑡 is still connected by 𝑃 ∪ 𝑃 ′ in 𝐺 \ {𝑢}.

Let 𝐽 =
{
𝑣1, . . . , 𝑣 𝑗

}
be sorted s.t., every two consecutive nodes

𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐽 satisfy that 𝑣𝑖+1 is connected with 𝑡 in the graph 𝐺 \ 𝑣𝑖 .
We note that any 𝑠 −𝑡 path 𝑃 in𝐺 must traverse all 𝑠 −𝑡 articulation
points in the same order of 𝐽 . Now, our 2-resilient failover routing

problem with the given pair (𝑠, 𝑡) can be divided into a set of sub-

problems for different source-destination pairs: (𝑠, 𝑣1),
(
𝑣 𝑗 , 𝑡

)
and

(𝑣𝑖 , 𝑣𝑖+1) for 𝑖 ∈ {1, . . . , 𝑗 − 1}, s.t., in each sub-problem, its source

𝑠 and destination 𝑡 are 2-node-connected and we can compute two

node-disjoint 𝑠 − 𝑡 paths 𝑃1 and 𝑃2 within 𝑂 (|𝑉 |), e.g., Fig 3. □

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Dai et al.

Henceforth, by Claim 2, we will focus on the 2-resilient failover

routing problem on graphs, where 𝑠 − 𝑡 is 2-node-connected in 𝐺 .

Definition 4.1 (Elementary Paths). Given a graph 𝐺 = (𝑉 , 𝐸),
where 𝑠 − 𝑡 is exactly 2-connected and at least 2-node-connected,

let 𝑃1 and 𝑃2 denote two arbitrary node-disjoint 𝑠 − 𝑡 paths in 𝐺 .

From now on, we call 𝑃1 and 𝑃2 as elementary paths for (𝑠, 𝑡) in𝐺 .

4.3 Understanding Connected Components

After Two Failures

After applying the above reductions on the 2-resilient failover prob-

lem, with Lemma 4.2 we can show that any two failures that can

disconnect 𝑠 and 𝑡 in 𝐺 must be on elementary paths 𝑃1 and 𝑃2
(Definition. 4.1). However, two arbitrary failures 𝐹 on 𝑃1 and 𝑃2,

which can disconnect 𝑃1 and 𝑃2, do not necessarily disconnect 𝑠

and 𝑡 in 𝐺 \ 𝐹 . Thus, devising 2-resilient failover forwarding re-

lies on understanding these structures in addition to 𝑃1 and 𝑃2,

which can continue connecting 𝑠 and 𝑡 in𝐺 \ 𝐹 when 𝑃1 and 𝑃2 are

disconnected by 𝐹 .

Lemma 4.2. Given a graph 𝐺 = (𝑉 , 𝐸), where 𝑠, 𝑡 ∈ 𝑉 are exactly
2-connected, let 𝑃1, 𝑃2 be elementary paths for (𝑠, 𝑡). Then, for any two
distinct edges 𝑒1, 𝑒2 ∈ 𝐸, s.t., 𝑠 − 𝑡 is disconnected in𝐺 \ {𝑒1, 𝑒2}, then
one edge must be on 𝑃1 and the other on 𝑃2, denoted by 𝑒1 ∈ 𝐸 (𝑃1)
and 𝑒2 ∈ 𝐸 (𝑃2).

Proof. We prove the lemma by contradiction. If {𝑒1, 𝑒2} are not
on 𝑃1 and 𝑃2 respectively, there must be a path 𝑃 ∈ {𝑃1, 𝑃2} that is
still connected in the graph 𝐺 \ {𝑒1, 𝑒2}, which contradicts that 𝑠

and 𝑡 are disconnected in 𝐺 \ {𝑒1, 𝑒2}. □

For every two distinct edges 𝑒1, 𝑒2 ∈ 𝐸, if 𝑠 − 𝑡 is disconnected in

𝐺 \ {𝑒1, 𝑒2} then {𝑒1, 𝑒2} is called a 2-(𝑠, 𝑡)-cut. After removing all

2-(𝑠, 𝑡)-cuts in 𝐺 , let the remaining subgraph be 𝐺 ′
. Then, for any

two failures 𝐹 ⊆ 𝐸 (𝐺), if 𝐹 ∩ 𝐸 (𝐺 ′) ≠ ∅, then 𝑠 − 𝑡 is connected in

𝐺 \ 𝐹 , and we need to design a 2-resilient scheme for this case. If 𝐹

is a 2-(𝑠, 𝑡)-cut, i.e., 𝐹 ∩ 𝐸 (𝐺 ′) = ∅, then we do not need to retain

resilience due to 𝑠 − 𝑡 being disconnected. Thus, the subgraph 𝐺 ′
,

which might contain multiple connected components, provides the

topological information for routing.

With Definition 4.3, all possible connected components in𝐺 ′
are

characterized and classified by their topological features.

Definition 4.3 (Types of Connected Components). Given a graph

𝐺 = (𝑉 , 𝐸), where 𝑠 ∈ 𝑉 and 𝑡 ∈ 𝑉 are exactly 2-connected, let 𝑃1
and 𝑃2 be elementary paths for (𝑠, 𝑡). Let 𝐸𝑐 (𝐺) denote the set of
all 2-(𝑠, 𝑡)-cuts in𝐺 , and 𝐸𝑐 (𝐺) can be abbreviated as 𝐸𝑐 when𝐺 is

clear. By removing all edges in 𝐸𝑐 from𝐺 , we obtain a graph𝐺 \𝐸𝑐 ,
which consists of a set of connected components (E.g., see Fig. 4).
Let 𝐶ℓ denote each connected component in 𝐺 \ 𝐸𝑐 , and then we

define a set C as follows: C = {𝐶ℓ : |𝑉 (𝐶ℓ) ∩𝑉 (𝑃1 ∪ 𝑃2) | ≥ 2} . If
𝐶ℓ contains at most one node from either 𝑃1 or 𝑃2, then 𝐶ℓ ∉ C. If
𝐶ℓ ∈ C has 𝑠 ∈ 𝑉 (𝐶ℓ) (resp., 𝑡 ∈ 𝑉 (𝐶ℓ)), then it is called the head
(resp., tail) component, otherwise it is called a normal component.
Note that it is not necessary to have a head/tail component in C.

Moreover, a function 𝜕 (𝐶ℓ , 𝑃
′) is defined as follows:

∀𝐶ℓ ∈ C,∀𝑃 ′ ∈ {𝑃1, 𝑃2} : 𝜕
(
𝐶ℓ , 𝑃

′) = 𝑉 (𝐶ℓ) ∩𝑉
(
𝑃 ′
)
\ {𝑠, 𝑡}.

𝑠

𝑣0

𝑢0

𝑣1

𝑢1

𝑑 𝑐

𝑣2

𝑢2

𝑣3

𝑢3

𝑏

𝑣4

𝑢4

𝑣5

𝑣5

𝑣6

𝑢6

𝑡

𝑃1

𝑃2

Figure 4: Illustration of Definition 4.3: each connected com-

ponent in𝐺 \𝐸𝑐 is shown by solid lines and 𝐸𝑐 by dotted lines.

Let 𝑃, 𝑄 ∈ {𝑃1, 𝑃2} and 𝑄 ≠ 𝑃 . If C ≠ ∅, for each 𝐶ℓ ∈ C, when 𝐶ℓ

is head or tail, then its type can be defined as follows:

• Type-1: |𝜕 (𝐶ℓ , 𝑃) | ≥ 1 and 𝜕 (𝐶ℓ , 𝑄) = ∅,
• Type-2: |𝜕 (𝐶ℓ , 𝑃) | ≥ 1 and |𝜕 (𝐶ℓ , 𝑄) | ≥ 1,

and when 𝐶ℓ is normal, then its types can be defined as follows:

• Type-3: |𝜕 (𝐶ℓ , 𝑃) | = 1 and |𝜕 (𝐶ℓ , 𝑄) | = 1,

• Type-4: |𝜕 (𝐶ℓ , 𝑃) | ≥ 2 and 𝜕 (𝐶ℓ , 𝑄) = ∅,
• Type-5: |𝜕 (𝐶ℓ , 𝑃) | ≥ 2 and |𝜕 (𝐶ℓ , 𝑄) | = 1,

• Type-6: |𝜕 (𝐶ℓ , 𝑃) | ≥ 2 and |𝜕 (𝐶ℓ , 𝑄) | ≥ 2.

In Definition 4.3, the given types characterize all possible cases

for connected components. If a connected component 𝐶ℓ ∉ C,
it must have |𝑉 (𝐶ℓ) ∩𝑉 (𝑃1 ∪ 𝑃2) | ≤ 1, which further implies

𝐸 (𝐶ℓ) ∩ 𝐸 (𝑃1 ∪ 𝑃2) = ∅. Thus, if a connected component 𝐶ℓ ∉ C
has 𝐹 ∩ 𝐸 (𝐶ℓ) ≠ ∅, then 𝑠 and 𝑡 can still communicate in 𝐺 \ 𝐹 by

a path 𝑃 ∈ {𝑃1, 𝑃2}. Therefore, any 𝐶ℓ ∉ C can be ignored in our

further discussion.

To proceed, we define some concepts for each 𝐶ℓ ∈ C.
Ports and Key-Nodes of Components: In Definition 4.3, for each

𝐶ℓ ∈ C and each 𝑃 ∈ {𝑃1, 𝑃2}, if 𝜕 (𝐶ℓ , 𝑃) ≠ ∅, the left-𝑃 port (resp.,
right-𝑃 port) of 𝐶ℓ is defined as the first-traversed node in 𝜕 (𝐶ℓ , 𝑃)
when walking along the path 𝑃 from 𝑠 to 𝑡 (resp., from 𝑡 to 𝑠). If the

left-𝑃 port and the right-𝑃 port of 𝐶ℓ are identical, then it is called

the 𝑃 port of 𝐶ℓ . Moreover, if 𝐶ℓ is the head (resp., tail) component,

we only consider the right-𝑃 (resp., the left-𝑃) port of 𝐶ℓ . For each

𝐶ℓ ∈ C, all ports of 𝐶ℓ and the source 𝑠 (resp., destination 𝑡) if

it is contained in 𝐶ℓ are called the key-nodes of 𝐶ℓ . Even when

two connected components have the same type, they can be quite

different. However, we are only interested in theminimum subgraph

of each component 𝐶ℓ for devising forwarding functions, s.t., these

subgraphs are enough to guarantee the same 𝑠−𝑡 connectivity after
two failures 𝐹 . In terms of the 𝑠 − 𝑡 connectivity against failures,

different components of the same type can be uniformly described,

which are called gadgets and defined in Definition 4.4. Thanks to the
higher-level abstraction given by gadgets, we can design forwarding

functions by focusing on a handful of simple topologies instead of

devising them for components.

Definition 4.4 (Gadgets of Connected Components). For each com-

ponent 𝐶ℓ ∈ C, let 𝐺ℓ ⊆ 𝐶ℓ be a (connected) subgraph of 𝐶ℓ , s.t.,

𝐺ℓ contains all key-nodes of 𝐶ℓ .

Let 𝑃1 ∪ 𝑃2 be a graph consisting of two elementary paths 𝑃1
and 𝑃2 in 𝐺 , and then let 𝑇ℓ = 𝑃1 ∪ 𝑃2 \ 𝐸 (𝐶ℓ) be a subgraph of

𝑃1∪𝑃2 without edges from𝐶ℓ . The test graph T (𝐺ℓ) of𝐺ℓ is defined

as T (𝐺ℓ) = 𝐺ℓ ∪ 𝑇ℓ , i.e., a graph obtained by combining 𝐺ℓ and

𝑇ℓ . Moreover, the simple test graph T ′ (𝐺ℓ) of 𝐺ℓ is generated by

connecting the left-𝑃 (resp., right-𝑃), where 𝑃 ∈ {𝑃1, 𝑃2}, port 𝑢 of

A Tight Characterization of Fast Failover Routing: Resiliency to Two Link Failures is Possible SPAA ’23, June 17–19, 2023, Orlando, FL, USA

𝑠

𝑎

· · ·

𝑐

· · ·

𝑡

· · ·

· · ·
𝑃

𝑄

(a) Type-3

𝑠

𝑎

· · ·
𝑏

· · ·

𝑡

· · ·

· · ·
𝑃

𝑄

(b) Type-4

𝑠

𝑎

· · ·
𝑏

𝑐

· · ·

𝑡

· · ·

· · ·
𝑃

𝑄

(c) Type-5

𝑠

𝑎 𝑏

𝑐

𝑜· · · 𝑡

· · ·

· · ·

· · ·

𝑃

𝑄

(d) Type-5

Figure 5: Path-contracted patterns of gadgets in components

of Type-3, Type-4 and Type-5, where 𝑃,𝑄 ∈ {𝑃1, 𝑃2} and 𝑃 ≠

𝑄 , the nodes 𝑎 and 𝑏 denote the left-𝑃 and the right-𝑃 ports

respectively, and the node 𝑐 indicates the𝑄 port.We also note

that the node 𝑜 in Fig. 5d can be 𝑎 or 𝑏.

𝐺ℓ to 𝑠 (resp., 𝑡) by an edge {𝑠,𝑢} (resp., {𝑡,𝑢}) if that corresponding
port 𝑢 exists in 𝐺ℓ . SPAA Then, the subgraph 𝐺ℓ ⊆ 𝐶ℓ is called

a gadget of 𝐶ℓ , denoted by G (𝐶ℓ), if 𝑠 − 𝑡 can be disconnected

by removing two edges {𝑒, 𝑒 ′} in T (𝐺ℓ) (resp., T ′ (𝐺ℓ)), then it

implies {𝑒, 𝑒 ′} ∩ 𝐸 (𝐺ℓ) = ∅.

A component might contain multiple gadgets of essentially dif-

ferent topologies. To better illustrate variant topologies of gadgets

by a handful of figures, the gadgets are further abstracted into

so-called patterns. We remark that patterns are introduced only

for presenting this paper, which are unnecessary in the practical

executions of our algorithms.

Pattern of Gadgets: If two sub-paths (𝑥,𝑦, 𝑧) and (𝑥 ′, 𝑦, 𝑧′) have
a joint node 𝑦, then we can split 𝑦 into two duplicates: 𝑦 and 𝑦′, s.t.,
(𝑥,𝑦, 𝑧) and (𝑥 ′, 𝑦′, 𝑧′) are not overlapped at 𝑦 anymore. Given a

gadget 𝐺ℓ of a component 𝐶ℓ , by recursively splitting joint nodes

on𝐺ℓ , we can obtain a graph𝐺 ′
ℓ
as a pattern of𝐺ℓ , s.t., any induced

cycle in𝐺 ′
ℓ
must contain at least two key-nodes of𝐶ℓ (exceptionally,

if𝐺ℓ is a case shown as Fig. 6a, then any induced cycle in its pattern

𝐺 ′
ℓ
should contain all four ports). The topology of a pattern 𝐺 ′

ℓ
can

be further abstracted by using path-contraction, s.t., each node 𝑣 that
is not a key-node and has a degree of 2 in𝐺 ′

ℓ
is not explicitly shown,

namely a path-contracted pattern. In the following, the patterns

presented in our figures are all path-contracted.

5 COMPUTING GADGETS

In the previous section, we presented some first insights that al-

lowed us to only consider restricted problem instances. This section

is now dedicated to the computation of these subdivisions and prov-

ing their desired properties. We will develop methods to compute

a gadget for each possible type of components, as introduced in

Definition 4.3.

Lemma 5.1. For a normal component 𝐶ℓ ∈ C of Type-3, let 𝑎 =

𝑉 (𝐶ℓ) ∩𝑉 (𝑃) and 𝑐 = 𝑉 (𝐶ℓ) ∩𝑉 (𝑄), where 𝑃,𝑄 ∈ {𝑃1, 𝑃2} and
𝑃 ≠ 𝑄 , then a gadget of 𝐶ℓ can be a path (edge) from 𝑎 to 𝑐 , and its
pattern is shown as Fig. 5a.

Proof. If there is no path between 𝑎 and 𝑐 in 𝐶ℓ , then 𝐶ℓ is

not a connected component of Type-3 according to Def. 4.3. By

contradiction, 𝑎 and 𝑐 are connected by at least one path 𝑃𝑎,𝑐 in 𝐶ℓ .

Hence, by Def. 4.4, we can verify that 𝑃𝑎,𝑐 is a gadget of 𝐶ℓ . □

Lemma 5.2. For a component 𝐶ℓ ∈ C of Type-1 or Type-4, let
the left-𝑃 port and the right-𝑃 port of 𝐶ℓ be 𝑎 ∈ 𝑉 (𝑃) and 𝑏 ∈ 𝑉 (𝑃)
respectively, where 𝑃 ∈ {𝑃1, 𝑃2}. Note that 𝑎 = 𝑠 when 𝐶ℓ is head
and 𝑏 = 𝑡 when 𝐶ℓ is tail. Then 𝐶ℓ contains at least two edge-disjoint
paths 𝑃𝑎,𝑏 and 𝑃 ′

𝑎,𝑏
between 𝑎 and 𝑏, and the graph 𝑃𝑎,𝑏 ∪ 𝑃 ′

𝑎,𝑏
is a

gadget of 𝐶ℓ . The corresponding path-contracted patterns are shown
in Fig. 8a (resp., Fig. 8d) when 𝐶ℓ is head (resp., tail) of Type-1, and
in Fig. 5b when 𝐶ℓ is of Type-4.

Proof. Let 𝑄 = {𝑃1, 𝑃2} \ 𝑃 . By Definition 4.3, 𝐶ℓ (Type-1 or

Type-4) has𝑉 (𝐶ℓ)∩(𝑉 (𝑄) \ {𝑠, 𝑡}) = ∅, implying 𝐸 (𝐶ℓ)∩𝐸 (𝑄) =
∅. Clearly, the sub-path 𝑎𝑃𝑏 of 𝑃 is included in 𝐶ℓ . If 𝑎 and 𝑏 are

1-connected in𝐶ℓ , then there must be an edge 𝑒∗ ∈ 𝐸 (𝑎𝑃𝑏), whose
removal disconnects 𝑎 and 𝑏 in𝐶ℓ . Then, {𝑒∗, 𝑒 ′}, where 𝑒 ′ ∈ 𝐸 (𝑄),
must be a 2-(𝑠, 𝑡)-cut in 𝐸𝑐 , which further implies that the connected

component 𝐶ℓ containing both 𝑎 and 𝑏 cannot exist in 𝐺 \ 𝐸𝑐 .

Therefore, 𝑎 − 𝑏 must be 2-connected in 𝐶ℓ , implying at least two

edge-disjoint paths 𝑃𝑎,𝑏 and 𝑃 ′
𝑎,𝑏

from 𝑎 to 𝑏 in𝐶ℓ . By Definition 4.4,

𝑃𝑎,𝑏 ∪ 𝑃 ′
𝑎,𝑏

is hence a gadget in 𝐶ℓ . When 𝐶ℓ is head (resp. tail) of

Type-1 or Type-4, its path-contracted patterns can be shown in

Fig. 8a (resp., Fig. 8d) or in Fig. 5b accordingly. □

After showing the simpler cases, Type-1, Type-3, and Type-4,

we will focus on the most complicated case, Type-6, which has

the maximum number of variants for gadgets. To exhaust different

gadgets of Type-6 caused by the varying number of edge-disjoint

𝑠 − 𝑡 paths in 𝐶ℓ , we need to introduce a notion called augmented
component. Comparing to the test graphs defined in Def. 4.4, the

graph defined by augmented component aids in computing at least

3 edge-disjoint paths between 𝑠 and 𝑡 .

Definition 5.3 (Augmented Component A (𝐶ℓ)). For each com-

ponent 𝐶ℓ ∈ C, the augmented component A (𝐶ℓ) of 𝐶ℓ is a multi-

graph having 𝐶ℓ ⊆ A (𝐶ℓ) such that

• if 𝐶ℓ ∈ C is head, then 𝑉 (A (𝐶ℓ)) = 𝑉 (𝐶ℓ) ∪ {𝑡} and 𝑡 has
two parallel edges connecting each right-𝑃 port of𝐶ℓ , where

𝑃 ∈ {𝑃1, 𝑃2}.
• if 𝐶ℓ ∈ C is tail, then 𝑉 (A (𝐶ℓ)) = 𝑉 (𝐶ℓ) ∪ {𝑠} and 𝑠 has
two parallel edges connecting each left-𝑃 port of 𝐶ℓ , where

𝑃 ∈ {𝑃1, 𝑃2}.
• if 𝐶ℓ ∈ C is normal, then 𝑉 (A (𝐶ℓ)) = 𝑉 (𝐶ℓ) ∪ {𝑠, 𝑡} and 𝑠
has two parallel edges connecting each left-𝑃 port of 𝐶ℓ and

𝑡 has two parallel edges connecting each right-𝑃 port of 𝐶ℓ ,

where 𝑃 ∈ {𝑃1, 𝑃2}.

Lemma 5.4. Given a connected component 𝐶ℓ ∈ C of Type-6 or
Type-2, then 𝑠 and 𝑡 are at least 3-connected in the graph (augmented
component (Def. 5.3)) A (𝐶ℓ).

Proof. We assume that 𝑠 and 𝑡 are at most 2-connected in

A (𝐶ℓ). There must be two edges {𝑒1, 𝑒2} in A (𝐶ℓ) s.t., 𝑠 − 𝑡 is

disconnected in A (𝐶ℓ) \ {𝑒1, 𝑒2}. By observation on A (𝐶ℓ), 𝑠 and
𝑡 cannot be disconnected inA (𝐶ℓ) \ {𝑒1, 𝑒2} if {𝑒1, 𝑒2}∩𝐸 (𝐶ℓ) = ∅
due to these four parallel edges from 𝑠 (resp., 𝑡) to the left-𝑃 (resp.,

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Dai et al.

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

𝑃1

𝑃2

(a)

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

𝑃1

𝑃2

(b)

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

𝑃1

𝑃2

(c)

Figure 6: Three possible outputs when computing 4 edge-

disjoint paths from 𝑠 to 𝑡 in A (𝐶ℓ), where𝐶ℓ ∈ C has Type-6.

𝑎

𝑐

𝑏

𝑑

𝑃1

𝑃2

(a) Pattern for gad-

gets in components

of Type-6 when 𝑠 −
𝑡 is 4-connected in

A (𝐶ℓ)

𝑎

𝑐

𝑏

𝑑

𝑝

𝑞

𝑃1

𝑃2

(b) Pattern for gad-

gets in components

of Type-6 when 𝑠 −
𝑡 is 4-connected in

A (𝐶ℓ)

𝑎

𝑐

𝑏

𝑑

𝑥 𝑦

𝑃1

𝑃2

(c) Pattern for gad-

gets in components

of Type-6 when 𝑠 −
𝑡 is 3-connected in

A (𝐶ℓ)

Figure 7: The path-contracted patterns for all gadgets in com-

ponents of Type-6.

the right-𝑃) ports of 𝐶ℓ respectively, where 𝑃 ∈ {𝑃1, 𝑃2}. Moreover,

𝑠−𝑡 cannot be disconnected inA (𝐶ℓ) \{𝑒1, 𝑒2} if {𝑒1, 𝑒2}∩𝐸 (𝐶ℓ) =
𝑒 , otherwise 𝑠 − 𝑡 is disconnected in𝐺 \ {𝑒}, contradicting that 𝑠 − 𝑡

is 2-connected in 𝐺 . Thus, it must have {𝑒1, 𝑒2} ⊆ 𝐸 (𝐶ℓ), which
further implies that 𝑠 − 𝑡 is disconnected in 𝐺 \ {𝑒1, 𝑒2}, and then

𝐶ℓ cannot exist in 𝐺 \ 𝐸𝑐 . Thus, this contradiction shows at least

3-connectivity of 𝑠 − 𝑡 in A (𝐶ℓ). □

If applying a maximum flow algorithm onA (𝐶ℓ), where𝐶ℓ ∈ C
is of Type-6, returns four edge-disjoint 𝑠 − 𝑡 paths in A (𝐶ℓ),
then all possible outputs can be classified to three types, whose

patterns are shown in Fig. 6 respectively. We can easily verify that

the output with its pattern of Fig. 6a is a gadget directly, whose

pattern is shown in Fig. 7a. If a output has its pattern as shown in

Fig. 6b (resp., Fig. 6c), then by interconnecting these independent

connected components contained in the output strategically, we

can obtain a gadget of the pattern as shown in Fig. 7b (resp., Fig. 7a).

We summarize these results into Lemma 5.5 and defer its formal

proof to the full version of this paper due to space constraints.

Lemma 5.5. For a component 𝐶ℓ ∈ C of Type-6, if 𝑠 − 𝑡 is at
least 4-connected in the augmented component A (𝐶ℓ), then 𝐶ℓ has
a gadget with a path-contracted pattern shown in Fig. 7a or Fig. 7b.

The ideas used to prove the Lemmas 5.1–5.5, for computing

gadgets of Type-1, Type-3, Type-4 and Type-6, can be applied

analogously to remaining cases for other types of the normal, head

and tail components. Due to space limitations, we omit repeating

the proof details and cast the statement as Lemma 5.6. The proofs

of these cases in Lemma 5.6, which were unmentioned before, are

deferred to the full version of this paper.

Lemma 5.6. For each connected component 𝐶ℓ ∈ C, by its type
defined in Def. 4.3 and the 𝑠 − 𝑡 edge-connectivity inA (𝐶ℓ) (Def. 5.3),

𝑠
𝑢 ∈ 𝑉 (𝑃)

𝑃 ∈ {𝑃1, 𝑃2}

𝑄 = {𝑃1, 𝑃2} \ 𝑃

(a) Type-1 for head

𝑠

𝑎

𝑐

𝑃1

𝑃2

(b) Type-2 for head

𝑠

𝑎

𝑢

𝑐

𝑃1

𝑃2

(c) Type-2 for head

𝑡
𝑢 ∈ 𝑉 (𝑃)

𝑃 ∈ {𝑃1, 𝑃2}

𝑄 = {𝑃1, 𝑃2} \ 𝑃

(d) Type-1 for tail

𝑡

𝑏

𝑑

𝑃1

𝑃2

(e) Type-2 for tail

𝑡𝑢

𝑏

𝑑

𝑃1

𝑃2

(f) Type-2 for tail

Figure 8: The path-contracted patterns of gadgets contained

in head and tail components classified by types, where 𝑃,𝑄 ∈
{𝑃1, 𝑃2} and 𝑃 ≠ 𝑄 .

we can compute a gadget in𝐶ℓ , which has a (path-contracted) pattern
illustrated by a figure indicated in Table 2.

Table 2: Figures for patterns sorted by types of 𝐶ℓ

The type The edge-connectivity Figures for patterns

of 𝐶ℓ ∈ C of 𝑠 − 𝑡 in A (𝐶ℓ) of gadgets in 𝐶ℓ

Type-1 Fig. 8a or Fig. 8d
Type-2 4-connected Fig. 8b or Fig. 8e
Type-2 3-connected Fig. 8c or Fig. 8f
Type-3 Fig. 5a
Type-4 Fig. 5b
Type-5 Fig. 5c or Fig. 5d
Type-6 3-connected Fig. 7c
Type-6 4-connected Fig. 7a or Fig. 7b

6 DETERMINING A 2-RESILIENT

FORWARDING SCHEME

In this section, we combine these gadgets into a new graph, hence-

forth called kernel graph, which is a subgraph of the given network

𝐺 . We then devise a 2-resilient forwarding scheme for this ker-

nel graph.

6.1 Computing the Kernel Graph of a Given

Network 𝐺

We define a kernel graph G ⊆ 𝐺 of the given network 𝐺 , which is

constructed based on gadgets computed in each component𝐶ℓ ∈ C
of 𝐺 by Lemmas 5.1–5.6, e.g., Fig. 9.

Kernel Graph G: Given a graph 𝐺 = (𝑉 , 𝐸), where 𝑠 − 𝑡 is exactly

2-connected, then the graph G =
(⋃

𝐶ℓ ∈C G (𝐶ℓ)
)
∪ 𝐸𝑐 is called a

kernel graph (e.g., Fig. 9), where 𝐸𝑐 denotes the set of all 2-(𝑠, 𝑡)-cuts
in𝐺 and G (𝐶ℓ) ⊆ 𝐶ℓ denotes a gadget computed in each connected

component 𝐶ℓ ∈ C.
Recall the definition of elementary paths 𝑃1 and 𝑃2. As the kernel

graph G ⊆ 𝐺 , 𝑃1 and 𝑃2 might not remain in G. Thus, we introduce

the concepts of primary path 𝑄1 and secondary path 𝑄2 based on a

A Tight Characterization of Fast Failover Routing: Resiliency to Two Link Failures is Possible SPAA ’23, June 17–19, 2023, Orlando, FL, USA

𝑠

𝑎1

𝑐1

𝑄 1

𝑄
2

𝑎2

𝑐2

𝑄
1

𝑄
2

𝑎3

𝑐3

𝑏3

𝑑3

𝑄
1

𝑄
2

𝑄
1

𝑄
2

𝑎4 𝑏4𝑄
1

𝑄
1

𝑎5

𝑐5

𝑏5

𝑑5

𝑄
1

𝑄
2

𝑝
𝑞

𝑄
1

𝑄
2

𝑎6

𝑐6

𝑏6

𝑑6

𝑄
1

𝑥 𝑦

𝑄
2

𝑄
1

𝑄
2

𝑎7 𝑏7

𝑐7

𝑄
1

𝑄
2

𝑄
1 𝑎8 𝑏8

𝑐8

𝑜

𝑄
1

𝑄
2

𝑄
1

𝑡

𝑏9

𝑑9

𝑄
1

𝑄
2

𝑄
1

𝑄 2

Figure 9: Example of a kernel graph, where each gadget G (𝐶ℓ) is a pattern drawn by bold lines and 𝐸𝑐 is denoted by dotted lines.

The directed paths and cycles indicate the forwarding rules defined in Definition 6.2. In the case of no failures, the routing

starts at 𝑠 and follows the directed path ®𝑄1 to 𝑡 . When traversing a directed path/cycle and a failure (arc) (𝑣,𝑢) is encountered at

𝑣 , we then first route along another directed path/(cycle) that contains the arc (𝑢, 𝑣), to proceed. For example, consider the failed

links as {𝑎3, 𝑏3} and {𝑑3, 𝑐5}. After arriving at 𝑎3 along ®𝑄1 from 𝑠, the packet encounters (𝑎3, 𝑏3) as a failure, and is routed along

the detour (𝑎3, 𝑑3) to 𝑑3, from where it encounters a failure (𝑑3, 𝑐5). Then, the packet is routed along the detour (𝑑3, 𝑐3), (𝑐3, 𝑏3)
(an additional rule as defined in Definition 6.2) to 𝑏3, where routing along ®𝑄1 to 𝑡 can resume. We give a second example: if

{𝑏7, 𝑎8} fails, then, at 𝑏7, the packet travels along (𝑏7, 𝑐7, 𝑐8, 𝑜, 𝑎8) to 𝑎8 and then follows along ®𝑄1 to 𝑡 .

kernel graph G, which will be used for computing our 2-resilient

forwarding scheme.

Primary Path 𝑄1 and Secondary Path 𝑄2: Given a kernel graph

G =
(⋃

𝐶ℓ ∈C G (𝐶ℓ)
)
∪ 𝐸𝑐 , for each gadget G (𝐶ℓ), let 𝑎𝑃1 (𝐶ℓ) 𝑏 ⊆

G (𝐶ℓ) be a path from the left-𝑃1 port 𝑎 to the right-𝑃1 𝑏 in G (𝐶ℓ)
that corresponds to the edge {𝑎, 𝑏} in the (path-contracted) patterns,
where 𝑎 = 𝑠 if 𝐶ℓ is head, and 𝑏 = 𝑡 if 𝐶ℓ is tail. Then the primary
path defined as 𝑄1 :=

(⋃
𝐶ℓ ∈C 𝑎𝑃1 (𝐶ℓ) 𝑏

)
∪ (𝐸 (𝑃1) ∩ 𝐸𝑐) is a path

from 𝑠 to 𝑡 including all 𝑃1-Ports of each G (𝐶ℓ). Similarly, for

each gadget G (𝐶ℓ), let 𝑐𝑃2 (𝐶ℓ) 𝑑 ⊆ G (𝐶ℓ) be a path from the

left-𝑃2 port 𝑐 to the right-𝑃2 port 𝑑 in G (𝐶ℓ) that corresponds
to {𝑐, 𝑑} in the (path-contracted) patterns, where 𝑐 = 𝑠 if 𝐶ℓ is

head, and 𝑑 = 𝑡 if 𝐶ℓ is tail. Then the secondary path defined as

𝑄2 :=
(⋃

𝐶ℓ ∈C 𝑐𝑃2 (𝐶ℓ) 𝑑
)
∪ (𝐸 (𝑃2) ∩ 𝐸𝑐) is a path from 𝑠 to 𝑡

including all 𝑃2-Ports of each G (𝐶ℓ). Clearly, 𝑄1 and 𝑄2 are two

edge-disjoint paths from 𝑠 to 𝑡 in G.

For the correctness, we first need to show the connectivity of

𝑠 − 𝑡 is same in G \ 𝐹 and 𝐺 \ 𝐹 for any two failures 𝐹 ⊆ 𝐸.

Lemma 6.1. Given 𝐺 = (𝑉 , 𝐸), where 𝑠 − 𝑡 is exactly 2-connected,
let G =

(⋃
𝐶ℓ ∈C G (𝐶ℓ)

)
∪𝐸𝑐 be a kernel graph obtained from𝐺 . For

any two edges 𝐹 = {𝑒1, 𝑒2} ⊆ 𝐸, if 𝑠 − 𝑡 is connected in 𝐺 \ 𝐹 , then
𝑠 − 𝑡 is also connected in G \ 𝐹 .

Proof. The kernel graph G is a subgraph of 𝐺 . Moreover, we

can find the primary path 𝑄1 and the secondary path 𝑄2 in G. Let

𝐹 ⊆ 𝐸 denote two arbitrary edges in 𝐺 , s.t., 𝑠 − 𝑡 is connected in

𝐺 \ 𝐹 . If |𝐹 ∩ 𝐸 (G)| ≤ 1, then 𝑠 − 𝑡 must be connected in G \ 𝐹
since at least one of 𝑄1 and 𝑄2 is still connecting 𝑠 and 𝑡 . Now,

we assume |𝐹 ∩ 𝐸 (G)| = 2. Recall the definition of gadgets (Def-

inition 4.4). Please note that each G (𝐶ℓ) is a gadget. Here, each
subgraph G (𝐶ℓ) ∪ (𝑄1 ∪𝑄2 \ 𝐸 (G (𝐶ℓ))) ⊆ G actually becomes

a test graph T (G (𝐶ℓ)) for the gadget G (𝐶ℓ). By the definition of

gadgets, 𝑠 − 𝑡 must be connected in T (G (𝐶ℓ)) \ 𝐹 , which further

implies the connectivity of 𝑠 − 𝑡 in G \ 𝐹 . □

6.2 Determination of a 2-Resilient Forwarding

Scheme

Wewill now design a 2-resilient routing scheme for the kernel graph

G ⊆ 𝐺 . We first consider a simplified version of G, s.t., each gadget

is replaced by its pattern, calling it a kernel pattern, denoted by G′
.

Next, we develop a 2-resilient forwarding scheme for the kernel

pattern G′
and show that it implies a 2-resilient forwarding scheme

for a kernel graph G of 𝐺 . We remark that the kernel pattern is

employed here to simplify illustrating our forwarding scheme and

proving correctness, not necessary to be implemented in practice.

We first introduce the concept of a reduced kernel pattern G∗
and

its features in Observation 1.

Observation 1. Given a kernel graph G =
(⋃

𝐶ℓ ∈C G (𝐶ℓ)
)
∪𝐸𝑐 ,

we replace each G (𝐶ℓ) by its (path-contracted) pattern G′ (𝐶ℓ) to
obtain a graph G′, called a kernel pattern. We can compute the
primary path 𝑄1 and the secondary path 𝑄2 of G′. If G′ contains a
pattern G′ (𝐶ℓ) as Fig. 7a, then we remove the edge (path) {𝑐, 𝑏} from
G′, where 𝑐 is the left-𝑃2 port and 𝑏 is the right-𝑃1 port. By removing
these edges, G′ is reduced to a new graph G∗, henceforth called a
reduced kernel pattern. Then, by observing all possible patterns in
Lemma 5.6, we know that G∗ is a planar graph having 𝑄1 ∪𝑄2 as
the boundary of its outer face [12] on a planar drawing (e.g., Fig. 9)
and any induced cycle (chordless cycle) [12] 𝑓𝑖 in G∗ must have
𝐸 (𝑓𝑖) ∩ 𝐸 (𝑄2 ∪𝑄1) ≠ ∅.

We now define a forwarding scheme for kernel pattern G′
:

Definition 6.2 (2-Resilient Forwarding Scheme on a Kernel Pattern).
Given a kernel graph G, we obtain its kernel pattern G′

, reduced

kernel pattern G∗
, the primary path 𝑄1 of G′

, and the secondary

path 𝑄2 of G′
, respectively, according to Observation 1. In G∗

, we

define the followings:

• Directed path ®𝑄1: traverse 𝑄1 from 𝑠 to 𝑡 ;

• Directed path ®𝑄2: traverse 𝑄2 from 𝑡 to 𝑠;

• Directed cycles
®𝑓𝑖 : for each induced cycle (chordless cycle)

𝑓𝑖 in G∗
, if it contains an edge of 𝑄1, then traverse 𝑓𝑖 in a

direction reverse to ®𝑄1, otherwise traverse 𝑓𝑖 in a direction

reverse to ®𝑄2.

Given a directed path (cycle) ®𝑃 ∈ { ®𝑄1, ®𝑄2, ®𝑓𝑖 }, for each 𝑣 ∈ 𝑉 (®𝑃) \
{𝑡}, define a forwarding rule at 𝑣 as follows: from its incoming

neighbor in ®𝑃 to its outgoing neighbor in ®𝑃 , and if 𝑣 = 𝑠 , the packet

originated at 𝑠 first goes to the outgoing neighbor of 𝑠 in ®𝑄1.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Dai et al.

Additional Rules: For each edge {𝑐, 𝑏} removed fromG′
, we define

additional rules as follows: for each arc (𝑢, 𝑐) ∈ ®𝑄2, let 𝜋𝑐 (𝑢) = 𝑏

and for each arc (𝑏, 𝑣) ∈ ®𝑄1, let 𝜋𝑏 (𝑐) = 𝑣 .

Failover Rules: When applying all above rules, if the outgoing

neighbor 𝑢 of the current rule at the node 𝑣 is not available due to

failures, then use another rule at 𝑣 having 𝑢 as incoming neighbor.

By Theorem 6.3, we show that the forwarding scheme defined by

Definition 6.2 for the kernel patternG′
is 2-resilient, and we provide

an example in Fig. 9 to illustrate a sketch proof of Theorem 6.3.

Theorem 6.3. Given a kernel graph G =
(⋃

𝐶ℓ ∈C G (𝐶ℓ)
)
∪ 𝐸𝑐 ,

we obtain its kernel pattern G′ by replacing each gadget with its
pattern. Then the forwarding scheme in Def. 6.2 is 2-resilient on G′.

Proof. A sketch of this proof is illustrated in Fig. 9. First, we can

obtain a reduced kernel patternG∗ ⊆ G′
according to Observation 1,

which is a planar graph and does not need the additional rules

defined in Def. 6.2. Thus, for two arbitrary failures 𝐹 ⊆ 𝐸 (G∗),
which can be empty or |𝐹 | = 1, the graph G∗ \ 𝐹 ⊆ G∗

is also a

planar graph. By using concepts of planar graphs [12], we define

the boundary of G∗ \ 𝐹 as the boundary of the outer (unbounded)
face on a planar drawing of G∗ \ 𝐹 , which is a closed walk on the

outer face from 𝑠 to 𝑡 and then back to 𝑠 . For example, ®𝑄1 ∪ ®𝑄2

in Fig. 9 denotes the boundary of G∗
. Now, we can verify that

the forwarding scheme by Def. 6.2 implies a walk from 𝑠 to 𝑡 by

following the boundary of G∗ \𝐹 for any two failures 𝐹 ⊆ 𝐸 (G∗), if
𝑠 − 𝑡 is connected in G∗ \ 𝐹 , which is hence 2-resilient on a reduced

kernel pattern G∗
.

For each pattern G′ (𝐶ℓ) as Fig. 7a, its edge (path) {𝑐, 𝑏} (e.g.,
{𝑐3, 𝑏3} in Fig. 9) is omitted in G∗

. Next, we show that additional

rules in Def. 6.2 can compensate missing {𝑐, 𝑏} in G∗
. Let 𝑒1 be the

edge {𝑎, 𝑏} (resp., {𝑐, 𝑑}) in G′ (𝐶ℓ) and let 𝑒2 ∉ 𝐸 (G′ (𝐶ℓ)) be an
edge of 𝑄2 on the right side of the port 𝑑 of G′ (𝐶ℓ) (resp., of 𝑄1

on the left side of the port 𝑎 of G′ (𝐶ℓ)), but not approaching the
adjacent pattern yet. After ignoring {𝑐, 𝑏} inG∗

, if 𝐹 = {𝑒1, 𝑒2}, then
𝑠−𝑡 can be disconnected in G∗\𝐹 but 𝑠−𝑡 is still connected in G′\𝐹 .
For example, in Fig. 9, if an edge 𝑒1 = {𝑎3, 𝑏3} and another edge

𝑒2 ∈ 𝐸 (𝑑3𝑄2𝑐5) failed, then 𝑠−𝑡 is not connected in G∗ \𝐹 anymore

without employing additional forwarding rules, contradicting the

𝑠 − 𝑡 connectivity in G′ \ 𝐹 . After applying the additional rules for

each missing edge {𝑐, 𝑏}, which introduces a directed path (edge)

from 𝑐 to 𝑏 in G′ (𝐶ℓ) (e.g., (𝑐3, 𝑏3) in Fig. 9), 𝑠 and 𝑡 can always

communicate if 𝑠 −𝑡 is connected in G′ \𝐹 . However, these directed
𝑐 − 𝑏 paths introduced by additional rules are never used if 𝑠 − 𝑡 is

connected in G∗ \ 𝐹 , and only one of them can be visited when 𝑠 − 𝑡

is disconnected in G∗ \ 𝐹 . Thus, additional rules cannot incur any
loop in G′ \ 𝐹 when combined with other rules defined in G∗

. □

Finally, after obtaining a 2-resilient forwarding scheme for kernel

pattern G′
, we show that it can be transferred to another 2-resilient

forwarding scheme for the kernel graph G of 𝐺 .

Theorem 6.4. Given a kernel graph G =
(⋃

𝐶ℓ ∈C G (𝐶ℓ)
)
∪ 𝐸𝑐

and a kernel pattern G′ =
(⋃

𝐶ℓ ∈C G′ (𝐶ℓ)
)
∪𝐸𝑐 , where each G′ (𝐶ℓ)

is a pattern of G (𝐶ℓ), then a 2-resilient forwarding scheme for G′

computed according to Definition 6.2 can be mapped to a 2-resilient
forwarding scheme for G.

Proof. We recall that a pattern is generated from its gadget by

splitting nodes. Reversely, merging two sub-paths at a split node

do not merge their edges. Given a forwarding scheme Π′
for G′

defined by Definition 6.2, we can obtain a corresponding forwarding

scheme Π for G by one-to-one mapping these directed paths, e.g.,

®𝑄1, ®𝑄2, and directed cycles
®𝑓𝑖 fromG′

toG, s.t., a set of edge-disjoint

(directed) paths (cycles) in G′
also implies a set of edge-disjoint

(directed) paths (cycles) in G. Since Π′
is 2-resilient in G′

, Π is also

2-resilient in G. □

We can now cast our algorithmic result as the following theorem,

along with its run-time:

Theorem 6.5. Given a graph 𝐺 = (𝑉 , 𝐸) with the pair of source-
destination (𝑠, 𝑡), where |𝑉 | = 𝑛 and |𝐸 | =𝑚, a 2-resilient forwarding
scheme can be computed correctly within a run-time of 𝑂 (𝑛 ·𝑚).

Proof. First, by Claims 1 and 2, the problem is restricted to a ver-

sion, where 𝑠 − 𝑡 is exactly 2-edge-connected and 2-node-connected
in𝐺 . By Lemma 6.1, we can compute a kernel graph G ⊆ 𝐺 , which

is a subgraph of𝐺 , s.t., if 𝑠 − 𝑡 is connected in𝐺 \𝐹 , then 𝑠 − 𝑡 is also
connected in G \ 𝐹 . Finally, Theorem 6.4 implies that a 2-resilient

forwarding scheme for (𝑠, 𝑡) can be attained in the kernel graph G.

In the following, we give a formal analysis of the run-time. We

first note that the edge-connectivity, the edge-disjoint paths and

the max-flow between 𝑠 and 𝑡 can be computed in 𝑂 (𝑚) by the

Ford–Fulkerson algorithm [10] when the 𝑠 − 𝑡 edge-connectivity in

𝐺 is 𝑂 (1), and all 𝑠 − 𝑡 bridges (resp., articulation points) of 𝐺 can

be computed in 𝑂 (𝑚 + 𝑛) [4, 35]. The run-time of Claims 1 and 2

is 𝑂 (𝑛 ·𝑚), dominated by finding two node-disjoint 𝑠 − 𝑡 paths 𝑃1
and 𝑃2 for each subproblem. To compute 𝐸𝑐 , for each edge 𝑒 of 𝑃1,

we can check the 𝑠 − 𝑡 connectivity in𝐺 \ {𝑒} and then compute all

𝑠 − 𝑡 bridges in𝐺 \ {𝑒}, which needs𝑂
(
𝑛 ·𝑚 + 𝑛2

)
(𝑚 ≥ 𝑛) in total,

since each {𝑒1, 𝑒2} ∈ 𝐸𝑐 must be on 𝑃1 and 𝑃2 respectively. There

are at most 𝑛 components 𝐶ℓ regardless of the 𝑂 (𝑛) subproblems

divided by Claim 2, and a gadget in each𝐶ℓ can be obtained in𝑂 (𝑚)
by computing a max-flow, implying all gadgets being computable

in 𝑂 (𝑛𝑚). The 2-resilient forwarding scheme can be obtained by

traveling each directed path (cycle) according to Def. 6.2, bounded

by 𝑂 (𝑚). Thus, the total run-time is bounded by 𝑂 (𝑛 ·𝑚). □

7 CONCLUSIONS AND FUTUREWORK

We present a tight characterization of fast failover routing, where

2-resilience is possible with pre-installed static routing rules on

general graphs, but we show that 3-resilience is impossible.

We believe that our work opens several interesting avenues for

future research. In particular, it remains to explore the resilience

of our algorithms in more specific failure scenarios, both analyt-

ically and empirically. It would also be interesting to explore the

use of our approach for randomized failover routing and to imple-

ment decentralized control planes that compute the corresponding

failover tables.

ACKNOWLEDGMENTS

Research supported by the Vienna Science and Technology Fund

(WWTF), grant 10.47379/ICT19045 (WHATIF), 2020-2024.

A Tight Characterization of Fast Failover Routing: Resiliency to Two Link Failures is Possible SPAA ’23, June 17–19, 2023, Orlando, FL, USA

REFERENCES

[1] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.

Data center TCP (DCTCP). In SIGCOMM. ACM.

[2] Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi.

2008. Fast edge splitting and Edmonds’ arborescence construction for unweighted

graphs. In SODA.
[3] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. 1999. Routing

with guaranteed delivery in ad hoc wireless networks. In DIAL-M. ACM, 48–55.

[4] Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian S. Schmidt, Alexandru I.

Tomescu, and Elia C. Zirondelli. 2021. A simplified algorithm computing all s-t

bridges and articulation points. Discret. Appl. Math. 305 (2021), 103–108.
[5] Marco Chiesa, Andrei V. Gurtov, Aleksander Madry, Slobodan Mitrovic, Ilya

Nikolaevskiy, Michael Schapira, and Scott Shenker. 2016. On the Resiliency of

Randomized Routing Against Multiple Edge Failures. In ICALP.
[6] Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gábor Rétvári, and Stefan Schmid.

2021. A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks.

IEEE Commun. Surv. Tutorials 23, 2 (2021), 1253–1301.
[7] Marco Chiesa, Ilya Nikolaevskiy, SlobodanMitrovic, Andrei V. Gurtov, Aleksander

Madry, Michael Schapira, and Scott Shenker. 2017. On the Resiliency of Static

Forwarding Tables. IEEE/ACM Trans. Netw. 25, 2 (2017), 1133–1146.
[8] Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej

Kamisinski, Georgios Nikolaidis, and Stefan Schmid. 2021. Fast ReRoute on

Programmable Switches. IEEE/ACM Trans. Netw. 29, 2 (2021), 637–650.
[9] Cisco. 2017. Configuring BGP PIC Edge and Core for IP and MPLS.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[11] Fabien de Montgolfier, Mauricio Soto, and Laurent Viennot. 2011. Treewidth and

Hyperbolicity of the Internet. In NCA. IEEE Computer Society, 25–32.

[12] Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate texts in mathematics,

Vol. 173. Springer.

[13] Joan Feigenbaum, Brighten Godfrey, Aurojit Panda, Michael Schapira, Scott

Shenker, and Ankit Singla. 2012. Brief announcement: on the resilience of routing

tables. In PODC. ACM.

[14] Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and

Gilles Trédan. 2020. Brief Announcement: What Can(Not) Be Perfectly Rerouted

Locally. In DISC. 46:1–46:3.
[15] Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid,

and Gilles Trédan. 2021. Grafting Arborescences for Extra Resilience of Fast

Rerouting Schemes. In INFOCOM. IEEE, 1–10.

[16] Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid,

and Gilles Trédan. 2022. Improved Fast Rerouting Using Postprocessing. IEEE
Trans. Dependable Secur. Comput. 19, 1 (2022), 537–550.

[17] Klaus-Tycho Foerster, Juho Hirvonen Yvonne-Anne Pignolet, Stefan Schmid, and

Gilles Trédan. 2022. On the Price of Locality in Static Fast Rerouting. In DSN.
IEEE.

[18] Klaus-Tycho Foerster, Juho Hirvonen, Yvonne Anne Pignolet, Stefan Schmid,

and Gilles Trédan. 2021. On the Feasibility of Perfect Resilience with Local Fast

Failover. In Symposium on Algorithmic Principles of Computer Systems (APOCS).
[19] Klaus-Tycho Foerster, Yvonne Anne Pignolet, Stefan Schmid, and Gilles Trédan.

2019. CASA: Congestion and Stretch Aware Static Fast Rerouting. In INFOCOM.

IEEE.

[20] Pierre François, Clarence Filsfils, John Evans, and Olivier Bonaventure. 2005.

Achieving sub-second IGP convergence in large IP networks. ACM CCR 35, 3

(2005), 35–44.

[21] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding

network failures in data centers: measurement, analysis, and implications. In

SIGCOMM. ACM.

[22] Roberto Grossi, Andrea Marino, and Luca Versari. 2018. Efficient Algorithms

for Listing k Disjoint st-Paths in Graphs. In LATIN 2018: Theoretical Informatics,
Michael A. Bender, Martín Farach-Colton, andMiguel A. Mosteiro (Eds.). Springer

International Publishing, Cham, 544–557.

[23] ISO. 2002. Intermediate Ststem-to-Intermediate System (IS-IS) Routing Protocol.

ISO/IEC 10589.

[24] Aubin Jarry. 2013. Fast reroute paths algorithms. Telecommunication Systems 52,
2 (2013), 881–888.

[25] Andrzej Kamisiński. 2018. Evolution of IP Fast-Reroute Strategies. In RNDM.

IEEE.

[26] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. 1999. Compass routing

on geometric networks. In CCCG.
[27] Kin Wah Kwong, Lixin Gao, Roch Guérin, and Zhi-Li Zhang. 2011. On the

Feasibility and Efficacy of Protection Routing in IP Networks. IEEE/ACM Trans.
Netw. 19, 5 (2011), 1543–1556.

[28] Ka-Cheong Leung, Victor O. K. Li, and Daiqin Yang. 2007. An Overview of Packet

Reordering in Transmission Control Protocol (TCP): Problems, Solutions, and

Challenges. IEEE Trans. Parallel Distributed Syst. 18, 4 (2007), 522–535.
[29] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira, and

Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In NSDI.
[30] John Moy. 1998. OSPF Version 2. RFC 2328 (1998), 1–244.

[31] Ping Pan, George Swallow, and Alia Atlas. 2005. Fast Reroute Extensions to

RSVP-TE for LSP Tunnels. RFC 4090 (2005), 1–38.

[32] J. Papán, P. Segeč, M. Moravčík, M. Kontšek, L. Mikuš, and J. Uramová. 2018.

Overview of IP Fast Reroute Solutions. In ICETA.
[33] Oliver Schweiger, Klaus-Tycho Foerster, and Stefan Schmid. 2021. Improving the

Resilience of Fast Failover Routing: TREE (Tree Routing to Extend Edge disjoint

paths). In ANCS. ACM, 1–7.

[34] Switch Specification 1.3.1. 2013. OpenFlow. In https://opennetworking.org/wp-
content/uploads/2013/04/openflow-spec-v1.3.1.pdf .

[35] Robert Endre Tarjan. 1974. A Note on Finding the Bridges of a Graph. Inf. Process.
Lett. 2, 6 (1974), 160–161.

[36] Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar. 2012. Deadline-aware

datacenter tcp (D2TCP). In SIGCOMM. ACM.

[37] Baohua Yang, Junda Liu, Scott Shenker, Jun Li, and Kai Zheng. 2014. Keep

Forwarding: Towards k-link failure resilient routing. In INFOCOM. IEEE.

[38] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy H.

Katz. 2012. DeTail: reducing the flow completion time tail in datacenter networks.

In SIGCOMM. ACM.

https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	3 Impossibility of 3-Resilience
	4 First Algorithmic Insights of 2-Resilience
	4.1 An Intuition of 2-Resiliency for Fig. 1
	4.2 Challenges in General Graphs and Problem Reductions
	4.3 Understanding Connected Components After Two Failures

	5 Computing Gadgets
	6 Determining a 2-Resilient Forwarding Scheme
	6.1 Computing the Kernel Graph of a Given Network G
	6.2 Determination of a 2-Resilient Forwarding Scheme

	7 Conclusions and Future Work
	Acknowledgments
	References

