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The performance of many cloud-based applications critically depends on the capacity of the underlying
datacenter network. A particularly innovative approach to improve the throughput in datacenters is enabled
by emerging optical technologies, which allow to dynamically adjust the physical network topology, both in
an oblivious or demand-aware manner. However, such topology engineering, i.e., the operation and control of
dynamic datacenter networks, is considered complex and currently comes with restrictions and overheads.

We present Duo, a novel demand-aware reconfigurable rack-to-rack datacenter network design realized
with a simple and efficient control plane. Duo is based on the well-known de Bruijn topology (implemented
using a small number of optical circuit switches) and the key observation that this topology can be enhanced
using dynamic (“opportunistic”) links between its nodes.

In contrast to previous systems, Duo has several desired features: i) It makes effective use of the network
capacity by supporting integrated and multi-hop routing (paths that combine both static and dynamic links).
ii) It uses a work-conserving queue scheduling which enables out-of-the-box TCP support. iii) Duo employs
greedy routing that is implemented using standard IP longest prefix match with small forwarding tables. And
iv) during topological reconfigurations, routing tables require only local updates, making this approach ideal
for dynamic networks.

We evaluate Duo in end-to-end packet-level simulations, comparing it to the state-of-the-art static and
dynamic networks designs. We show that Duo provides higher throughput, shorter paths, lower flow comple-
tion times for high priority flows, and minimal packet reordering, all using existing network and transport
layer protocols. We also report on a proof-of-concept implementation of Duo’s control and data plane.

1 INTRODUCTION
The performance of many cloud applications, e.g., related to distributed machine learning, batch
processing, or streaming, critically depends on the bandwidth capacity of the underlying network
topology. High network throughput requirements are also introduced by today’s trend of resource
disaggregation in datacenters, where fast access to remote resources (e.g., GPUs or memory) is
critical for the overall system performance [31, 35]. Accordingly, over the last years, great efforts
have been made to improve the throughput of datacenter networks [2, 21, 41, 42].

Emerging optical technologies enable what is now known as topology engineering, a particularly
innovative approach to improve datacenter performance, by supporting dynamic and real-time
reconfigurations of the physical network topology [1, 7, 9, 10, 12, 14, 18, 24, 25, 28, 32–34, 39, 40, 43,
46, 47, 49, 51]. In particular, advanced optical circuit switches enable dynamic physical topologies by
providing dynamic input-output ports matchings [1, 7, 20, 34]. Reconfigurable datacenter networks
(RDCNs) use such switches to establish topological shortcuts (i.e., shorter paths) between racks,
hence utilizing available bandwidth capacity more efficiently and improving throughput [20, 33, 34].
Reconfigurable datacenter networks come in two flavors: oblivious and demand-aware [5, 22].

Oblivious RDCNs such as RotorNet [34], Opera [33], Sirius [7], and Mars [1], rely on quickly and
periodically changing interconnects between racks, to emulate a complete graph. Such emulation
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was shown to provide high throughput and is particularly well-suited for all-to-all traffic pat-
terns [20]. In contrast, demand-aware RDCNs allow to optimize topological shortcuts, that depend
on the traffic pattern. Demand-aware networks such as ProjecToR [18], SplayNets [39], Gemini [49],
ReNet [6] or Cerberus [20], among others [9, 12, 24, 25, 28, 44, 51], are attractive since datacenter
traffic typically features much temporal and spatial structure: traffic is bursty and skewed, and a
large fraction of communicated bytes belong to a small number of elephant flows [4, 8, 9, 18, 50, 52].
By adjusting the datacenter topology to support such flows, e.g., by providing direct connectivity
between intensively communicating source and destination racks, network throughput can be
increased further (even if done infrequently [49]).
However, the operation of reconfigurable datacenter networks comes with overheads and lim-

itations. In general, existing RDCNs typically rely on a hybrid topology which combines static
(electrical) and dynamic (optical) parts. While such a combination is powerful [18], current architec-
tures support only fairly restricted routing. First, communication on the (dynamic) optical topology
is often limited to one or two hops. This constrains the possible path diversity, and hence capacity,
of the optical network [7, 15, 18, 20, 49]. Furthermore, routing is usually segregated: flows are either
only forwarded along the static or the dynamic network, but not a combination of both [18, 20, 48].
An exception is cp-Switch which, however, assumes that capacities of static (electrical) and dynamic
(optical) links are different [45]. The restriction to segregated routing also entails overheads as it
requires significant buffering while the reconfigurable links are not available. As static links are
always available for packet forwarding in hybrid datacenter networks, this segregation entails non
work-conserving scheduling and a more complex buffer management.

This paper is motivated by the desire to overcome these limitations, and to better exploit the
available link resources, by supporting a general multi-hop and integrated (i.e., non-segregated)
routing. Specifically, we envision a datacenter network in which packets can be forwarded using
a work-conserving scheduling, along any available link, be it static or dynamic, and in which
a routing path can combine both link types. Such an integrated routing and work-conserving
scheduling also has the potential to avoid long buffering times and hence delays: if a reconfigurable
link is currently unavailable, packets can directly be forwarded to the other available (static) links.
However, going beyond segregated and 1- or 2-hop routing, requires a novel network control
plane: traditional routing protocols based on shortest paths are not designed for highly dynamic
topologies and the frequent recomputation of routes can become infeasible [16]. Furthermore, to
keep update cost low and provide a high scalability, it is desirable to have small forwarding tables.
To this end, we propose a simpler and more efficient control plane for RDCNs which avoids

packets forwarding delays by supporting local and greedy integrated routing: the forwarding rules
depend on local information only, i.e., the set of direct neighbors as well as information in the
packet header (in particular, the destination); they are hence not affected by topological changes in
other parts in the network and do not have to be updated under such reconfigurations. This can
significantly reduce control plane overheads during topological adjustments, maintaining a simple
routing, buffering and control, and is hence well-suited for highly dynamic networks.

In particular, we present Duo, a novel demand-aware reconfigurable datacenter network which
leverages such a local control plane using a de Bruijn topology (built from a small number of optical
switches), in which static links are enhanced with opportunistic links. Duo uses IP-based logical
addressing and operates a receiver-based approach for the efficient detection of elephant flows as
well as the local and collision-free scheduling of demand-aware links. Due to its simplicity Duo is
well-suited to be realized, e.g., using the Sirius [7] architecture which was originally designed to be
demand-oblivious, but can potentially support demand-aware link scheduling.

In summary, we make the following contributions:
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Duo

Topology Engineering

Demand-
aware No No Yes Yes Yes Yes

Update
rate None Fast Fast Slow Fast Fast

Network Layer

Integrated
Multi-hop Yes 2-hops 1 hop 2-hops 1-hop Yes

Work
conserving Yes No No Yes No Yes

Routing
mechanism IP NS IP IP NS IP

Transport Layer Congestion
control TCP NS TCP TCP NS TCP

Table 1. Recent (R)DCN designs and their properties. (NS is nonstandard).

• We presentDuo, a novel, cost effective, and practical reconfigurable datacenter architecture which
supports efficient multi-hop, integrated and work-conserving routing, to push the performance
limits in datacenter networks.

• The simplicity ofDuo relies on the observation that adding shortcuts to a static de Bruijn topology
allows to continue supporting greedy local routing, which can be implemented using standard IP
and longest prefix matching, with small forwarding tables. This enables a high update rate at
low overheads. Duo can be implemented using the Sirius architecture, benefiting from the low
cost and power consumption of this architecture, and only requires a small number of matchings.
Its control plane can be realized using centralized or distributed algorithms.

• We perform a packet-level evaluation and empirically find that Duo provides a higher throughput
compared to the state of the art, static and dynamic, networks. Furthermore, Duo’s properties
allow us to use TCP out-of-the-box, without the need to develop new transport protocols.

• We further report on a proof-of-concept implementation of the control and data plane of Duo
that demonstrates the feasibility of Duo with standard network stacks. The implementation
builds around a single P4 switch which we use to emulate a scenario with 16 ToRs.

• As a contribution to the research community, we release our implementation together with this
paper.

2 PUTTING DUO INTO PERSPECTIVE
To put Duo into perspective with the most recent datacenter network design proposals, we sum-
marize important properties for such networks in Table 1, and divide them to three categories:
topology engineering, network layer, and transport layer. For topology engineering, we indicate if
the system uses a demand-aware topology and the supported update rate of the topology (unless it
is static). Regarding the network layer, we indicate i) if the routing is fully integrated multi-hop (or
only 1 or 2 hops), ii) if the packet scheduling is work-conserving and iii) if the routing can support
legacy IP. Finally regarding transport layer, we indicate if the design supports standard, e.g., TCP, or
non-standard (NS) congestion control. The table does not compare the performance of the different
designs, but their main design choices. We empirically evaluate these designs in Section 4.
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Fig. 1. TMT network example with eight ToR switches and three spine switches from which two are static
matchings and one is a dynamic matching. Each spine switch has eight input and output ports.

We first consider Xpander [29], a state-of-the-art static and demand-oblivious topology for DCN,
which is based on expander graphs. While Xpander has many attractive properties, according
to recent results (including the ones in this work), we expect that reconfigurable datacenter
networks (i.e., based on dynamic topologies) can provide an improved performance, and in particular,
throughput [7, 37].

We next consider Sirius [7] and Opera [33], recent proposals of a dynamic and demand-oblivious
designs for RDCN. Such topologies have been shown to be very effective as well, but still have
several potential deficits. First and foremost, they do not feature demand-aware links: while the
role and use of demand-aware topology components in future datacenters is generally still subject
to ongoing discussions, empirical studies show that demand-awareness can improve throughput
under today’s typical skewed workload distributions [20, 49]. Furthermore, current dynamic and
demand-oblivious designs are limited to at most 2-hop routing on dynamic links, and are not
work-conserving. There also remain open questions regarding the complexity of the control plane,
the routing scheme and the transport layer of these systems.
Next we consider systems which are dynamic and demand-aware. Systems like ProjecToR [18]

use a combination of demand-aware optical and electric switches, but do not support integrated
mutli-hop routing (ProjecToR uses only 1-hop on demand-aware links), are not work-conserving,
and the control complexity is not fully determined. Gemini [49] (and more recently [38]), a recent
proposal by authors from Google, makes the case for demand-aware links in production level
datacenters, but it currently implements only infrequent topology updates (about once a day).
Lastly, Cerberus relies on a combination of three topologies: static, dynamic oblivious, and dynamic
demand-aware, which together, potentially provide higher throughput. However, it supports only
1-hop routing on the demand-aware links, and its control and routing mechanisms are left abstract
and require further investigation.

In contrast to all the above systems, Duo features all the desired properties listed in Table 1.
It supports integrated multi-hop routing as Xpander, it uses demand-aware links as ProjecToR,
it is work-conserving as Gemini, it enables fast topology updates as in Cerberus, and it is based
on simple control and IP-based routing. Its properties and especially work-conservation allows
us to use standard TCP in Duo, as we will also show empirically.

To the best of our knowledge, we are the first to study and show the benefits of a de Bruijn
approach in the context of reconfigurable and demand-aware datacenter networks.
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Fig. 2. A 𝐷𝐵(2, 3) static & directed de Bruijn graph with eight ToRs and its two corresponding matchings
(colored in green and red). Each port (edge) is labeled 0 or 1 according to the performed shift operation.

3 THE DUO RDCN DESIGN
The rack-to-rack network provided byDuo is based on the typical ToR-Matching-ToR1 (TMT) model
as it is common in the literature [7, 20, 33, 34]: 𝑛 top-of-rack (leaf) switches are interconnected by
a set of 𝑘 optical spine switches. Each spine switch provides a 𝑛 × 𝑛 directed matching between its
input-output ports. Depending on the switch type, the matching can dynamically change over time.
In particular, Duo is hybrid, in the sense that one part of the topology model is static and demand-
oblivious, using 𝑘𝑠 static spine switches (i.e., static matchings). The second part is dynamic and
demand-aware, using 𝑘𝑑 reconfigurable spine switches (i.e., dynamic matchings), and 𝑘 = 𝑘𝑠 + 𝑘𝑑 .
Figure 1, presents an example of the TMT model with eight ToR switches and three spine switches,
from which two are static and one is dynamic. Each ToR-spine link in the figure represents one
directed uplink and one directed downlink. It is important to note that abstractly, we use 𝑘 spine
switches, each implementing an 𝑛 × 𝑛 matching, but each matching can be split across a set of
several smaller switches, like in Sirius [7] where spine switches have

√
𝑛 ports2.

In order to maximize performance, Duo uses dynamic, demand-aware links to provide shorter
paths for elephant flows, while other flows are transmitted via the combined (static + dynamic)
topology. A key feature of Duo is that it supports integrated multi-hop routing across both switch
types. This is in contrast to previous works that rely on segregated and single-hop forwarding for
demand-aware links [18, 20]. Moreover routing in Duo is efficient, by relying on logical addressing
and a local control plane, implementing greedy routing. Thus, links can always be used immediately,
with awork-conserving scheduler. To detect elephant flows,Duo leverages a simple sketch, sampling
the flow sizes and then adjusting the dynamic links accordingly. In the following, we present the
different components of Duo in detail.

3.1 The Hybrid Topology
Duo combines two topologies, a static, demand-oblivious topology (the “backbone”), and a dynamic,
opportunistic, demand-aware topology. Both topologies are built from matchings in spine switches
according to the TMT model, forming a augmented de Bruijn network [11].
• Static and demand-oblivious de Bruijn topology (backbone): The static topology of Duo re-
lies on a de Bruijn graph. It is formed by 𝑘𝑠 static optical circuit switches or patch panels.

1 Top of rack switch 2 We note that a smaller number of ports might affect the performance and leave this for future
study.
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• Dynamic and demand-aware topology: The static topology is enhanced by 𝑘𝑑 reconfigurable
matchings, also implemented with optical circuit switches. The demand-aware (DA) links add
shortcuts on top of the static de Bruijn topology.
We first discuss and explain the static de Bruijn topology. Our design choice of the de Bruijn

topology is based on twomain properties: i) It can be built from a small number of matchings (already
two matchings suffice in contrast to, e.g., hypercubic topologies that require log𝑛 matchings) and
ii) it enables IP-based greedy forwarding also when additional shortcuts are added to the topology,
which in turn enables fast and low-overhead topology reconfigurations.

3.1.1 The Static de Bruijn Topology. We start with formally defining the de Bruijn topology [30].
For 𝑖 ∈ N, let [𝑖] = {0, 1, . . . , 𝑖}.

Definition 3.1 (de Bruijn topology). For integers 𝑏, 𝑑 > 1, the 𝑏-ary de Bruijn graph of dimension 𝑑 ,
𝐷𝐵(𝑏, 𝑑), is a directed graph𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | = 𝑏𝑑 nodes and𝑚 = |𝐸 | = 𝑏𝑑+1 directed edges.
The node set 𝑉 is defined as 𝑉 = {𝑣 ∈ [𝑏 − 1]𝑑 }, i.e., 𝑣 = (𝑣1, . . . , 𝑣𝑑 ), 𝑣𝑖 ∈ [𝑏 − 1], and the directed
edge set 𝐸 is:

{𝑣,𝑤} ∈ 𝐸 ⇔ 𝑤 ∈ {(𝑣2, . . . , 𝑣𝑑 , 𝑥) : 𝑥 ∈ [𝑏 − 1]} (1)

Note that the directed neighbors of node 𝑣 are determined by a left shift operation on the address
of 𝑣 and entering a new symbol 𝑥 ∈ [𝑏 − 1] as the right most (least significant) symbol. It is well
known that the de Bruijn topology has the following properties [30]:
(1) Considering self-loops, 𝐷𝐵(𝑏, 𝑑) is a 𝑏-regular directed graph.
(2) 𝐷𝐵(𝑏, 𝑑) supports greedy routing with paths of length at most 𝑑 .

The following observation will be relevant for our network design, it is a consequence of Property
(1) above and Hall’s theorem [23]:

Observation 1. A 𝐷𝐵(𝑏, 𝑑) topology can be constructed from the union of 𝑏 directed perfect
matchings3.

Figure 2 demonstrates the 𝐷𝐵(2, 3) de Bruijn topology with 8 = 23 nodes (ToRs) and two
matchings (colored in green and red) that can be combined to create it. Each node in the topology
has two outgoing and two incoming directed links (including self loops). The figure shows the
labeled version of the graph where each edge (or a node outgoing port) is labeled with 0 or 1
according to the shift operation implied by Eq. (1).

It follows from Observation 1 that we can build a𝐷𝐵(𝑘𝑠 , 𝑑) topology with 𝑘𝑠 static spine switches.
From Property 2 it follows that with two static spine switches we can build a topology for 𝑛 ToRs
and with a diameter log𝑛 (when 𝑛 is a perfect power of two).

3.1.2 Greedy and LPM Routing in de Bruijn Topology. It is well known that the de Bruijn topology
supports greedy routing from a source 𝑠 to a destination 𝑡 based solely on the address of 𝑡 . That is,
to choose the next-hop toward 𝑡 each node on the route needs to know the address of 𝑡 and the
address of its neighbors. The next-hop is chosen as the neighbor which minimizes the de Bruijn
distance to 𝑡 . The de Bruijn distance between two nodes 𝑣,𝑤 denoted as distDB (𝑣,𝑤) is the minimum
number of shift operations needed to transform 𝑣 ’s address to𝑤 ’s address. The main observation is
that each such shift implies a directed edge and the next-hop in the routing. For example, the de
Bruijn distance between node 𝑠 = 011 and 𝑡 = 001 is distDB (𝑠, 𝑡) = 3 and the route from 𝑠 to 𝑡 in
𝐷𝐵(2, 3) is 011 → 110 → 100 → 001 (see also Figure 2). Note that in each hop the distance to 𝑡 is
reducing.
3 A perfect matching of a graph is a matching in which every vertex is incident to exactly one matching edge.
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Algorithm 1: Building the DB Forwarding Table
1 Function BuildTable (at node 𝑣)
2 for each neighbor 𝑧1𝑧2, 𝑧3 at port 𝑝 do

3 Add the following entries to the table

4

Prefix Port Path-length
𝑧3 ∗ ∗ 𝑝 3
𝑧2𝑧3∗ 𝑝 2
𝑧1𝑧2𝑧3 𝑝 1

5 Reduce the forwarding table according to LPM rules

Prefix Port Path-len
0 ∗ ∗ 0 3
10∗ 0 2
110 0 1

Prefix Port Path-len
1 ∗ ∗ 1 3
11∗ 1 2
111 1 1

Prefix Port Path-len
0 ∗ ∗ 0 3
10∗ 0 2
110 0 1
111 1 1
011 Local 0

(a) Neighbor 110 on port 0 (b) Neighbor 111 on port 1 (c) Reduced Table for ToR 011

Fig. 3. The results of building the forwarding table (Algorithm 1) of node 011 with neighbors 110 and 111 on
the static 𝐷𝐵(2, 3) de Bruijn graph.

A less-known fact is that routing on the de Bruijn topology can be realized via a simple forwarding
table that is based on a longest prefix match (LPM) [13]. This results from the fact that the de Bruijn
distance from a node 𝑣 = (𝑣1, . . . , 𝑣𝑑 ) to all other nodes can be compactly represented using 𝑑

entries and LPM. For example, the de Bruijn distance between 𝑣 and all nodes that their address
has a longest-prefix-match to rule (𝑣3, 𝑣4, . . . , 𝑣𝑑−2, ∗, ∗) is two. Namely with two shift operations
we can transform 𝑣 ’s address to the address of a node that matches the above rule.

To build the forwarding table for a node 𝑣 it only needs to know the address of each neighbor𝑤
and the outgoing port 𝑝 that connects to it. Algorithm 1 describes the forwarding table building
(for simplicity only for the 𝐷𝐵(2, 3) case) and Figure 3 shows the forwarding table of node 011 and
how it is built from its two neighbors 110 and 111. Note that in this example rules 1 ∗ ∗ and 11∗, are
removed from the forwarding table of ToR 011 in the table reduce process since they will never be
used (there will be always a longer match for these rules).
Considering Algorithm 1, we can state the following about the size of the forwarding table of

each node:

Observation 2. The longest prefix match forwarding table size of each node in a 𝐷𝐵(𝑏, 𝑑) topology
has at most 𝑏𝑑 = 𝑂 (𝑏 log𝑏 𝑛) entries.

We can now discuss the DA links and how they are merged into the hybrid topology.

3.1.3 The Dynamic Demand-aware Topology. The simplicity of Duo relies on the observation that
adding shortcuts to the static de Bruijn topology is easy and allows to continue supporting greedy
and LPM routing. Recall that in our model we have 𝑘𝑑 reconfigurable switches which means 𝑘𝑑
matchings of size 𝑛 for DA links. For now consider these 𝑘𝑑 · 𝑛 demand-aware links as arbitrary
links. Later we discuss how to choose these links based on the demand.

Let 𝐺 = 𝐷𝐵(𝑏, 𝑑) be a de Bruijn topology over the node set 𝑉 . Let𝑀 be a directed matching on
𝑉 ×𝑉 . Let 𝐻 = 𝐺 ∪𝑀 be the union of the directed graphs 𝐺 and𝑀 with the same set of nodes 𝑉 .
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Prefix Port Len
0 ∗ ∗ 𝐷𝐴 3
00∗ 𝐷𝐴 2
100 𝐷𝐴 1

Prefix Port Len IP
0 ∗ ∗ {0, 𝐷𝐴} 3 10.0.0.0/9
00∗ 𝐷𝐴 2 10.0.0.0/10
10∗ 0 2 10.128.0.0/10
100 𝐷𝐴 1 10.128.0.0/11
110 0 1 10.192.0.0/11
111 1 1 10.224.0.0/11
011 Local 0 10.96.0.0/11

(a) ToR 011 with new DA link to 100. (b) Entries from 100. (c) Reduced table on ToR 011.

Fig. 4. The new forwarding tables of ToR 011 after the establishment of the DA-link from 011 to 100.

Figure 4 (a) demonstrates this case and shows 𝐻 , the union of a 𝐷𝐵(2, 3) topology with a single
demand-aware matching (showing for clarity only one DA link from 011 to 100). Figure 4 (b) and (c)
presents the new forwarding table at node 011, which is a result of the added demand-aware link
and is constructed using Algorithm 1. If we consider as before the route from 𝑠 = 011 to 𝑡 = 001 it
will now be shorter 011 → 100 → 001. In fact, all packets that reach node 011 with destination
addresses with LPM 00∗ will use the new DA port for forwarding. Note also that routes toward
addresses with LPM 0 ∗ ∗, like 010, have now two equal length routes (of length three), for example,
011 → 100 → 001 → 010 or 011 → 110 → 101 → 010. More generally, we can claim the following
about 𝐻 .

Claim 1. Let 𝐻 be the union of a de Bruijn 𝐷𝐵(𝑏, 𝑑) topology and a single directed matching over
the same set of nodes. If we perform Algorithm 1 on each node in 𝐻 , then 𝐻 supports integrated,
multi-hop, greedy, LPM routing with forwarding table size of (𝑏 + 1)𝑑 .

Proof sketch. First we can show that 𝐻 supports greedy routing, since in each node 𝑣 and for
each destination 𝑡 the next-hop will be the neighbor of 𝑣 in 𝐻 with the shortest de Bruijn distance to
𝑡 . While greedy routing on the static topology 𝐷𝐵(𝑏, 𝑑) reduces the de Bruijn distance in each hop
by exactly one, DA links can reduce it by more than one. So the distance is strictly decreasing in
each hop until the destination. From the greedy routing it is clear that LPM forwarding will work
and that the path is integrated in a multi-hop manner. The forwarding table size is at most (𝑏 + 1)𝑑
since each node has at most (𝑏 + 1) neighbors (𝑏 static and one from the DA matching) and for
each it needs 𝑑 entries to represent its de Bruijn distance to destinations. □

Following Claim 1, we can extend the single matching case to more than one matching and
support𝑘𝑑 demand-awarematchings. Formally, for integers𝑘𝑠 , 𝑘𝑑 , 𝑥 ≥ 2 and𝑛 = (𝑘𝑠 )𝑥 , we denote by
𝐷𝑢𝑜 (𝑛, 𝑘𝑠 , 𝑘𝑑 ) the Duo topology with 𝑘 = 𝑘𝑠 +𝑘𝑑 spine switches, backbone network 𝐷𝐵(𝑘𝑠 , log𝑘𝑠 𝑛),
and 𝑘𝑑 demand-aware switches. We can state the following about the hybrid topology of Duo.

Theorem 3.2. The 𝐷𝑢𝑜 (𝑛, 𝑘𝑠 , 𝑘𝑑 ) topology with 𝑛 ToRs and 𝑘 = 𝑘𝑠 + 𝑘𝑑 spine switches (𝑘𝑑 , 𝑘𝑠 ≥ 2)
supports integrated, multi-hop, greedy, LPM routing with forwarding table size of 𝑂 (𝑘 log𝑘𝑠 𝑛) and
diameter 𝑑 ≤ log𝑘𝑠 𝑛.

Proof sketch. The proof extends Claim 1 to 𝑘𝑑 demand-aware matchings. Since the addi-
tional links can only reduce distances the diameter of 𝐷𝑢𝑜 (𝑛, 𝑘𝑠 , 𝑘𝑑 ) is at most the diameter of
𝐷𝐵(𝑘𝑠 , log𝑘𝑠 𝑛) which is log𝑘𝑠 𝑛. □
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Algorithm 2: Centralized (Greedy) DA links setting
1 Function Greedy-DA-links (𝐷 - Demand Matrix, 𝑘𝑑 - number of DA switches)

2 Δ=Largest 𝑘𝑑𝑛 demands in 𝐷 , sorted by volume
3 forall (𝑠, 𝑡) ∈ Δ from large to small do
4 if 𝑠, 𝑡 have available DA ports in switch 𝑖 then
5 Set DA-link (𝑠, 𝑡, 𝑖)

3.2 Scheduling of Demand-Aware Links
Duo relies on a control plane which can use centralized or decentralized scheduling of the DA
links. The centralized scheduling benefits from the global view, while the decentralized scheduling
supports fast reaction.
We use Sirius’ [7] reconfiguration model also for DA links: spine switches use passive gratings

while (sending) ToR switches rely on tunable lasers which determine the link to set up in the corre-
sponding switch (matching). This property is useful for the distributed version of the scheduling
where the receivers provide permissions to senders to reconfigure links. All algorithms use the
command ‘Set DA-link (𝑥,𝑦, 𝑖)’ which means that sender ToR 𝑥 tunes its laser on (egress) port 𝑖 to
establish a direct link to ToR 𝑦 via switch 𝑖 . Recall that each ToR has 𝑘 egress and 𝑘 ingress links
toward the 𝑘 spine switches, so we identify egress or ingress port 𝑖 with switch 𝑖 .

3.2.1 Centralized scheduling of DA-links. The algorithm uses a greedy heuristic to add shortcuts
(DA links) to the backbone de Bruijn network. It periodically, every update period 𝜌 , determines the
new DA-links based on an estimate of the accumulated demand or a measurement of the traffic in
the network until the current time. We denote this estimation by a demand matrix 𝐷 . The algorithm
sorts the demands in 𝐷 by decreasing order and for each demand (𝑠, 𝑡) in 𝐷 , it tries to add a DA
link to the network. In case the algorithm decides to set a DA link, the link is not available for use
during reconfiguration time 𝛿 , unless it was already setup previously. This results in a duty cycle of
𝜖 =

𝜌−𝛿
𝜌

. The algorithm is repeated until no new DA link can been added. Moreover, remaining free,
i.e., unmatched, ingress and egress ports are matched. If possible, the matchings are in parallel to
links of the static de Bruijn topology, otherwise, a random matching is applied.

Algorithm 2 shows the centralized algorithm, Greedy-DA-links. The algorithm is a simple version
of greedy 𝑘-matchings (known also as 𝑏-matching for undirected graphs [17]). The algorithm
iterates over requests (𝑠, 𝑡) ∈ 𝐷 that are larger than a threshold 𝑣𝑡ℎ in decreasing order and only
connects a direct link between 𝑠 and 𝑡 if they have unmatched ports on the same DA switch 𝑖 . We
note that the the shortcuts added by Greedy-DA-links supports integrated multi-hop, and a similar
version of it is easier to implemented in a distributed way, as we explain next.

3.2.2 Distributed scheduling of DA-links. Algorithm 3 shows the distributed scheduling algorithm,
DistDA. The algorithm combines similar approaches as presented in ProjecToR [18] and Sirius [7].
It implements a distributed, threshold-based greedy 𝑘 matchings algorithm. A destination-based
elephant detection triggers the algorithm. For instance, this can be done in P4 using sketches [36] as
we discuss in more details later. If any of the destinations detects a source(-ToR) as elephant it checks
if it has available DA-ports. If available, it sends an offer, PortRequest(𝑝𝑜𝑟𝑡𝑠), to the elephant source
ToR via the static topology part where 𝑝𝑜𝑟𝑡𝑠 is a list of available ingress ports at the destination.
Upon reception, the source/sender checks for an available egress DA-port on its side. If a port is
available, it acknowledges the request via a PortApprove(𝑖) message and sets the link on port 𝑖 . If no
DA-port is available at the source, the request is declined. The receiver ToR continues to generate
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Algorithm 3: Distributed DA-link scheduling
1 Function DistDA() at destination 𝑡

2 Upon detection of elephant flow from source 𝑠
3 if 𝑡 has available DA ports then
4 Send PortRequest(ports) to node 𝑠
5 if 𝑠 reply with PortApprove(i) then
6 DA-link (𝑠, 𝑡, 𝑖) is set (with timeout)

7 Function DistDA() at source 𝑠
8 Upon PortRequest(ports) from destination 𝑡

9 if 𝑠 has available DA ports in 𝑝𝑜𝑟𝑡𝑠 then
10 Send PortApprove(i) to node 𝑡
11 Set DA-link (𝑠, 𝑡, 𝑖) (with timeout)
12 else

13 Send DeclineRequest

PortRequests for other elephants. An agreed DA-link, i.e., the ports at sending and receiving ToR, is
reserved for fixed period of time 𝑟 . Afterwards, the ports can be assigned to new requests and the
circuit might be reconfigured. However, the circuit is not pro-actively torn down but kept alive
until an appropriate request arrives.
We note that while our distributed scheduler is simple, it is effective as we will see next. We

leave the study of more sophisticated schedulers (e.g., based on distributed stable matchings [18]
or online algorithms [27]) for future work.

3.3 Implementation and Practical Aspects
3.3.1 Implementation and Cost. As mentioned earlier, we envision that Duo could be implemented
using the Sirius architecture [7]. Sirius is also captured by the TMT model, but one of its great
advantages is that instead of spine switches, Sirius uses a single layer of 𝑘 gratings. The Arrayed
Wavelength Grating Routers (AWGR) are simple and passive without moving parts and do not
consume power. Still, each grating diffracts (“forwards”) incoming light from input to output ports,
based on the wavelength, abstractly creating a matching. Reconfiguration is then performed by a
physical-layer ToR switch (or directly on servers) equipped with 𝑘 transceivers containing tunable
lasers that can change the wavelength used to carry the data toward the gratings through an optical
fiber.
Sirius has been presented as a demand-oblivious architecture which provides fast end-to-end

reconfiguration, due to a pre-determined, static schedule that specifies the connectivity at any given
fixed-size timeslot. However, the Sirius architecture is in principle also well-suited for demand-
aware scheduling, with a slower end-to-end reconfiguration delay.

As Duo differs from Sirius only in the scheduling and routing, the cost and power consumption
of Duowill be similar to Sirius. In [7], the authors showed that Sirius’ power and cost are about 25%
that of an electrically switched Clos network (ESN). That said, unfortunately, a direct comparison
of the performance of Duo and Sirius is currently not possible as Sirius’ simulation code is not
available. Therefore, we concentrate on the comparison to Opera [33] which is similar in the
demand-oblivious nature as Sirius. Additionally, we compare to static expander topologies which
are also state-of-the-art datacenter networks [29].
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3.3.2 IP Addressing and LPM Forwarding. We embed the de Bruijn address into the hosts’ IP
addresses. Our approach uses IPv4 but can also be implemented using IPv6. Depending on the
number of ports per ToR, a single symbol of the de Bruijn address takes one or multiple bits of the
IP address: 𝑠 =

⌈
log2 (𝑏)

⌉
. Thus, the full de Bruijn address occupies 𝑠 · 𝑑 bits of the IP address. In

order to use LPM to implement the forwarding, we split the IP address into three parts. The first 𝑝
bits mark the base network that is assigned to Duo. The following 𝑠 ′ = 𝑠 ·𝑑 bits identify the ToR by
means of the de Bruijn address while the remaining bits identify the host/VM inside the rack, i.e.,
each ToR is assigned a /(𝑝 + 𝑠 ′) prefix.

For the example of Figure 4(a), the de Bruijn address can directly bemapped to an IP address/prefix
and occupies only 3 address bits. Figure 4(c) shows an exemplary forwarding table for ToR 5 = 011
with 10.0.0.0/8 as a base IP prefix. Following Algorithm 1, each node can build its IP forwarding
table locally based on its ToR neighbors’ addresses. In particular, when a new DA links is established
for a node’s port and it knows the ToR address of the new neighbor, the forwarding table can be
updated locally (without recomputing shortest paths).

3.3.3 Transport Layer. In general, Duo does not require a customized transport protocol nor
complex flow scheduling. It performs well with existing protocols “out of the box", for instance
with TCP.

However, we found that handling small and large flows differently, e.g., by using different trans-
port protocols and separating them into different queues, can significantly improve performance
further, and reduce flow completion times of the former drastically. Thus, similar to previous
approaches such as Opera [33], Duo classifies flows according to a fixed threshold 𝑓𝑡ℎ into low
latency and bulk traffic. In order to improve the performance for low latency flows, NDP [26] was
identified as a promising candidate. It also shows good performance in Duo. For large flows (> 𝑓𝑡ℎ),
Duo uses TCP for congestion control and re-transmissions.
Each port of a ToR (static and DA) in Duo provides three queues of different, fixed priorities.

In order to avoid interference on congestion feedback, TCP acknowledgements and NDP header
packets, i.e., acknowledgements or packets that have been stripped, are always forwarded via the
high priority queue. NDP data packets use the medium priority queue and TCP data packets use
the low priority queue. Packets residing in the queues of a DA-link that is reconfigured are dropped.
We acknowledge that this is a radical approach but found that the imposed re-transmissions have
only little impact on Duo’s performance. Forwarding these packets via the new DA-link resulted in
lower throughput.

4 EVALUATION
To evaluate Duo, we use and extend htsim. htsim is a packet-level simulator which has also been
used in previous works, e.g,. [26, 33]. With our simulation, we answer the question of howDuo fares
against state-of-the-art topologies such as more common DA topologies, expander-based networks,
and Opera [33]. We further explore how Duo behaves under varying traffic conditions and assess
the impact of several topology configurations.

4.1 Methodology
4.1.1 Settings. We consider topology configurations with 𝑛 = 64, 128, and 256 racks. Each ToR
has 16 ports which are divided into 8 downlink ports for the hosts, and 8 uplink ports. Since Duo
implements a directed topology, the uplinks are split into 8 ingress and 8 egress ports. All links have
a capacity of 10 Gbps (as in previous work [33]). So the considered topologies have total uplink
capacities of 5.12 Tbps, 10.24 Tbps and 20.48 Tbps.
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Unless stated differently, we consider reconfiguration delays of 𝛿 = 100 𝜇s for DA links. This delays
includes both computation and switches setup. The update time is 𝜌 = 10ms, i.e., we update the DA
links every 10ms (if needed). Overall, for this settings, the duty cycle is 99%. The reconfiguration
delay for demand-oblivious links in Opera is 10 𝜇s and following the default configuration yields a
duty cycle of 98% [33]. The packet size is 1500Bytes. Unless stated differently, each configuration is
run for 10 s of simulation time.

4.1.2 Traffic and Flow Size Distributions. The evaluation considers an online traffic scenario in
which flows arrive according to a Poisson process. We consider the following four traffic scenarios:
Permutation. The flow sizes are fixed to 500KB and the local communication pattern follows a
rack-to-rack permutation matrix. The permutation matrix was shown to be the worst case traffic
for expander and dynamic rotor-based topologies like Opera [20, 37].
Hadoop, Websearch and Datamining. In each case the flow sizes are sampled from the
relevant flow size distribution as reported in the literature [3, 19]. The flow size distributions of
these cases are similar to a power law distribution, but with different average and maximum flow
size. Consequently, most of the flows are small, but the majority of the traffic belongs to large
flows [20].
The arrival rate is adapted in order to create load values in the range from 10% to 80% with

respect to the total uplink capacity of the ToRs, i.e., 100% means that all hosts are sending at full
line rate.

4.1.3 Topologies. Throughout the evaluation, we compare four combinations of topologies and
resource management, i.e., DA link configuration and routing algorithms.
Duo. The first competitor usesDuo (𝑘𝑠 = 2, 𝑘𝑑 = 6) and configures the DA links using the centralized
greedy, one-hop approach shown in Algorithm 2. It has knowledge of the remaining volume to
be transmitted of all flows that are present in the system when the algorithm is called. Upon
establishment of a circuit, it updates the routing information (locally) to incorporate the new DA
link. In addition, it ensures that only equal cost (length) paths according to the greedy de Bruijn
routing are used.
Segregated. The first baseline (Segr) has the same topology configuration and DA link scheduling
algorithm as Duo but can only use segregated routing similar to ProjecToR [18]. Flows are routed
via a DA link only if it directly connects the source and the destination of the flow. Otherwise, flows
are routed on the static topology according to the greedy de Bruijn routing.
Expander. The second baseline (Exp) is a static 𝑘 = 8-regular directed expander topology that is
built from 𝑘 static matchings. For flow allocation, it uses a 𝑘-shortest path routing where flows are
assigned a fixed path upon their arrival.

All three systems use the priority queueing described in Section 3.3.3. Each port has a low priority
queue which can hold 50 data packets and medium and high priority queues of the same size.
Flows ≤ 𝑓𝑡ℎ use the NDP [26] implementation and large flows (> 𝑓𝑡ℎ) use the TCP implementation
available in htsim. If not stated otherwise, the threshold is 𝑓𝑡ℎ = 1MB.
Opera. The third baseline is Opera. We use the available implementation in htsim and the default
configuration as provided with the original paper [33]. Flows < 15MB are sent using NDP [26] via
the Expander part, whereas large flows use the RotorLB (RLB) transport protocol and rate allocation
algorithm. There are two queues per port on the ToRs. The first one can hold 8 data packets and
the second queue has the same size for header packets. Note that in addition, Opera makes heavy
use of packet queueing on the hosts and its transport protocol is not standard.

4.2 Empirical Results
Our evaluation revolves around the following main takeaways:
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(a) Permutation.
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(d) Datamining.

Fig. 5. Total received volume within 10s against total offered load. Duo outperforms the baselines Segr, Exp,
and Opera.

4.2.1 Duo increases system throughput. Figure 5 presents the total received (RX) volume
throughout a simulation run. It compares Duo, Segr, Opera, and Exp for the four traffic patterns.
The abscissa shows the offered data relative to the uplink capacity of the ToRs and the simulation
duration. The offered data describes the goodput (dashed line), i.e., it does not account for transport
layer effects. The RX volume directly correlates with the throughput of the network. Naturally,
it increases with the offered data but saturates when the throughput of the network is reached.
Recall that Duo, Segr, and Exp use TCP for large flows so the received data is ordered while for
Opera the packets mostly arrive out of order due to the oblivious scheduling of the next hop link.
Duo improves over all baselines for three of the traffic patterns. Only for Permutation (Fig-

ure 5(a)), it is on par with Segr. Duo and Segr saturate beyond 70% offered load which corresponds
to the ratio of DA link capacity to total link capacity (= 6/8 = 0.75). In this case, the DA links are
used to exactly match the traffic pattern, i.e., permutation. Thereby, paths of minimal length are
provided and the traffic is served efficiently. Opera saturates around 50% which corresponds to the
upper bound for the throughput that has previously been derived in theory.4 Exp starts to saturate
already around 20% offered load.

For Hadoop, Websearch5 and Datamining, the differences between the topologies are smaller.
First, we note that Opera and Exp align and start saturating both around 40% for Hadoop and
30% forWebsearch and Datamining. ForWebsearch, the RX volume of Opera drops for loads
4 Opera is only evaluated up to 60% load due to computation constraints. 5 Websearch is simulated only for 3 s due to
the significantly larger number of flows.
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> 30%. This is in line with the original paper of Opera which also observed decreasing throughput
when the load of Websearch traffic increases [33, Figure 10]. Second, Duo successfully transmits
≈ 15% more data on average across the load values in comparison to Opera and Exp. For instance,
Duo successfully transmits 2.75 TB for 50% offered load from Datamining while Exp achieves only
2.27 TB and Opera 2.24 TB. Compared to Segr, Duo transmits 8% more data for high loads on
average across the three workloads. This illustrates the benefit of the integrated multi-hop routing
provided by Duo.
In the following, the evaluation focuses on the Datamining workload.

4.2.2 Duo preserves competitive flow completion times. Besides throughput, the flow com-
pletion time (FCT) is an important performance indicator. Figure 6 illustrates the 99%-ile of the
FCT per flow size for 40% load. The dashed line indicates the minimum under ideal conditions. For
small flows (< 1MB), Duo slightly outperforms the other topologies. For instance, it achieves FCTs
around 13 𝜇s followed by Opera (18 𝜇s) and Segr (20 𝜇s). Exp gives the worst FCTs, approximately
one order of magnitude larger compared to Duo.

The advantage of Duo persists until 𝑓𝑡ℎ , i.e., a flow size of 1MB is reached. Here, Opera starts to
perform better as the curves separate before they converge again for flows > 15MB. The major
reason for these differences is that Duo trades off the lower FCT for small flows against increased
values for medium sized flows. The choice of 𝑓𝑡ℎ to define low latency flows controls this trade
off (cf. Section 4.2.5). In addition, it has been shown that demand-oblivious topologies with faster
configuration speeds, such as Opera, are the best option for medium-sized flows [20]. We note, that
Duo consistently performs better than Segr across all flow sizes.

Overall, Duo effectively trades off the higher throughput and slightly better FCTs for small flows
against the FCTs of medium flows.

4.2.3 Duo has a moderate amount of packet reordering. Figure 7 visualizes the difference of
the received and the expected sequence number per packet arrival at the destination. The figure
shows the empirical cumulative distribution function. The abscissa is broken into two parts. The
two data points in the left part (< 0 and 0) denote the fraction of packets where the difference
was negative and equal to 0. The right part visualizes the samples > 0 with a log-scaled abscissa.
A negative difference means that a packet is a bad (unnecessary) re-transmission. The values are
below 0.5% for all networks. The observations vary for the case ≥ 0. Opera receives only a small
fraction of around 5% of the packets in correct order (= 0). For 80% of the received packets, the
difference of the sequence numbers lies between 4001 and 20k. While this is a direct consequence
of RLB’s packet indirection, it still illustrates the complexity that Opera imposes on the receiving
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hosts. For Exp, ≈ 93% of the packets arrive in order while it is ≈ 97% for Duo and Segr. We conclude
that in spite of the DA link and routing reconfigurations, Duo’s does not lead to an increased amount
of packet re-ordering.

4.2.4 Duo path characteristics. To shed light on how Duo’s traffic allocation is different from
Segr, Exp, and Opera, we consider Figures 8-10. Figure 8 shows the (weighed) average path length
in hops calculated based on the traffic allocation. It weighs each path length with the fraction of
traffic that arrived at the destination and used a path of this length. Lower values are better and
indeed we observe that Duo reduces the path length for all evaluated load values compared to Exp
and Opera. However, it only provides shorter paths compared to Segr for loads up to 40% and
the advantage to Exp and Opera decreases with higher load, when Duo starts to route flows via
integrated multi-hop paths that use both DA and static links. For 20%, Duo has an average path
length < 1.25 hops, slightly smaller than Segr (1.3), compared to Opera and Exp which are ≥ 2
hops. For 80% load, Duo uses only 1.63 hops on average, still a 15% improvement to Exp and Opera
but 15% larger than Segr (1.42).

However, Segr does not benefit from the shorter average path lengths. To understand this more
in detail, Figure 9 shows two assessments of the average link utilization from the steady state of
a simulation run. The colored bars are the raw average link utilization. The black bar next to a
color bar is the respective normalized link utilization. The normalized link utilization �̃� is defined
as the ratio between average link utilization 𝑢 and average path length 𝑝 , i.e., �̃� = 𝑢

𝑝
. It gives an

indication for the throughput. For 20%, 𝑢 varies for the networks. Duo has the lowest raw link
utilization with 0.25 followed by Segr (0.27), Opera (0.41) and Exp (0.45). This is in line with the
order for the average path lengths. The normalized link utilization is around 0.2 for all topologies.
This means that all topologies can serve the load as also seen in Figure 5(d). In this case, a lower
link utilization means more efficient operation and hence, is favorable. The observations change
for 60% load. Here, Segr has a lower raw link utilization (0.64) than Duo (0.79). The order for Exp
(0.85) and Opera (0.82) remains the same. Also differences in the normalized link utilizations are
observed. In line with the observations in Figure 5(d), Duo has the highest value (0.5) followed by
Segr (0.44), Exp (0.43), and Opera (0.41). The lower link utilization of Segr is not an indicator for
more efficient transmission here. Since Segr is restricted to 1-DA hop paths it is not able to utilize
the available capacity as effectively as Duo. Moreover, it routes more flows via the static de Bruijn
topology which increases congestion. As a result, Segr provides lower throughput (cf. Figure 5(d)).
This confirms that Duo sets DA links that are usable by the greedy routing.

Figure 10 provides more details on the path characteristics. It shows the fraction of traffic that
uses a single hop, demand-aware link (1 hop DA) and the fraction of traffic that traverses integrated
multi-hops (IMH) paths, i.e., paths which use both static and DA links, so their length is at least two
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hops. With higher load, the share of 1 hop DA traffic decreases, while the fraction of IMH paths
increases. This can be explained with the properties of the traffic. For low load, the DA links can
support most of the traffic, but as load increases more ToR pairs have demand for shortcuts, and
multi-hop paths are needed to enable higher throughput. For these paths, due to its greedy routing,
Duo also can use the DA links and the share of IMH traffic increases. Specifically, we observe rather
large values for the fraction of 1-DA hop traffic (> 0.9) for loads below 40%. It decreases to ≈ 0.56
with 80% offered load. In contrast, the share of IMH traffic starts < 0.1 and increases towards 0.28
for high load. This demonstrates the importance of the integrated paths property of Duo. Without
this property, the throughput would be lower, as the results for Segr show (cf. Figure 5).

4.2.5 Sensitivity analysis. Next, we assess how Duo’s performance depends on the algorithm
configuration. Figure 11 approaches this question on two different dimensions: the optimization
period 𝜌 and the duty cycle 𝜖 . The values are normalized to the result for 𝜌 = 10 ms, 𝛿 = 100𝜇s
which gives 𝜖 = 99% and is used in the rest of the analysis.

Overall, the impact of the configuration is small. The values range from 0.92 to 1.0. The received
volume increases with the duty cycle since less time is spent during reconfigurations. For instance,
𝜌 = 1ms increases from 0.98 at 𝜖 = 50% to 0.99 with 𝜖 ≥ 98%. The 𝜌 = 50ms shows the largest gain
due to a higher duty cycle growing from 0.92 to 1.0. Finally, we note that the relation between the
three optimization periods is moderated by the duty cycle. While 𝜌 = 1ms is dominating for the
duty cycle 𝜖 = 50% with 𝜌 = 50ms being the worst, the opposite is the case for 𝜖 = 99%; this effect
can mainly be deduced to the absolute value of the reconfiguration time with low duty cycles.
Another parameter is the flow classification threshold 𝑓𝑡ℎ . Its impact on the total RX volume is

< 0.1% except for 𝑓𝑡ℎ = 15MB which has 3% less RX volume. Figure 12 illustrates the impact of
𝑓𝑡ℎ on the 99%-ile of the FCTs for 40% offered load. We observe the impact of 𝑓𝑡ℎ in two aspects:
1) using the medium and high priority queues for small flows improves their FCT. For instance,
flows of size 180B have FCTs of ≈ 1.4ms without priority queuing (0B). The values are reduced
with 𝑓𝑡ℎ = 15MB to ≈ 67𝜇s and to ≈ 12 𝜇s with 100KB and 1MB. Reducing 𝑓𝑡ℎ , i.e., considering
less flows as small, results in lower FCTs for small flows. 2) the “jump“ of the FCT values moves
as expected. Flows that are classified as large have around two orders of magnitudes larger FCTs
compared to their classification as small flows.

4.2.6 Duo has low complexity. Figure 13 illustrates the wall clock time for the simulations
against the load. Duo, Segr, and Exp have a slower increase in run-time compared to Opera which
frequently runs a costly rate allocation.
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We acknowledge that the simulation run-time does not reflect hardware implementation charac-
teristics but is a first indicator for the computational effort and the complexity of the load balancing
protocol in Opera.

4.2.7 Performance gains persist for larger topologies. Lastly, we assess Duo on topologies
with 𝑛 = 128 and 𝑛 = 256 racks. The traffic is generated based on the Datamining distribution
and offers a load of 60% relative to the topology size. Figure 14 illustrates the RX volume after 5 s
of traffic and simulation. The results are normalized to Duo with 𝑛 = 64. The simulations runs
are shorter than 10s due to scalability. We focus only on Duo, Segr and Exp in this comparison
since Opera’s simulations do not scale well. All topologies have 𝑘 = 8 uplinks. Comparing the
RX volume across the topology sizes, the difference between Duo and Exp increases from 0.21
with 64 racks to 1.1 with 256 racks. For Segr, it increases from 0.07 to 0.27 respectively. This result
validates that Duo can provide a higher capacity topology also at larger scales.

5 PROOF-OF-CONCEPT
To demonstrate feasibility, we implemented a proof-of-concept of Duo. In the following, we report
on the results of this working prototype.

5.1 Testbed
Components and structure. We implement the data plane logic of Duo using a WEDGE 100BF-
32QS Barefoot Tofino 3.2 Tbps switch and the P4 language to emulate 16 ToRs. Figure 15 overviews
the testbed (the figure shows a 8 ToR version for readability). The switch (gray box) connects to four
servers (blue boxes) running Ubuntu 18.04 (5.15.0-47-generic kernel) with 128 GB of RAM and Intel
Xeon Silver 4114 @ 2.2 GHz (20 cores). The connection is made via a 4x10G breakout cable for each
server which connects to the servers’ NICs. Each server generates and sends traffic corresponding
to four servers in four racks (green boxes) via one of the four links. Separation is realized using
Linux network namespaces. The Tofino switch emulates the data plane of the ToR switches and the
spine layer with its static and dynamic matchings. Eight loopback cables (double headed arrows)
represent the links between different switching elements; the QSFP ports are operated in breakout
mode (4x10G).

The setup is operated by a single external controller. The controller deploys forwarding rules to
separate the racks’ traffic, forward it according to the greedy routing and also mimics the behavior
of the distributed control plane.
ToR emulation concept. Generally, the emulation considers the two directions of each (10 Gbps)
link as separate directed links, hence, ingress and egress directions can be assigned to different
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Fig. 15. Illustration of an 8 ToR testbed setup.

ToRs. In Figure 15 for instance, the egress direction of the top left port is used by the green rack
(small box); the port next to it is used by the orange rack. The assignment of the ingress direction is
visualized by the color of the surrounding box, e.g., for the upper left group of ports, the green ToR.

Static Packet Forwarding vs DA Forwarding Example. Rack 1 intends to send a packet to Rack 6;
this forwarding goes along a 2-hop path (ToR1 -> ToR3 -> ToR6). First, it sends a packet on the
NIC (black circle 1). The Tofino receives the packet (2) and forwards it internally on an outgoing
port of ToR1 (3). Please note here how we exploit the differentiation of ingress and egress of the
Tofino switch; the outgoing port of ToR1 is not located physically on the same QSFP port where
the ingress happens. ToR4 receives the packet via the loopback cable (4) and then sends it out to
ToR6 (5). After receiving the packet on ToR6 (6), it is forwarded to Rack6 (7) and finally received
(8). Using DA links, ToR1 (red circle 3) can directly transmit the packet to ToR6 (red circle 4). This
saves 1 hop. With our flexible P4-based ToR emulation, we can emulate static and DA de Bruijn DC
networks.

5.2 Data & Control Plane Implementation
The P4 pipeline consists of two major parts, forwarding and elephant flow detection, which are
described in the following.

5.2.1 Forwarding. A crucial aspect of emulating multiple ToRs on a single Tofino is to identify
the location of the incoming packets in the emulated network, i.e., at which ToR they arrive. We
implement this by a first table lookup which exactly matches the ingress port of the packet and
adds the ToR id to a metadata header. The actual de Bruijn forwarding uses a second table that
combines the ToR id in the metadata header as an exact key along with an LPM on the packet’s
destination IP address.
The addressing used in the emulated network follows our approach above (see Section 3.3.2).

Since we consider a maximum of 16 ToRs, four bits are needed for the de Bruijn node ids. We use
the 12 most significant bits as the base prefix, and the remaining 16 bits for the hosts.

5.2.2 Elephant flow detection. The elephant flow detection algorithm always runs when a packet
arrives at its destination ToR. If this packet belongs to an elephant flow, the data plane notifies the
control plane using a digest, unless it is listed as an already reported flow.
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Per-flow statistics. We define a flow as the aggregate traffic on the ToR-to-ToR level. For a small
number of ToRs, maintaining the per flow statistics is feasible. We use an array of low pass filters.
They are built-in functionalities (externs) provided by the Tofino Native Architecture and are used
to estimate the flow rates. Since we have 16 racks, 256 slots are enough to keep track of the statistics
for each ToR. Instead of maintaining 16 different arrays with 16 entries, we use a single 16 · 16 long
array. We get the 4 + 4 bit long index by concatenating the source and destination ToR ids.

In case, the exact method is infeasible, probabilistic data structures such as sketches can be used.
Elephant flow threshold and detection.We consider only packets larger than 255 bytes to avoid
detecting the reverse directions because of the ACKs. We classify a flow as elephant if it sends
more packets than a predefined threshold within a predefined time frame. These parameters are
configurable and might benefit from fine-tuning for different scenarios. Checking the threshold
value needs special attention to avoid complex conditions and using too many Tofino stages6. To
check one single value, we subtract it from the threshold and check whether the the signing bit
becomes 1 indicating an underflow since the threshold was higher than the value.
Preventing control plane flooding.We introduce a simple filtering mechanism to avoid flooding
the control plane with digests. After an elephant flow is detected, we set a reported_elephants
register value from 0 to 4000 for this flow. As long as the threshold is exceeded, each subsequent
packet from this decreases this value by 1. The data plane does not report the flow until this value
reaches 0 again. Additionally, we have a known_elephants table with exact matching on the source
and destination addresses. This table is maintained by the control plane and mutes the digests for
the inserted source-destination key pairs.

5.2.3 Control plane implementation. The Duo PoC uses a Python-based centralized controller. The
controller ignores the available global knowledge and implements the distributed DA link scheduling
as presented in Algorithm 3 in a sequential way. That is a single CPU processes the elephant flow
notifications from the Tofino. It maintains the currently connected neighbors per-ToR. This in turn
is used to derive the forwarding tables with Algorithm 1.

When bootstrapping the network, the controller populates the tables for matching ingress traffic
to the correct ToR and installs the forwarding entries following the greedy routing on a static de
Bruijn topology. It then starts listening for elephant flow notifications.
Processing notifications. Upon reception of an elephant flow notification, the controller extracts
the sending ToR’s id 𝑡 (destination of the elephant flow) and the flow’s source ToR id 𝑠 . In order
to disable transmission of further notifications, it adds the flow to the known elephants table.
Afterwards, it runs DistDA (Algorithm 3) with the state of the destination 𝑡 to get the port request.
The request is passed to DistDA along with the state of the source 𝑠 . If the request is not declined, we
obtain the DA link to create and mark the DA ports in 𝑠 and 𝑡 as reserved. Finally, the controller checks
if any elephant flow has passed its cooldown period and removes it from the known_elephants
table on the switch and resets the reported_elephants register to 1000.
Setting DA links. Our emulation realizes DA links by (re-)assigning egress directions of ports to
ToRs and, consequently, adding the needed forwarding rules (cf. Figure 15). Specifically, since the
ingress ports of a ToR are fixed, we first infer the egress port that belongs to the loopback cable
that connects to the ingress port of the DA link’s destination ToR. Then, we update the forwarding
table of the DA link’s starting ToR following Algorithm 1 and using this egress port (i.e., colors of
DA ports in Fig. 15 change over time). Reconfiguration delay is currently not emulated but can be
realized by delaying the forwarding table update. In case other DA links must be removed first, the
forwarding tables of the involved ToRs are updated accordingly beforehand.

6 The exact constraints are NDA protected by Intel.
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Fig. 16. Throughput over time.

5.3 Measurement Results
Settings and traffic input. We consider Duo with 16 ToRs and two configurations: Duo (4,0)
and Duo (2,2). The rates on the ToRs’ up-links, i.e., the ports that are connected via the loopback
cables, is limited to 2.5 Gbps using shapers available on the Tofino switch. The reconfiguration
delay is 𝛿 = 0ms and DA links are reserved for 𝑟 = 200ms. Moreover, we consider a cooldown time
for elephant flows of 200ms during which no notifications are sent. The servers generate traffic
according to two permutation matrices which arrive with 2s inter arrival time. Each matrix element
corresponds to one TCP flow of 2 Gbyte size. Note that the acknowledgements of the TCP flows
can take different paths than the main data. The first matrix is constructed in such a way that all
flows must use at least two hops on the static topology. The second matrix is randomly generated.
Analysis. Figure 16 compares the achieved throughput for the two configurations of Duo. Fig-
ure 16(a) focuses on the throughput per flow over time. For each configuration, it shows the two
flows from both matrices which share the source ToR 2. The flow of the first matrix is shown in
the left column, the one of the second matrix in the right column. For Duo (4, 0), the two flows
share at least one link, after the second flow has arrived in 𝑡 = 2s. Both do not reach the full link
rate and, hence, both have a transmission duration of 24.22s and 14.33s respectively – significantly
longer than the theoretic optimum of 6.4s. In particular, the first flow suffers from interference
with other flows. In contrast, Duo (2, 2) uses the elephant detection to identify large flows and
establishes DA links for each flow (red dashed line). As a result, both flows send at link rate and,
hence, finish earlier at 8.6s and 10.73s. This demonstrates that Duo reacts appropriately to elephant
flows it detects. Taking a broader perspective, Figure 16(b) illustrates the aggregated throughput
per permutation matrix (here a set of 16 flows, dotted and solid lines). Duo (2, 2) achieves a higher
throughput per matrix by setting DA links and the overall demand finishes ≈ 54% earlier. For Duo
(4, 0), the throughput for the first matrix (purple, solid) decreases when the second matrix arrives.
Overall this demonstrates that Duo is realizable.

6 CONCLUSION
To address the limitations and overheads of existing reconfigurable datacenter networks, we
proposed Duo, a simple and flexible architecture which supports integrated multi-hop routing
and demand-aware links. We understand our work as a next step towards more practical and
scalable demand-aware reconfigurable datacenter networks, and believe that it opens several
interesting avenues for future research. In particular, in this paper we have primarily focused on the
performance of our approach, and, similarly to previous work, less on the resilience. That said, de
Bruijn networks are known to not only provide good robustness properties, but also fast recovery,
and we leave a detailed empirical study for future research. Furthermore, while we have shown that
Duo performs well even when using standard TCP out-of-the-box, it may be interesting to explore
more specialized transport protocols to improve throughput further. Finally, we believe that our
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approach is applicable to other network topologies that support greedy local routing, beyond de
Bruijn topologies.
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