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Abstract—We consider the fundamental problem of design-
ing a self-adjusting tree, which efficiently and locally adapts
itself towards the demand it serves (namely accesses to the
items stored by the tree nodes), striking a balance between
the benefits of such adjustments (enabling faster access) and
their costs (reconfigurations). This problem finds applications,
among others, in the context of emerging demand-aware and
reconfigurable datacenter networks and features connections to
self-adjusting data structures. Our main contribution is SeedTree,
a dynamically optimal self-adjusting tree which supports local
(i.e., greedy) routing, which is particularly attractive under highly
dynamic demands. SeedTree relies on an innovative approach
which defines a set of unique paths based on randomized item
addresses, and uses a small constant number of items per node.
We complement our analytical results by showing the benefits
of SeedTree empirically, evaluating it on various synthetic and
real-world communication traces.

Index Terms—Reconfigurable datacenters, Online algorithms,
Self-adjusting data structure

I. INTRODUCTION

This paper considers the fundamental problem of designing
self-adjusting trees: trees which adapt themselves towards the
demand they serve. Such self-adjusting trees need to strike
an efficient tradeoff between the benefits of such adjustments
(better performance in the future) and their costs (reconfigura-
tion overheads now). The problem is motivated by the fact that
workloads in practice often feature much temporal and spatial
structure, which may be exploited by self-adjusting optimiza-
tions [1], [2]. Furthermore, such adjustments are increasingly
available, as researchers and practitioners are currently making
great efforts to render networked and distributed systems more
flexible, supporting dynamic reconfigurations, e.g., by leverag-
ing programmability (via software-defined networks) [3], [4],
network virtualization [5], or reconfigurable optical commu-
nication technologies [6].

In particular, we study the following abstract model (appli-
cations will follow): we consider a binary tree which serves
access requests, issued at the root of the tree, to the items
stored by the nodes. Each node (e.g., server) stores up to
c items (e.g., virtual machines), where c is a parameter
indicating the capacity of a node. We consider an online
perspective where items are requested over time. An online
algorithm aims to optimize the tree in order to minimize
the cost of future access requests (defined as the path length
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between root and accessed item), while minimizing the number
of items moving up or down in the tree: the reconfigurations.
We call each movement a reconfiguration, and keep track of
its cost. In particular, the online algorithm which does not
know the future access requests, aims to be competitive with
an optimal offline algorithm that knows the entire request
sequence ahead of time. In other words, we are interested in
an online algorithm with minimum competitive ratio [7] over
any (even worst-case) request sequence.

Self-adjusting trees are not only one of the most fundamen-
tal topological structures of their own merit, they also have
interesting applications. For example, such trees are a crucial
building block for more general self-adjusting networks: Avin
et al. [8] recently showed that multiple trees optimized indi-
vidually for a single root, can be combined to build general
communication networks which provide low degree and low
distortion. The design of a competitive self-adjusting tree as
studied in this paper, is hence a stepping stone.

Self-adjusting trees also feature interesting connections to
self-adjusting data structures (see §VI for a detailed discus-
sion), for some of which designing and proving constant-
competitive online algorithms is still an open question [9].
Interestingly, a recent result shows that constant-competitive
online algorithms exist for self-adjusting balanced binary trees
if one maintains a global map of the items in the tree; it was
proposed to store such a map centrally, at a logical root [10].
In this paper, we are interested in the question whether
this limitation can be overcome, and whether a competitive
decentralized solution exist.

Our main contribution is a dynamically optimal self-
adjusting tree, SeedTree*, which achieves a constant compet-
itive ratio by keeping recently accessed items closer to the
root, ensuring a working set theorem [9]. Our result also im-
plies weaker notions such as key independent optimality [11]
(details will follow). SeedTree further supports local (that is,
greedy and hence decentralized) routing, which is particularly
attractive in dynamic networks, by relying on an innovative
and simple routing approach that enables nodes to take local
forwarding decisions: SeedTree hashes items to i.i.d. random
addresses and defines a set of greedy paths based on these
addresses. A main insight from our work is that a constant
competitive ratio with locality property can be achieved if

*The name is due to the additional capacity in nodes of the tree, which
resembles seeds in fruits of a tree.



Fig. 1: A depiction of SeedTree with capacity 2. Large circles
represent nodes (nodes) of the system, and small circles
represent items. The number inside each small circle is the
hash of the corresponding item.

nodes feature small constant capacities, that is, by allowing
nodes to store a small constant number of items. Storing more
than a single item on a node is often practical, e.g., on a server
or a peer [12], and it is common in hashing data structures with
collision [13], [14]. We also evaluate SeedTree empirically,
both on synthetic traces with ranging temporal locality and
also data derived from Facebook datacenter networks [1],
showing how tuning parameters of the SeedTree can lower
the total (and access) cost for various scenarios.

The remainder of the paper is organized as follows. §II in-
troduces our model and preliminaries. We present and analyze
our online algorithm in §III, and transform it to the matching
model of datacenter networks in §IV. After discussing our
empirical evaluation results in §V, we review related works
in §VI and conclude our contributions in §VII.

II. MODEL AND PRELIMINARIES

This section presents our model and introduces preliminar-
ies used in the design of SeedTree.

Items and nodes. We assume a set of items V =
(v1, . . . , vn), and a set of nodes S = (s1, . . . )

† arranged as a
binary tree T . We call the node s1 the root, which is at depth
0 in the tree T , and a node sj is at depth ⌊log j⌋.

Each node can store c items, where c is a parameter
indicating the capacity of a node. In our model, we assume
that c is a constant. The assignment of items to nodes can
change over time. We say a node is full if it contains c items,
and empty if it contains no item (See an example in Figure 1).

We define the level of item v at time t, levelt(v), as the
depth of the node containing v. For example, if item v is at
node sj at time t, we have levelt(v) = ⌊log j⌋.

Request Sequence and Working Set. Items are requested
over time in an online manner, modeled as a request sequence
σ = (σ1, . . . , σm), where σt = v ∈ V means item v is
requested at time t. We are sometimes interested in the recency
of item requests, particularly the size of the working set.
Formally, we define wst(σ, v) as the working set of item v in
at time t in the request sequence σ. The working set wst(σ, v)
is a set of unique items requested since the last request to the
item v before time t. We define a rank of item v at time t,
rankt(v), as the size of working set of the item v at time t.

†We assume the set of nodes to be arbitrarily large, as the exact number
of nodes will be determined based on their used capacity.

Costs and Competitive Ratio. We partition costs incurred
by an algorithm, ALG, into two parts, the cost of finding an
item: the access cost, and the cost of reconfigurations: the
reconfiguration cost. The search for any item starts at the root
node and ends at the node containing the item. Based on our
assumption of constant capacity, we assume the cost of search
inside a node to be negligible. Furthermore, assuming the local
routing property, we find an item by traversing a single path
in our tree; hence the access cost for an access request σi,
CA

ALG(σi), equals the level at which the item is stored.
In our model, a reconfiguration consists of moving an item

one level up or one level down in the tree, plus potentially
additional lookups inside a node. We denote the total recon-
figuration cost after an access request σi by CR

ALG(σi). Hence,
the total cost of each access request is CA

ALG(σi)+CR
ALG(σi),

and the total cost of the algorithm on the whole request
sequence is: CALG(σ) =

∑m
i=1 C

A
ALG(σi) + CR

ALG(σi). The
objective of SeedTree is to operate at the lowest possible cost,
or more specifically, as close as possible to the cost of an
optimal offline algorithm, OPT .

Definition 1 (Competitive ratio). Given an online algorithm
ALG and an optimal offline algorithm OPT , the (strict)
competitive ratio is defined as: ρALG = maxσ

CALG(σ)
COPT (σ)

Furthermore, we say an algorithm has (strict) access com-
petitive ratio considering only the access cost of the online
algorithm ALG (not including the reconfiguration cost).

In this paper, we prove that SeedTree is dynamically optimal.
It means that the cost of our algorithm matches the cost of the
optimal offline algorithm asymptotically.

Definition 2 (Dynamic optimality). Algorithm ALG is dy-
namically optimal if it has constant competitive ratio, i.e.,
ρALG = O(1).

MRU trees. We define a specific class of self-adjusting
trees, MRU trees. An algorithm maintains a MRU tree if it
keeps items at a similar level to their ranks.

Definition 3 (MRU tree). An algorithm has the MRU(0)
property if for any item v inside its tree and at any given time
t, the equality levelt(v) = ⌊log ⌈ rankt(v)

c ⌉⌋ holds.
Similarly, we say an algorithm maintains an MRU(β) if it

ensures the relaxed bound of levelt(v) ≤ ⌊log ⌈ rankt(v)
c ⌉⌋+ β

for any item v in the tree.

III. ONLINE SEEDTREE

This section presents SeedTree, an online algorithm that
is dynamically optimal in expectation. This algorithm build
upon uniformly random generated addresses, and allows for
local routing, while ensuring dynamic optimality. Details of
the algorithm are as follows: Algorithm 1 always starts from
the root node. Upon receiving an access request to an item v
it performs a local routing (described in Procedure LocalRout-
ing) based on the uniformly random binary address generated
for the node v, which uniquely determines the path of v in the
tree. We call the i-th bit of the address of v by H(v, i). Let
us assume that the local routing for node v ends in level ℓ.



(a) Item 001 moves up, node-by-node, until it
reaches the root.

(b) The first try of push-down failed, because
node 100 is full.

(c) After finding non-full node, items are
pushed down node-by-node.

Fig. 2: An example of steps taken in Algorithm 1, starting from the state of SeedTree in Figure 1, which has a capacity equal
to 2. In this example, the request is an access request to the item with the hash value 001 (the purple circle). Subfigure 2a
shows the move-to-the-root phase, and Subfigures 2b and 2c depict the push-down phase.

Procedure LocalRouting(s,v)
1 if H(v, level(s)) equals 0 then
2 Return the left child of s.
3 else
4 Return the right child of s.

Then SeedTree performs the following two-phase reconfig-
uration. These two phases are designed to ensure the level of
items remains in the same range as their rank (details will
follow), and the number of items remains the same at each
level.

1) Move-to-the-root: This phase moves the accessed item to
the node at the lowest level possible, the root of the tree.
The movement of the item is step-by-step, and it keeps
all the other items in their previous node (we keep the
item in a temporary buffer if a node on the path was full).
This phase is depicted in Figure 2a by zig-zagged purple
arrows.

2) Push-down: In this phase, our algorithm starts from the
root node, selects an item in the node (including the
item that has just moved to this node) uniformly at
random, and moves this item one level down to the new
node selected in the LocalRouting procedure. The same
procedure is continued for the new node until reaching
level ℓ, the level of the accessed item. If the node at
level ℓ was non-full, the re-establishment of balance
was successful. Otherwise, if this attempt is failed, the
algorithm reverses the previous push downs back to the
root, and starts again, until an attempt is successful. As
an example, the failed attempt of this phase is depicted
by dashed red edges in Figure 2b and the last successful
one by curved blue arrows in Figure 2c.

Algorithm 1 always terminates, as there is always the chance
that the item which has been moved to root is selected among
all candidates, and we know that the node which that item is
taken from is not full. We now state the main theorem of the
paper that proves the dynamic optimality of SeedTree.

Theorem 1. SeedTree is dynamically optimal for any given
capacity c ≥ 1.

Algorithm 1: Online SeedTree
Input: Accessed item v.

1 Set s as the root.
2 while s does not contain v do
3 s = LocalRouting(s,v).
4 Call the current level of v as ℓ.
5 Set s as the root, and move item v to s.
6 while balance is not fixed do
7 Call the current node s.
8 while level of s is less than ℓ do
9 Take an item in node s, uniformly at random, call it

v.
10 s = LocalRouting(s,v).
11 Add item v to the node s.
12 if the last chosen node is full then
13 Reverse the push-down back to the root.

The proof of Theorem 1 is at the end of the section. The first
step towards the proof is showing that the number of items in
each level remains the same. It is true because after removing
an item at a certain level, the algorithm adds an item to the
same level as a result of the push-down phase.

Observation 1. SeedTree keeps the number of items the same
at each level.

The rest of the analysis is based on the assumption that the
algorithm was initialized with a fixed fractional occupancy
0 < f < 1 of the capacity of each level, i.e., in level i, the
initial tree has exactly ⌊c · f · 2i⌋ items. At the end of this
section, we will see that f = 1

2 works best for our analysis.
However, we emphasize that having 0 < f < 1 suffices for
SeedTree to run properly.

The second observation is a result of Observation 1. As the
number of items remains the same in each level (based on
Observation 1) at most a fraction f of all nodes are full. In
the lowest level, the number of full nodes might be even lower;
hence the probability of a uniformly random node being full
is at most f when we go to the next request.

Observation 2. Algorithm 1 ensures that the probability of
any uniformly random chosen node in SeedTree to be full,
after serving each access request, is at most f .



According to Algorithm 1, items are selected uniformly at
random inside a node. In the following lemma, we show that
a node in a certain level is also selected uniformly at random,
which enables the rest of the proof.

Lemma 1. Nodes selected on the final path of the push-down
phase with a level lower than ℓ are selected uniformly at
random.

Proof. Let us denote the probability of ℓ′-th node on the path
(the node at level ℓ′, denoted by sℓ′ ) being the selected node
is 1

2ℓ′
. Our proof goes by induction. For the basis, ℓ′ = 0, it

is true since we only have one node, the root. Now assume
that in the final path of push down, we want to see the
probability of reaching the current node, sℓ′ . Based on the
induction assumption, we know that the parent of sℓ′ , the node
sℓ′−1, has been selected uniformly at random, with probability

1
2ℓ′−1 . Based on Line 9 of Algorithm 1, an item is selected
from those inside sℓ′−1 uniformly at random, plus having the
independence guarantee of our hash function that generated
address of the selected item, we can conclude the decision to
go to left or right from sℓ′−1 was also uniformly at random,
hence the probability of reach sℓ′ is 1

2ℓ′−1 · 1
2 = 1

2ℓ′
. Note

that the above-mentioned choices are independent of whether
or not the descents sℓ′−1 are full or not. Hence the choice
is independent of (possible) previous failed attempts of the
push-down phase (which might happen due to having a full
node at level ℓ), i.e., the previous attempts do not affect the
probability of choosing the node sℓ′ .

An essential element of the proof of Theorem 1 is that the
rank and level of items are related to each other. Lemma 2
describes one of the aspects of this relation.

Lemma 2. During the execution of the SeedTree, for items v
and u at time t, if rankt(v) > rankt(u) then E[levelt(v)] >
E[levelt(u)].

Proof. Having rankt(v) > rankt(u), we know that u was
accessed more recently than v. Let us consider time t′, the
last time u was accessed. Since the rank of v is strictly larger
than the rank of u, and as u was moved to the root at time t′,
we know that levelt′(v) > levelt′(u).

Items u and v might reach the same level after time t′, but
it is not a must. We consider the level that they first met as
a random variable, Luv . We denote Luv = −1 if u and v
never appear on the same level after time t′. Let us quantify
the difference in the expected level of u and v, using the law
of total expectation:

E[levelt(v)]− E[levelt(u)]

=

⌊log ⌈n
c ⌉⌋∑

k=−1

Pr(Luv = k) · (E[levelt(v)|Luv = k]

−E[levelt(u)|Luv = k])

For the case Luv = −1, we know that u and v never reached
the same level, and the following is always true:

E[levelt(v)|Lv,u = −1] > E[levelt(u)|Lv,u = −1]

For k ≥ 0, let us consider the time t′′ when u and v meet
at the same level, i.e levelt′′(u) = levelt′′(v). After items u
and v meet for the first time, their expected progress is the
same. More precisely, consider the current subtree of the node
containing v at time t′′, and call it T ′. Since the item addresses
are chosen uniformly at random, the expected number of times
that T ′ is a subtree of a node containing v, equals the number
of times that T ′ might be a subtree of node containing u in
the same level. Hence the expected increase in the level for
both items u and v stays the same from time t′′ onward.

Next, we explain why the number of items accessed at a
higher level is limited in expectation for any given item.

Lemma 3. For a given item v at time t, there are at most
2 · rankws

t (v) items accessed at a higher level since the last
time v was accessed, in expectation.

Proof. Given Lemma 2, the proof is along the lines of the
proof of Lemma 4 from [10]. We removed the details of the
proof due to space constraints.

Now we prove the items in the tree maintained by the online
SeedTree are not placed much farther from their position in
a tree that realizes the exact working set property. This in
turn allows us to approximate the total cost of the online
SeedTree in comparison to the optimal offline algorithm with
the same capacity. The approximation factor, 2 − log(f), is
intuitive: with less capacity in each level (lower values of
levels’ fractional occupancy), we need to put items further
down.

Lemma 4. SeedTree is MRU(2− log(f)) in expectation.

Proof. For any given item v and time t, we show that
E[levelt(v)] ≤ ⌊log ⌈ rankt(v)

c ⌉⌋ + 2 − log(f) remains true,
considering move-to-the-root and push-down phases. As can
be seen in Line 8 of Algorithm 1, the item v might move down
if the current level of v is lower than the level of the accessed
item.

Let us denote the increase in the level from time t′ to time
t by a random variable D(t′, t). We express this increase in
terms of an indicator random variable I(t′, t, ℓ) which denotes
whether item v went down from level ℓ during [t′, t] or not.
We know that:

D(t′, t) =
∑
ℓ

I(t′, t, ℓ)

Let K denote the number of items accessed from a higher
level, and let us write K = k1 + · · ·+ k⌈n

c ⌉, where kℓ means
that kℓ such accesses happened when item v was at level ℓ.
For the level ℓ, based on the Observation 1 and Lemma 1 and
the fact that each level contains f · c · 2ℓ items, we conclude
v is being selected after kℓ− 1 accesses with probability (1−

1
f ·c·2ℓ )

k−1 · ( 1
f ·c·2ℓ ).

I(t′, t, ℓ) = min(1,

K∑
kℓ=0

(1− 1

f · c · 2ℓ
)kℓ−1 · ( 1

f · c · 2ℓ
))



= min(1, (
1

f · c · 2ℓ
) ·

K∑
kℓ=0

(1− 1

f · c · 2ℓ
)kℓ−1)

≤ min(1, (
K

f · c · 2ℓ
))

Going back to our original goal of finding how many levels
an item goes down during a time period [t′, t], we have:

E[D(t′, t)] ≤
∑
ℓ

E[min(1, (
K

f · c · 2ℓ
))]

= log(
E[K]

f · c
) + 1 = log(E[K])− log(c)− log(f) + 1

The last equality comes from the fact that for ℓ =
log(E[K]

f ·c ), we have K
f ·c·2ℓ ≤ 1, and for all larger values of

ℓ, the value will decrease exponentially with factors of two.
From Lemma 3 we know that the expected value of K is

less than equal to 2 ·rankt(v); therefore, the expected increase
is:

E[D(t′, t)] ≤ log(2 · rankt(v))− log(c)− log(f) + 1

= log(rankt(v))− log(c) + 2− log(f)

The following lemma shows the relation between the total
cost of the online SeedTree and fractional occupancy f . The
relation is natural: as f becomes smaller, the chance of finding
a non-full node becomes larger, and thus fewer attempts are
needed to find a non-full node.

Lemma 5. The expected cost of SeedTree is less than equal
to 2 · (⌈ 1

(1−f)⌉+ 1) times the access cost.

Proof. Let us consider the accessed item v at level ℓ. In the
first part of the algorithm, the move-to-the-root phase costs
the same as the access, which is equal to traversing ℓ edges.
As the probability of a node being non-full is 1− f based on
Observation 2, and as the choice of nodes is uniform based
on Observation 1, only ⌈ 1

1−f ⌉ iterations are needed during the
push-down phase for finding a non-full node, each at cost 2 ·ℓ.
Hence, given the linearity of expectation, we have:

E[CALG] = E[CAccess
ALG + CMove-to-the-root

ALG + CPush-down
ALG ]

≤ 2 · (1 + ⌈ 1

1− f
⌉) · ℓ = 2 · (1 + ⌈ 1

1− f
⌉) · CAccess

ALG

We now describe why working set optimality is enough for
dynamic optimality, given that reconfigurations do not cost
much (which is proved in Lemma 5). Hence, any other form
of optimality, such as key independent optimality or finger
optimality is guaranteed automatically [11].

Lemma 6. For any given c, an MRU(0) algorithm is (1+e)
access competitive.

Proof. The proof relies on the potential function argument. We
describe a potential function at time t by ϕt, and show that
the change in the potential from time t to t+ 1 is ∆ϕt→t+1.

Our potential function at time t, counts the number of
items that are misplaced in the tree of the optimal offline
algorithm OPT with regard to their rank. (As the definition
of MRU(0) indicates, there exists no inversion in such a tree,
that is why we only focus on the number of inversions in
OPT .) Concretely, we say a pair (v, u) is an inversion if
rankt(v) < rankt(u) but levelt(v) > levelt(u). We denote
the number of items that have an inversion with item v at time
t by invt(v), and define Bt(v) = 1+ invt(v)

c·2levelt(v) . Furthermore,
define Bt =

∏n
v=1 Bt(v). We define the potential function at

time t as ϕt = logBt. We assume that the online SeedTree
rearranges its required items in the tree before the optimal
algorithm’s rearrangements. Let us first describe the change
in potential due to rearrangement in the online SeedTree after
accessing item σt = v. This change has the following effects:

1) Rank of the accessed item, v, has been set to 1.
2) Rank of other items in the tree might have been increased

by at most 1.
Since the relative rank of items other than v does not change

because of the second effect, it does not affect the number
of inversions and hence the potential function. Therefore, we
focus on the first effect. Since OPT has not changed its
configuration, for all items u that are being stored in a lower
level than v in the OPT , a single inversion is created, therefore
we have Bt+1(u) = Bt(u) +

1
c·2levelc(u) . For the accessed

item v, as its rank has changed to one, all of its inversions
get deleted. The number of inversions for other items, except
v, remains the same. Let us denote the number of items
with lower level than v at time t by Lt(v) and partition the∏n

i=1 Bt+1(i) into three parts as we discussed (v, items stored
in a lower level than v, and other items denoted by set Ot(v)):

n∏
i=1

Bt+1(i) = Bt+1(v) ·
∏

i∈Lt(v)

Bt+1(i) ·
∏

i∈Ot(v)

Bt+1(i)

By rewriting Bt+1(i) in terms of Bt(i), we get:
n∏

i=1

Bt+1(i) = 1 ·
∏

i∈Lt(v)

(Bt(i) +
1

c · 2levelt(i)
) ·

∏
i∈Ot(v)

Bt(i)

Now let us look at potential due the first effect from time
t to t+ 1 by ∆ϕ1

t→t+1, and describe it in more detail:

∆ϕ1
t→t+1 = logBt+1 − logBt = log

Bt+1

Bt

= log

n∏
i=1

Bt+1(i)

n∏
i=1

Bt(i)
= log(

1

Bt(v)
·

∏
Lt(v)

(Bt(i) +
1

c·2levelt(i) )∏
Lt(v)

Bt(i)
)

≤ log(
1

Bt(v)
· e|Lt(v)|)



in which the last inequality comes from the fact that |Lt(v)| =
c · 2levelt(i) and also the inequality that:

|Lt(v)|∏
i=1

(Bt(i) +
1

|Lt(v)|
) ≤

|Lt(v)|∏
i=1

(Bt(i) +
Bt(i)

|Lt(v)|
)

= (1 +
1

|Lt(v)|
)|Lt(v)| ·

|Lt(v)|∏
i=1

Bt(i) ≤ e|Lt(v)| ·
|Lt(v)|∏
i=1

Bt(i)

Now let us focus on Bt(v), and first assume that
⌊log ⌈ rankt(v)

c ⌉⌋ > levelt(v). We want to find the maximum
number of items that might cause inversion with the accessed
item v.

Among all c · 2⌊log ⌈ rankt(v)
c ⌉⌋ − 1 items that v might have

higher rank them, at most c · 2levelt(v) − 1 have lower level in
the OPT tree. Hence we have:

Bt(v) =
(c · 2⌊log ⌈ rankt(v)

c ⌉⌋ − 1)− (c · 2levelt(v) − 1)

c · 2levelt(v)

≥ (2⌊log ⌈ rankt(v)
c ⌉⌋ − 1)

2levelt(v)
− 1

≥ 2⌊log ⌈ rankt(v)
c ⌉⌋

2levelt(v)+1
= 2⌊log ⌈ rankt(v)

c ⌉⌋−levelt(v)−1

hence the change in potential due to the first effect is:

∆ϕ1
t→t+1 ≤ log(

1

2⌊log ⌈ rankt(v)
c ⌉⌋−levelt(v)−1

· elevelt(v))

= log(2(1+log e)·levelt(v)−⌊log ⌈ rankt(v)
c ⌉⌋)

= (1 + log e) · levelt(v)− ⌊log ⌈ rankt(v)
c

⌉⌋

For the case ⌊log ⌈ rankt(v)
c ⌉⌋ < levelt(v), we use the fact that

Bt
v > 1, from the first inequality below:

∆ϕt→t+1 = log(
1

Bt
v

· elevelt(v))

≤ log(2log e·levelt(v)) = log e · levelt(v)

= (1 + log e) · levelt(v)− ⌊log ⌈ rankt(v)
c

⌉⌋

Hence, in both cases of ⌊log ⌈ rankt(v)
c ⌉⌋ being larger or smaller

than levelt(v), we have ∆ϕt→t+1 ≤ (1 + log e) · levelt(v) −
⌊log ⌈ rankt(v)

c ⌉⌋.
We then show changes in the potential because of OPT ’s

reconfiguration. Details of the computations are omitted due
to space constraints, but they are similar to the changes in
potential due to rearrangements in the ON ’s algorithm, and
the result is that each OPT ’s movement costs less than log e.

Summing up changes in the potential after ON ’s and
OPT ’s reconfiguration, assuming OPT has done wt move-
ments at time t, we end up with:

∆ϕt→t+1 = (1+log e)·levelt(v)−⌊log ⌈ rankt(v)
c

⌉⌋+w·log e

And hence the cost of the online algorithm MRU(0) at time
t is at most:

Ct
MRU(0) = Ct

Amortized +∆ϕt

= ⌊log ⌈ rankt(v)
c

⌉⌋+ (1 + log e) · levelt(v)

−⌊log ⌈ rankt(v)
c

⌉⌋+wt · log e ≤ (1+ log e) · (levelt(v)+wt)

And then summing up the cost of the MRU(0) and OPT for
the whole request sequence, we will get:

CON =
∑
t

Ct
ON ≤

∑
t

(1 + log e) · (levelt(v) + wt)

= (1 + log e) · COPT

In which the last equality comes from the fact that OPT also
needs to access the item, and as we assumed an additional wt

reconfigurations.

As the first application of Lemma 6 we prove a lower bound
on the cost of any online algorithm that only depends on the
size of the working set of accessed items in the sequence.

Theorem 2. Any online algorithm maintaining a self-adjusting
complete binary tree with capacity c > 1 on a request
sequence σ = σ1, . . . σm, requires an access cost of at least∑m

i=1⌊log ⌈ rankt(σi)

c ⌉⌋
(1+e) .

Proof. This proof is an extension and improvement of the
proof from [10] for any values of c > 2. A result of Lemma 6
is that even an optimal algorithm cannot be better than 1

(1+e)

the MRU(0), otherwise contradicting Lemma 6. As the cost
of each access to the item σi is ⌊log ⌈ rankt(σi)

c ⌉⌋ in MRU(0),
we can conclude the total cost of any algorithm should be

larger than
∑m

i=1⌊log ⌈ rankt(σi)

c ⌉⌋
(1+e) .

Lemma 7. Any MRU(β) tree is β ·(1+e)-access competitive.

Proof. Lemma 6 shows that an MRU(0) is (1 + e)-access
competitive. Any item which was in level k in MRU(0), is
in level k+ β in MRU(β). As an MRU(β) algorithm keeps
items with rankc(0) at level(0), and because for any k ≥ 1,
we have k+β ≤ βk, we obtain that MRU(β) is (β) · (1+e)-
access competitive.

We conclude this section by proving our main theorem,
dynamic optimality of online SeedTree.

proof of Theorem 1. Combining Lemma 4, Lemma 5 and
Lemma 7 yields that the upper bound for competitiveness is
(1+e)·(2·(1+⌈ 1

1−f ⌉))·(2−log(f)). The fractional occupancy
f = 1/2 in the above formula is the optimal value for f , which
gives us the 43-competitive ratio.

We need to point out that the above calculation is just an
upper bound on the competitive ratio. As we will discuss in
§V, the best results are usually achieved with a slightly higher
value of f , which we hypothesize might be because of an
overestimation of items’ depth in our theoretical analysis.



IV. APPLICATION IN RECONFIGURABLE DATACENTERS

SeedTree provides a fundamental self-adjusting structure
which is useful in different settings. For example, it may
be used to adapt the placement of containers in virtualized
settings, in order to reduce communication costs. However,
SeedTree can also be applied in reconfigurable networks in
which links can be adapted. In the following, we describe
how to use SeedTree in such a use case in more detail. In
particular, we consider reconfigurable datacenters in which the
connectivity between racks, or more specifically Top-of-the-
Rack (ToR) switches, can be adjusted dynamically, e.g., based
on optical circuit switches [6]. An optical switch provides a
matching between racks, and accordingly, the model is known
as a matching model in the literature [15]. In the following,
we will show how a SeedTree with capacity c and fractional
occupancy of f = 1

c can be seen in terms of 2+ c matchings,
and how reconfigurations can be transformed to the matching
model‡. We group these matchings into two sets:

• Topological matchings: consists of 2 static matchings,
embedding the underlying binary tree of SeedTree. The
first matching represents edges between a node and its left
child (with the ID twice the ID of the node), and similarly
the second matching for the right children (with the ID
twice plus one of the ID of their parents). An example is
depicted with solid edges in Figure 3.

• Membership matchings: has c dynamic matchings, con-
necting nodes to items inside them. If a node has more
than one item, the corresponding order of items to match-
ings is arbitrary. An example is shown with dotted edges
in Figure 3.

Having the matchings in place, let us briefly discuss how
search and reconfiguration operations are implemented. A
search for an item starts at the node with ID 001, the root
node. We then check membership matchings of this node. If
they map to the item, we have found the node which contains
the item, and our search was successful. Otherwise, we follow
the edge determined by the hash of the item, going to the
new possible node hosting the item. We repeat the process of
checking membership matchings and going along topological
matchings until we find the item. The item will be found, as
it is stored in one of the nodes in the path determined by its
hash value. Each step of moving an item can be implemented
in the matching mode with only one edge removal and one
edge addition in membership matchings.

V. EXPERIMENTAL EVALUATION

We complement our analytical results by evaluating
SeedTree on multiple datasets. Concretely, we are interested
in answering the following questions:
Q1 How does the access cost of our algorithm compare

to the statically-optimal algorithm (optimized based on
frequencies) and a demand-oblivious algorithm?

‡The matching model considers perfect matchings only, however, in
practice imperfect matchings can be enforced by ignore rules in switches.

Fig. 3: A transformation from the example SeedTree shown in
Figure 1, which has capacity c = 2 and fractional occupancy
of f = 1

2 . The disco balls on top represent the reconfigurable
switches, and below are datacenter racks. Solid edges show
structural matchings, and dotted edges represent membership
matchings.

Q2 How does additional capacity improve the performance
of the online SeedTree, given fixed fractional occupancy
of each level?

Q3 What is the best initial fractional occupancy for the online
SeedTree, given a fixed capacity?

Answers to these questions would help developers tune pa-
rameters of the SeedTree based on their requirements and
needs. Before going through results, we describe the setup
that we used: Our code is written in Python 3.6 and we
used seaborn 0.11 [16] and Matplotlib 3.5 [17] libraries for
visualization. Our programs were executed on a machine with
2x Intel Xeons E5-2697V3 SR1XF with 2.6 GHz, 14 cores
each, and a total of 128 GB DDR4 RAM.

A. Input

• Real-world dataset: Our real-world dataset is communi-
cations between servers inside three different Facebook
clusters, obtained from [1]. We post-processed this dataset
for single-source communications. Among all possible
sources, we chose the most frequent source.

• Synthetic dataset: We use the Markovian model dis-
cussed in [1], [18] for generating sequences based on a
temporal locality parameter which ranges from 0 (uni-
form distribution, no locality) to 0.9 (high temporal
locality). Our synthetic input consists of 65, 535 items
and 1 million requests. For generating such a dataset, we
start from a random sample of items. We post-process
this sequence, overwriting each request with the previous
request with the probability determined by our temporal
locality parameter. After that, we execute the second post-
processing to ensure that exactly 65, 535 items are in the
final trace.

B. Algorithm setup

We use SHA-512 [19] from the hashlib-library as the hash
function in our implementation, approximating the uniform
distribution for generating addresses of items. In order to store
items in a node we used a linked list, and when we move an
item to a node that is already full with other items, items
are stored in a temporary buffer. We assume starting from a
pre-filled tree with items, a tree which respects the fractional
occupancy parameter.



(a) (b) (c)

Fig. 4: Improvements in the performance of SeedTree by fine-tuning parameters. Figures are generated using the synthetic
dataset with various locality values. (4a) Comparing the access cost of the SeedTree with fractional occupancy f = 1

2 to the
best possible static algorithm and the demand-oblivious algorithm, all given capacity c = 4. Access costs are divided by 100
thousands. (4b) The effect of increasing capacity of nodes and temporal locality of input on the total cost of the algorithm.
The fractional occupancy is set to f = 1

2 for all capacities. Total costs are divided by 1 million for this plot. (4c) Tradeoff
between the total cost and the fractional occupancy, given a range of temporal localities. The capacity of nodes is set to 12.
The number in each cell represents the cost, which are divided by 1 million.

(a) (b)

Fig. 5: Improvements in the normalized access cost of the
algorithm by changing SeedTree parameters. These results
are obtained based on communications of the most frequent
source from three clusters of the real-world dataset. Costs are
normalized by the cost of the demand-oblivious algorithm. (5a)
Changes in the normalized cost by varying capacity. Fractional
occupancy is set to f = 1

2 . (5a) Changes in the normalized cost
by varying fractional occupancy. Gray dots show the minimum
values. Capacity of nodes is set to 12.

In our experiments, we range the capacities (c) from 2 to 16,
and the fractional occupancies (f ) from 0.16 to 0.83. Due to
the random nature of our algorithms and input generations, we
repeat each experiment up to 100 times to ensure consistency
in our results.

C. Results

The performance of SeedTree improves significantly with
the increased temporal locality, as can be seen in Figure 4.
Furthermore, we have the following empirical answers to
questions proposed at the beginning of this section:
A1: The SeedTree improves the access cost significantly, with

increased temporal locality, as shown in Figures 4a,

which compares the access cost of SeedTree to static and
demand-oblivious algorithms.

A2: As the Figures 4b and 5a show, increasing capacity
reduces the cost of the algorithm. However, as we can
see, this increase slows down beyond capacity to 8, and
hence this value can be considered as the best option for
practical purposes.

A3: As discussed at the end of the §III and can be seen
in Figures 4c and 5b, the lowest cost can be achieved
with fractions higher or lower than 1

2 , but f = 1
2 is near

optimal in most scenarios.

VI. ADDITIONAL RELATED WORK

Self-adjusting lists and trees have already been studied
intensively in the context of data structures. The pioneering
work is by Sleator and Tarjan [20], who initiated the study of
the dynamic list update problems and who also introduced the
move-to-front algorithm, inspiring many deterministic [21],
[22] and randomized [23]–[26] approaches for datastructures,
as well as other variations of the problem [27].

Self-adjusting binary search trees also aim to keep recently
used elements close to the root, similarly to our approach
in this paper (a summary of results is in Table I). However,
adjustments in binary search trees are based on rotations rather
than the movement of items between different nodes. One
of the well-known self-adjusting binary search trees is the
splay tree [9], although it is still unknown whether this tree is
dynamically optimal; the problem is still open also for recent
variations such as Zipper Tree [31], Multi Splay Tree [32]
and Chain Splay [33] which improve the O(log n) competitive
ratio of the splay tree to O(log log n). For Tango Trees [29],
a matching Ω(log log n) lower bound is known. We also
know that if we allow for free rotations after access, dynamic



Data Structure Operation Ratio Search
Splay Tree [9] Rotation O(logn) Yes

Greedy Future [28] Rotation O(logn) Yes
Tango Tree [29] Rotation θ(log logn) Yes

Adaptive Huffman [30] Subtree swap θ(1) No
Push-down Tree [10] Item swap θ(1) No

SeedTree Item movement θ(1) Yes

TABLE I: Comparison of properties of self-adjusting tree data
structures. The best known competitive ratio (to this date)
is in terms of the data structure’s respective cost model and
optimal offline algorithm. We note that none of the above trees
considers additional capacity, except for our model.

optimally becomes possible [34]. We also point out that some
of these structures, in particular, multi splay tree and chain
splay, benefitted from additional memory as well, however,
there it is used differently, namely toward saving additional
attributes for each node. Another variation which was first
proposed by Lucas [28] in 1988 is called Greedy Future. This
tree first received attention as an offline binary search tree
algorithm [35], [36], but then an O(log n) amortized time
in online settings was suggested by Fox [37]. Greedy Future
has motivated researchers to take a geometric view of online
binary search trees [36], [38]. We note that in contrast to binary
search trees, our local tree does not require an ordering of the
items in the left and right subtrees of a node.

Self-adjusting trees have also been explored in the context
of coding, where for example adaptive Huffman coding [30],
[39]–[42] is used to minimize the depth of most frequent items.
The reconfiguration cost, however, is different: in adaptive
Huffman algorithms, two subtrees might be swapped at the
cost of one.

A few data structures have tried to achieve a better compet-
itive ratio by expanding and altering binary search trees (see
Table II for a summary): The first example, PokeTree [43],
adds extra pointers between the internal nodes of the tree and
achieves an O(log log n) competitive ratio in comparison to
an optimal binary search tree. There are also self-adjusting
data structures based on skip lists [44], [45], which have been
introduced as an alternative for balanced trees that enforce
probabilistic balancing instead. A biased version of skip lists
was considered in [46], and later on, a statically optimal
variation was given in [47] and a dynamic optimal version
in a restricted model in [48]. Another example is Iacono’s
working set structure [49] which combines a series of self-
adjusting balanced binary search trees and deques, achieving
a worst-case running time of O(log n), however, it lacks the
dynamic optimality property. We are not aware of any work
exploring augmentations to improve the competitive ratio of
these data structures.

Our work is also motivated by emerging self-adjusting
datacenter networks. Recent optical communication technolo-
gies enable datacenters to be reconfigured quickly and fre-
quently [8], [18], [50]–[58], see [59] for a recent survey. The
datacenter application mentioned in our paper is based on the
matching model proposed by [15]. Recently [60] introduced

Data Structure Structure Ratio
Iacono’s structure [49] Trees & deques O(logn)

Skip List [44] Linked lists O(logn)
PokeTree [43] Tree & dynamic links O(log logn)

SeedTree Tree θ(1)

TABLE II: Comparison with other self-adjusting data struc-
tures that support local-search. The best known competitive
ratio (to this date) is in terms of the data structure’s respective
cost model and optimal offline algorithm. We note that none
of the other data structures considers capacity in their design.

an online algorithm for constructing self-adjusting networks
based on this model, however the authors do not provide
dynamic optimality proof for their method.

It has been shown that demand-aware and self-adjusting
datacenter networks can be built from individual trees [61],
called ego-trees, which are used in many network designs [8],
[50], [62], [63], and also motivate our model. However, until
now it was an open problem how to design self-adjusting
and constant-competitive trees that support local routing and
adjustments, a desirable property in dynamic settings.

Last but not least, our work also features interesting con-
nections to peer-to-peer networks [12], [64]. It is known that
consistent hashing with previously assigned and fixed capaci-
ties allows for significantly improved load balancing [13], [14],
which has interesting applications and is used, e.g., in Vimeo’s
streaming service [65] and in Google’s cloud service [13].
Although these approaches benefit from data structures with
capacity, these approaches are not demand-aware.

VII. CONCLUSION AND FUTURE WORK

This paper presented and evaluated a self-adjusting and
local tree, SeedTree, which adapts towards the workload in
an online, constant-competitive manner. SeedTree supports a
capacity augmentation approach, while providing local rout-
ing, which can be useful for other self-adjusting structures and
applications as well. We showed a transformation of our algo-
rithm into the matching model for application in reconfigurable
datacenters, and evaluated our algorithm on synthetic and real-
world communication traces. The code used for our experi-
mental evaluation is available at github.com/inet-tub/SeedTree.

We believe that our work opens several interesting avenues
for future research. In particular, while we so far focused on
randomized approaches, it would be interesting to explore de-
terministic variants of SeedTree. Furthermore, while trees are
a fundamental building block toward more complex networks
(as they, e.g., arise in datacenters today), it remains to design
and evaluate networks based on SeedTree.
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