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Consensus is a most fundamental task in distributed computing. This paper studies the consensus problem for a set of processes

connected by a dynamic directed network, in which computation and communication is lock-step synchronous but controlled by an

oblivious message adversary. In this basic model, determining consensus solvability and designing consensus algorithms in the case

where it is possible, has been shown to be surprisingly difficult. We present an explicit decision procedure to determine if consensus is

possible under a given adversary. This in turn enables us, for the first time, to study the time complexity of consensus in this model. In

particular, we derive time complexity upper bounds for consensus solvability both for a centralized decision procedure as well as for

solving distributed consensus. We complement these results with time complexity lower bounds. Intriguingly, we find that reaching

consensus under an oblivious message adversary can take exponentially longer than broadcasting the input value of some process to

all other processes.
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1 INTRODUCTION

Consensus, a task in which multiple processes need to agree on some value, based on local inputs, is a fundamental

problem in distributed computing. At the heart of this problem lies the question of whether and how it is possible for

the processes to exchange enough information with each other in order to reach agreement, e.g., on a numerical value

or on performing a joint action. While consensus has been studied intensively for several decades already, in many

models of distributed computing, it is still unknown whether and how quickly consensus can be achieved.

This paper studies deterministic consensus in dynamic directed networks. The study of such networks is of both

practical and theoretical interest. It is of practical relevance as the communication topology of many large-scale

distributed systems is dynamic (e.g., due to mobility, interference, or failures) and its links often asymmetric (e.g., in

optical or in wireless networks) [25]. It is also of fundamental theoretical interest, as solving consensus in dynamic

directed networks is considered significantly more difficult [30, 31] than solving consensus in dynamic networks with

bidirectional links [24].

We consider a worst-case perspective and assume that the information flow between the processes is controlled by an

adversary. In particular, we study a lock-step synchronous model, where a message adversary [2] may drop an arbitrary

set of messages sent by some processes in each round. This results in a sequence of directed communication graphs,

whose edges tell which process can successfully send a message to which other process in a given round. We specifically
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consider the fundamental oblivious message adversary model introduced by Coulouma, Godard and Peters [12]. In this

model, the adversary is represented by a set D of allowed communication graphs, from which the adversary can pick

one arbitrarily in each round.

The oblivious message adversary model is appealing because it is conceptually simple and still provides a highly

dynamic network model: The set of allowed graphs can be arbitrary, and the nodes that can communicate with one

another can vary greatly from one round to the next. It is hence also well-suited for settings where significant transient

message loss occurs, such as in wireless networks subject to interference. Furthermore, this model includes as a special

case the classic link failure model by Santoro and Widmayer [28], where up to 𝑓 links may fail in each round: the model

is equivalent to a set of allowed graphs which contains all communication graphs where ≤ 𝑓 edges are missing.

Interestingly, determining consensus solvability for a given set of graphs D and, in particular, designing a consensus

algorithm which succeeds whenever this is possible, is difficult [12]. For example, sometimes a “weaker adversary”, i.e.,

an adversary that allows for more communication overall (e.g., supporting a larger set D and failing less links), may

render consensus impossible, while it is possible for a smaller set D.
In this paper, we are primarily interested in the time complexity of consensus under oblivious message adversaries.

Our work hence complements previous work, which either primarily focuses on the feasibility of consensus [12] or the

simpler broadcast problem [16, 35]: how long it takes until the input value of some process has reached every other

process.

1.1 Our Contributions

We consider the fundamental problem of distributed consensus in dynamic directed networks. In particular, we chart a

landscape of the time complexity of consensus in the presence of oblivious message adversaries.

Our main technical contribution is an explicit decision procedure for deciding the solvability of deterministic

consensus and its analysis. This allows us, for the first time, to study the time complexity of distributed consensus

under oblivious message adversaries. In particular, we present time complexity upper bounds for consensus solvability

both for a centralized decision procedure as well as for solving distributed consensus. We further complement these

upper bounds with time complexity lower bounds.

Our results also shed an interesting new light on the relationship between distributed consensus and broadcast: as

the input value of some process is known to reach all other processes in almost linear time under any oblivious message

adversary [16], one might be tempted to expect that consensus solvability can also be decided fast. Our results show

that, quite on the contrary, reaching consensus can take exponential time.

1.2 Related Work

Consensus is a fundamental task in distributed computing, and the question if and when consensus is possible has

fascinated researchers at least since the influential impossibility result by Fischer, Lynch, and Paterson [14] and its

generalizations [8]. Consensus problems come in different flavors and arise in many settings, including shared memory

architectures, message-passing systems, and blockchains, among others [1, 9, 22, 27, 32].

Research on deterministic consensus in synchronous message-passing systems subject to link failures dates back to

the seminal paper by Santoro and Widmayer [28], who showed that consensus is impossible if up to 𝑛 − 1 messages

may be lost each round. This result has later been generalized along many dimensions [7, 10–12, 15, 29, 30]. For

example, in [30], Schmid et al. showed that consensus can even be solved when a quadratic number of messages is lost

per round, provided these losses do not isolate the processes. Several generalized models have been proposed in the
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literature [11, 17, 19], like the heard-of model by Charron-Bost and Schiper [11], and also different agreement problems

like approximate and asymptotic consensus have been studied in these models [10, 15]. In many of these and similar

works on consensus [5, 6, 9, 13, 26, 31, 34], a model is considered in which, in each round, a digraph is picked from a set

of possible communication graphs. Afek and Gafni coined the term message adversary for this abstraction [2], and used

it for relating problems solvable in wait-free read-write shared memory systems to those solvable in message-passing

systems. For a detailed overview of the field, we refer to the recent survey by Winkler and Schmid [32].

An interesting alternative model for dynamic networks assumes a 𝑇 -interval connectivity guarantee, that is, a

common subgraph in the communication graphs of every 𝑇 consecutive rounds [23, 24]. In contrast to our directional

model, solving consensus is relatively simple here, since the 𝑇 -interval connectivity model relies on bidirectional links

and always connected communication graphs. For example, 1-interval-connectivity, the weakest form of 𝑇 -interval

connectivity, implies that all nodes are able to reach all the other nodes in the system.

Another related model arises in the context of wait-free computation in shared memory systems with immediate

atomic snapshots. Roughly speaking, these systems can be described using one specific oblivious message adversary,

containing all transitively closed tournaments. Wait-free computation in this context is often studied using topological

tools [3, 4, 18, 20, 21]. This line of work did not provide any time complexity bounds for consensus in our model,

however.

Closely related to our work is the paper by Coulouma, Godard, and Peters [12], who substantially refined the

results of [29]. The authors consider oblivious message adversaries and identify an equivalence relation on the sets of

communication graphs, which captures the essence of consensus impossibility via non-broadcastability of one of the

equivalence classes (“beta classes”) of this relation. The paper also presents a distributed consensus algorithm that,

essentially, computes the beta classes. However, in contrast to our paper, the main focus of this work is on feasibility of

consensus.

To the best of our knowledge, we are the first to provide an efficient (centralized) decision procedure and a distributed

consensus algorithm with worst-case time complexity guarantees under oblivious message adversaries.

1.3 Organization

The remainder of this paper is organized as follows. We introduce our formal model and terminology in Section 2.

The description and analysis of our decision procedure and our consensus algorithm are presented in Section 3 and

Section 4, respectively, and our lower bound results are presented in Section 5. We conclude our contribution and discuss

directions for future work in Section 7. Due to space constraints, most proofs and additional findings are deferred to the

appendix.

2 MODEL AND PRELIMINARIES

We assume a set Π = {𝑝1, . . . , 𝑝𝑛} of 𝑛 processes, which execute a deterministic distributed protocol to reach consensus.

Processes operate in lock-step synchronous rounds, where each round consists of a phase of message exchanges among

the processes, followed by some local computation, whose execution time is assumed to be negligible. We consider a

full information protocol where, in each round, every process broadcasts its complete local history (its view obtained at

the end of the previous round, or the initial state), and computes a deterministic decision function Δ based on its current

view, which also involves all views it received from other processes in this round.

Each phase of message exchange is restricted by a (possibly different) directed graph on Π, called a communication

graph, which is controlled by a message adversary. A message from 𝑝 to 𝑞 may be delivered in round 𝑟 only if the
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communication graph of round 𝑟 contains the edge (𝑝, 𝑞). Since every process obviously knows its own current view, we

just assume that the communication graph always contains all the self-loops. We use In𝐺 (𝑣) denote the in-neighborhood
of process 𝑣 in a graph 𝐺 . Messages are unacknowledged and rounds are communication-closed, i.e., messages that are

sent in round 𝑟 arrive in round 𝑟 or not at all.

A communication pattern is a sequence of such communication graphs, which (along with the initial views of all

processes and the decision function Δ) will uniquely define a run of the system. In the oblivious message adversary

model, there is a set D of allowed communication graphs, and the admissible communication patterns are all sequences

of graphs from D. For brevity, we identify our message adversary with its set of allowed communication graphs.

For a communication graph 𝐺 , let𝐺𝑟 = (𝐺)𝑟
𝑖=1

denote the communication pattern that consists of 𝑟 repetitions of𝐺 .

For a set of communication graphs G, let G𝑟 = {(𝐺𝑖 )𝑟𝑖=1
: 𝐺𝑖 ∈ G} be the set of communication patterns of length 𝑟 that

consist only of graphs from G. Given a set of allowed graphs D, the oblivious message adversary generated by D may

thus be written as D𝜔
(𝜔 denotes infinitely many repetitions of elements of D).

Let 𝜎 = (𝐺𝑖 )𝑟𝑖=1
be a communication pattern, where its length 𝑟 ≥ 1 can be any integer or infinite (denoted 𝜔), and

let Σ be a set of communication patterns. We use 𝜎 |𝑟 ′ = (𝐺𝑖 )𝑟
′

𝑖=1
to denote the 𝑟 ′-round prefix of 𝜎 , which is only defined

if the length of 𝜎 is at least 𝑟 ′, and Σ|𝑟 ′ = {𝜎 |𝑟 ′ : 𝜎 ∈ Σ} to denote the set of all 𝑟 ′-round prefixes of Σ; by convention,

𝜎 |0 = Y, where Y is the empty word. We use 𝜎 (𝑟 ′) = 𝐺𝑟 ′ to denote the 𝑟
′th

graph of 𝜎 and Σ(𝑟 ′) = {𝜎 (𝑟 ′) : 𝜎 ∈ Σ} for
the set of communication patterns Σ. If 𝜎 has a finite length 𝑟 and 𝐻 is an arbitrary communication graph, we write

𝜎 ′ = 𝜎 ◦𝐻 to denote 𝜎 extended by 𝐻 , i.e., the communication pattern of length 𝑟 + 1 with 𝜎 ′(𝑖) = 𝜎 (𝑖) for all 𝑖 ≤ 𝑟 and

𝜎 ′(𝑟 + 1) = 𝐻 .

A root component of a graph is a strongly connected component that has no incoming edge from a node outside of

the component. We call a graph𝐺 rooted if it has a single root component and write Root(𝐺) for the node set of the root
component of 𝐺 . Note that if a graph 𝐺 is rooted then a node (in our context: a process) 𝑝 ∈ 𝑉 (𝐺) has a path to every

other node (process) in𝐺 if and only if 𝑝 ∈ Root(𝐺). In Claim 3 below, we show that consensus is trivially impossible if

the set of allowed graphs contains a graph that is not rooted, and for this reason we consider adversaries whose set D
consists of rooted graphs only. A set of communication graphs S is root-compatible if all their root components contain

a common node, i.e.,

⋂
𝐺 ∈S Root(𝐺) ≠ ∅. We will show that root-compatibility is a central concept when it comes to

consensus solvability.

In our full information protocol, the view of process 𝑝 in 𝜎 at time (= end of round) 𝑟 ≥ 1 comprises the view of

all the processes that 𝑝 had in its in-neighborhood in the round 𝑟 communication graph 𝜎 (𝑟 ), along with the round

number 𝑟 . The initial view of process 𝑝 consists of its input value 𝑥𝑝 (see the specification of the consensus problem

below) and the round number 0. Formally, views are recursively defined as view𝜎 (𝑝, 0) = {(𝑝, 0, 𝑥𝑝 )} and, for 𝑟 > 0,

view𝜎 (𝑝, 𝑟 ) = (𝑝, 𝑟,𝑉𝜎 (𝑝, 𝑟 − 1)), where 𝑉𝜎 (𝑝, 𝑟 − 1) = {view𝜎 (𝑞, 𝑟 − 1) : (𝑞, 𝑝) ∈ 𝜎 (𝑟 )}.
For notational simplicity, we will subsequently use the tuple (𝑝, 𝑟 ), called a process-time node, to refer to the view

of process 𝑝 at time 𝑟 . We thus use (𝑝, 𝑟 ′) {𝜎 (𝑞, 𝑟 ) to denote that 𝑝 at time 𝑟 ′ < 𝑟 has influenced 𝑞 at time 𝑟 ,

which can be expressed formally by the existence of a sequence of processes 𝑝 = 𝑝1, . . . , 𝑝𝑟−𝑟 ′+1 = 𝑞 satisfying

view𝜎 (𝑝𝑖 , 𝑟 ′ + 𝑖 − 1) ∈ 𝑉𝜎 (𝑝𝑖+1, 𝑟 ′ + 𝑖 − 1) for 1 ≤ 𝑖 ≤ 𝑟 − 𝑟 ′. We say that 𝑝 is a broadcaster in 𝜎 (or equivalently, that a

communication pattern 𝜎 is broadcastable by 𝑝), if (𝑝, 0) {𝜎 (𝑞, 𝑟 ) for some time 𝑟 , for all 𝑞 ∈ Π.
Two communication patterns 𝜎 and 𝜎 ′ of the same length are indistinguishable by a process 𝑝 , denoted 𝜎 ∼𝑝 𝜎 ′,

if this process has the same view in 𝜎 and in 𝜎 ′, eventually or in each round 𝑟 in case of infinite patterns. Formally,

𝜎 ∼𝑝 𝜎 ′ ⇔ view𝜎 (𝑝, 𝑟 ) = view𝜎′ (𝑝, 𝑟 ) if 𝜎 and 𝜎 ′ are 𝑟 -round patterns, and 𝜎 ∼𝑝 𝜎 ′ ⇔ view𝜎 (𝑝, 𝑟 ) = view𝜎′ (𝑝, 𝑟 )
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for all 𝑟 if 𝜎 and 𝜎 ′ are infinite. We write 𝜎 ∼ 𝜎 ′ if 𝜎 ∼𝑝 𝜎 ′ for some 𝑝 . We also use 𝜎 ≁𝑝 𝜎 ′ ⇔ ¬(𝜎 ∼𝑝 𝜎 ′), and
𝜎 ≁ 𝜎 ′⇔ (∀𝑝 ∈ Π : 𝜎 ≁𝑝 𝜎 ′).

Given a set Σ of communication patterns of the same length, we define its indistinguishability graph 𝐼 (Σ) as follows.
The nodes of 𝐼 (Σ) are the communication patterns in Σ, and the two communication patterns 𝜎, 𝜎 ′ ∈ Σ are connected

by an edge if 𝜎 ∼ 𝜎 ′, i.e., if they are indistinguishable for some process. We label each edge with the set of processes

defining it, that is, we define an edge labeling function ℓ : 𝐸 (𝐼 (Σ)) → 2
Π
by ℓ ((𝜎, 𝜎 ′)) = {𝑝 ∈ Π : 𝜎 ∼𝑝 𝜎 ′}.

Our first simple, yet important insight is that root components can preserve indistinguishability. Consider two

communication patterns 𝜎, 𝜎 ′ that are indistinguishable for a set of processes ℓ ((𝜎, 𝜎 ′)), and assume that there is an

allowed graph 𝐺 ∈ D such that Root(𝐺) ⊆ ℓ ((𝜎, 𝜎 ′)). Then, the communication patterns 𝜎 ◦𝐺 and 𝜎 ′ ◦𝐺 are also

indistinguishable for the processes in Root(𝐺): in 𝐺 , these processes only receive messages from other members of

Root(𝐺), and so these extended communication patterns are still indistinguishable for them.

Claim 1. Let D be an oblivious message adversary, 𝑟 be a round, and 𝑒 = (𝜎, 𝜎 ′) be an edge in 𝐼 (D𝑟 ). For 𝑟 > 1, the edge

(𝜎 |𝑟−1, 𝜎
′ |𝑟−1) is in 𝐼 (D𝑟−1). Moreover, if there is a graph𝐺 ∈ D such that Root(𝐺) ⊆ ℓ (𝑒) then the edge 𝑒 ′ = (𝜎 ◦𝐺, 𝜎 ′◦𝐺)

is in 𝐼 (D𝑟+1) and its label ℓ (𝑒 ′) satisfies Root(𝐺) ⊆ ℓ (𝑒 ′) ⊆ ℓ (𝑒).

Proof. If 𝑟 > 0, for every 𝑝 ∈ ℓ (𝑒), the indistinguishability 𝜎 ∼𝑝 𝜎 ′ also implies 𝜎 |𝑟−1 ∼𝑝 𝜎 ′ |𝑟−1, so the edge

(𝜎 |𝑟−1, 𝜎
′ |𝑟−1) is indeed in 𝐼 (D𝑟−1).

To prove the second part of our claim, consider any process 𝑝 ∈ Root(𝐺). By the definition of a root component,

we have In𝐺 (𝑝) ⊆ Root(𝑝), so each process 𝑞 with (𝑞, 𝑟 ) ∈ view𝜎◦𝐺 (𝑝, 𝑟 + 1), is in Root(𝐺), and satisfies view𝜎 (𝑞, 𝑟 ) =
view𝜎′ (𝑞, 𝑟 ), because Root(𝐺) ⊆ ℓ (𝑒). This immediately implies that view𝜎◦𝐺 (𝑝, 𝑟 +1) = view𝜎′◦𝐺 (𝑝, 𝑟 +1) and thus the
edge 𝑒 ′ exists and Root(𝐺) ⊆ ℓ (𝑒 ′). The last part, ℓ (𝑒 ′) ⊆ ℓ (𝑒), follows because if view𝜎◦𝐺 (𝑞, 𝑟+1) = view𝜎′◦𝐺 (𝑞, 𝑟+1) =
(𝑞, 𝑟 + 1,𝑉𝜎 (𝑞, 𝑟 )) for some process 𝑞 then view𝜎 (𝑞, 𝑟 ) = view𝜎 (𝑞, 𝑟 ), as, by definition, view𝜎 (𝑞, 𝑟 ) ∈ 𝑉𝜎 (𝑞, 𝑟 ). □

In the consensus problem, each process 𝑝 has an input value 𝑥𝑝 ∈ 𝑉 , taken from some finite domain 𝑉 , and an

output value 𝑦𝑝 , initialized to ⊥, to which it can write irrevocably, i.e., only once. An algorithm solves consensus in our

setting if it ensures that

• eventually, every process 𝑝 decides, i.e., assigns 𝑦𝑝 ≠ ⊥ (termination),

• if 𝑦𝑝 ≠ ⊥ and 𝑦𝑞 ≠ ⊥ then 𝑦𝑝 = 𝑦𝑞 for all 𝑝, 𝑞 ∈ Π (agreement),

• if 𝑦𝑝 = 𝑣 ≠ ⊥ then there is a process 𝑞 ∈ Π such that 𝑥𝑞 = 𝑣 (validity).

Since we will consider full information protocols only, our consensus algorithm is actually a collection of decision

functions. For every 𝑝 ∈ Π, the decision function Δ𝑝 maps every possible view𝜎 (𝑝, 𝑟 ) to a decision value 𝑦𝑝 ∈ 𝑉 ∪ {⊥},
such that Δ(view𝜎 (𝑝, 𝑟 )) ≠ ⊥ implies Δ(view𝜎 (𝑝, 𝑟 ′)) = Δ(view𝜎 (𝑝, 𝑟 )) for every 𝑟 ′ ≥ 𝑟 . The configuration 𝐶𝑟

𝜎 of our

system at the end of round 𝑟 in 𝜎 , is the vector of the elements (view𝜎 (𝑝, 𝑟 ),Δ(view𝜎 (𝑝, 𝑟 ))), for all 𝑝 , and the run (also

called execution in the literature) corresponding to 𝜎 is the sequence (𝐶𝑟
𝜎 )𝑟 ≥0. In the oblivious message adversary model,

a run is uniquely determined by the input value assignment contained in the initial views and the communication

pattern since the algorithm is deterministic.

With these definitions in mind, we now state two properties of consensus under oblivious message-adversaries,

which will be of central importance in this paper. We first observe that any valid decision value must be the input value

of a broadcaster. The proof of the following claim uses the same argument as [33, Theorem 2].

Claim 2. Let D be an oblivious message adversary and let 𝜎 ∈ D𝜔 . If in some correct consensus algorithm, all processes

decide 𝑣 in a run with 𝜎 , then 𝑣 is the input value of a broadcaster in 𝜎 .
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Proof. By the termination condition, there is a round 𝑟 such that in all runs with 𝜎 all processes decide by this

round when running a given correct consensus algorithm. Suppose that there is a 𝑟 -round run Y with communication

pattern 𝜎 where all processes decide 𝑣 even though no broadcaster in 𝜎 has input value 𝑣 . We show that this leads to a

contradiction to the assumed correctness of the consensus algorithm.

Let 𝑃 = {𝑖1, . . . , 𝑖𝑘 } be the identifiers of those processes that start with input value 𝑣 in Y. By the valditiy condition,

𝑃 ≠ ∅. Let Y 𝑗 denote the run that is the same as Y, except that the processes with identifiers 𝑖1, . . . , 𝑖 𝑗 have an input value

≠ 𝑣 . We show by induction that some process decides 𝑣 in Y 𝑗 for 0 ≤ 𝑗 ≤ 𝑘 . Thus in the run Y𝑘 some process decides 𝑣 ,

even though no process has input 𝑣 in this run, a contradiction to the validity condition of consensus.

The base of the induction 𝑗 = 0 follows immediately because Y ∼ Y0 = Y.

For the step from 𝑗 to 𝑗 + 1, where 0 ≤ 𝑗 < 𝑘 , we observe that, because 𝜎 is not broadcastable for any process with

an identifier from 𝑃 , there is a process 𝑞 such that (𝑝𝑖 𝑗+1 , 0) ̸{ (𝑞, 𝑟 ). Since Y 𝑗 is identical to Y 𝑗+1 except for the input of

𝑝𝑖 𝑗+1 , we have Y 𝑗 ∼𝑞 Y 𝑗+1. As all processes decide by round 𝑟 in Y 𝑗 , and because they decide 𝑣 by hypothesis, 𝑞 and, by

agreement, all processes decide 𝑣 in Y 𝑗+1. □

Our second observation is that every communication graph in the set of allowed graphs of an oblivious message

adversary, under which consensus is solvable, must be rooted.

Claim 3. If an oblivious message adversary contains, in its set of allowed graphs D, a graph 𝐺 that is not rooted, then

consensus is impossible.

Proof. The pattern 𝜎 = 𝐺𝜔
may be played by the adversary even though it is not broadcastable by any process,

thus the claim follows from Claim 2. □

3 A DECISION PROCEDURE FOR CONSENSUS SOLVABILITY

In this section, we present a decision procedure for determining whether consensus is solvable under an oblivious

message adversary with a set D of allowed graphs. In a nutshell, our procedure revolves around the (undirected)

indistinguishability graph 𝐼 (D), constructed from the given input set D: the nodes of the indistinguishability graph

represent the graphs of D and the edges represent indistinguishability. Given 𝐼 (D), we create a sequence N1 =

𝐼 (D),N2, . . . of refinements of 𝐼 (D), and use the last graph NTD to decide if consensus is solvable under the message

adversaryD. Here, TD is the number of iterations of the decision procedure, that is, the time complexity of the algorithm.

In some sense, our decision procedure can essentially be viewed as an explicit computation of the abstract beta classes

(and their broadcastability), as introduced by Couloma et al. [12]. As an additional feature, it reveals a crucial and

previously unknown relation between the number of iterations of the decision procedure under a given oblivious

message adversary and the time complexity of distributed consensus.

More concretely, our approach, summarized in Algorithm 1, uses the fact that a graph whose root component is a

subset of ℓ (𝑒) is suitable for perpetuating the indistinguishability for at least some of the processes of ℓ (𝑒) (according
to Claim 1). The algorithms starts from the indistinguishability graph N1 = 𝐼 (D) of D, where D is viewed as a set of

1-round communication patterns: the nodes of 𝐼 (D) are the graphs of D, and two graphs𝐺,𝐺 ′ ∈ D are connected by an

edge if there is a process 𝑝 that has the same set of incoming edges in 𝐺 and in 𝐺 ′. The algorithm then computes a

sequence (N𝑖 ) of graphs, using iterative refinement. To refine from N𝑖−1 to N𝑖 , it keeps all N𝑖−1’s nodes, but only a

subset of its edges (Line 9): an edge 𝑒 = (𝑢, 𝑣) is kept (by adding it to the set 𝐸𝑖 ) if the connected component of 𝑒 in

N𝑖−1 contains a communication graph 𝐺 such that Root(𝐺) ⊆ ℓ ((𝑢, 𝑣)) (Line 8).
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This procedure continues until the set of edges does not change for two successive iterations, or until all remaining

connected components are root-compatible, i.e., all its communication graphs have a commonmember in their respective

root components. As we will see later in Theorems 1 and 2, the root-compatibility of the connected components of the

refined indistinguishability graph is precisely what is required to make consensus solvable.

For the algorithm, we assume that all graphs of D have a unique root component, as consensus is trivially impossible

otherwise (Claim 3). Note that, for two communication graphs 𝐺,𝐻 , we have ℓ ((𝐺,𝐻 )) = {𝑝 ∈ Π : 𝐺 ∼𝑝 𝐻 } = {𝑝 ∈ Π :

In𝐺 (𝑝) = In𝐻 (𝑝)}.

Input: A set of allowed graphs D

Output: The refined indistinguishability graph NTD.

Consensus is solvable if and only if all connected

components of NTD are root-compatible.

// Initialization:

1 𝑖 ← 1

2 N1 ← 𝐼 (D)

// Iterative construciton:

3 repeat
4 𝑖 ← 𝑖 + 1

5 𝐸𝑖 ← ∅
6 foreach 𝑒 ∈ 𝐸𝑖−1 do
7 Let G be the communication graphs reachable from

𝑒 in N𝑖−1

8 if ∃𝐺 ∈ G : Root(𝐺) ⊆ ℓ (𝑒) then
9 𝐸𝑖 ← 𝐸𝑖 ∪ {𝑒 }

10 N𝑖 ← ⟨D, 𝐸𝑖 ⟩
11 until N𝑖 = N𝑖−1 or all connected components of N𝑖 are

root-compatible

12 return N𝑖−1

Fig. 1. The consensus decision procedure. It iteratively constructs
the refined indistinguishability graph NTD for a set of allowed
graphs D.

The following corollary provides a concise statement

of the rule according to which the decision procedure

selects which edges to keep when refining N𝑖−1 (D) into
N𝑖 (D).

Corollary 1. Let 𝑒 = (𝐴, 𝐵) be an edge of N𝑖 (D), for
𝑖 > 1. Then in N𝑖−1 (D):

(1) the edge 𝑒 = (𝐴, 𝐵) exists, and
(2) there exists a node 𝐺𝑒 with Root(𝐺𝑒 ) ⊆ ℓ (𝑒), such

that 𝐴, 𝐵 and 𝐺𝑒 are in the same connected compo-

nent.

Proof. According to Algorithm 1, an edge 𝑒 = (𝐴, 𝐵)
can only persist inN𝑖 if it was already present inN𝑖−1 and

there was a corresponding graph 𝐺𝑒 with Root(𝐺𝑒 ) ⊆
ℓ (𝑒) connected to 𝐴 and 𝐵 in N𝑖−1. □

We observe that, in order for an edge 𝑒 of the indis-

tinguishability graph to be “protected” from being omit-

ted by the decision procedure by Line 9 of Algorithm 1,

there must exist a communication graph whose root com-

ponent is a subset of the label of 𝑒 . This motivates the

following definition.

Definition 1. Given a set of allowed graphs D, let 𝐸 be

a set of edges of 𝐼 (D) andG ⊆ D be a set of communication

graphs. We call 𝐸 protected by G if for every 𝑒 ∈ 𝐸 there is

a graph 𝐺𝑒 ∈ G such that Root(𝐺𝑒 ) ⊆ ℓ (𝑒).

The following upper bound on the number of iterations TD of the decision procedure exploits the maximum number

of different labels of the edges of 𝐼 (D).

Claim 4. The number of iterations of the decision procedure, TD, satisfies TD ≤ 2
𝑛 .

Proof. For a set of communication graphs G, let N𝑖 [G] denote the subgraph of N𝑖 induced by G. According to

Algorithm 1, there must exist a set of communication graphs G ⊆ D such that N𝑖 [G] is connected and not root-

compatible for all 𝑖 < TD, whereas all connected components of NTD are root-compatible. That is, G constitutes the
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last connected component of 𝐼 (D) that had to be broken apart by the decision procedure in order to arrive at a graph

NTD where all connected components are root-compatible.

Furthermore, for 1 < 𝑖 < TD, the set C𝑖 (G) of nodes reachable from G in N𝑖 satisfies |C𝑖 (G) | < |C𝑖−1 (G) |. This is
because, if the (𝑖 − 1)th iteration of the decision procedure does not result in the removal of a node from C𝑖−1 (G), then
a set of edges that connects C𝑖−1 (G) in N𝑖−1 is protected by the communication graphs of C𝑖−1; hence, no node will be

removed from C𝑗 (G) for any 𝑗 ≥ 𝑖 . This cannot come to pass, however, because then the decision procedure would

already have terminated after 𝑖 < TD iterations.

In addition, all edges 𝑒 of the connected component of G inN𝑖 that have the same label ℓ (𝑒) = _ are removed during

a single iteration of the decision procedure: If 𝑒 is removed from the connected component of G in N𝑖 , then there is no

communication graph in C𝑖 (G) that protects 𝑒 and so all edges with label _ are removed from the connected component

of G. We recall that every label is a nonempty subset of Π, thus there are at most 2
𝑛 − 1 different labels. The claim

follows because, as we have shown above, |C𝑖 (G) | < |C𝑖−1 (G) |; hence at least one edge is removed from the connected

component of G in N𝑖 during the 𝑖th iteration of the decision procedure. □

Before looking more closely into the ramifications of a large number of iterations TD of the decision procedure of a

given oblivious message adversary D, it is instructive to study a few “extreme” examples of such adversaries, and, in

particular, how the number of communication graphs |D| relates to TD. First, one may wonder whether the decision

procedure can be fast if the set D of allowed graphs is exponentially large. An example for such a scenario, in which

consensus is solvable, is the set of all communication graphs that consist of a single clique of a fixed size ⌊𝑛/𝑐⌋, for
a constant 𝑐 , and all the edges from each clique node to all other nodes (plus the self loops). There are exponentially

many such graphs, yet no two are indistinguishable to any of the nodes, so the decision procedure already terminates

after the first iteration because all connected components in 𝐼 (D) consist of a single communication graph. An example

where a fast decision is possible despite an exponentially sized D, where consensus is impossible, is the set of all rooted

trees for 𝑛 > 2. In this case, there is a path in 𝐼 (D) connecting every two trees 𝑇1,𝑇2. Also, every edge 𝑒 in 𝐼 (D) has a
corresponding tree 𝑇 ∈ D that protects this edge, since there is a tree 𝑇 with Root(𝑇 ) ⊆ ℓ (𝑒).

Complementing these insights, the question arises whether there are examples where TD is (almost) the same

as |D|. We will answer this question affirmatively (in Section 5), by giving an explicit example where TD is even

exponential in 𝑛. In a nutshell, we will choose a set of communication graphs D = {𝐺1, . . . ,𝐺TD}, where the root
component of each graph consists of a different set of processes of the same cardinality, i.e., for every 𝐺,𝐺 ′ ∈ D we

have | Root(𝐺) | = | Root(𝐺 ′) |, but if 𝐺 ≠ 𝐺 ′ then Root(𝐺) ≠ Root(𝐺 ′). Furthermore, we let

𝐺1 ∼𝑅3
𝐺2 ∼𝑅4

. . . ∼𝑅TD
𝐺TD−1 ∼𝑆 𝐺TD, (1)

where 𝑅𝑖 = Root(𝐺𝑖 ) and 𝑆 is a nonempty set such that no 𝐺 ∈ D satisfies Root(𝐺) ⊆ 𝑆 . Here, the decision procedure

can remove only the rightmost edge ∼𝑆 in the first iteration, only the edge ∼𝑅TD
in the second iteration, and so on,

because all the remaining edges are protected by one of the remaining graphs.

Also in this case, consensus might be solvable (as in the example in Section 5 described above), or it might be

impossible, as in the instance

𝐺 ′
1
∼𝑅′

3

𝐺 ′
2
∼𝑅′

1

𝐺 ′
3
= 𝐺1 ∼𝑅3

𝐺2 ∼𝑅4
. . . ∼𝑅TD

𝐺TD−1 ∼𝑆 𝐺TD

where we assume that𝐺 ′
1
and𝐺 ′

2
are chosen such that they are not root-compatible: in this case, the indistinguishability

𝐺 ′
1
∼𝑅′

3

𝐺 ′
2
will never break.
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In view of the above results, it might be tempting to assume that TD also determines the termination time of

distributed consensus. Interestingly, this is not the case. Complementing the result of Theorem 1 established in Section 4,

we will show in Section 6 that there are instances of oblivious message adversaries where the decision procedure

terminates after a constant number of iterations, while the consensus terminatino time is exponential in 𝑛.

4 TIME COMPLEXITY OF CONSENSUS

In this section, we study the time complexity of consensus, and also ascertain our claim from Section 3, namely,

that the decision procedure of Algorithm 1 correctly assesses oblivious message adversaries where consensus is

solvable. Thus, throughout this section, we consider an oblivious message adversary, where, after some number TD of

iterations, Algorithm 1 determined that all connected components of the refined indistinguishability graph NTD are

root-compatible.

For solving consensus, we use the fact that non-connectivity in NTD implies non-connectivity in 𝐼 (D(𝑛−1) TD+1), in
the following sense: Let C1 and C2 be two different connected components of NTD, and 𝑡 > (𝑛 − 1) TD. Then, any two

communication patterns 𝜎1 ∈ C𝑡
1
and 𝜎2 ∈ C𝑡

2
, consisting only of graphs of C1 and C2, respectively, are not connected

in the indistinguishability graph 𝐼 (D𝑡 ).
We then apply a pigeon-hole argument to show that all connected components of 𝐼 (D𝑐𝑡 ) are broadcastable, where 𝑐 is

the number of connected components ofNTD. Note that this choice guarantees that graphs from at least one connected

component are used at least 𝑡 times. From here, a consensus decision function Δ𝑝 can be easily defined by (i) for each

connected component C of 𝐼 (D𝑐𝑡 ), choosing one of its broadcasters, denoted 𝑏 (C), and (ii) if 𝑝’s view is consistent

with a graph sequence 𝜎 , and 𝜎 belongs to a connected component C of 𝐼 (D𝑐𝑡 ), then 𝑝 decides on the input 𝑥𝑏 (C) of

𝑏 (C), for which view𝜎 (𝑏 (C), 0, 𝑥𝑏 (C) ) must already be present in 𝑝’s view.

It is rather immediate that such a procedure solves consensus, given the mapping 𝑏 (C), which we will prove in

the remainder of this section: Termination follows from the existence of the mapping 𝑏 (C); validity follows because

the decided value was some process’ input value; agreement is a consequence of all pairwise indistinguishable views

lying in the same connected component C of 𝐼 (D𝑐𝑡 ). Hence two different decisions can only occur in runs that are

distinguishable for everyone (and are thus distinct runs).

A path 𝜋 = (𝜎0, . . . , 𝜎𝑠 ) in 𝐼 (D𝑟 ) is a sequence of communication patterns such that (𝜎𝑖 , 𝜎𝑖+1) ∈ 𝐸 (𝐼 (D𝑟 )) for
all 0 ≤ 𝑖 < 𝑠 . Given such a path and 𝑟 ′ ≤ 𝑟 , we write 𝜋 |𝑟 ′ to denote the path (𝜎0 |𝑟 ′, . . . , 𝜎ℓ |𝑟 ′) in 𝐼 (D𝑟 ′) of the 𝑟 ′-
round prefixes of the communication patterns in 𝜋 , which exists by Claim 1. Similarly, we denote by 𝜋 (𝑟 ′) the path
(𝜎0 (𝑟 ′), . . . , 𝜎ℓ (𝑟 ′)) in 𝐼 (D) of the 𝑟 ′th graphs of the communication patterns in 𝜋 . Both 𝜋 |𝑟 ′ and 𝜋 (𝑟 ′) are indeed paths
in the corresponding indistinguishability graphs, due to a more general claim: removing an intermediate communication

round from all communication patterns in a path cannot disconnect it, as stated below.

For a communication pattern 𝜎 of length 𝑟 , and some round 𝑟 ′ ≤ 𝑟 , let 𝜎 − 𝑟 ′ denote 𝜎 |𝑟 ′−1 ◦ 𝜎 (𝑟 ′ + 1) ◦ · · · ◦ 𝜎 (𝑟 ),
i.e., the communication pattern 𝜎 with the round 𝑟 ′ communication graph omitted. Corollary 2 shows that edges, and

hence paths, between communication patterns in 𝐼 (D𝑟 ) are preserved when omitting some round 𝑟 ′.

Corollary 2. If the edge (𝜎, 𝜎 ′) is in 𝐼 (D𝑟 ), then the edge (𝜎 − 𝑟 ′, 𝜎 ′ − 𝑟 ′) is in 𝐼 (D𝑟−1) as well.

Proof. Assume for contradiction that the edge is not preserved, i.e., 𝜎 ∼ 𝜎 ′ while 𝜎 − 𝑟 ′ ≁ 𝜎 ′ − 𝑟 ′. So, there is a
process 𝑝 such that 𝜎 ∼𝑝 𝜎 ′ (this is true for at least one process, 𝑝) while 𝜎 − 𝑟 ′ ≁𝑝 𝜎 ′ − 𝑟 ′ (this is true for all processes,
and specifically for 𝑝). This implies that there exists a round 𝑟 ′′ ≠ 𝑟 ′ and a process 𝑞 with w.l.o.g. (𝑞, 𝑟 ′′) {𝜎−𝑟 ′ (𝑝, 𝑟 ) but
(𝑞, 𝑟 ′′) ̸{𝜎′−𝑟 ′ (𝑝, 𝑟 ) or view𝜎−𝑟 ′ (𝑞, 𝑟 ′′) ≠ view𝜎′−𝑟 ′ (𝑞, 𝑟 ′′): if no such 𝑞, 𝑟 ′′ existed, we would have 𝜎 − 𝑟 ′ ∼𝑝 𝜎 ′ − 𝑟 ′.
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Since (𝑞, 𝑟 ′′) {𝜎−𝑟 ′ (𝑝, 𝑟 ), we also have (𝑞, 𝑟 ′′) {𝜎 (𝑝, 𝑟 ), as the sequence of processes causing (𝑞, 𝑟 ′′) to be in

view𝜎−𝑟 ′ (𝑝, 𝑟 ) also exists in 𝜎 and we just need to take path where the process of round 𝑟 ′ is the same as of round 𝑟 ′ − 1.

To finish, it suffices to consider two cases: if (𝑞, 𝑟 ′′) ̸{𝜎′ (𝑝, 𝑟 ), then 𝑝 distinguishes 𝜎 and 𝜎 ′ since it has view𝜎 (𝑞, 𝑟 ′′)
in its view in 𝜎 but does not have view𝜎′ (𝑞, 𝑟 ′′) in its view in 𝜎 ′; if (𝑞, 𝑟 ′′) {𝜎′ (𝑝, 𝑟 ), then 𝑝 distinguishes 𝜎 and 𝜎 ′ by

having view𝜎 (𝑞, 𝑟 ′′) ≠ view𝜎′ (𝑞, 𝑟 ′′) in its views. In both cases 𝜎 ≁𝑝 𝜎 ′, a contradiction. □

The following corollary relates the preservation of an edge in 𝐼 (D𝑟 ) to the root components of the communication

graphs that occur in the communication patterns of this edge.

Corollary 3. Let D be a set of allowed graphs and 0 < 𝑟 ′ < 𝑟 integers. Consider an edge 𝑒 = (𝜎, 𝜎 ′) ∈ 𝐼 (D𝑟 ) such
that 𝑒 ′ = (𝜎 |𝑟 ′, 𝜎 ′ |𝑟 ′) ∈ 𝐼 (D𝑟 ′) satisfies 𝜎 |𝑟 ′ ≠ 𝜎 ′ |𝑟 ′ . Then, there are at most |ℓ (𝑒 ′) | − 1 rounds 𝑟 𝑗 , 𝑟 ′ < 𝑟 𝑗 ≤ 𝑟 , satisfying

Root(𝜎 (𝑟 𝑗 )) ⊈ ℓ (𝑒 ′).

Proof. By Claim 1, we can be sure that 𝑒 ′ exists. For a contradiction, suppose that there are |ℓ (𝑒 ′) | rounds 𝑟 ′ < 𝑟1 <

· · · < 𝑟 |ℓ (𝑒′) | ≤ 𝑟 such that each 𝑟 𝑗 satisfies Root(𝜎 (𝑟 𝑗 )) ⊈ ℓ (𝑒 ′). Let

𝑈 𝑗 = {𝑝 ∈ Π : ∃𝑞 ∈ Π \ ℓ (𝑒 ′) (𝑞, 𝑟 ′) {𝜎 (𝑝, 𝑟 𝑗 )} (2)

denote the set of processes that received a message by round 𝑟 𝑗 , sent after round 𝑟
′
, from a process outside of ℓ (𝑒 ′). Let

𝑟0 = 𝑟 ′ and𝑈0 = Π \ ℓ (𝑒 ′). Note that from 𝜎 |𝑟 ′ ≠ 𝜎 ′ |𝑟 ′ it follows that ∅ ≠ ℓ (𝑒 ′) ≠ Π and thus𝑈0 ≠ ∅.
Let 𝑈 𝑗 = Π \ 𝑈 𝑗 and consider the cut (𝑈 𝑗 ,𝑈 𝑗 ) in 𝜎 (𝑟 𝑗 ), the communication graph at round 𝑟 𝑗 . Since we have

Root(𝜎 (𝑟 𝑗 )) ⊈ ℓ (𝑒 ′), there is a process 𝑝 ′ ∈ Root(𝜎 (𝑟 𝑗 )) \ ℓ (𝑒 ′). On the one hand, 𝑝 ′ ∈ Root(𝜎 (𝑟 𝑗 )) \ ℓ (𝑒 ′) immediately

implies 𝑝 ′ ∈ 𝑈 𝑗 , since (𝑝 ′, 𝑟 ′) {𝜎 (𝑝 ′, 𝑟 𝑗 ). On the other hand, 𝑝 ′ ∈ Root(𝜎 (𝑟 𝑗 )) implies that in 𝜎 (𝑟 𝑗 ) there is a path
from 𝑝 ′ to every node. Hence, if 𝑈 𝑗 ≠ ∅, then there is a node 𝑝 ′′ ∈ 𝑈 𝑗 , and a path in 𝜎 (𝑟 𝑗 ) from 𝑝 ′ to 𝑝 ′′; this path

must cross an edge 𝑒 𝑗 from𝑈 𝑗 to𝑈 𝑗 .

We now use induction on 𝑗 = 0, . . . , |ℓ (𝑒 ′) | to show that |𝑈 𝑗 | ≥ 𝑛 − |ℓ (𝑒 ′) | + 𝑗 . For the basis 𝑗 = 0, we have already

shown that |𝑈0 | = 𝑛 − |ℓ (𝑒 ′) | > 0. In the induction step, we prove that 𝑈 𝑗 grows by at least one (unless𝑈 𝑗 = Π) due to

the edge 𝑒 𝑗 = (𝑞′, 𝑞′′) from𝑈 𝑗 to𝑈 𝑗 . As, for every 𝑞 ∈ Π \ ℓ (𝑒 ′) in the definition if𝑈 𝑗 in Eq. (2), (𝑞, 𝑟 ′) {𝜎 (𝑞′, 𝑟 𝑗 ) in
conjunction with (𝑞′, 𝑟 𝑗 ) {𝜎 (𝑞′′, 𝑟 𝑗+1) implies (𝑞, 𝑟 ′) {𝜎 (𝑞′′, 𝑟 𝑗+1), we obtain𝑈 𝑗+1 ⊇ 𝑈 𝑗 ∪ {𝑞′′} as required.

It hence follows that |𝑈 |ℓ (𝑒′) | | = 𝑛, i.e., by round 𝑟 ≥ 𝑟 |ℓ (𝑒′) | , every process has received a message, sent after

round 𝑟 ′, from a process 𝑞 outside of ℓ (𝑒 ′). Consequently, at time 𝑟 , the view of every process contains the view

of a process 𝑞 that could distinguish 𝜎 |𝑟 ′ and 𝜎 ′ |𝑟 ′ , hence every process can also distinguish 𝜎 and 𝜎 ′. Formally,

∀𝑝 ∈ Π∃𝑞 ∈ Π\ℓ (𝑒) : (𝑞, 𝑟 ′) {𝜎 (𝑝, 𝑟 ) and view𝜎 (𝑞, 𝑟 ′) ≠ view𝜎′ (𝑞, 𝑟 ′), which implies that view𝜎 (𝑝, 𝑟 ) ≠ view𝜎′ (𝑝, 𝑟 ).
That is, every process that can distinguish 𝜎 |𝑟 ′ and 𝜎 ′ |𝑟 ′ can also distinguish 𝜎 and 𝜎 ′, contradicting the existence of

the edge 𝑒𝑟 = (𝜎, 𝜎 ′) in 𝐼 (D𝑟 ). □

We proceed with Lemma 1, which generalizes and formalizes chains like Eq. (1), made up of connected subgraphs

S1, . . . ,S𝑖 which are interconnected in a chain. It makes clever use of protected edges in order to delay the separation

of root-incompatible connected components as much as possible, namely, by removing the interconnects between 𝑆 𝑗

and 𝑆 𝑗+1 in N𝑖−𝑗 , i.e., from right (𝑖) to left (1).

Lemma 1. Given a message adversary D and 𝑖 connected subgraphs S1, . . . ,S𝑖 of 𝐼 (D) such that for every 1 ≤ 𝑗 < 𝑖 , the

edges of
⋃𝑗

𝑗 ′=1
S𝑗 ′ are protected by the communication graphs of

⋃𝑗+1
𝑗 ′=1
S𝑗 ′ , and S𝑗 is connected to S𝑗+1 in N𝑖−𝑗 , it holds

that S1 is a connected subgraph of N𝑖 .
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Proof. We show that all edges of S1 are in N𝑖 . In order to do so, we prove by induction on 𝑖 ′ = 1, . . . , 𝑖 , that all

edges of

⋃𝑖−𝑖′+1
𝑗 ′=1

S𝑗 ′ are in N𝑖′ .
The base 𝑖 ′ = 1 follows directly from the code of Algorithm 1: N1 = 𝐼 (D), and each graph S𝑗 ′ is a subgraph of 𝐼 (D),

thus every edge of

⋃𝑖
𝑗 ′=1
S𝑗 ′ is in N1.

For the inductive step from 𝑖 ′ to 𝑖 ′ + 1, assume that every edge of

⋃𝑖−𝑖′+1
𝑗 ′=1

S𝑗 ′ is present in N𝑖′ . By assumption, every

edge 𝑒 of
⋃𝑖−𝑖′

𝑗 ′=1
S𝑗 ′ is protected by a communication graph 𝐺 of

⋃𝑖−𝑖′+1
𝑗 ′=1

S𝑗 ′ , i.e., by Definition 1, Root(𝐺) ⊆ ℓ (𝑒). As
we also assume that S𝑗 is connected to S𝑗+1 in N𝑖−𝑗 for 1 ≤ 𝑗 < 𝑖 , we have that S𝑖−𝑖′−𝑗 ′ is connected to S𝑖−𝑖′−𝑗 ′+1
in N𝑖′+𝑗 ′ for 0 ≤ 𝑗 ′ < 𝑖 − 𝑖 ′. Since N𝑖′+𝑗 ′ is a refinement of N𝑖′ , S𝑖−𝑖′−𝑗 ′ is connected to S𝑖−𝑖′−𝑗 ′+1 also in N𝑖′ . Hence⋃𝑖−𝑖′+1

𝑗 ′=1
S𝑗 ′ is a connected subgraph ofN𝑖′ , and thus 𝑒 is connected to𝐺 inN𝑖′ . Thus, inN𝑖′ , 𝑒 is in the same connected

component as a graph 𝐺 with Root(𝐺) ⊆ ℓ (𝑒) and, by Line 8 of Algorithm 1, we have 𝑒 ∈ N𝑖′+1. □

We are now ready to prove the main technical result of this section. For 𝑟 = (𝑛−1) ·TD, we show how the connectivity

of two 𝑟 -round communication patterns in 𝐼 (D𝑟 ), consisting only of communication graphs from certain sets C1 and

C2, respectively, is related to the connectivity of C1 and C2 in the refined indistinguishability graph NTD, as computed

by Algorithm 1.

Lemma 2. Given an oblivious message adversary D, let C constitute a connected component of NTD and let C̄ = D \ C.
For 𝑟 = (𝑛 − 1) · TD, there is no connection in 𝐼 (D𝑟 ) between any 𝜎1 ∈ C𝑟 and any 𝜎2 ∈ C̄D𝑟−1. Herein, 𝜎2 ∈ C̄D𝑟−1

denotes the fact that 𝜎2 is composed of one graph of C̄ and then 𝑟 − 1 graphs of D.

Proof. Assume for a contradiction that there exist 𝜎1 ∈ C𝑟
and 𝜎2 ∈ C̄D𝑟−1

which are connected in 𝐼 (D𝑟 ). We show

that C is connected to some node of C̄ in NTD, contradicting the fact that C is a connected component of NTD. We

do so by proving that there are TD connected subgraphs 𝜋1, . . . , 𝜋TD in 𝐼 (D), such that each of them intersects C, 𝜋1

also intersects C̄, and, for every 1 ≤ 𝑗 < 𝑖 = 𝑇𝐷 , the edges of
⋃𝑗

𝑗 ′=1
𝜋 𝑗 ′ are protected by the communication graphs

of

⋃𝑗+1
𝑗 ′=1

𝜋 𝑗 ′ . Moreover, 𝜋 𝑗 is connected to 𝜋 𝑗+1 in N𝑖−𝑗 : We have that 𝜋 𝑗 and 𝜋 𝑗+1 both intersect C, and since C is a

connected component in N𝑖 and N𝑖 is a refinement of N𝑖−𝑗 , all nodes of C are in the same connected component of

N𝑖−𝑗 . We can hence apply Lemma 1, which reveals that 𝜋1 is a connected subgraph of N𝑖 . As 𝜋1 also intersects both C
and C̄, however, we have the required contradiction.

Let �̃� be a path that connects 𝜎1 and 𝜎2 in 𝐼 (D𝑟 ). Recall that, for a round 𝑟 ′ ≤ 𝑟 , �̃� (𝑟 ′) denotes the round 𝑟 ′

communication graphs 𝜎 (𝑟 ′) for all communication patterns 𝜎 of �̃� . By a repeated application of Corollary 2, we get

that �̃� (𝑟 ′) is a path that connects 𝜎1 (𝑟 ′) ∈ C and 𝜎2 (𝑟 ′) ∈ D in 𝐼 (D) where, in particular, �̃� (1) connects 𝜎1 (1) ∈ C and

𝜎2 (1) ∈ C̄.
We now construct each connected subgraph 𝜋 𝑗 , 1 ≤ 𝑗 ≤ 𝑖 , as a union of paths �̃� (𝑟 ′). That is, for some set

𝑅 𝑗 ⊆ {1, . . . , 𝑟 } of rounds, which we will define below, we set 𝜋 𝑗 =
⋃

𝑟 ′∈𝑅 𝑗
�̃� (𝑟 ′). We denote the largest round of 𝑅 𝑗 as

𝑟∗
𝑗
= max(𝑅 𝑗 ).
For 1 ≤ 𝑚 < 𝑖 , we inductively construct 𝑅𝑚+1 from 𝑅𝑚 , starting with 𝑅1 = {1}, i.e., setting 𝜋1 = �̃� (1). We will assert

that (1) 𝑟∗
𝑚+1 ≤ 𝑟∗𝑚 + 𝑛 − 1 and (2) the edges of 𝜋𝑚 =

⋃
𝑟 ′∈𝑅𝑚 �̃� (𝑟 ′) are protected by the communication graphs of

𝜋𝑚+1 =
⋃

𝑟 ′∈𝑅𝑚+1 �̃� (𝑟
′). For 1 ≤ 𝑚 ≤ TD, property (1) together with 𝑟∗

1
= 1 guarantees 𝑟∗𝑚 ≤ (𝑛 − 1) (𝑚 − 1) + 1 ≤

(𝑛 − 1) · TD = 𝑟 , thus �̃� (𝑟 ′) is well-defined for all 𝑟 ′ ∈ 𝑅𝑚 .

Given 𝑅𝑚 for 1 ≤ 𝑚 < 𝑖 , we construct 𝑅𝑚+1 as follows: By Corollary 3, for every edge 𝑒 ∈ 𝜋𝑚 , there is a round

𝑟𝑒 ≤ 𝑟∗𝑚 + 𝑛 − 1 such that �̃� (𝑟𝑒 ) contains a graph 𝐺 with Root(𝐺) ⊆ ℓ (𝑒). Let 𝑅𝑚+1 be the set of all such rounds, i.e.,

𝑅𝑚+1 =
⋃

𝑒∈𝐸 (𝜋𝑚) �̃� (𝑟𝑒 ). This ensures (1) by construction and also (2), because every edge 𝑒 of 𝜋𝑚 is protected by a
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communication graph𝐺 of �̃� (𝑟𝑒 ) ⊆ 𝜋𝑚+1. Hence, the edges of 𝜋𝑚 are protected by the communication graphs of 𝜋𝑚+1
and so the edges of

⋃𝑚
𝑘=1

𝜋𝑘 are protected by the communication graphs of

⋃𝑚+1
𝑘=1

𝜋𝑘 . □

We are now ready to state the main theorem of this section, namely, an upper bound on the decision time complexity

of consensus.

Theorem 1. Let D be the set of allowed communication graphs of an oblivious message adversary. If the connected

components ofNTD (D) are root-compatible, then consensus is solvable by round 𝑐 (𝑛 − 1) (TD+1), where 𝑐 is the number of

connected components in NTD.

Proof. We show that every connected component of the indistinguishability graph 𝐼 (D𝑡 ) is broadcastable for

𝑡 = 𝑐 (𝑛 − 1) (TD+1). This implies the theorem, because there exists a mapping for every connected component C of

𝐼 (D𝑡 ) to a process 𝑝 , such that 𝑝 is a broadcaster in every communication pattern of C. More specifically, as C is an

indistinguishability component, there is, for every process 𝑞 and every 𝜎 ∈ D𝑡
, a map view𝜎 (𝑞, 𝑡) ↦→ 𝑝 such that 𝑝 is a

broadcaster in every communication pattern of 𝜎 ’s connected component in 𝐼 (D𝑡 ). In every run with a communication

pattern from C, every process has thus already learned the input 𝑥𝑝 of 𝑝 , which is a valid decision value. This decision

procedure hence defines a correct consensus algorithm.

It remains to show the broadcastability of the connected components of 𝐼 (D𝑡 ). Consider a run 𝜎 ∈ D𝑡
, and all the

communication patterns 𝜎 (𝑖), 𝑖 = 1 . . . , 𝑐 (𝑛 − 1) (TD+1) appearing in it. By the pigeon-hole principle, at least one

connected component C of NTD must supply (𝑛 − 1) (TD+1) of these graphs, when counted with repetitions. That is,

there is a set 𝑅 ⊆ {1, . . . , 𝑐 (𝑛 − 1) (TD+1)}, with |𝑅 | = (𝑛 − 1) (TD+1), such that every 𝑟𝑖 with 𝑖 ∈ 𝑅 satisfies 𝜎 (𝑟𝑖 ) ∈ C.
Note that the occurrence of 𝑛 − 1 or more graphs from C in 𝜎 already suffices to ensure that it is broadcastable by every

process 𝑝 ∈ ⋂𝐺 ∈C Root(𝐺), i.e., that every process 𝑞 ∈ Π has (𝑝, 0, 𝑥𝑝 ) ∈ view𝜎 (𝑞, 𝑡).
Consider another run 𝜎 ′ ∈ D𝑡

that is connected to 𝜎 in 𝐼 (D𝑡 ), and the communication patterns 𝜎 ′(𝑖) appearing in it.

If 𝑛 − 1 or more of the latter satisfied 𝜎 ′(𝑟𝑖 ) ∈ C, 𝜎 ′ would also be broadcastable by

⋂
𝐺 ∈C Root(𝐺), so assume that this

is not the case. There are hence at most 𝑛 − 2 indices 𝑟 𝑗 ∈ 𝑅 where 𝜎 ′(𝑟 𝑗 ) ∈ C. Let 𝑅′ ⊆ 𝑅 with |𝑅′ | = (𝑛 − 1) · TD be

the set of indices obtained by discarding all these indices 𝑟 𝑗 from 𝑅, in addition to discarding some additional indices

≠ 1 so as to match the desired size of 𝑅′.

We now construct the ((𝑛 − 1) TD)-round communication patterns 𝜌, 𝜌 ′ defined by 𝜌 ( 𝑗) = 𝜎 (𝑟 𝑗 ), 𝜌 ′( 𝑗) = 𝜎 ′(𝑟 𝑗 )
for each 𝑗 ∈ 𝑅′. That is, starting out from 𝜎 and 𝜎 ′, which are connected in 𝐼 (D𝑡 ), we remove all communication

rounds not in 𝑅′. By Corollary 2, 𝜌 and 𝜌 ′ are connected in 𝐼 (D(𝑛−1) TD). This, however, contradicts Lemma 2, because

𝜌 ∈ C(𝑛−1) TD
and 𝜌 ′ ∈ C̄(𝑛−1) TD ⊆ C̄ × D(𝑛−1) TD−1

by construction, where C is a connected component in NTD and

C̄ is its complement. □

5 LOWER BOUNDS

This section complements our positive results above by studying lower bounds. In the following, we first establish a

relationship between the time complexity of the decision procedure and the termination time of consensus. We will

then derive a time complexity lower bound for the decision procedure, and combine it with the first result to establish a

consensus termination time lower bound.
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5.1 Decision complexity and consensus termination time

First, we present a relationship (Theorem 2) between the number of iterations of Algorithm 1 and the time complexity

of consensus. As before, let N𝑖 = N𝑖 (D) be the refined indistinguishability graph N𝑖 after 𝑖 iterations according to

Algorithm 1, with the set of allowed graphs D sometimes omitted for brevity. Our general strategy is to establish

that the impossibility of consensus after 𝑖 rounds is equivalent to the existence of a set of “broadcast-incompatible”

communication patterns of length 𝑖 , which are connected to each other in the indistinguishability graph 𝐼 (D𝑖 ). We

ensure broadcast-incompatibility by letting this set also contain communication patterns𝐺𝑖
, i.e., 𝑖 repetitions of the

same communication graph𝐺 , taken from a set of root-incompatible graphs. Due to the requirement that every decision

must be on the input of some broadcaster whose input value has reached everyone (recall Claim 2), this suffices: in 𝐺𝑖
,

the only processes that have reached everyone are the members of Root(𝐺), the root component of 𝐺 . Thus, not all

these communication patterns can have led to the same decision value, which is a contradiction since all connected

round 𝑖 communication patterns must have led to the same decision value if consensus was solved after 𝑖 rounds.

The core of our proof is contained in Lemma 3. It shows that the connectivity of some communication graphs

𝐴, 𝐵 in N𝑖 (D) implies the connectivity of the communication patterns 𝐴𝑖 , 𝐵𝑖 in the indistinguishability graph 𝐼 (D𝑖 ).
Informally speaking, it uses an inductive construction for an arbitrary edge (𝐴, 𝐵) ofN𝑖 to show how the corresponding

connectivity between 𝐴𝑖
and 𝐵𝑖 can be preserved for 𝑖 rounds in 𝐼 (D𝑖 ). It crucially relies on the fact that every N𝑖 is

a refinement of N𝑖−1, with N1 being a refinement of 𝐼 (D), which is due to the fact that Algorithm 1 iteratively only

removes selected edges via Line 9 but never adds any edges.

To show that the connectivity of 𝐴𝑖
and 𝐵𝑖 is preserved, we use the path in N𝑖 from 𝐴 to ℓ (𝑒), respectively 𝐵 to

ℓ (𝑒), to extend the already constructed connected prefixes 𝐴𝑖−1
and 𝐵𝑖−1

. Note that this path also occurs in N𝑖−1 due

to Corollary 1. To illustrate this, consider a (very simple) example, where we have that 𝐴 ∼𝑝 𝐵 occurs in N2 and

furthermore 𝑝 = Root(𝐶) such that 𝐶 ∼𝑝′ 𝐴 as well as 𝐶 ∼𝑝′′ 𝐵 occur in N1. In this case, we have the following

indistinguishability relation between communication patterns of length 2: 𝐴 ◦𝐴 ∼𝑝′ 𝐴 ◦𝐶 ∼𝑝 𝐵 ◦𝐶 ∼𝑝′′ 𝐵 ◦ 𝐵. This
argument can be applied inductively to establish the indistinguishability relation for communication patterns 𝐴𝑖

and 𝐵𝑖 .

Lemma 3. Let C𝑖 be a connected component of N𝑖 (D) and let 𝐴, 𝐵 be communication graphs in C𝑖 . Then 𝐴𝑖 is connected

to 𝐵𝑖 in 𝐼 (D𝑖 ).

Proof. The lemma holds immediately for 𝑖 = 1: As a one-round communication pattern consists of only a single

communication graph, 𝐴1 = 𝐴 and 𝐵1 = 𝐵 are both in the connected component C1.

Thus, we henceforth assume that 𝑖 > 1, and prove the following claim by induction on 𝑘 , for 𝑘 = 1, . . . , 𝑖: For each edge

(𝐴, 𝐵) ∈ C𝑖 there is a path 𝜋𝑘 in 𝐼 (D𝑘 ) connecting 𝐴𝑘
to 𝐵𝑘 . In addition, for 𝑘 < 𝑖 , the connected component C𝑖−𝑘 of 𝐴

and 𝐵 inN𝑖−𝑘 is such that, for every edge 𝑒 = (𝜎, 𝜎 ′) ∈ 𝜋𝑘 , both the round 𝑘 communication graphs 𝜎 (𝑘), 𝜎 ′(𝑘) ∈ C𝑖−𝑘
and there is a graph 𝐺𝑒 ∈ C𝑖−𝑘 such that Root(𝐺𝑒 ) ⊆ ℓ (𝑒).

The base, 𝑘 = 1, follows because 𝑒 = (𝐴, 𝐵) ∈ C𝑖 implies that (𝐴1, 𝐵1) ∈ 𝐼 (D1), and by Corollary 1 there is𝐺𝑒 ∈ C𝑖−1

such that Root(𝐺𝑒 ) ⊆ ℓ (𝑒).
For the step from𝑘−1 to𝑘 ,𝑘 > 1, there exists a path 𝜋𝑘−1

∈ 𝐼 (D𝑘−1) that connects𝐴𝑘−1
to𝐵𝑘−1

. Let 𝑒 = (𝜎, 𝜎 ′) ∈ 𝜋𝑘−1

be an arbitrary edge in 𝜋𝑘−1
. By the induction hypothesis, 𝜎 (𝑘 − 1), 𝜎 ′(𝑘 − 1) ∈ C𝑖−𝑘+1 and there is a graph𝐺𝑒 ∈ C𝑖−𝑘+1

with Root(𝐺𝑒 ) ⊆ ℓ (𝑒). Consequently, there exist paths �̃�1 = (Γ1, Γ2, . . . , Γ𝑚) and �̃�2 = (Λ1,Λ2, . . . ,Λ𝑚′) in C𝑖−𝑘+1 that
connect 𝜎 (𝑘 − 1) to 𝐺𝑒 and 𝐺𝑒 to 𝜎

′(𝑘 − 1), respectively.
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Consider (Γ𝑗 , Γ𝑗+1) ∈ �̃�1 ⊆ C𝑖−𝑘+1. From Corollary 1, we know that (Γ𝑗 , Γ𝑗+1) ∈ 𝐼 (D1), which implies 𝜎 ◦Γ𝑗 ∼ 𝜎 ◦Γ𝑗+1.
This enables us to prefix 𝜎 to each communication graph of �̃�1, which makes 𝜎 ◦ �̃�1 = (𝜎 ◦ Γ1, 𝜎 ◦ Γ2, . . . , 𝜎 ◦ Γ𝑚) a path
in 𝐼 (D𝑘 ). Following a symmetrical argument, 𝜎 ′ ◦ �̃�2 = (𝜎 ′ ◦ Λ1, 𝜎

′ ◦ Λ2, . . . , 𝜎
′ ◦ Λ𝑚′) is also a path in 𝐼 (D𝑘 ).

Moreover, since Root(𝐺𝑒 ) ⊆ ℓ (𝑒), it follows from Claim 1 that 𝑒 ′ = (𝜎 ◦ 𝐺𝑒 , 𝜎
′ ◦ 𝐺𝑒 ) ∈ 𝐼 (D𝑘 ). Therefore, �̃�𝑒 =

(𝜎 ◦ �̃�1, 𝑒
′, 𝜎 ′ ◦ �̃�2) is a path from 𝜎 ◦ 𝜎 (𝑘 − 1) to 𝜎 ′ ◦ 𝜎 ′(𝑘 − 1) in 𝐼 (D𝑘 ). If we substitute each edge 𝑒 ∈ 𝜋𝑘−1

by �̃�𝑒 , we

thus obtain a path 𝜋𝑘 that connects 𝐴𝑘
to 𝐵𝑘 in 𝐼 (D𝑘 ).

Now, consider any edge 𝑒 ′ ∈ 𝜋𝑘 . By construction, 𝑒 ′ = (𝜎 ◦ Γ𝑗 , 𝜎 ◦ Γ𝑗+1), or 𝑒 ′ = (𝜎 ′ ◦ Λ 𝑗 , 𝜎
′ ◦ Λ 𝑗+1) or 𝑒 ′ =

(𝜎 ◦ 𝐺𝑒 , 𝜎
′ ◦ 𝐺𝑒 ). If 𝑒 ′ = (𝜎 ◦ Γ𝑗 , 𝜎 ◦ Γ𝑗+1), then the round 𝑘 communication graphs are Γ𝑗 and Γ𝑗+1. Since �̃�1 ∈

C𝑖−𝑘+1, it follows from Corollary 1 that (Γ𝑗 , Γ𝑗+1) ∈ C𝑖−𝑘 , and there exists a communication graph 𝐺𝑒′ ∈ C𝑖−𝑘 with

Root(𝐺𝑒′) ⊆ ℓ ((Γ𝑗 , Γ𝑗+1)) = ℓ (𝑒 ′). A symmetrical argument holds for the case where 𝑒 ′ = (𝜎 ′ ◦Λ 𝑗 , 𝜎
′ ◦Λ 𝑗+1). Finally, if

𝑒 ′ = (𝜎◦𝐺𝑒 , 𝜎
′◦𝐺𝑒 ), then the round𝑘 communication graphs are both𝐺𝑒 , which is in C𝑖−𝑘+1 by the induction hypothesis.

Corollary 1 guarantees 𝐺𝑒 ∈ C𝑖−𝑘 , and since Root(𝐺𝑒 ) ⊆ ℓ (𝜎, 𝜎 ′), it follows that Root(𝐺𝑒 ) ⊆ ℓ (𝜎 ◦𝐺𝑒 , 𝜎
′ ◦𝐺𝑒 ). This

shows that 𝐺𝑒 is a suitable choice for 𝐺𝑒′ , which completes the induction step. □

Theorem 2. If N𝑖 (D) contains a connected component C𝑖 that is not root-compatible, then not all processes in all runs

of a correct consensus algorithm are able to decide after 𝑖 rounds under the oblivious message adversary represented by D.

Proof. For the purpose of deriving a contradiction, suppose that the theorem does not hold. Let S be a set of graphs
from C𝑖 that is not root-compatible. By Claim 2, for each𝐺 ∈ S, the decision value in a run with communication pattern

𝐺𝑖
that consists of 𝑖 repetitions of 𝐺 must be a value 𝑣 = 𝑥𝑝 for some 𝑝 ∈ Root(𝐺). Since S is root incompatible, there

exists some 𝐻 ∈ S such that 𝑥𝑝 is not a root value of 𝐻 .

It follows from Lemma 3 that 𝐺𝑖
is connected to 𝐻 𝑖

in 𝐼 (D𝑖 ). Therefore, there is a sequence of runs (𝜎1 =

𝐺𝑖 , 𝜎2, . . . , 𝜎𝑚 = 𝐻 𝑖 ) such that 𝜎𝑘 is indistinguishable from 𝜎𝑘+1. Since all processes decided 𝑣 = 𝑥𝑝 in 𝐺𝑖 = 𝜎1,

by the validity condition of consensus, 𝜎2 and inductively all processes in the sequence including 𝐻 𝑖
should also decide

𝑣 = 𝑥𝑝 . Thus, Claim 2 yields the contradiction that 𝐻 𝑖
decided a non-broadcasted value. □

We conclude by explaining why Theorem 2 refines the lower bound from [12, Theorem 4.10], which stated that

consensus is impossible if some beta class is not root-compatible, by making the decision time explicit. In fact, in

our terminology, the beta classes are the connected components of NTD, where TD is the smallest round such that

NTD = NTD−1. Thus, the existence of a root-incompatible beta class is equivalent toNTD containing a root-incompatible

connected component. Note that, since NTD = NTD−1, even if we remove the termination condition from Line 11

of Algorithm 1, for all TD
′ ≥ TD−1, we still have that N

TD
′ = NTD, because, according to Algorithm 1, if the set of

edges remains the same in an iteration of TD, then it will remain the same for all future iterations as well. Thus we

can apply Theorem 2 to show that, in this case, every consensus algorithm has, for every round, a run where some

process has not yet decided. As for an oblivious message adversary with a set of allowed graphs D, it holds that every
infinite communication pattern 𝜎 with 𝜎 |𝑟 ∈ D𝑟

for every round 𝑟 satisfies 𝜎 ∈ D𝜔
(i.e., oblivious message adversaries

are limit-closed, see [33] for details), this implies that there is an infinite run where consensus is not achieved, that is,

consensus is indeed impossible.

5.2 Exponential iteration complexity of the decision procedure

As we have seen above, consensus termination time is related to the iterations of the decision procedure. Informally,

this is due to the fact that the information encoded in the sequence N1, . . . ,N𝑖 can be seen as a compact summary of
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the evolution of the indistinguishability relation of the corresponding communication pattern prefixes. Thus, a lower

bound on the complexity of the decision procedure immediately gives us a lower bound for the round complexity of

any consensus algorithm.

In this section, we will show that the decision procedure may take an exponential number of iterations, in terms of 𝑛,

until it terminates. This implies that there are oblivious message adversaries under which consensus is achievable, but

reaching it takes exponential time. As already sketched at the end of Section 3, we will show this by constructing a

specific instance of such a message adversary, with a set of allowed graphs D = {𝐺1, . . . ,𝐺𝑁 } of size 𝑁 = 1.3𝑛 (rounded

down if necessary), whose indistinguishability graph 𝐼 (D) contains the following connected component:

𝐺1 ∼𝑅3
𝐺2 ∼𝑅4

. . . ∼𝑅𝑁 +1 𝐺𝑁 (3)

Herein, 𝑅𝑖 = Root(𝐺𝑖 ) for 1 ≤ 𝑖 ≤ 𝑁 , and 𝑅𝑁+1 ≠ Root(𝐺) for all 𝐺 ∈ D. Therefore, 𝐼 (D) contains a path of length

𝑁 − 1. Since all edges except the rightmost one are protected, Algorithm 1 only removes one edge per iteration, from

right to left. More precisely, it holds that 𝐺1 ∼𝑅3
. . . ∼𝑅𝑁−𝑖+1 𝐺𝑁−𝑖 ∈ N𝑖 . Consequently, 𝑁 iterations are needed until

all edges have disappeared, which establishes our claim.

Informal overview of the definition of D. First, we choose a sequence of sets {𝑅1, . . . , 𝑅𝑁 } that will play the role of

root components of D. We will choose those from the first half {𝑝1, . . . , 𝑝𝑛/2} of the processes only. Each 𝑅𝑖 is chosen

to be unique, of the same size 𝑛/12, and 𝑅𝑖 , 𝑅𝑖+1 and 𝑅𝑖+2 must be be mutually disjoint. Note that we need 𝑁 , i.e.,

exponentially many such 𝑅𝑖 .

The first step in the definition of the graph 𝐺𝑖 is to make 𝑅𝑖 its root component, which is done by fully connecting

its members to form a clique and ensuring a path to every other process. However, when doing so, we also need

to guarantee that 𝐺𝑖 ∼𝑅𝑖+2 𝐺𝑖+1 are the only indistinguishability relations in 𝐼 (D). We secure this by making sure

that every process except for the ones in 𝑅𝑖+1 and 𝑅𝑖+2 can distinguish 𝐺𝑖 from any other graph 𝐺 𝑗 , 𝑗 ≠ 𝑖 . This is

accomplished by adding an outgoing edge from every member of 𝑅𝑖 to every process in Π \ (𝑅𝑖+1 ∪ 𝑅𝑖+2), and no

other outgoing edge from members of {𝑝1, . . . , 𝑝𝑛/2}. Since 𝑅𝑖 is unique, any process in Π \ (𝑅𝑖+1 ∪ 𝑅𝑖+2) will know if

graph 𝐺𝑖 is being played: This is immediately obvious for every process 𝑝 in the second half 𝐵 == {𝑝𝑛/2+1, . . . , 𝑝𝑁 }, as
In𝐺𝑖
(𝑝) ∩ {𝑝1, . . . , 𝑝𝑛/2} = 𝑅𝑖 . For a process 𝑝 in the “leftover set” 𝐿𝑖 = Π \ (𝐵 ∪ 𝑅𝑖 ∪ 𝑅𝑖+1 ∪ 𝑅𝑖+2) ⊆ {𝑝1, . . . , 𝑝𝑛/2}, we

have In𝐺𝑖
(𝑝) ∩ {𝑝1, . . . , 𝑝𝑛/2} = 𝑅𝑖 ∪ {𝑝}. Since 𝑅𝑖 ∪ {𝑝} is larger than the size of the root components, 𝑝 knows that

it is not part of the root component, and can hence also uniquely determine 𝑅𝑖 and hence the graph 𝐺𝑖 being played.

Fig. 2 illustrates this construction.

Fig. 2. A sketch of the lower bound graph𝐺𝑖

However, we must also make sure that all the members

of 𝑅𝑖+1 (resp. 𝑅𝑖+2) consider only 𝐺𝑖 and 𝐺𝑖−1 (resp. 𝐺𝑖

and 𝐺𝑖+1) as possibilities for the actually played graph.

This means that the in-neighborhood of any process in

𝑅𝑖+1 (resp. 𝑅𝑖+2) must be the same in 𝐺𝑖 and 𝐺𝑖−1 (resp.

𝐺𝑖 and 𝐺𝑖+1). So far, the processes in 𝑅𝑖+1 or 𝑅𝑖+2 do not

receive anymessage from {𝑝1, . . . , 𝑝𝑛}, i.e., the only know
that they are either in 𝑅𝑖+1 or in 𝑅𝑖+2. To tell them apart,

we will connect some processes in 𝐵 = {𝑝𝑛/2+1, . . . , 𝑝𝑁 }
to the members of 𝑅𝑖+1 ∪ 𝑅𝑖+2, in a way that encodes

𝑖 + 1 (for the members of 𝑅𝑖+1) or 𝑖 + 2 (for the members of 𝑅𝑖+2). A process in 𝑅𝑖+1 ∪ 𝑅𝑖+2 can hence tell from its

in-neighborhood whether it belongs to 𝑅𝑖+1 or 𝑅𝑖+2. More specifically, abbreviating 𝐵 [𝑖] = {𝑏 ∈ 𝐵 | 𝑖𝑏−(𝑛/2+1) = 1},
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where 𝑖ℓ is the ℓ
th
bit in the binary expansion of 𝑖 , we just make sure that In𝐺𝑖

(𝑝) = 𝐵 [𝑖 + 1] for every 𝑝 ∈ 𝑅𝑖+1 and

In𝐺𝑖
(𝑝) = 𝐵 [𝑖 + 2] for every 𝑝 ∈ 𝑅𝑖+2. This construction satisfies our indistinguishability requirements: Each process in

𝑅𝑖+1 (resp. 𝑅𝑖+2) can tell where it belongs to, but do not know whether 𝐺𝑖 or 𝐺𝑖−1 (resp. 𝐺𝑖 or 𝐺𝑖+1) is played.
Formal definition of the root components 𝑅𝑖 .We define the sets 𝑅𝑖 by splitting {𝑝1, . . . , 𝑝𝑛/2} into {𝑝1, . . . , 𝑝𝑛/4}
and {𝑝𝑛/4+1, . . . , 𝑝𝑛/2}, and construct the sequence 𝑅1, 𝑅2, . . . of root components from partitions of these ranges

alternatingly: Consider all the partitions of {𝑝1, . . . , 𝑝𝑛/4} into three sets of size 𝑛/12 each. Partition number ℓ + 1

constitutes the root components 𝑅6ℓ+1, 𝑅6ℓ+2, 𝑅6ℓ+3. Similarly, consider consider all the partitions of {𝑝𝑛/4+1, . . . , 𝑝𝑛/2}
into three sets of size 𝑛/12 each. Set partition ℓ + 1 constitutes the root components 𝑅6ℓ+4, 𝑅6ℓ+5, 𝑅6ℓ+6.

The sequence clearly satisfies, by construction, the following properties:

(1) |𝑅𝑖 | = 𝑛/12, since we are considering equal-sized partitions of 𝑛/4 processes into 3 disjoint sets.

(2) 𝑅𝑖 ≠ 𝑅 𝑗 for 𝑖 ≠ 𝑗 , since all sets of the partitions are unique.

(3) 𝑅𝑖 , 𝑅𝑖+1, 𝑅𝑖+2 are pairwise disjoint, since they are either members of the same partition and thus disjoint, or one

belongs to segment {𝑝1, . . . , 𝑝𝑛/4} and another to segment {𝑝𝑛/4+1, . . . , 𝑝𝑛/2}.

The length 𝑁 of the sequence is dominated asymptotically by the number of partitions of {𝑝1, . . . , 𝑝𝑛/4} into three

equisized sets, which is
1

6

( 𝑛/4
𝑛/12

) ( 𝑛/6
𝑛/12

)
. The definition of the binomial coefficients, along with simple bounds on the

factorial function, give

1

6

( 𝑛
4

𝑛
12

) ( 𝑛
6

𝑛
12

)
=

(
𝑛
4

)
!

6

( (
𝑛
12

)
!

)
3
≥ 𝑐

3
𝑛/4

𝑛
> 1.3𝑛 (4)

where 𝑐 is a constant and 𝑛 is sufficiently large. It follows that 𝑁 is exponential with respect to 𝑛.

Formal definition of𝐺𝑖 .We are now ready to define the graphs𝐺𝑖 , recall also Fig. 2. Let 𝐵 = {𝑝𝑛/2 + 1, . . . , 𝑝𝑛}. For
each 1 ≤ 𝑖 ≤ 𝑁 , the graph 𝐺𝑖 is composed of disjoint 5 node sets: 𝐵, 𝑅𝑖 , 𝑅𝑖+1, 𝑅𝑖+2, where 𝑅𝑖 , 𝑅𝑖+1, 𝑅𝑖+2 ⊆ {𝑝1, . . . , 𝑝𝑛/2},
𝐵 = {𝑝𝑛/2 + 1, . . . , 𝑝𝑛}, and 𝐿𝑖 = Π \ (𝐵 ∪ 𝑅𝑖 ∪ 𝑅𝑖+1 ∪ 𝑅𝑖+2).

Connect every two nodes in 𝑅𝑖 by bi-directional edges, forming a clique. From each node in 𝑅𝑖 , add a directed edge

to each node in 𝐵 ∪ 𝐿𝑖 . Finally, for an index 𝑖 , let 𝐵 [𝑖] = {𝑏 ∈ 𝐵 | 𝑖𝑏−(𝑛/2+1) = 1}, where 𝑖ℓ is the ℓ th bit in the binary

expansion of 𝑖 . Add an edge from each node of 𝐵 [𝑖] to each node of 𝑅𝑖+1, and similarly, from each node of 𝐵 [𝑖 + 1] to
each node of 𝑅𝑖+2.

We are now ready to show that the so-constructed graphs form an indistinguishability chain according to Eq. (3).

Claim 5. For 1 ≤ 𝑖 ≤ 𝑁 , we have 𝐵 [𝑖] ≠ ∅, and for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 , we have 𝐵 [𝑖] ≠ 𝐵 [ 𝑗].

Proof. As 𝑁 = 1.3𝑛 , we find log
2
(𝑁 ) < 𝑛/2, so each 1-bit of 𝑖 is represented by a process in 𝐵, which ends up being

in 𝐵 [𝑖]. This establishes the second assertion. The first one is now trivial, as 𝑖 ≥ 1. □

Claim 6. For 1 ≤ 𝑖 ≤ 𝑁 , we have Root(𝐺𝑖 ) = 𝑅𝑖 .

Proof. This is immediate from the graph’s definition. In 𝐺𝑖 , all nodes in 𝑅𝑖 are connected to one another and have

no incoming edges from any node not in 𝑅𝑖 . From each of them, there is a direct edge to all nodes of 𝐵 ∪ 𝐿𝑖 . Moreover,

by Claim 5, there is at least one process 𝑏 ∈ 𝐵 [𝑖], so there is a path from each node in 𝑅𝑖 , through 𝑏, to each node in

𝑅𝑖+1 ∪ 𝑅𝑖+2. □

Claim 7. We have 𝐺𝑖 ∼𝑅𝑖+2 𝐺𝑖+1 for 1 ≤ 𝑖 ≤ 𝑁 − 1, and these are the only indistinguishability relations in the graph.
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Proof. As we have already explained in the informal overview, in 𝐺𝑖 , every process that is not in 𝑅𝑖+1 ∪ 𝑅𝑖+2 can
determine that the graph is 𝐺𝑖 from its in-neighborhood. This is immediately obvious for processes in 𝐵, and also

possible for a process 𝑝 ∈ 𝐿𝑖 by observing | In𝐺𝑖
(𝑝) | = 𝑛/12 + 1 and removing itself from it for determining 𝑅𝑖 .

For a process 𝑝 ∈ 𝑅𝑖+1 (resp. 𝑅𝑖+2), it holds by construction that In𝐺𝑖
(𝑝) = 𝐵 [𝑖 + 1] = In𝐺𝑖−1

(𝑝) (resp. In𝐺𝑖−1
(𝑝) =

𝐵 [𝑖 + 2] = In𝐺𝑖+1 (𝑝)), and that 𝐺𝑖−1 (resp. 𝐺𝑖+1) is the only other graph besides 𝐺𝑖 where the in-neighborhood of 𝑝 is

the same. □

Our lower bound is now easy to prove.

Theorem 3. There is an oblivious message adversary under which consensus is solvable, but for which the decision

procedure takes exponential time to terminate.

Proof. Let D = {𝐺𝑖 | 1 ≤ 𝑖 ≤ 𝑁 }, where 𝑁 = 1.3𝑛 for 𝑛 begin sufficiently large for Eq. (4) to hold. We consider

Algorithm 1, and show, by induction on the iteration number 𝑖 , that after iteration 𝑖 the graphs𝐺1, . . . ,𝐺𝑁−𝑖+1 constitute

the only nontrivial connected component in N𝑖 .
The base case isN1 = 𝐼 (D), where the graphs𝐺1, . . . ,𝐺𝑁 are connected by Claim 7. For the inductive step 𝑖 − 1→ 𝑖 ,

𝑖 > 1, assume 𝐺1, . . . ,𝐺𝑁−𝑖+2 is the only nontrivial connected component in N𝑖−1, and consider iteration 𝑖 .

For 𝐺1, . . . ,𝐺𝑁−𝑖+1, every two consecutive graphs 𝐺 𝑗 ,𝐺 𝑗+1 with 1 ≤ 𝑗 ≤ 𝑁 − 𝑖 are indistinguishable for a set 𝑅 𝑗+2
by Claim 7, which is the root component of𝐺 𝑗+2 by Claim 6. Since𝐺 𝑗+2 is in the same connected component as𝐺 𝑗 and

𝐺 𝑗+1 in N𝑖−1, the edge 𝐺 𝑗 ∼𝑅 𝑗+2 𝐺 𝑗+1 is incorporated by the algorithm in N𝑖 .
On the other hand, the edge 𝐺𝑁−𝑖+1 ∼𝑅𝑁−𝑖+3 𝐺𝑁−𝑖+2 of N𝑖−1 is not added to N𝑖 . This is since 𝑅𝑁−𝑖+3 is the root

component of 𝐺𝑁−𝑖+3, which is not in the nontrivial connected component of N𝑖 . Since all the root components have

equal sizes and are distinct, 𝑅𝑁−𝑖+3 cannot be contained in any other root component either. This completes the

induction step.

It follows that the algorithm takes 𝑁 = 1.3𝑛 iterations to complete. Upon completion, each connected component of

N𝑁 is a single, root-compatible graph, so consensus is solvable under D. □

5.3 Exponential termination time of consensus

From Theorem 2, we immediately obtain a termination time lower bound of Ω(TD) for solving consensus. Consequently,
the message adversary used in (the proof of) Theorem 3, where TD = 𝑁 = 1.3𝑛 for sufficiently large 𝑛, reveals a lower

bound that is exponential in 𝑛.

We will now adapt the message adversary from Theorem 3 in Section 5.2 to show that the termination time of

consensus may actually be Ω(𝑛1.3𝑛). More specifically, in the graph 𝐺𝑖 shown in Fig. 2, we replace the direct edges

from 𝑅𝑖 to 𝐵 by a path consisting of processes taken from a set 𝑃 ⊆ {𝑝𝑛/2+1, . . . , 𝑝𝑛} with |𝑃 | = Ω(𝑛) (i.e., taken away

from the original 𝐵), as illustrated in Fig. 3.

In more detail, we change the graph construction from Section 5.2 as follows:

• 𝐵 = {𝑛/2 + 1, . . . , 0.9𝑛} and 𝑃 = {0.9𝑛 + 1, . . . , 𝑛};
• Add the directed edges (𝑝, 𝑝 + 1) for all 𝑝 ∈ 𝑃 \ {𝑛};
• Instead of an edge from each node of 𝑅𝑖 to each node of 𝐵, add an edge from each node of 𝑅𝑖 to ℎ = 0.9𝑛 + 1, and

from 𝑛 to each node of 𝐵.

Let ℎ = 0.9𝑛 be the first node on the inserted path. Whereas our new construction introduced the additional

indistinguishability 𝐺𝑖 ∼𝑝 𝐺 𝑗 for all 𝑝 ∈ (𝐵 ∪ 𝑃) \ {ℎ} for any 𝐺𝑖 ,𝐺 𝑗 ∈ D, it does not affect the iteration complexity of
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the decision procedure, since no 𝑅 ⊆ (𝐵 ∪ 𝑃) ever occurs as a root component in a graph of D. Thus, all edges 𝑒 with
ℓ (𝑒) ⊆ (𝐵 ∪ 𝑃) are removed in the first iteration of the decision procedure, according to Corollary 1.

Fig. 3. A sketch of the extended lower bound graph𝐺𝑖

It is easy to see that Claim 5 still holds, as we have

log
2
(𝑁 ) < 0.4𝑛, and Claim 6 holds by construction. Re-

garding Claim 7, the original indistinguishability relations

still hold, but are now expanded by additional indistin-

guishabilities labeled by a process 𝑝 ∈ (𝑃 ∪ 𝐵) \ {ℎ},
which are removed in the first iteration of the decision

procedure.

The crucial property of our new construction is that

any 𝐺𝑖 ,𝐺𝑖+1, when repeated for 0.1𝑛 rounds, yield indis-

tinguishable communication patterns.

Claim 8. 𝐺𝑟
𝑖
∼𝑝 𝐺𝑟

𝑖+1 for all 𝑟 ≤ 0.1𝑛 and all 𝑝 ∈ 𝑅𝑖+2.

Proof. Observe that, by construction, we have In𝐺𝑖
(𝑝) = In𝐺𝑖+1 (𝑝) for all 𝑝 ∈ 𝑋 = 𝑃 \ {ℎ} ∪ 𝐵 ∪ 𝑅𝑖+2. The claim

follows, because every path from a process outside 𝑋 to a process in 𝑅𝑖+2 has length at least |𝑃 | + 1. It thus takes at

least |𝑃 | + 1 repetitions of𝐺𝑖 , respectively𝐺𝑖+1, until a process of Π \𝑋 reached a process of 𝑅𝑖+2. Since |𝑃 | = 0.1𝑛, in a

round 𝑟 ≤ 0.1𝑛, the nodes of 𝑅𝑖+2 have hence the same view in both 𝐺𝑟
𝑖
and 𝐺𝑟

𝑖+1. □

The following Lemma 4 shows that we can even “inflate” arbitrary communication patterns of the message adversary

from Section 5.2:

Lemma 4. Consider (𝜎, 𝜎 ′) ∈ 𝐼 (D𝑘 ), where D is the oblivious message adversary of Section 5.2. Let D̃ be the modified

message adversary of Section 5.3, and �̃� resp. �̃� ′ in D̃(𝑘0.1𝑛) be the communication pattern obtained from replacing every

round 𝑖 graph 𝜎 (𝑖) resp. 𝜎 ′(𝑖) according to Fig. 2 by 0.1𝑛 instances of the corresponding graph according to Fig. 3. Then,

(�̃�, �̃� ′) ∈ 𝐼 (D̃0.1𝑛𝑘 ).

Proof. We prove, by induction over 𝑘 ≥ 1, that (i) the 0.1𝑛𝑘 prefixes �̃� |
0.1𝑛𝑘 and �̃� ′ |

0.1𝑛𝑘 satisfy �̃� |
0.1𝑛𝑘 ∼𝑅 �̃� ′ |

0.1𝑛𝑘

for 𝑅 = ℓ (𝜎, 𝜎 ′) ≠ ∅, and (ii) that �̃� |
0.1𝑛𝑘 ∼𝐵 �̃� ′ |

0.1𝑛𝑘 if and only if 𝜎 |𝑘 ∼𝐵 𝜎 ′ |𝑘 for the processes 𝐵 = {𝑝𝑛/2+1, . . . , 𝑝𝑛}.
Note carefully that 𝜎 ∼𝑅 𝜎 ′ also implies 𝜎 |𝑘 ∼𝑅 𝜎 ′ |𝑘 , as well as 𝜎 (𝑘) ∼𝑅 𝜎 ′(𝑘). As a consequence, there is some 𝑖 such

that, for every 𝑘 , either 𝜎 (𝑘) = 𝐺𝑖 and 𝜎
′(𝑘) = 𝐺𝑖+1 (or vice versa), with 𝑅 = 𝑅𝑖+2, or else 𝜎 (𝑘) = 𝜎 ′(𝑘).

For the induction basis 𝑘 = 1, the only non-trivial case is 𝜎 |1 = 𝜎 (1) = 𝐺𝑖 ∈ D and 𝜎 ′ |1 = 𝜎 ′(1) = 𝐺𝑖+1 ∈ D, and
𝑅 = 𝑅𝑖+2. From Claim 8, we get �̃� |0.1𝑛 ∼𝑅 �̃� ′ |0.1𝑛 as needed for (i). As for (ii), the lenght 0.1𝑛 of the path 𝑃 in Fig. 3

ensures that all processes in 𝐵 have the same distinguishing power in both the original and in the inflated prefix.

For the induction step 𝑘 − 1→ 𝑘 , 𝑘 > 1, we assume for our hypothesis that �̃� |
0.1𝑛 (𝑘−1) ∼𝑅 �̃� ′ |

0.1𝑛 (𝑘−1) and that all

processes in 𝐵 have the same distinguishing power. Assume for a contradiction for (i) that �̃� |
0.1𝑛𝑘 ≁𝑅 �̃� ′ |

0.1𝑛𝑘 , i.e., some

process 𝑝 ∈ 𝑅 can distinguish the two prefixes. Consider the round 𝑘 graphs 𝜎 (𝑘) and 𝜎 ′(𝑘). If 𝜎 (𝑘) = 𝜎 ′(𝑘) = 𝐺 𝑗 ∈ D,
we immediately get a contradiction, since appending 0.1𝑛 instances 𝐺0.1𝑛

𝑗
of the corresponding 𝐺 𝑗 ∈ D̃ to both

�̃� |
0.1𝑛 (𝑘−1) and �̃�

′ |
0.1𝑛 (𝑘−1) cannot break their indistinguishability for 𝑝 .

So let us assume w.l.o.g. 𝐺𝑖 = 𝜎 (𝑘) and 𝐺𝑖+1 = 𝜎 ′(𝑘) with 𝑅 = 𝑅𝑖+2. Since we know from Claim 8 that the

corresponding graphs in D̃ ensure𝐺0.1𝑛
𝑖
∼𝑝 𝐺0.1𝑛

𝑖+1 , the information that allows 𝑝 to distinguish �̃� |
0.1𝑛𝑘 and �̃� ′ |

0.1𝑛𝑘 was

relayed to it from some informed process 𝑞′ during the last 0.1𝑛 rounds. Since 𝑅𝑖+2 only has incoming edges from 𝐵 in
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Fig. 3, there exists an informed process 𝑞 ∈ 𝐵 that relayed this information to 𝑝 by the last of these rounds. This 𝑞 must

have been informed at the latest in round 0.1𝑛𝑘 − 1. Since the path 𝑃 in Fig. 3 has length 0.1𝑛, however, 𝑅𝑖 (resp. 𝑅𝑖+1)

cannot be the source of information that allows 𝑞 to distinguish �̃� |
0.1𝑛𝑘 and �̃� ′ |

0.1𝑛𝑘 . Consequently, 𝑞 must already have

had information to distinguish �̃� |
0.1𝑛 (𝑘−1) and �̃�

′ |
0.1𝑛 (𝑘−1) . From (ii) of our induction hypothesis, we can infer that this

is also true in the original 𝜎 |𝑘−1
and 𝜎 ′ |𝑘−1

. Since 𝑞 sends a message to 𝑅𝑖+2 in round 𝑘 here, this would contradict

𝜎 |𝑘 ∼𝑅 𝜎 ′ |𝑘 , and therefore completes the induction step for (i).

The induction step for (ii) is trivial, as the processes in 𝐵 only get information from the respective root component,

either directly (in the original prefix) or delayed via the path 𝑃 (in the inflated one). The induction hypothesis hence

immediately carries over from 𝑘 − 1 to 𝑘 . □

Lemma 4 immediately gives us the consensus termination time for our new message adversary:

Theorem 4. There is an oblivious message adversary for which solving consensus takes Ω(𝑛1.3𝑛) rounds.

Proof. Consider any two indistinguishable communication patterns 𝜎, 𝜎 ′ of the message adversary of Theorem 3 on

the path between 𝐺𝑁−1

1
and 𝐺𝑁−1

2
in 𝐼 (D)𝑁−1

. As TD = 𝑁 = 1.3𝑛 , Lemma 3 guarantees that this path exists. Lemma 4

immediately provides us with inflated communication patterns `, ` ′ ∈ 𝐼 (D)0.1𝑛 (𝑁−1)
for our new message adversary,

which are also indistinguishable. Together, they form a path between 𝐺
0.1𝑛 (𝑁−1)
1

and 𝐺
0.1𝑛 (𝑁−1)
2

in 𝐼 (D)0.1𝑛 (𝑁−1)
.

Since the root components 𝑅1 = Root(𝐺1) and 𝑅2 = Root(𝐺2) are disjoint, not all processes can have decided by round

0.1𝑛(𝑁 − 1), as claimed. □

6 THE SOURCE OF CONSENSUS TIME COMPLEXITY

In this section, we want to investigate whether the number of iterations TD of the decision procedure is the sole cause

for a large time complexity of consensus in an oblivious message adversary. Before we do so, however, let us briefly

reiterate what we have achieved so far. In Theorem 1 we have seen that consensus can be solved after 𝑐 (𝑛 − 1) · TD

rounds, whereas Theorem 4 revealed that there are in fact oblivious message adversaries where consensus takes up to

𝑛 TD rounds to terminate and TD may be exponential in 𝑛. Thus in these cases a time complexity exponential in 𝑛 is

asymptotically tight for solving consensus under an oblivious message adversary. As we know that the consensus time

complexity is always at most 𝑐 (𝑛 − 1) · TD, and since we have examples where it is at least 𝑛 TD, it might hence be

tempting to assume that TD also determines the termination time of consensus in all cases. In this section, we will

see that this is not the case, as, to the contrary, there are instances where the decision procedure terminates after a

constant number of iterations while the consensus time complexity is exponential in 𝑛. We now proceed to show how

to derive such an instance.

6.1 A partition of an oblivious message adversary

Before going into the details of how to construct a message adversary with the desired property of incurring a large time

complexity of consensus while maintaining a low TD, we investigate an abstract property that, if satisfied by an oblivious

message adversary D for a parameter 𝑡 , leads to a consensus time complexity in the order of 𝑡 . Informally, this property

is that there exists a partition S1, . . . , S𝑡 of D such that S1 is connected in the indistinguishability graph 𝐼 (D) and all the

edges that make up this connection are protected by the communication graphs of S2. Similarly, S2 is connected in

𝐼 (D) and all of the edges in this connection, along with the ones from S1, are protected by the communication graphs

of S3 and so on. Our claim is that if some 𝑡 round communication patterns exist that have no common broadcaster
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and whose round 1 ≤ 𝑟 ≤ 𝑡 communication graphs are picked from S𝑟 , then consensus is impossible by round 𝑡 . The

reason for this, as shown in more detail below, is that the set of communication patterns S1 ◦ . . . ◦ S𝑡 is connected in the

indistinguishability graph 𝐼 (D𝑡 ), because each S𝑟 can maintain the connectivity of S1 ◦ . . . ◦ S𝑟−1 in 𝐼 (D𝑟−1) as all the
edges relevant for this connectivity are protected by the communication graphs of S𝑟 .

Formally, we express this property as follows:

Definition 2. Let S1, . . . , S𝑡 be a partition of D with the following properties, for 1 ≤ 𝑖 ≤ 𝑡 :

(i) Each S𝑖 is connected. That is, for each𝐺,𝐺 ′ in S𝑖 , there is a path from𝐺 to𝐺 ′ in the indistinguishability graph 𝐼 (D)
that consists only of elements from S𝑖 .

(ii) The edges of the subgraph of 𝐼 (D), induced by ⋃𝑖−1

𝑗=1
S𝑗 , are protected by the communication graphs of S𝑖 .

(iii) There is no process 𝑝 such that every communication pattern of Σ = S1 ◦ . . . ◦ S𝑡 is broadcastable by 𝑝 .

Given this partition, we show in Claim 9 below that Σ is connected in 𝐼 (D𝑡 ), which shows that consensus is impossible

after 𝑡 rounds: If all processes do decide after 𝑡 rounds in all runs with a communication pattern of Σ, they all decide

the same value because Σ is connected in 𝐼 (D𝑡 ). Thus, in some run with communication pattern 𝜎 ∈ Σ, the decision is

on an input of a process 𝑝 even though 𝜎 is not broadcastable by 𝑝 , which contradicts Claim 2.

Claim 9. The communication patterns of Σ𝑡 = S1 ◦ . . . ◦ S𝑡 are pairwise connected to each other in 𝐼 (D𝑡 ).

Proof. Let 𝐼 (D) [S] denote the subgraph of 𝐼 (D), induced by the set of communication graphs S. We show an even

stronger claim, namely that there is a set of edges 𝐸𝑡 that connects Σ𝑡 in 𝐼 (D𝑡 ) such that for each 𝑒 ∈ 𝐸𝑡 there is an
𝑒 ′ ∈ 𝐼 (D) [⋃𝑗≤𝑡 S𝑗 ] with the same label ℓ (𝑒) = ℓ (𝑒 ′). We show this by induction on 𝑘 with Σ𝑘 = S1 ◦ . . . ◦ S𝑘 .

The base of the induction 𝑘 = 1 follows directly from property (i) of Definition 2, as S1 is connected in 𝐼 (D).
For the step from 𝑘 to 𝑘 + 1, the induction hypothesis is that there are edges 𝐸𝑘 that connect Σ𝑘 such that for

every 𝑒 ∈ 𝐸𝑘 there is an 𝑒 ′ ∈ 𝐼 (D) [⋃𝑗≤𝑘 S𝑗 ] with ℓ (𝑒) = ℓ (𝑒 ′). We use the graphs of 𝑆𝑘+1 to extend Σ𝑘 to Σ𝑘+1 while

maintaining the connectivity of Σ𝑘+1 as follows.

For every 𝜎1, 𝜎2 ∈ Σ𝑘 with 𝑒 = (𝜎1, 𝜎2) ∈ 𝐸𝑘 , we add to Σ𝑘+1 the extensions 𝜎1 ◦𝐺 and 𝜎2 ◦𝐺 such that 𝐺 ∈ S𝑘+1
and 𝐺 protects 𝑒 . Such a communication graph 𝐺 exists because of property (ii) of Definition 2 and because there is an

edge 𝑒 ′ ∈ 𝐼 (D) [⋃𝑗≤𝑘 S𝑗 ] with ℓ (𝑒) = ℓ (𝑒 ′) by hypothesis.

Finally, for all extensions 𝜎1 ◦𝐺, 𝜎2 ◦𝐺 and 𝜎2 ◦𝐺 ′, 𝜎3 ◦𝐺 ′ added to Σ𝑘+1 in this way, by property (i) of Definition 2,

there is a path 𝜋 from 𝐺 to 𝐺 ′ in 𝐼 (D) that consists only of graphs 𝐺 ′′ ∈ S𝑘+1. We can thus add all the communication

patterns {𝜎2 ◦ 𝐺 ′′ : 𝐺 ′′ ∈ 𝜋} to Σ𝑘+1 as well: This maintains the connectivity of Σ𝑘+1 and ensures the induction

hypothesis as the path 𝜋 lies entirely in 𝐼 (D) [S𝑘+1] by property (i) of Definition 2. □

6.2 An example: choosing the processes

We now construct a set of communication graphs that can be partitioned in accordance with Definition 2, into 𝑡 = 1.07
𝑛

sets. For a set Π of 𝑛 processes, let𝑚 = ⌈ 𝑛
10
⌉. We construct a message adversary with a partition on it, D =

⋃𝑡
𝑖=1

S𝑖 ,
where each S𝑖 is a set of 2𝑖 + 1 graphs, denoted S𝑖 = {𝐺𝑖, 𝑗 | 1 ≤ 𝑗 ≤ 2𝑖 + 1}. Each graph 𝐺𝑖, 𝑗 is defined by a partition of

the process set Π as

Π =


𝐵 ∪ 𝑅 𝑗 ∪𝑈𝑖 ∪𝑈 ′𝑖 ∪ 𝐿𝑖, 𝑗 for 𝑗 = 1,

𝐵 ∪ 𝑅 𝑗 ∪𝑈𝑖 ∪ 𝐿𝑖, 𝑗 for 𝑗 even,

𝐵 ∪ 𝑅 𝑗 ∪𝑈 ′𝑖 ∪ 𝐿𝑖, 𝑗 for 𝑗 ≥ 3 odd.
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The process sets are 𝐵 = [5𝑚 + 1, 𝑛], which is fixed for all 𝑖, 𝑗 . 𝑅 𝑗 with |𝑅 𝑗 | =𝑚, which constitutes the root component

of all graphs 𝐺𝑖, 𝑗 . 𝑈𝑖 ,𝑈
′
𝑖
, with |𝑈𝑖 | = |𝑈 ′𝑖 | =𝑚. The set 𝐿𝑖, 𝑗 is defined to be the set of all the remaining processes. We

choose processes for these sets by induction on 𝑖 , as follows. For the base, we show how to construct the sets for the

communication graphs of S1 = {𝐺1,1,𝐺1,2,𝐺1,3}.

(b1) 𝑅1 = [4𝑚 + 1, 5𝑚]
(b2) 𝑅2 ⊆ [1, 2𝑚], |𝑅2 | =𝑚, chosen arbitrarily

(b3) 𝑅3 ⊆ [2𝑚 + 1, 4𝑚], |𝑅3 | =𝑚, chosen arbitrarily

(b4) 𝑈1 ⊆ [2𝑚 + 1, 4𝑚] different from 𝑅3

(b5) 𝑈 ′
1
⊆ [1, 2𝑚] different from 𝑅2

We proceed with the inductive step of our construction. For this we assume that we are given 𝑅1, . . . , 𝑅2𝑖+1 and

𝑈𝑖 ,𝑈
′
𝑖
, and show how to construct 𝑅2𝑖+2, 𝑅2𝑖+3 and𝑈𝑖+1,𝑈 ′𝑖+1.

(s1) We let 𝑅2𝑖+2 = 𝑈 ′
𝑖

(s2) We let 𝑅2𝑖+3 = 𝑈𝑖

(s3) We let 𝑈𝑖+1 be an arbitrary subset of [2𝑚 + 1, 4𝑚] of size𝑚, different from 𝑅2, 𝑅4 . . . 𝑅2𝑖+2
(s4) We let 𝑈 ′

𝑖+1 be an arbitrary subset of [1, 2𝑚] of size𝑚, different from 𝑅3, 𝑅5 . . . 𝑅2𝑖+3

Note that steps (s1) and (s2) are always possible, as long as the sets𝑈𝑖 and𝑈
′
𝑖
are defined. To see that we can repeat

step (s3) for 𝑡 times, note that there are

(
2𝑚
𝑚

)
many ways to choose a set𝑈𝑖+1 ⊆ [2𝑚 + 1, 4𝑚] of size𝑚. We have(

2𝑚

𝑚

)
≥ (2𝑚)

𝑚

𝑚𝑚
= 2

𝑚 ≥ 2
𝑛/10 > 1.07

𝑛

and the claim follows. The claim for (s4) is analogous.

6.3 An example: the graph structure

We now show how to combine the sets 𝑅 𝑗 ,𝑈𝑖 ,𝑈
′
𝑖
, 𝐵, and 𝐿𝑖, 𝑗 in𝐺𝑖, 𝑗 to obtain an oblivious message adversary that has a

partition as described in Definition 2 for 𝑡 = 1.07
𝑛
(for an illustration, see Fig. 4). While the choice processes of 𝑅 𝑗 is

independent of 𝑖 , the edges between them in 𝐺𝑖, 𝑗 will depend crucially on 𝑖 .

The graph𝐺𝑖, 𝑗 always contains a directed cycle in 𝑅 𝑗 in increasing order of the process identifiers. Note that |𝑅 𝑗 | =𝑚

and each process already has one incoming edge from the preceding process, and thus there are𝑚 − 2 other potential

incoming edges we can choose to add. Hence, there are𝑚 · 2𝑚−2 > 𝑡 (for 𝑛 large enough) possible interconnects for 𝑅 𝑗 ,

and for each 𝑖 we choose a different one.

We define the other edges of 𝐺𝑖, 𝑗 as follows. Each graph contains edges from all process of 𝑅 𝑗 to all processes of 𝐵

and 𝐿𝑖, 𝑗 . For an index 𝑖 , let 𝐵 [𝑖] = {𝑏 ∈ 𝐵 | 𝑖𝑏−(5𝑚+1) = 1}, where 𝑖ℎ is the ℎth bit in the binary expansion of 𝑖 . Note that

for 𝑖 ≠ 𝑖 ′, 1 ≤ 𝑖, 𝑖 ′ ≤ 𝑡 we have 𝐵 [𝑖] ≠ 𝐵 [𝑖 ′], i.e. all the bits of 𝑖 are represented in 𝐵 [𝑖], since log
2
𝑡 < 0.1𝑛.

The rest of the edges depend on 𝑗 , as follows.

• For 𝑗 = 1, add an edge from each node of 𝐵 [𝑖] to each node of𝑈𝑖 ∪𝑈 ′𝑖 ∪ 𝐿𝑖, 𝑗 .
• For 𝑗 even, add an edge from each node of 𝐵 [𝑖] to each node of𝑈𝑖 ∪ 𝐿𝑖, 𝑗 .
• For 𝑗 ≥ 3 odd, add an edge from each node of 𝐵 [𝑖] to each node of𝑈 ′

𝑖
∪ 𝐿𝑖, 𝑗 .

6.4 An example: properties of the adversary
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Finally, let us establish our main claim, namely that the above construction indeed yields an oblivious message adversary

where the consensus time complexity 𝑡 = 1.07
𝑛
grows exponentially with 𝑛, yet TD = 2, a constant. In the remainder of

this section, we show these properties for the oblivious message adversary D constructed above. First, we show that D
partitions as described in Definition 2.

Claim 10. The sets S1, . . . , S𝑡 are a partition according to Definition 2.

Proof. For property (i), the connectivity of S𝑖 , pick any 𝐺𝑖, 𝑗 ∈ S𝑖 . We show this graph is indistinguishable to some

processes from 𝐺𝑖,1, and thus the graph is connected by an edge to 𝐺𝑖,1 in 𝐼 (D). If 𝑗 is odd, the in-neighborhood of

every process of𝑈 ′
𝑖
is the same in𝐺𝑖, 𝑗 and in𝐺𝑖,1, namely 𝐵 [𝑖]. Similarly, if 𝑗 is even, every process of𝑈𝑖 has 𝐵 [𝑖] as its

in-neighborhood in 𝐺𝑖, 𝑗 , and this is also the case for 𝐺𝑖,1.

To prove property (ii), which states that the communication graphs of S𝑖 protect the edges that were used to connect

S1, . . . , S𝑖−1, it suffices to show that for every 1 ≤ 𝑖 ′ < 𝑖 , there are communication graphs 𝐺,𝐺 ′ ∈ S𝑖 such that

Root(𝐺) ⊆ 𝑈𝑖′ and Root(𝐺 ′) ⊆ 𝑈 ′
𝑖′ . For a given 1 ≤ 𝑖 ′ < 𝑖 , note that the graphs 𝐺𝑖,2𝑖′+2,𝐺𝑖,2𝑖′+3 ∈ S𝑖 satisfy 𝑅2𝑖′+2 = 𝑈𝑖′

and 𝑅2𝑖′+3 = 𝑈 ′
𝑖′ by construction.

For property (iii), which states that there is no process by which all communication patterns of Σ = S1 ◦ · · · ◦ S𝑡
are broadcastable, let us investigate the processes that were able to broadcast in (𝐺𝑖,2)𝑡𝑖=1

∈ Σ and (𝐺𝑖,3)𝑡𝑖=1
∈ Σ. We

observe that, by (b2) and (b3), for all 1 ≤ 𝑖 ≤ 𝑡 , Root(𝐺𝑖,2) = 𝑅2 ⊆ [1, 2𝑚] and Root(𝐺𝑖,3) = 𝑅3 ⊆ [2𝑚 + 1, 4𝑚] and thus

𝑅2 ∩ 𝑅3 = ∅. As the broadcasters of (𝐺𝑖,2)𝑡𝑖=1
are 𝑅2 and the broadcasters of (𝐺𝑖,3)𝑡𝑖=1

are 𝑅3, property (iii) holds. □

Claim 11. The decision procedure terminates after TD = 2 iterations on D.

Proof. First, note that all the roots 𝑅 𝑗 are contained in [1, 5𝑚], while 𝐵 = [𝑚5 + 1, 𝑛], hence no edge of 𝐼 (D) labeled
by only processes of 𝐵 will be preserved after the first iteration. Similarly, we can ignore processes of 𝐵 in the labels,

when considering the preservation of the edges.

We show that in the first iteration of the decision procedure, none of the edges of 𝐼 (D) that connect graphs from
different sets in the partition D =

⋃𝑡
𝑖=1

S𝑖 are preserved. Consider𝐺𝑖, 𝑗 ∈ S𝑖 , 𝐺𝑖′, 𝑗 ′ ∈ S𝑖′ , 𝑖 ≠ 𝑖 ′, such that𝐺𝑖, 𝑗 ∼ℓ 𝐺𝑖′, 𝑗 ′ .

Note that in𝐺𝑖, 𝑗 , the processes of𝑈𝑖 (or𝑈
′
𝑖
if 𝑗 is odd) and 𝐿𝑖, 𝑗 have 𝐵 [𝑖] as their incoming edges, while the corresponding

processes in 𝐺𝑖′, 𝑗 ′ have 𝐵 [𝑖 ′], and 𝐵 [𝑖] ≠ 𝐵 [𝑖 ′], so none of𝑈𝑖 (or𝑈
′
𝑖
),𝑈𝑖′ (or𝑈

′
𝑖′ ), 𝐿𝑖, 𝑗 and 𝐿𝑖

′, 𝑗 ′ intersect ℓ .

Hence, the only processes in ℓ that can occur in a root component of a graph of D are processes of 𝑅 𝑗 and 𝑅 𝑗 ′ . Let

us study |𝑅 𝑗 ∩ 𝑅 𝑗 ′ ∩ ℓ |: if 𝑗 ≠ 𝑗 ′ then 𝑅 𝑗 ≠ 𝑅 𝑗 ′ so |𝑅 𝑗 ∩ 𝑅 𝑗 ′ ∩ ℓ | < |𝑅 𝑗 | = 𝑚; if 𝑗 = 𝑗 ′, then the fact that the choice of

interconnects for 𝑅 𝑗 in 𝐺𝑖, 𝑗 depends on 𝑖 guarantees that at least one process of 𝑅 𝑗 is not in 𝑅 𝑗 ∩ 𝑅 𝑗 ′ ∩ ℓ , and again

|𝑅 𝑗 ∩ 𝑅 𝑗 ′ ∩ ℓ | < 𝑚. As any root component 𝑅 𝑗 ′′ of a graph in D has |𝑅 𝑗 ′′ | = 𝑚, no such root component satisfies

𝑅 𝑗 ′′ ⊆ 𝑅 𝑗 ∩ 𝑅 𝑗 ′ ∩ ℓ , and the edge ℓ is not being preserved in the first iteration.

Second, we show that in the second iteration of the decision procedure, none of the edges in 𝐼 (D) that is within a

set S𝑖 is preserved. Assume for contradiction that for some 𝑖 , there are graphs 𝐺𝑖, 𝑗 ,𝐺𝑖, 𝑗 ′,𝐺𝑖, 𝑗 ′′ ∈ S𝑖 , 𝑗 ≠ 𝑗 ′ such that

𝐺𝑖, 𝑗 ∼ℓ 𝐺𝑖, 𝑗 ′ and 𝑅 𝑗 ′′ ⊆ ℓ . All the processes of 𝐵, 𝐿𝑖, 𝑗 and 𝐿𝑖, 𝑗 ′ have incoming edges from 𝑅 𝑗 (or 𝑅 𝑗 ′ ), and since 𝑅 𝑗 ≠ 𝑅 𝑗 ′

none of these processes appear in ℓ . Note that 1 ≤ 𝑗 ′′ ≤ 2𝑖 + 1, and the sets𝑈𝑖 and𝑈
′
𝑖
are chosen to be different from

𝑅1, . . . , 𝑅2𝑖+1, which implies 𝑅 𝑗 ′′ ≠ 𝑈𝑖 ,𝑈
′
𝑖
.

If 𝑗 = 1, only processes of𝑈𝑖 ∪𝑈 ′𝑖 can appear in ℓ . This is because in 𝐺𝑖,1, processes of 𝑅1 do not have any incoming

edge from 𝐵, which they have in all other graphs of S𝑖 , and processes of 𝐿𝑖,1 have incoming edges from 𝑅1, which no

process has in any other graph of S𝑖 . Therefore 𝑅 𝑗 ′′ ⊆ ℓ ⊆ 𝑈𝑖 ∪𝑈 ′𝑖 , where 𝑈𝑖 ⊆ [2𝑚 + 1, 4𝑚] and 𝑈 ′
𝑖
⊆ [1, 2𝑚]. But

either 𝑅 𝑗 ′′ ⊆ [1, 2𝑚] or 𝑅 𝑗 ′′ ⊆ [2𝑚 + 1, 4𝑚], and |𝑅 𝑗 ′′ | = |𝑈𝑖 = |𝑈 ′𝑖 |, so either 𝑅 𝑗 ′′ = 𝑈𝑖 or 𝑅 𝑗 ′′ = 𝑈 ′
𝑖
, a contradiction.
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If 𝑗 is even, 𝑅 𝑗 ′′ ⊆ ℓ ⊆ 𝑅 𝑗 ∪𝑈𝑖 , as any process not in 𝑅 𝑗 ∪𝑈𝑖 has incoming edges from all processes of 𝑅 𝑗 in 𝐺𝑖, 𝑗 ,

which it does not have in𝐺𝑖, 𝑗 ′ . We have 𝑅 𝑗 ⊆ [1, 2𝑚] (as 𝑗 is even) and𝑈𝑖 ⊆ [2𝑚 + 1, 4𝑚], while either 𝑅 𝑗 ′′ ⊆ [1, 2𝑚] or
𝑅 𝑗 ′′ ⊆ [2𝑚 + 1, 4𝑚]. So, either 𝑅 𝑗 ′′ = 𝑅 𝑗 or 𝑅 𝑗 ′′ = 𝑈𝑖 . This can only occur if 𝑗 = 𝑗 ′′: the sets 𝑅𝑘 are different for different

indices 𝑘 , and𝑈𝑖 is chosen to be different from 𝑅1, . . . , 𝑅2𝑖+1. The case of 𝑗 > 1 odd is analogous, and we conclude that

𝑗 = 𝑗 ′′ in both cases. The same analysis applies for 𝑗 ′, and so we have 𝑗 = 𝑗 ′′ = 𝑗 ′, a contradiction. □

𝑅 𝑗

𝐵

𝐿𝑖, 𝑗𝑈𝑖

Fig. 4. Topology of𝐺𝑖,𝑗 for even 𝑗 , used to establish an expo-
nential consensus time complexity in spite of a constant TD.

From this, we conclude the main theorem of this section.

Theorem 5. There exists an oblivious message adversary

with exponential consensus time complexity in spite of a con-

stant iteration complexity TD of the decision procedure.

7 CONCLUSIONS

This paper presented a simple procedure for deciding

whether solving consensus is possible under a given oblivi-

ous message adversary. Whereas it can be viewed as an early

terminating version of the abstract beta class characteriza-

tion by Couloma, Godard, and Peters [12], our formulation

turned out to be instrumental for characterizing the, to the

best of our knowledge, previously unknown termination time of distributed consensus under a given message adver-

sary. We discovered a close relation between the number of iterations of the decision algorithm and the consensus

termination time, and the importance of the existence and number of root-compatible connected components in the

refined indistinguishability graph.

Our work opens several interesting avenues for future work. For example, while we have presented a combinatorial

approach, it would be interesting to study the time complexity of the consensus problem from a topological perspective

as well. It would further be interesting to fully understand the implications of our approach on distributed information

dissemination problems such as broadcast, and explore alternative adversarial models. We also plan to conduct an

empirical study of our algorithms to complement the theoretical perspective and analysis presented in this paper.
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