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Performance Analysis of Machine Learning
Centered Workload Prediction Models for Cloud

Deepika Saxena, Jitendra Kumar, Ashutosh Kumar Singh, Senior member IEEE , and Stefan Schmid

Abstract—The precise estimation of resource usage is a complex and challenging issue due to the high variability and dimensionality
of heterogeneous service types and dynamic workloads. Over the last few years, the prediction of resource usage and traffic has
received ample attention from the research community. Many machine learning-based workload forecasting models have been
developed by exploiting their computational power and learning capabilities. This paper presents the first systematic survey cum
performance analysis-based comparative study of diversified machine learning-driven cloud workload prediction models. The
discussion initiates with the significance of predictive resource management followed by a schematic description, operational design,
motivation, and challenges concerning these workload prediction models. Classification and taxonomy of different prediction
approaches into five distinct categories are presented focusing on the theoretical concepts and mathematical functioning of the existing
state-of-the-art workload prediction methods. The most prominent prediction approaches belonging to a distinct class of machine
learning models are thoroughly surveyed and compared. All five classified machine learning-based workload prediction models are
implemented on a common platform for systematic investigation and comparison using three distinct benchmark cloud workload traces
via experimental analysis. The essential key performance indicators of state-of-the-art approaches are evaluated for comparison and
the paper is concluded by discussing the trade-offs and notable remarks.

Index Terms—Cloud Computing, Deep Learning, Quantum Neural Network, Ensemble Learning, Hybrid Learning, Evolutionary
Neural Network, Forecasting.
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1 INTRODUCTION

THE Cloud Computing (CC) paradigm empowered with
rapid elasticity, resource pooling, outsourced service

management, broad network access, and pay-as-per-use
model, facilitates scalable computing avenues with mini-
mum upfront capital investment to enterprises, academia,
research and all the stakeholders [1, 2]. CC is acting as a
catalyst in driving business progress amidst growing un-
certainty across the geographical boundaries by sustaining
momentum and addressing the inconsistencies in global IT
infrastructures [3]. According to a recent survey report [4],
it is anticipated that the global cloud computing market will
reach USD 1,554.94 billion by 2030, registering a Compound
Annual Growth Rate (CAGR) of 15.7%. Moreover, all the
emerging technologies including Internet of Things (IoT),
fog and edge computing, cyber-physical systems etc. em-
phatically depend on CC, because of their insufficiency of
storage and computing capabilities [5].

1.1 Motivation
Cloud Service Providers (CSP) employ virtualization [6–
10] of physical resources at datacentres to maximize their
revenue while serving the demand of computing instances
with privilege of rapid scalability [11–13]. Therefore, the
comphrehensive management of CC infrastructure entirely
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depends on the fine-grained provisioning of resources in-
cluding storage, processing and networking etc. [14–18]. The
resource demands exhibit high variation over the time ex-
pediting over/under-utilization of physical machines, and
Service Level Agreement (SLA) violation issues [19]. During
peak load arrival, the aggregate demand of VM resources
exceeds the available resource capacity of the servers lead-
ing to overloaded servers and performance degradation,
for example, some VMs may crash, longer unavailability
of resources and increased response time, etc. Whereas
inadequate resource demands lead to the wastage of com-
putational resources. In order to manage the dynamic and
random requirement of resource capacities or handle over-
/under-load, the migration of VMs in real time from an
over-/under-loaded server to another server having suffi-
cient resource capacity, leads to delayed execution. In this
context, effective handling of incoming workloads via prior
estimation is a prime requirement. An accurate prediction
of load triggers reduction of resource wastage, minimum
power consumption, and number of active servers by al-
lowing only the required number of physical machines in
active state. The precise information of workload imparts
prior reservation of resources to execute and manage the
forthcoming workload effectively, reduce response time,
SLA violations, over-provisioning, and under-provisioning
problems, and improve resource utilization, reliability, ser-
vice availability. [20–23].

1.2 Workload Prediction Perspective

The perspective and utility of workload prediction for phys-
ical resource management is illustrated in Fig. 1 via inter-
active information flow between the ‘cloud infrastructure’
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and ‘workload prediction’ blocks. The cluster of servers
{ServerP1, ServerP2, ..., ServerPn} ingrained with vir-
tualization technology enable numerous virtual instances
in the form of VMs, to cater services demands of cloud
users. The virtualization allows sharing of physical ma-
chines among various applications (such as AWS, Docker,
MS Azure, and GCP etc.) with the help of dispatcher and
hypervisor. The resource usage information is monitored
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Fig. 1: Schematic representation and application of Work-
load Prediction

and recorded in a workload repository within workload
prediction and management unit. The raw information in-
cluding number and type of requests; number, type, and
cost of VMs; resource (viz., CPU, memory, bandwidth)
usage, is retrieved from the repository and transferred to
workload prediction unit. The significant attributes from
raw data samples are extracted, aggregated, and normalized
during data pre-processing. A workload prediction model is
employed which generates and evolves over series of stages
such as training, validation, and testing for the real-time
workload prediction. The final prediction model analyzes
and estimates information regarding resource usage, num-
ber and type of requests, etc. for rendering effective resource
management decisions. The predicted resource information
assists in assorting the needed physical resources proac-
tively avoiding the run-time resource provisioning delay
while satisfying Quality of Services (QoS) constraints.

1.3 Research Challenges
Assuredly, the cloud workload prediction plays an essen-
tial role in proactive auto-scaling and dynamic manage-
ment of resources resulting into increased scalability and
throughput of the systems, sustainability, fault-tolerance

via proactive prediction of system failures. However, there
exists some major challenges addressing the cloud workload
prediction which are discussed as follows:

• Heterogeneous Workload: Cloud users submit different
type of application requests, requiring heterogeneous
resource capacities with varying priorities and pric-
ing policies associated with their respective SLAs.

• Uncertain Resource Demands: The resource demand
changes over time in an hour, day, week, month
and years with respect to the type of workload and
deadline of execution submitted by the user. Some-
times the traffic becomes bursty [24] which makes it
difficult to estimate the upcoming resource demands
and decide resource distribution.

• Dynamic Adaptation: Since the cloud environment is
highly variable and dynamic, it suffers from unex-
pected fluctuations, which put forth a crucial chal-
lenge of adaptability for workload prediction i.e., to
adapt or re-generate in order to sustain and perform
efficiently with the changing workloads.

• Data granularity and Prediction window-size: To decide
the appropriate size of data sample or granule and
length of prediction window i.e., for shorter or longer
interval, is another critical challenge which directly
effects learning of relevant patterns and developing
correlations among extracted patterns.

1.4 Paper Outline and Contributions
This paper presents a comprehensive study of machine
learning based cloud workload prediction models. The
study begins in Section 1 with a discussion of the CC
and the vital role and research motivation for the work-
load prediction within CC environment. It is followed by
a schematic representation with an illustrative description
of the application of the load prediction and management
in CDCs. Thenafter, research challenges depicting a com-
mendable points of the need and efficacious impact of an
accurate workload prediction for resource management and
intervening critical issues are discussed. The operational
flow outlining the essential steps of workload prediction are
rendered in Section 2. The intended research methodology
is discussed in Section 3. This study aims to provide an
extensive review of the most prominent and seminal ma-
chine learning based models proposed for the prediction of
extensive range of cloud workloads. Accordingly, Section
4 discusses Evolutionary Neural Network based prediction
models, Section 5 and Section 6 entail review of Deep
Learning and Hybrid learning based prediction models,
respectively while Section 7 and Section 8 pertain to discuss
Ensemble learning and Quantum learning based prediction
models, respectively. Furthermore, the prediction models
underlining the considered five categories are implemented
on the common platform for evaluation and comparison
of their performance in terms of various key performance
indicators (KPI)s in Section 9. Finally, Section 10 concludes
the study with a discussion of trade-offs among the predic-
tion models of different classes are remarked with emerging
research challenges addressing cloud workload forecasting
along with their probable solution avenues are discussed.
To the best of the authors’ knowledge, this is the first paper
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which aims to carry out a comprehensive experimental
study on the machine learning based workload prediction
models in the context of resource management in CC. The
key contributions of this paper are:

• The commendable and recent cloud workload pre-
diction models based on the machine-learning algo-
rithms are designated with respect to their concep-
tual and operational characteristics into a classifica-
tion and taxonomical organization (Fig. 3).

• To illustrate the generalized conceptual and opera-
tional design corresponding to the workload predic-
tion approach belonging to each category, this paper
figures out five specific machine learning model ar-
chitectures and their working strategies.

• A critical discussion and comparison cosidering all
the essential detail of state-of-the-art works are pro-
vided and their features are analyzed to determine
the future research scope addressing the limitation
of the respective class based prediction model.

• An implementation of the approaches associated to
each of the five classes based prediction models on
the same platorm is conducted for in-depth experi-
mental analysis and comparison in terms of essential
KPIs to measure their performance followed by dis-
cussion of trade-offs and notable remarks.

Table 1 gives the explanatory terms for the symbols,
notations, abbreviations used throughout the manuscript.

TABLE 1: Notations with their Explanatory Terms

Notation Definition Notation Definition
WAc actual workload X cell information
WPr predicted workload D Input data
G1 first layer of LSTM B bias
CFRU previous resource usage information WT weight matrix
G2 sigmoid layer of LSTM w neural weight
n number of input layer nodes Θ qubit
p number of nodes in hidden layer ] activation function
z number of base predictor (BP) yIn qubit input vector
MSE mean squared error MAE mean absolute error
m number of data samples ENN evolutionary neural network
CSP cloud service provider CC cloud computing
LSTM long short term memory CDC cloud data centre
RNN recursive neural network DBN deep belief network
Bi-LSTM bi-directional LSTM DNN deep neural network
SGD stochastic gradient descent GRU gated recurrent unit
PLR piecewise linear representation LR logistic regression
TSA top-sparse autoencoder CP canonical polyadic
OED orthogonal experimental design S-G Filter savitzky-golay
PSO particle swarm optimization BP back propagation
ENN evolutionary neural network QoS quality of service
RMSE root mean squared error MAE mean absolute error
MAPE mean absolute percentage error MSE mean squared error
RMSSE root mean segment squared error VM virtual machine
MRPE mean relative predict error DL deep learning
CDF cumulative distribution frequency RMSLE logarithmic RMSE
SaDE Self-adaptive differential evolution AEF absolute error frequency
BaDE bi-phase adaptive differential evolution EQNN evolutionary QNN
TaDE Tri-adaptive differential evolution C-NOT controlled NOT gate
ARIMA auto regressive integrated moving average HL hybrid learning
QNN quantum neural network EL ensemble learning

2 WORKLOAD PREDICTION OPERATIONAL FLOW

The essential steps intended for the workload prediction
are outlined via illustration of an operational design in Fig.
2. Consider input data {D1, D2, ..., Dn} ∈ D is extracted
from the raw data stored in the workload repository. The
data extraction filters relevant attributes from raw data to
improve the pattern learning and developing more intuitive
correlations among extracted patterns. The data aggregation
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Fig. 2: Load prediction operational flow

operation is performed in which the extracted data is assem-
bled as per the chosen prediction window-size (for example,
five minutes) such as {D1, D2, D3} combines to produce an
aggregated data sample D∗1 . Similarly, {Da, Da+1, Da+2}
and {Dn−2, Dn−1, Dn} aggregate to generate data samples
D∗a and D∗n, respectively. The aggregated data samples are
scaled in a specific range [xa, xb] and transformed into a
normalized data samples {DN

1 , DN
2 , ..., DN

n } using Eq. (1),
where $In

min and $In
max are the minimum and maximum

values of the input data set, respectively and the normal-
ized data vector is denoted as $̂In, which is a set of all
normalized input data values. The values of xa and xb
were set equals to 0.0001 and 0.999, respectively for the
experiments. These normalized values are organized into
two dimensional input and output matrices denoted as $In

and $Out, respectively as stated in Eq. (2):

$̂In = xa +
di −$In

min

$In
max −$In

min

× (xb) (1)

$In =


$1 $2 .... $z

$2 $3 .... $z+1

. . .... .
$m $m+1 .... $z+m−1

$Out =


$z+1

$z+2

.
$z+m

 (2)

Accordingly, prediction sliding window is prepared as
shown in the block of sliding window in Fig. 2. These
normalized data samples are divided into three categories
namely, training data, validation data, and testing data. A
Machine Learning Algorithm is appointed as a prediction
model which receives training data to allow specific pattern
learning during iterative learning or optimization process.
Thenafter, this prediction model is evaluated using any
error evaluation function such as RMSE or MSE, which is
tested for accuracy. If the desired accuracy is achieved, a
Trained Prediction Model is obtained and validation data is
passed into it again to check for prediction accuracy. If the
optimal accuracy is achieved, a Validated Prediction Model is
established. Finally, the test/unseen data is passed to the
validated prediction model and accuracy evaluation is per-
formed. If consecutively, the desired accuracy is achieved, a
Final Prediction Model is deployed, otherwise, the respective
stage of the prediction models reversed back to the iterative
learning process. The performance is measured as predicted
output is achieved for cloud resource management.
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Fig. 3: Classification and Taxonomy of Machine learning based Workload Prediction Models

3 RESEARCH METHODOLOGY

This section elaborates the review methodology in detail.
The review procedure includes the gathering of major
cloud workload prediction papers wherein the proposed
approaches are driven from machine learning algorithms
and concepts. The pioneering quality prediction models,
published in top-notch journals and conference databases
such as IEEE, ACM Digital Library, Elsevier, Springer, Wiley
are searched, studied and analysed for comparative study.
Furthermore, the collected papers are refined by the iden-
tification of primary studies based on underlying proposed
approaches, then application of a specific inclusion criteria
for grouping the paper based on similar approaches or
having overlapping features into a common class/category.
To avoid any biasness during research, the review process in
the remaining sections is developed by one of the authors,
and finalized by the other co-author via discussions, and
iterative review methods. The existing prediction models
are thoroughly explored by distinct authors to ensure the
completeness of the proposed study and inter-performance
comparison. While selecting related work corresponding to
each category, the average and below average research work
are filtered and avoided so as to present a clear and con-
cise review of the best of the existing workload prediction
approaches. Accordingly, a classification and taxonomical
representation is presented in Fig. 3 which designates the ex-
isting prediction models into specific classes and sub-classes
of the supervised machine learning approaches based on
their conceptual and operational characteristics.

Correspondingly, the five exclusive workload prediction
classes are designated as Evolutionary Learning, Deep Learn-
ing, Hybrid Learning, Ensemble Learning, and Quantum Learn-
ing. In Evolutionary learning class, the candidate ap-
proaches: ANN+SADE [25], ANN-BADE [26], ANN-BHO
[27], SDWF [27], and FLGAPSONN [28] have applied evo-
lutionary optimization alogorithms for the learning process

or weight update process of neural network layers. The
ample of works subject to Deep learning are further dif-
ferentiated into four sub-classes including Long Short-Term
Memory (LSTM) cell, Autoencoder, Deep Belief Network, and
Deep Neural Network. The sub-class LSTM includes LSTM
[29], 2D LSTM [30], Bi-LSTM [31], Crystal ILP [32], and
FEMT-LSTM [33] which are pre-dominantly based on func-
tionality of LSTM models. Autoencoder sub-category con-
sists of Encoder+LSTM [34], CP Autoencoder [35], LPAW
Autoencoder [36], and GRUED [37] are derived by applying
some useful modification in the traditional autoencoders.
Similarly, DBN+RBN [38], DBN+OED [39], DP-CUPA [40];
and es-DNN [41], DNN+MVM [42], DNN-PPE [43], SG-
LSTM [44] are located with sub-class Deep Belief Network
and sub-class Deep Neural Network, respectively. The Hy-
brid learning class represents integration of several ma-
chine learning algorithms and methods which encompasses
ADRL [45], Bi-Hyprec [46], BG-LSTM [47], HPF-DNN [48],
FAHP [28], ACPS [49], and LSRU [50]. Likewise, Ensem-
ble learning involves concept of base-learners and decision
making to estimate the final outcome. KSE+WMC [51], FAST
[52], SGW-S [19], ClIn [53], AMS [54], E-ELM [55], and SF-
Cluster [48] works enfold Ensemble learning. Finally, the
Quantum learning class comprises EQNN model [56] which
is developed using the principles of quantum computing
and neural network learning.

4 EVOLUTIONARY NEURAL NETWORK BASED
PREDICTION MODELS

The neural networks in which the learning process is
achieved with the help of an evolutionary optimization
algorithm are designated as Evolutionary Neural Networks
(ENN)s. Fig. 4 depicts a schematic and operational view of
an ENN. Consider a feed-forward neural network n-p1-p2-q
comprising of n, q nodes in input and output layers, and p1
and p2 nodes in three consecutive hidden layers. A training
input data vector: {D1, D2, ..., Dn} ∈ D is passed to the
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input layer of this neural network, wherein each node of one
layer is connected to all the nodes of the consecutive layer
with the help of synaptic/neural weights {w1, w2, ..., wz}
∈ W , z is the total number of weight connections between
any two consecutive neural layers. The forward propagation
of training input vector (D) is carried out via weighted
connections using Eqs. (3), (4), and (5), ] is a linear function
computed at each neuron; and B is bias vector. The values of
weight connections {w1, w2, ..., wz} determine impact of the
input vector on the output vector of the neurons and decide
strength of synaptic inter-connections between neurons.

] = (D1 × w1) + (D2 × w2) + ...+ (Dn × wn) (3)

D† · W† = (D1 × w1) + (D2 × w2) + ...+ (Dn × wn) (4)

] = D† · W† + B (5)

The ENN prediction model learns by adjusting the values
of bias and inter-connection weights {w1, w2, ..., wn} ∈ W†
of ENN with the aim of minimizing the prediction error.
This learning process is achieved by applying different
evolutionary optimization algorithm which selects the most
optimal network from the random population of Z net-
works {w†1, w†2, ..., w†Z}. The algorithm repeatedly optimizes
the values of neural weight connections by updating the
population of networks exploring and exploiting the di-
verse population of networks extensively. During successive
epoch, the best network candidate is chosen by evaluating
a fitness function such as prediction error estimation using
Root Mean Squared Error (RMSE), Mean Absolute Percent-
age Error (MAPE) etc. To allow the online optimization of
ENNs, the learning process is periodically repeated with the
previous and most recent samples of workloads for their
training and re-training in an off-line mode while analysing
the live workloads concurrently in the real-time. There are
several approaches proposed using ENN for cloud work-
load prediction and this section further aimed at providing
comprehensive discussion and analysis of these approaches.
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Fig. 4: ENN based load prediction

An ENN-based cloud workload prediction approach
is proposed in [25] wherein a three layered feed-forward

neural network is trained using a Self adaptive Differential
Evolution (SaDE). During the learning process, the pop-
ulation of networks is updated by applying exploration
and exploitation operations using three mutation strategies
selectively followed by uniform crossover. This approach
produced improved accuracy over Backpropagation trained
neural network (BPNN) [57] because of multidimensional
learning in former as compared with optimizing single
solution in later approach. Kumar et al. [26] have proposed
a Biphase adaptive Differential Evolution (BaDE) learning
based neural network that adopted a dual adaptation viz., at
level of crossover during exploitation process and mutation
in exploration phase to improve the learning efficiency of
neural network. As a consequence, this work outperformed
SaDE [25] in terms of prediction accuracy. An auto-adaptive
neural network is developed in [58] wherein the network
connection weights are adjusted with Tri-adaptive Differ-
ential Evolution (TaDE) algorithm. In this approach, the
adaptation is appointed at level of crossover, mutation, and
control parameters generation level which allows enhanced
learning the prediction model. Kumar et al. [59] have used a
BlackHole Optimization (BHO) algorithm to optimize neu-
ral weights and develop a workload prediction model for
dynamic resource scaling. This evolutionary optimization
algorithm updates the movement of the stars i.e., randomly
intialized network vectors and track their position whether
reaching an event horizon. Further, this work was enhanced
by modifying the existing BHO algorithm as enhanced
BHO (i.e., E-BHO) in [27] by including concepts of local
and global blackhole (i.e., best solution) during iterative
learning process of the feed-forward neural network. Also,
this approach has computed the deviation in recent forecasts
and applied it to enhance the accuracy of the forthcoming
predictions. Malik et al. [28] have proposed an ENN based
multi-resource utilization prediction approach. In this work,
Functional Link Neural Network (FLNN) with a hybrid
evolutionary algorithm comprising of Genetic Algorigm
(GA) and Particle Swarm Optimization (PSO) is applied for
neural network weight adjustment during learning process.
It has been compared with FLNN, FLNN with GA (FL-
GANN), and FLNN with PSO (FLPSONN) and validated
its performance against these methods.

A pandect summary of existing ENN-based workload
prediction models are provided in Table 2 which highlights
the major features, implementation details, performance
metrics, parameter tunings and intended computational
complexities during the learning process. The approaches
discussed in [25, 26, 58] are based on Differential Evolu-
tion which needs tuning of multiple control parameters
including crossover-rate, mutation-rate, keeping track of
dynamic or fixed learning-period, maintaining records of
the number of failure and successful candidates during
each epoch. While the prediction approaches entailed in
[27, 59] employing BHO keeps track of event-horizon radius
only and updates the next generation population depending
on the comparison of the fitness value of each candidate
with the horizon radius. Hence, it can be analysed that the
consumption of training time and involved computational
complexity, number of training epochs are higher for DE
based prediction approaches as compared with that of BHO
based prediction. Based on the aforementioned factors, [27]
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TABLE 2: Summary and Comparison of ENN-based Prediction Approaches

Notable
Contributors
(Timeline)

Model/
Approach/
Framework

Workflow/ Strategy Datasets Implementation/
Simulation
tool

Predicted pa-
rameters

Error
metrics

Results or Remarks

Kumar et al.
[25] (2018)

ANN-SaDE Feed-forward neural network is trained with self-
adaptive differential evolutionary algorithm

NASA and
Saskatchewan

MATLAB Number of
requests per
unit time

MSE reduced error up to 0.001
and accuracy improved by
168 times over BP

Kumar et al.
[26] (2020)

ANN-BaDE three mutations stategies and three crossover strate-
gies based adaptation within DE algorithm opti-
mizes ANN

NASA,
Saskatchewan,
Google Cluster
traces

Python Number of
requests,
CPU, memory
usage

MSE accuracy improved up to up
to 91% and 97% over SaDE
and BP, respectively

Saxena et al.
[58] (2020)

ANN-TaDE three mutations stategies and three crossover strate-
gies with control parameter-tuning based adapta-
tions within DE algorithm optimizes ANN

NASA and
Saskatchewan

Python Number of
requests per
unit time

RMSE accuracy improved by 97.4%
and 94.8% over BP and
SaDE, respectively

Kumar et al.
[59] (2016)

Neural
Network
with
BlackHole
Optimiza-
tion

Blackhole algorithm is utilized in the learning pro-
cess of neural network provoded with pre-processed
training data

HTTP traces from
NASA, Calgary and
Saskatchewan web
servers

MATLAB Number of
requests per
unit time

MSE error reduced upto 134 times
over BP

Kumar et al.
[27] (2021)

Self
directed
workload
forecasting
method
(SDWF)

the forecasting error trend is captured by computing
the deviation in recent forecasts and applied to
enhance the accuracy of further predictions

NASA and
Saskatchewan
HTTP traces,
Google Cluster

MATLAB Number of
requests,
CPU, memory
usage

MSE error up to 99.99% over com-
pared methods

Malik et al. [28]
(2022)

FLGAPSONN:
FLNN
+GA+ PSO

Pre-processed training data is passed to FLNN
which is optimized with hybrid algorithm of GA
and PSO

Google Cluster
traces

Python CPU,
memory,
disk usage

MAE improved accuracy by
21.87%, 13.75%, and 30.55%
over FLPSONN, FLGANN,
and FLNN, respectively

is the most admissible among all the discussed approaches.

5 DEEP LEARNING BASED PREDICTION MODELS

Deep Learning models are a class of prediction mod-
els which have immensely influenced the field of cloud
computing. A conceptual and operational design of deep
learning strategy is illustrated in Fig. 5, wherein, the pre-
processed training input data samples: {D1, D2, ..., Dn}
are passed into a deep learning algorithms such as Long
Short-Term Memory (LSTM), Gated Recurrent Units (GRU),
Deep Belief Networks (DBN), Deep Feed-forward Neural
Network (DNN), Autoencoders, Recursive Neural Network
(RNN) and so on for the learning process. The essential
hyperparameters {Hyp1,Hyp2, ...,HypN} of the respective
deep learning algorithms are tuned and re-tuned periodi-
cally to create and update the deep learning based predic-
tion model. The trained model is further evaluated using
validation data to estimate its performance and accuracy.
Accordingly, a deep learning based model optimized with
best or most admissible hyperparameters is obtained. For
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DNN Encoder RNN
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Deep Learning 
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Model
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Fig. 5: Deep Learning based Prediction Operative View

instance, LSTM based deep learning algorithm is applied
for the prediction. The resource usage of actual load (ZAc

RU )
stored as a historical workload is fed as input into neural
network input layer for prediction of future resource us-
age. LSTM-RNN based prediction model comprises of cells
containing four neural network layers, where previous cell

(X t−1) information is passed to current cell (X t). The first
layer (G1) applies Eq. (6) to decide the amount of previous
resource usage information (CF t

RUi
) which is tranferred to

the next state; where WT is weight matrix, B is a bias
value, ZPr

t−1 and ZPr
t are previous output and current input,

respectively. The cell state is updated using two network
layers viz., sigmoid layer (G2) which decides the values to
be updated (It) using Eq. (7), and tanh layer for generation
of a new candidate values vector (X̂ t) using Eq. (8). Finally,
Eq. (9) combines both outputs to update cell state.

CF t
RUi

= G1(WT CF · [ZPr
t−1,ZAc

t ] + BRU ) (6)

It = G2(WT I · [ZPr
t−1,ZAc

t ] + BI) (7)

X̂ t = tanh(WT X · [ZPr
t−1,ZAc

t ] + BX ) (8)

X t = CF t
RUi
×X t + X̂ t−1 × It (9)

The RU of predicted traffic (ZPr
t+1) for different VMs hosted

on a server are aggregated to determine any overload
proactively and alleviate it by migrating VMs with highest
predicted RU to an efficient server. A comprehensive survey
of the existing workload prediction models belonging to
four distinct categories of deep learning approaches are
discussed in the subsequent sections.

5.1 LSTM-RNN
A fine-grained cloud workload prediction model using long
short-term memory based recurrent neural network (LSTM-
RNN) is presented in [29] which is capable of learning
a long-term dependencies and producing a high accuracy
for host load prediction. Tang [30] has proposed a two-
dimensional LSTM neural network cell structure by utiliz-
ing a hidden layer week-based dependence and weights
parallelization algorithm. This work has improved LSTM
algorithm by providing the mathematical description of
parallel LSTM algorithm and its optimization with an er-
ror back propagation method. Its performance is validated
using the real workload of the Shanghai Supercomputer
Center. Tuli et al. [34] have proposed an automatic straggler
(slow processing tasks) prediction and mitigation method
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for cloud environment using an encoder LSTM network
that addressed heterogeneous host and volatile task char-
acteristics. The encoder analyses the resource usage and
load information and passes the information to the LSTM.
Further, an exponential moving average of input matrices
is taken into account to prevent the LSTM model from
diverging. A storage workload prediction approach named
CrystalLP based on LSTM neural network is introduced
in [32]. In this approach, a storage workload time-series
model is developed which collects the intended workload
patterns that helps in precise and adaptive scheduling with
load balancing. Thereafter, LSTM based workload predictor
is implemented which is trained or optimized with an
algorithm composed of an integration of stochastic gradient
descent (SGD) together with the Adam optimizer. Gao et
al. [31] have presented a multi-layer Bi-directional Long
Short Term Memory (Bi-LSTM) based task failure prediction
algorithm. It comprises of one input layer, two Bi-LSTM
layers, one output layer and the Logistic Regression (LR)
layer to predict whether the tasks are failed or finished.
Unlike traditional LSTM which uses only forward state, Bi-
LSTM operates on both forward and backward states to
allow more accurate estimation of the weights of both closer
and farther input features. Ruan et al. [33] have established
a turning point prediction model for cloud server workload
forecasting considering cloud workload features. Thenafter,
a cloud feature-enhanced deep learning model with rule-
filtering based Piecewise Linear Representation (PLR) al-
gorithm is build for workload turning point prediction.
The performance evaluation of this model illustrated its
prediction accuracy effectiveness in terms of improvement
in F1 score over existing state-of-the-art methods.

5.2 Auto-encoder
An efficient canonical polyadic (CP) decomposition based
deep learning model is proposed in [35] for prediction of
industrial workloads in cloud, wherein, a CP auto-encoder
is constructed by converting a basic autoencoder into tensor
space with the help of bijection. In this model, the basic
auto-encoder in the CP decomposition format is followed
by the stacked autoencoder model in the CP decomposi-
tion format. The stacked autoencoder is created to learn
the relevant features of the workload information and the
CP decomposition is employed to compress the features
substantially for improving the training efficiency. Chen et
al. [36] have established a deep Learning based Prediction
Algorithm for cloud Workloads (L-PAW) which included a
Top-Sparse Auto-encoder (TSA) for an effective extraction
of the essential representations of workloads. This approach
integrated GRU and recurrent neural network (RNN) to
evict the long-term memory dependencies for prediction of
forthcoming cloud workloads with enhanced accuracy.

5.3 Deep Belief Network
Qiu et al. [38] have proposed a Deep Belief Network
(DBN) composed of multiple-layered Restricted Boltzmann
Machines (RBMs) and a regression layer for prediction of
cloud workloads. In this model, DBN extracts the high level
features from all VMs and the regression layer is used to
predict the forthcoming load on VMs. It learns significant

patterns efficiently using prior knowledge in an unsuper-
vised manner. Zhang et al. [39] developed a DBN approach
based load prediction model which is a stacked RBM and
used Backpropagation algorithm to minimize its loss func-
tion. It incorporated analysis of variance and Orthogonal
Experimental Design (OED) techniques into the parameter
learning of DBN and have achieved a high prediction ac-
curacy over ARIMA. Also, a similar DBN-based approach
is presented in [60] which can capture high variances in
cloud metric data without handcrafting specified feature for
short term resource demands and long-term load prediction.
Wen et al. [40] have presented a DBN and Particle Swarm
Optimization (PSO) based CPU usage prediction algorithm
named as DP-CUPA. This algorithm includes three main
steps: pre-processing of training data samples; adoption of
autoregressive and grey models as base prediction models;
and training of DBN. The PSO is utilized for estimation of
DBN parameters during learning process.

5.4 Deep Neural Network
Xu et al. have proposed an efficient supervised learning-
based Deep Neural Network (esDNN) algorithm [41] to ex-
tract and learn the features of historical data and accurately
predict future workloads. The multivariate data is converted
into supervised learning time series and a revised GRU is
applied which can adapt to the variances of workloads to
achieve accurate prediction and overcome the limitations
of gradient disappearance and explosion. A DNN based
workload prediction method (designated as DNN-MVM) is
developed in [42] to handle the workload prediction from
multiple virtual machines. It employed a pre-processing
and feature selection engine to handle data directly from
these virtual machines. The model classifies data based on
historical loads to provide enhanced information or knowl-
edge to the cloud service provider for resource management
and optimization. It is useful to predict the peak demands
of resources in the future. This model is validated using
Grid Workload Archive (GWA) dataset. Bi et al. [44] have
proposed another DNN based workload prediction model
wherein a logarithmic operation is performed ahead of task
smoothening to minimize the standard deviation. Thenafter,
a Savitzky-Golay (S-G) filter is applied to eliminate the
extreme points and noise interference in the sequence of
the original data. The DNN based LSTM (SG-LSTM) is em-
ployed to extract complicated characteristics of a task time
series. A Back Propagation Through Time (BPTT) algorithm
is implemented by adopting gradient clipping method to
eliminate a gradient exploding problem and optimization
of the model is accomplished using Adam Optimizer. The
model is evaluated with Google Cluster dataset to confirm
its efficacy over existing methods. A DNN learning based
Power Prediction Engine (DNN-PPE) is proposed in [43]
which includes data acquisition, data pre-treatment, and
prediction modules. Recursive auto encoder is utilized for
short-time fine-grained prediction that can track the rapid
changes of the power consumption within a data centre.

6 HYBRID PREDICTION MODELS

The prediction models based on hybrid machine learning
combines different machine learning algorithms (say N al-
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TABLE 3: Comparative Summary of Deep Learning-based Prediction Approaches

Notable
Contributors
(Timeline)

Model/
Approach/
Framework

Workflow/ Strategy Datasets Implementation/
Simulation tool

Predicted pa-
rameters

Error
metrics

Results or Remarks

Kumar et al.
[29] (2018)

LSTM-
RNN

Combinations of networks in loop retains learning
information, performs specific operation to pro-
duce output for next network in loop

Web server HTTP
traces

MATLAB No. of
requests
per unit time

MSE reduced RMSE up to 0.00317

Tang [30] (2019) 2-D LSTM Input data is analysed on week dependence basis
and weights parallelization algorithm is used for
improved optimization of LSTM

l workload of
the Shanghai
Supercomputer

Not mentioned Workload
over days

MSE accuracy improved for large-
scale real-time cloud services

Tuli et al. [34]
(2021)

Encoder
LSTM

Encoder is used for input matrices preparation and
LSTM predicts the load information

PlanetLab traces CloudSim and
Python

CPU,
Memory,
Bandwidth

MSE,
MAPE

reduced execution time, re-
source contention, energy
and SLA violations by 13%,
11%, 16% and 19%

Gao et al. [31]
(2020)

Bi-LSTM Training data propagates via input layer, two Bi-
LSTM layers, one output layer and LR layer dur-
ing learning process

55,55,55 tasks traces Tensorflow in
Python

task failure
rate

F1-Score 93% accuracy and 87% task
failure correctly predicted

Ruan et al. [32]
(2021)

CrystalLP Time-series model collects load patterns and LSTM
trained with SGD+Adam optimizer predicts load

Web search archive
SPC traces

Keras library,
Python

Request size MAPE,
RMSE,
MAE

achieved 1.10% improve-
ment in MAPE, and better
performance in MAE over
existing methods

Ruan et al. [33]
(2022)

FEMT-
LSTM

a turning point prediction model considering
cloud workload features followed by feature-
enhanced deep learning model is developed

Google Cluster, Al-
ibaba, HPC Grid
workloads

Keras library,
Python

CPU usage binary
cross-
entropy,
F1, pre-
cision,
recall

F1 score is improved by 6.6%
over existing approaches

Zhang et al. [35]
(2018)

CP auto-
encoder

canonical polyadic decomposition compresses the
features and stacked auto-encoder learns the pat-
terns for prediction

PlanetLab traces MATLAB CPU
utilization

MAPE,
RMSE

achieves a higher training ef-
ficiency and prediction ac-
curacy for industrial work-
loads

Chen et al. [36]
(2019)

L-PAW
auto-
encoder

TSA extracts workload patterns and GRU+RNN
prdicts the upcoming load

TensorFlow 1.4.0,
Python

DUX-cluster,
Alibaba, and
Google cluster

CPU,
memory,
disk I/O
usage

MSE,
CDF

outperformed the accuracy
of LSTM, RNN, GRU

Qiu et al. [38]
(2016)

DBN+RBMs DBN extracts significant patterns while learning
and regression is used for prediction

PlanetLab traces CloudSim CPU
utilization

MAPE improved the performance
up to 1.3% over existing
method

Zhang et al. [39]
(2017)

DBN+OED Pre-processed data is passed into DBN+OED
model which is tuned with Backpropagation al-
gorithm

Google Cluster
traces

Python CPU, RAM
usage

MSE MSE achieved in the range
[10−4, 10−3]

Wen et al. [40]
(2020)

DP-CUPA DBN predicts the load information and PSO esti-
mates the fitness values of its tuning parameters

Google Cluster
traces

not mentioned CPU usage MSE,
MAPE,
MAE

outperformed autoregres-
sive, DBN, Grey model

Xu et al. [41]
(2022)

es-DNN supervised learning converts multi-variate data
into time-series and modified GRU is applied

Alibaba and Google
Cluster traces

TensorFlow
2.2.0 in Python

CPU usage
per time-unit
interval

MAPE,
MSE,
RMSE

reduced number of active
hosts efficiently and opti-
mized cost

Bhagtya et al.
[42] (2021)

DNN-
MVM

Selected data from multiple VMs is classified, pre-
processed and passed to DNN-MVM for learning
process

Grid Workload
Archive (GWA)
traces

Google Colab
using Keras

CPU,
Memory,
and Disk
Utilization

MSE achieved more than 85% pre-
diction accuracy for each re-
source

Bi et al. [44]
(2019)

SG-LSTM S-G filter provides smoothen data to LSTM for
more accurate prediction

Google traces Python CPU, Memory Logarithmic
RMSE,
R2

outperformed BPNN, LSTM,
SG-LSTM, and SG-BPNN

Li et al. [43]
(2016)

DNN-PPE Preprocessed data is passed to Recursive Auto
Encoder

world cup 98
(WC98) and Clark
net traces

Python Power, No. of
requests

- 79% error reduction over
canonical prediction

gorithms) and feed the outcome of one algorithm to another
(one-way) to create an efficient machine learning model for
precise and accurate predictions. These hybrid models are
build using various collaborations such as ‘Classification +
Classification’; ‘Classification + Clustering’; ‘Clustering + Clus-
tering’; ‘Clustering + Classification’; ‘Classification + Regres-
sion’; ‘Clustering + Regression’ etc. These combinations are
selected as per the requirement and challenges respective
to the intended problem to minimize features noise and
biasness, reduce variance, and enhance the accuracy of
prediction. A schematic representation of hybrid prediction
model is depicted in Fig. 6. In this model, the raw and

Raw Data for sampling

Data  Preprocessing

Machine 
Learning 

Algorithm A

Outcome 1

Machine 
Learning 

Algorithm B

Outcome 2

Machine 
Learning 

Algorithm N

Outcome N

Machine 
Learning 

Algorithm Final

Hybrid 
Prediction 

Model

Performance 
Outcome

Feature 
Extraction

Filtering/Data 
Smoothening

Integration of different algorithms 

Fig. 6: Hybrid Prediction Model

complex data samples are pre-processed by filtering and
smoothening the data samples via extraction of significant
features, aggregation, and scaling or normalization. The
pre-processed data samples passes through a series of N
machine learning algorithms feeding their outomes as an
input to other machine learning algorithm, generating a
hybrid prediction model for performance measurement and
deployment for the intended purposes. The significant key
contributions related to hybrid approach based workload
prediction models are discussed below.

Kardani et al. [45] have developed a hybrid Anomaly-
aware Deep Reinforcement Learning-based Resource Scal-
ing (ADRL) for dynamic resource scaling in the cloud envi-
ronment. It presents an anomaly detection method for Deep
Reinforcement Q-Learning-based decision making scheme
that identifies anomalous states in the system and trig-
gers actions accordingly. This work includes two levels of
global and local decision-makers to govern the necessary
scaling actions. ADRL improved the QoS with essential
actions only and increased stability of the system. A hybrid
Recurrent Neural Network (RNN) based prediction model
named ‘BHyPreC’ is proposed in [46] which comprises of
Bidirectional Long Short-Term Memory (Bi-LSTM) on top of
the stacked LSTM and GRU for prediction of VM resource



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

usage. It improves the non-linear data analysis capability of
Bi-LSTM, LSTM, and GRU models separately and confirmed
better accuracy compared with other statistical models. It
uses combined grid search technique of historical window
size to optimize the model and determine the best possible
set of window size. Bi et al. [47] proposed integrated deep
learning method named ‘BG-LSTM’ which incorporates BiL-
STM and GridLSTM to achieve high-quality prediction of
workload and resource time series. During preprocessing,
it applies a filter of Savitzky-Golay (SG) to reduce the
standard deviation before smoothing workload. It can effec-
tively extract complex and non-linear features of relatively
longer time series and achieve high prediction accuracy.
A Hierarchical Pythagorean Fuzzy Deep Neural Network
(HPFDNN) is proposed in [61] to predict the amount of
cloud resources requirement. The neural representations
of original sampling data are used as a supplementary
approach for clear interpretations of true results which is
beyond the use of fuzzy logic. The users can determine the
expected quantity of cloud services utilizing the forecasts of
the deep neural network which will help in reducing cost.

A hybrid autonomous resource provisioning model
based on MAPE-k control loop for multi-tier applications
is presented in [28]. It is a combination of the Fuzzy Ana-
lytical Hierarchy Process approach named as ‘ FAHP’. The
experimental results indicate that the proposed solution out-
performs in terms of allocated virtual machines, response
time, and cost compared with the other approaches. An
Adaptive Classified Prediction Scheme (ACPS) is proposed
in [49] which first categorises the workloads into different
classes that are automatically assigned for different pre-
diction models according to workload features. Further,
the problem of the workload classification is transformed
into a task assignment by establishing a mixed 0–1 integer
programming model which is solved quickly by utilizing
an improved branch and bound algorithm. Peng et al.
[37] have applied a GRU based Encoder-Decoder network
named ‘GRUED’ containing two Gated Recurrent Neural
Networks (GRNNs) to address these issues. It has been
evaluated via experiments for the prediction of multi-step-
ahead host workload in cloud computing. Shuvo et al. [50]
have proposed a novel hybrid-method named ‘LSRU’ for
improving the prediction accuracy. LSRU is an integration of
LSTM and GRU for short-time ahead prediction along with
long-time ahead prediction with sudden burst of workload.

7 ENSEMBLE PREDICTION MODELS

An ensemble approach involves the use of multiple ‘Base
Prediction’ (BP ) models or ‘Experts’ to forecast the expected
future outcome of an event. The final outcome of an ensem-
ble model is computed by combining the forecasts of each
expert using a voting engine. The conceptual architecture
of an ensemble based predictive approach is illustrated
in Fig. 7. The historical and live data samples are pre-
processed and a ‘sliding window’ is prepared and the input
data vector thus created is given as input to all the base
predictors {BP1, BP2, ..., BPz}, where z is the number of
base predictors used for ensemble learning. The estimated
outcome of each base predictor is assigned a weight value
indicating their significance in the final prediction outcome.

Fitness 
Evaluation

Final Prediction 
Model

Predicted 
Output

Weight Allocation

Historical 
Data

Live 
Data

Data  Preprocessing

Base predictors Weighted predictors

Building Ensemble Model 

Fig. 7: Ensemble Prediction Model

The weight allocation and their updation requires a learning
process using suitable optimization method such as multi-
class regression, priority based method, or evolutionary
learning algorithm. The ensemble learning approach is more
effective over the individual prediction method that suffers
from challenges like, high variance, low accuracy, feature
noise and bias. Basically, in ensemble approach, the various
machine learning models work independently of each other
to give a prediction and a voting system (hard or soft
voting) based on weighted values associated to each base
predictor determines the final prediction. The prominent
models based on ensemble learning are discussed below.

Singh et al. [51] have addressed the problem of ex-
tensive range of workloads prediction by extending and
adapting two online ensemble learning methods including
Weighted Majority (WM) and Simulatable Experts (SE). The
classical SEs are extended from binary outcome space to
k-outcome space to make them suitable for solving any k-
class problem (designated as ‘kSE’). The Weighted Majority
ensemble model parameters are regenerated incrementally
making these algorithms computationally more efficient and
suitable for handling massive range of online data streams
(designated as ‘WMC’). These models are evaluated using
large datasets of 1570 servers and have verified that ap-
proximately 91% servers can be correctly predicted with the
extended versions of these algorithms. Feng et al. [52] have
proposed an ensemble model for Forecasting workloads
with Adaptive Sliding window and Time locality integration
named FAST. An adaptive sliding window algorithm is
developed considering correlations of trend and time, and
random fluctuations of forthcoming workloads to maximize
accuracy of prediction with lower overhead. Also, a time
locality concept for local-predictor behavior is accomplished
for the error-based integration strategy. The entire model is
integrated by developing a multi-class regression weight-
ing algorithm. The performance of the model is validated
using Google Cluster trace datasets. An integrated model
for temporal prediction of workloads is proposed in [19]
which combines Savitzky–Golay (SG) filter and wavelet
decomposition with stochastic configuration networks to
predict approaching workload. In this model, a task time
series is smoothened using SG filter and decomposed into
components via wavelet decomposition method. This model
named ‘SGW-S’ is able to characterize the statistical features
of both trend and detailed components and achieved an
improved performance with faster learning.

A cloud resource forecasting model named ‘CloudIn-
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TABLE 4: Comparative Summary of Hybrid Machine Learning-based Prediction Models

Notable
Contributors
(Timeline)

Model/
Approach/
Framework

Workflow/ Strategy Datasets Implementation/
Simulation tool

Predicted pa-
rameters

Error metrics Results or Remarks

Kardani et al.
[45] (2021)

ADRL:
Deep
RL+Q-
Learning

Deep Q-learning based RL model to respond CPU
and memory bottleneck problem that help in re-
source scaling and decision making

Web-based Rice
University Bidding
System (RUBiS)

Python with
Java-based
CloudSim

CPU,
Memory,
Response-
time

MSE improved QoS and sta-
bility

Karim et al. [46]
(2021)

BiHyPrec:
Bi-LSTM
+ LSTM +
GRU

Pre-processed data is given to collaborative model
of Bi-LSTM, LSTM, and GRU units that accom-
plishes a deep learning-based approach to effec-
tively tackle the complexity and non-linearity of
time series data

Bitbrains traces Python
and Google
Colaboratory

CPU usage MSE, MAPE,
MAE, RMSE

performs better over
ARIMA, LSTM, GRU,
Bi-LSTM

Bi et al. [47]
(2021)

BG-LSTM:
Bi-LSTM +
GridLSTM

Savitzky-Golay (SG)is used to smoothen data which
is passed to hybrid model of Bi-LSTM and GridL-
STM for prediction

Python Google Cluster
traces

CPU and
RAM usage

MSE, RMSLE,
R2

better accuracy over
SG-LSTM, SG-Bi-LSTM,
SG-GridLSTM

Chen et al. [61]
(2021)

HPFDNN:
Hierar-
chical
Pythagoras
+ Fuzzy
DNN

Pythagorean fuzzy logic, neural representations,
and deep neural network are integrated and net-
work training method with adaptive learning rate is
adopted to minimize the cost of cloud services for
users

Carnegie Mellon
University dataset

Not mentioned Number of re-
quests

Accuracy cost
and total cost

saved 202.48 dollars for
real-time requests over
existing methods

Khorsand et al.
[28] (2018)

FAHP FAHP and SVR algorithms are developed for work-
load prediction and resource provisioning and the
appropriate autoscaling decisions

Clark Net, NASA,
Synthetic workload

CloudSim and
Open source
RUBIS

Request
arrival,
response
time, cost

MSE, NMSE,
RMSE, RMSSE

Reduces cost of rental
resources for cloud ser-
vice provider with QoS

Liu et al. [49]
(2017)

ACPS Distinct prediction models are automati- cally as-
signed depending on the workload features

Google Cluster
traces

Python Response
time and Cost

Mean error,
mean relative
prediction error
(MRPE)

Prediction error is re-
duced by 40.86% over
Linear Regression

Peng et al. [37]
(2018)

GRUED GRU encoder maps a variable-length workload se-
quence to a fixed-length vector, and the GRU de-
coder maps the vector representation back to a
variable-length future workload series

Google Cluster and
Dinda workloads

Python, UNIX
system

CPU, Job ar-
rivals

MAE, MAPE,
RMSE, root
mean segment
squared error
(RMSSE)

Reduce prediction error
over LSTM

Shuvo et al. [50]
(2020)

LSRU:
LSTM +
GRU

Some statistical methods such as AR, ES, ARMA,
and ARIMA for forecasting and passed to LSTM
and GRU combined unit for an improved prediction
accuracy

Bitbrains Kaggle CPU, Disk,
memory,
bandwidth

MAE, MAPE,
RMSE, MSE

Reduce prediction error
over LSTM and GRU

sight’ (ClIn) based on ensemble prediction approach is
proposed in [53]. This model meticulously locates the most
admissible machine learning prediction approach by train-
ing a statistical features based classifier for the accurate
estimation of job arrivals. It employs a number of local
predictors or experts and builds an ensemble prediction
model using them by dynamically determining the signif-
icant weights (or contributions) of each local predictor. The
adaptive weight scores are optimized at regular intervals
with the help of multi-class regression with a SVM classifier
for selection of the most appropriate prediction model with
highest accuracy during respective prediction interval. This
model is tested using three different categories of workloads
including: web, cluster and high performance computing
workloads to prove its efficacy over existing prediction
models. Baig et al. [54] have proposed an ensemble and
adaptive cloud resource estimation model named ’Adaptive
Model Selector’ (AMS). This model determines the most
admissible machine learning prediction approach by train-
ing a statistical features based classifier for the accurate
estimation of resources utilization. It builds a classifier using
Random Decision Forest (RDF) to predict the best model
for a given sliding window data by training and re-training
periodically at regular time-intervals. The selected features
and identified prediction methods are logged as training
data and passed to sliding window for learning process.
The performance of this model is evaluated using Google
Cluster, Alibaba, and Bitbrains datasets. Kumar et al. [55]
have presented an ensemble learning based workload fore-
casting model named ‘E-ELM’ that uses extreme learning
machines and their associated forecasts are weighted by
a voting engine. In this work, a metaheuristic algorithm
inspired by blackhole theory is applied to decide the optimal
weights. The accuracy of the model is evaluated for CPU
and memory demand requests of Google cluster traces and

for CPU utilization of PlanetLab VM traces. Chen et al.
[48] have proposed a self-adaptive prediction method us-
ing ensemble model and subtractive-fuzzy clustering based
fuzzy neural network (ESFCFNN). The user preferences
and demands are characterized and an ensemble prediction
model is constructed using several base predictors.

8 QUANTUM NEURAL NETWORK BASED PREDIC-
TION MODELS

A Quantum Neural Network (QNN) based prediction
model is an intelligent model for prediction with the ma-
chine learning capabilities of neural network and com-
putational proficiency of quantum mechanics to achieve
prediction accuracy with high precision. Basically, it is a
neural network comprising of Qubit neurons and Qubit
weights instead of real-numbered values and the training
data information is also propagated in the form of Qubits.
A Qubit is represented as a one, a zero, or any quantum
superposition of these states. Mathematically, it can be real-
ized as: |Ψ> = α|0> + β|1>, where α and β are complex
numbers specifying the probability amplitudes of states |0>
and |1> respectively. The schematic representation of QNN
based prediction model is shown in Fig 8 which comprises
of one input, multiple hidden and one output layers having
n, p and q qubit nodes, respectively which represents n-p-
q Qubit network architecture. The inter-connection weights
between Qubit neurons of different layers are also taken
in the form of Qubits that are adjusted during learning
process. The state transitions of Qubit neurons are derived
from the various Quantum gates such as Rotation gate,
Controlled-Not gate etc. The training data samples values
are extracted and aggregated into a specific time-interval
such as 5 minutes which are scaled in a specific range
using a normalization function. The normalized data values
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TABLE 5: Comparative Summary of Ensemble Learning-based Prediction Approaches

Notable
Contributors
(Timeline)

Model/
Approach/
Framework

Workflow/ Strategy Datasets Implementation/
Simulation
tool

Predicted pa-
rameters

Error metrics Results or Remarks

Singh et al. [51]
(2014)

kSE+WMC SE is extended to k-outcome space and WM is
improved for incremental and computationally ef-
ficient learning process

Dataset G(1570) Not mentioned server work-
load

MAPE 89% accurate predic-
tions as compared with
13–24% for baseline al-
gorithms

Feng et al. [52]
(2022)

FAST The adaptive sliding window considers all types of
workload trends with time locality concept for error-
based integration is developed to enhance predic-
tion accuracy

Google Cluster
traces

Python CPU, memory Absolute Error,
RMSE, R2

improved prediction
accuracy by 14.99%
to 27.55on RMSE and
22.57% to 76.86% on R2

Bi et al. [19]
(2019)

SGW-S SG filter and wavelet decomposition is integrated
with stochastic configuration networks to predict
workload with high accuracy

Google Cluster
traces

Not mentioned task arrival
rate

MSE, R2 Use of SG-filter with
wavelet decomposition
helps improve the pre-
diction accuracy

Kim et al. [53]
(2020)

ClIn:
ensemble
with
multi-class
regression

Different local predictors constitutes an ensemble
prediction model by dynamically determining and
updating the significant weights of each predictor

Web, cluster, HPC
Grid workloads

Python Job arrival per
unit time

Normalised
RMSE,
Absolute Error

Up to 15%–20%
less under-/over-
provisioning with high
cost-efficiency and low
SLA violations

Baig et al. [54]
(2019)

AMS Predict the forthcoming resource demand with the
best predictor model as selected by the RDF classi-
fier which is updated periodically with time

Alibaba, Bitbrains,
Google Cluster

Python CPU RMSE, MAE improved prediction ac-
curacy from 6%-27%
over current method-
ologies

Kumar et al.
[55] (2020)

E-ELM ELM based local predictors are trained and selected
by employing a weight updation method with a
help of a metaheuristic algorithm

MATLAB Google Cluster
and PlanetLab
traces

CPU, memory RMSE, MAE RMSE reduced up to
99.20% over existing
methods

Chen et al. [48]
(2015)

Subtractive-
fuzzy
clustering

user preferences and demands are characterized
into an ensemble prediction model subtractive-
fuzzy clustering based fuzzy neural network

Data Flow Statistics
traces

CloudSim Network
resource
traces

MSE, MAE Effective in resource de-
mand prediction
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Output 
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Input 
Layer
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O
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Fig. 8: Quantum Neural Network

are transformed into quantum state values or Qubits by
applying the effect of qubit rotation using Eqs. (10) and (11);

yIni = f(Θi
In) (10)

Θi =
π

2
×Di (11)

whereDi is the ith input data point, Θi is ith Quantum input
point to the network. The QNN model extracts relevant and
significant patterns from actual workload and analyzes n
previous workload values to estimate forthcoming work-
load information at the next (n+1)th instance of time within
the datacentre. The learning process of QNN is derived by
a Qubit based optimization algorithm that can manipulate,
explore, and exploit Qubits to regenerate the population and
prevent the problem of stagnation. The workload prediction
methods using QNN is still at an infancy stage.

The only work established thus far using QNN based
model for workload prediction is proposed in [56]. This
model exploits the computational efficiency of quantum
computing by encoding workload information into Qubits
and propagating this information via network for estimati-
mation of the workload or resource demands with enhanced

accuracy proactively. The rotation and reverse rotation ef-
fects of the C-NOT gate served the activation function at the
hidden and output layers to optimize the Qubit weights.
Self Balanced Adaptive Differential Evolution (SB-ADE) al-
gorithm is developed to optimize qubit network weights.
This model is evaluated using three different categories of
workloads where the prediction accuracy is substantially is
improved over the existing approaches. A workload pre-
diction model using complex numbers, is presented in [62]
where a high capability of learning and better accuracy is
applied to multi-layered neural networks with multi-valued
neurons (MLMVN) prediction model in less time.

9 PERFORMANCE EVALUATION

9.1 Experimental Set-up
The simulation experiments are conducted on a server ma-
chine assembled with two Intel® Xeon® Silver 4114 CPU
with a 40 core processor and 2.20 GHz clock speed. The com-
putation machine is deployed with 64-bit Ubuntu 16.04 LTS,
having 128 GB RAM. All the selected best prediction works
based on Evolutionary Neural Network (ENN), Ensem-
ble Learning (EL), Hybrid Learning (HL), Deep Learning
(DL), Evolutionary Quantum Learning were implemented
in Python 3.7 with the details of various intended parame-
ters with their values listed in Table 6.

9.2 Data Sets
The performance analysis and comparison of various ma-
chine learning based prediction models are executed us-
ing three different benchmark datasets including CPU and
memory usage traces from Google Cluster Data (GCD) [63]
and CPU usage from PlanetLab (PL) virtual machine traces
[64]. GCD workload provides behavior of cloud applications
for the cluster and big data analytics such as Hadoop which
gives resource: CPU, memory, and disk I/O request and
usage information of 672,300 jobs executed on 12,500 servers
collected over a period of 29 days. The CPU and memory
utilization percentage of VMs are obtained from the given
CPU and memory usage percentage for each job in every
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TABLE 6: Experimental set-up parameters and their values

Preiction
Models

Parameter Values
Ev

ol
ut

io
na

ry
N

eu
ra

lN
et

w
or

k Input nodes 10
Hidden nodes 7
Maximum iteration 250
Training data size 70%
Mutation learning period 10
Crossover learning period 10
Size of population 15
Training algorithm Differential Evolution

En
se

m
bl

e
Le

ar
ni

ng

#ELM networks [10,100]
Input nodes [7,70]
Hidden nodes [5,50]
Population size 20
Maximum iteration 100
Accuracy threshold 0.007
Training data size 70%
Training algorithm Blackhole Optimization

H
yb

ri
d

Le
ar

ni
ng

Input nodes 100
Epochs 20-50
Batch size 16
Activation function tanh
Training data 70%
Number of epochs 500-1000
Batch size 1-4
Training algorithm Adam Optimizer

D
ee

p
Le

ar
ni

ng

Deep learning libraries:
tensorflow 0.12.1
keras 1.2
Training data 70%
Number of epochs 500-1000
Neurons 4-10
Batch size 1-4
Training algorithm Gradient descent

Q
ua

nt
um

Le
ar

ni
ng

Input nodes 10
Hidden nodes 7
Output nodes 1
Number of epochs 50
Training data 70%
Population size 15
Mutation learning period 5
Crossover learning period 5
Training algorithm Quantum Differential

Evolution

five minutes over a period of twenty-four hours. PL contains
CPU utilization of more than 11000 VMs measured every
five minutes during ten random days in March-April, 2011.
The respective values of resource usage are extracted and
aggregated according to different prediction-intervals such
as 5, 10, 20, ...., 60 minutes. These values are re-scaled in
the range [0, 1] using the normalization formula stated in
Eq. (1). Table 7 shows the statistical characteristics of the
evaluated workloads.

TABLE 7: Characteristics of evaluated workloads

Workload Duration Jobs Mean(%) St.dev
GCD-CPU (GC ) 10 days 2 M 21.84 13.62
GCD-memory (GM ) 10 days 2 M 19.55 16.6
PL-CPU (PC ) 10 days 1.5 M 19.77 14.55

9.3 Evaluation Metrics

Forecast accuracy of the prediction models are evaluated
using following error metrics:

Mean Squared Error (MSE): It is one of the well known
metric to measure the accuracy of prediction models, which

puts high penalty on large error terms. The model is con-
sidered to be more accurate if its score is closer to zero.
The mathematical representation of the metric is mentioned
in Eq.(12), where m is the number of data points in the
workload trace, ZAc(t) and ZPr(t) are actual and predicted
workload values, respectively at tth instance.

MSE =
1

m

m∑
t=1

(ZAc(t)−ZPr(t))2 (12)

Mean Absolute Error (MAE): In mean squared error the
square of higher error values may receive more weightage
which can effect the accuracy of prediction. While MAE
assigns equal weight to each error component and measures
the accuracy of the prediction model by computing the
mean of absolute differences between actual (ZAc(t)) and
predicted (ZPr(t)) workloads at tth time-instance as shown
in Eq. (13). It produces a non negative number to evaluate
the forecast accuracy and if it is close to zero, forecasts are
very much similar to actual values.

MAE =
1

m

m∑
t=1

|ZAc(t)−ZPr(t)| (13)

9.4 Results
The performance of different prediction models including
Evolutionary Quantum Neural Network (EQNN) [56], En-
semble Learning (EL) [55], Hybrid Learning [50], Deep
Learning (DL) [29], Evolutionary Neural Network (ENN)
[25]; are thoroughly investigated and compared using exten-
sive range of heterogeneous cloud applications and variable
resource utilization by VMs. We have evaluated and com-
pared the different types of learning-based models forMSE
with confidence metrics, MAE , Absolute Error Frequency
(AEF), and time elapsed in Training (TT).

9.4.1 Mean Squared Error
Fig. 9 compares mean values of three different categories
of workloads including GCD-CPU traces (Fig. 9a), GCD-
Memory traces (Fig. 9b), and PL-CPU traces (Fig. 9c). It is
observed from the figures thatMSE varies differently with
the variety of prediction models and increases with the size
of prediction interval from 5 to 60 minutes. The is due to the
fact that with increment in the size of prediction window,
the number of avaiable training data samples decreases. The
prediction accuracy with respect to reduction in the values
of averageMSE follows a trend: EQNN< EL≤HL<DL<
ENN. Also, it is notified that the difference among predic-
tion errors (MSE) is lesser for shorter prediction interval
which increases with the decrement in the number of train-
ing data samples with growing prediction window-size.
Hence, it can be concluded that for short-term prediction,
all types of prediction models produce an expected level
of prediction accuracy, and the major difference in the per-
formance of prediction arises with the long-term prediction
intervals. The obtained experimental values demonstrates
that Quantum learning-based prediction model (EQNN) is
providing least prediction error for majority of the predic-
tion intervals and most of the data traces while evolutionary
learning-based prediction model (i.e., ENN) produces high-
estMSE values for majority of the experimental cases. For
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Fig. 9: Mean Squared Error

GCD-CPU (Fig. 9a), EQNN is performing consistently best
among all the approaches because of the employment of
Qubits and Quantum superposition effects which imparts
precise and intuitive learning of correlations and relevant
patterns during learning process. Moreover, EL gives lesser
MSE values than HL, DL, and ENN because of involve-
ment of multiple base prediction models which adaptively
selects the best prediction model each time and rejuvenates
the learning process by updating the weights associated
with the respective respective base predictors. The predic-
tion errors for HL is lesser as compared with DL by reason
of the integration of filtering and smoothening approaches
(by leveraging various filtering methods like SG-Filters or
using GRU to improve the accuracy while minimizing the
drawback of LSTM) before actual prediction. In HL, two
or more approaches combines cooperatively by diminishing
the limitations of each intended approach and thus produc-
ing an effective prediction model to forecast resource usage
of extensive range of cloud workloads. The experiments of
DL are performed using LSTM based prediction method
which performs better than ENN for all the cases including
GC

5 to GC
60. The resultant graph shown in Fig. 9b reveals

similar trends for the GCD-Memory traces where HL and EL
show closer performance i.e., lesser than EQNN but supe-
rior than DL and ENN based prediction models. The results
achieved using DL based prediction model entails improved
accuracy in terms of lesser values ofMSE than ENN for all
the respective experiments except for the cases of GM

30 and
GM

60 . Fig. 9c represents the comparison ofMSE for PL CPU
traces, wherein the difference among prediction error values
is slight but significant that supports the aforementioned
trend of performance. Futhermore, the confidence metrics
are computed for the achieved MSE results as shown in
Table 8, wherein error margin (EM) and confidence-interval
(CI) are reported for all the experimental cases.

9.4.2 Mean Absolute Error

The comparison of resultant values of MAE obtained for
different prediction models over various datasets is pre-
sented in Fig. 10. Similar to theMSE , theMAE values fol-
lows the common trend of the performance for all the three
evaluated workloads including GCD-CPU (Fig. 10a), GCD-
Memory (Fig. 10b), and PL-CPU (Fig. 10c). As depicted in
the three aforementioned consequent bar graphs, theMAE
values decreases in the order: EQNN < EL ≤ HL < DL
< ENN. Further, it is observed that the difference among

prediction errors (MAE) is increasing with the growing
prediction window-size because of the decrement in the
number of training data samples. Hence, it can be concluded
that for short-term prediction, all the types of prediction
models produces an expected level of prediction accuracy,
and the major difference in the performance of prediction
arises with the long-term prediction intervals. The reason
behind this is that as the number of training samples de-
creases, there is not enough learning of the patterns and
the respective prediction models begins underestimating
the relevant information from the training dataset, resulting
into a lesser ability of developing necessary correlations and
performance degradation with diminished pattern learning.

9.4.3 Training time
The comparison of training-time elapsed during learning
process of the various prediction models over distinct work-
load traces for the prediction window-size of 30 minutes is
illustrated in Fig. 11. HL and DL based models consumed
similar time of training which is least among the training
time of all the prediction models which is due to the usage
of Gradient descent and Adam optimizer based training
algorithms. While the time elapsed in the training of ENN,
EL, and EQNN is longer by reason of usage of evolutionary
optimization during learning process. The training time for
EL is higher than EQNN and ENN due to the engagement of
multiple base prediction models which are simultaneously
during the learning process. Contrary to this, the single net-
work based prediction models are used during the learning
process of EQNN and ENN, where EQNN consume more
time than ENN. The reason behind this is the employment of
Qubits and Quantum mechanics based network weight op-
timization process which uses highly complex computation
dealing with complex numbers required for the generation
and updation of qubit-based network weights. This discus-
sion concludes the trend for training time: DL < HL< ENN
< EQNN < EL. However, the efficiency and applicability
of the various prediction models is not affected because the
training is a periodic task and can be executed in parallel on
the servers equipped with enough resources.

9.4.4 Absolute Error Frequency
The prediction error achieved for the various comparative
models is measured and analysed by evaluating absolute
prediction error and comparing its frequency for all three
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TABLE 8: Confidence metrics for Mean Squared Error

Dataset PWSa Metrics EQNN EL HL DL ENN

G
C

D
-C

PU

5 EM 5.3012E-06 1.3824E-06 2.3666E-06 1.8460E-06 2.7320E-06
CI 8.799E-03 - 8.801E-03 1.079E-03 - 1.080E-03 1.169E-03 - 1.170E-03 1.799E-03 - 1.800E-03 2.199E-03 - 2.200E-03

10 EM 1.7969E-06 3.6608E-06 5.4890E-06 4.5940E-06 3.2681E-06
CI 1.398E-03 - 1.140E-03 1.992E-03 - 1.993E-03 3.239E-03 - 3.241E-03 3.895E-03 - 3.900E-03 4.599E-03 - 4.600E-03

30 EM 2.1890E-06 1.4865E-06 6.8200E-05 4.9826E-06 6.8210E-06
CI 1.298E-03 - 1.299E-03 2.989E-03 - 2.990E-03 3.733E-03 - 3.747E-03 4.179E-03 - 4.180E-03 5.069E-03 - 5.071E-03

60 EM 1.1743E-06 1.702E-06 6.476E-06 5.8040E-06 8.2199E-06
CI 2.280E-03 - 2.282E-03 3.798E-03 - 3.801E-03 4.229E-03 - 4.231E-03 4.179E-03 - 4,181E-03 2.39E-05

G
C

D
-M

em
or

y 5 EM 5.7890E-05 6.7740E-06 1.7841E-06 8.7341E-06 1.6839E-05
CI 1.079E-03 - 1.081E-03 1.369E-03 - 1.370E-03 1.919E-03 - 1.920E-03 1.9391E-03 - 1.941E-03 4.090E-03 - 4.093E-03

10 EM 2.0799E-05 4.0514E-06 4.9616E-06 6.6035E-06 2.5002E-05
CI 2.507E-03 - 2.512E-03 3.829E-03 - 3.830E-03 3.909E-03 - 3.910E-03 4.099E-03 - 4.101E-03 5.597E-03 - 5.603E-03

30 EM 6.8200E-05 6.4132E-05 7.1294E-05 5.813E-05 2.5785E-05
CI 3.329E-03 - 3.331E-03 5.593E-03 - 5.606E-03 6.953E-03 - 6.954E-03 9.307E-03 - 9.310E-03 8.667E-03 - 8.673E-03

60 EM 4.8290E-05 9.9990E-05 1.5458E-05 2.4786E-06 3.5760E-05
CI 5.615E-03 - 5.625E-03 6.799E-03 - 6.801E-03 7.818E-03 - 7.822E-03 10.0991E-03 - 10.0996E-03 9.696E-03 - 9.703E-03

Pl
an

et
La

b
C

PU

5 EM 4.2810E-06 4.6890E-06 4.6170E-06 6.8910E-06 2.3980E-06
CI 2.559E-03 - 2.560E-03 3.699E-03 - 3.700E-03 4.199E-03 - 4.200E-03 4.739E-03 - 4.740E-03 5.794E-03 - 5.795E-03

10 EM 8.4210E-06 9.8140E-06 7.1100E-06 8.7642E-06 1.0890E-05
CI 3.499E-03 - 3.510E-03 4.092E-03 - 4.093E-03 5.899E-03 - 5.900E-03 6.099E-03 - 6.101E-03 7.058E-03 - 7.061E-03

30 EM 6.2814E-05 8.6411E-05 1.8230E-05 6.4210E-06 8.6810E-06
CI 4.423E-03 - 4.436E-03 5.451E-03 - 5.468E-03 6.538E-03 - 6.541E-03 7.899E-03 - 7.900E-03 7.669E-03 - 7.670E-03

60 EM 8.4210E-05 9.9610E-05 6.4280E-05 2.8136E-05 9.8134E-05
CI 6.811E-03 - 6.824E-03 9.270E-03 - 9.289E-03 10.075E-03 - 10.088E-03 10.449E-03 - 10.450E-03 10.690E-03 - 10.709E-03

a PWS: Prediction Window Size, EM: Error Margin, CI: Confidence Interval
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Fig. 10: Mean Absolute Error
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Fig. 11: Training time consumption

workloads. Fig. 12 compares the frequency of absolute er-
ror (Actual value-Predicted value), where EQNN yields least
error for the majority of the cloud workloads as com-
pared with the other four types of prediction models. The
high frequency of absolute error for a prediction model
indicates the consistent potency and stable tendency for
yielding maximum prediction accuracy. The absolute error
frequency observed for GCD-CPU traces (Fig. 12a), GCD-
Memory (Fig. 12b), and PL-CPU traces (Fig. 12c) follows
a common trend: ENN < DL < HL < EL < EQNN. The
reason behind such a trend is that EQNN employed Qubits
population along with evolutionary optimization to allow
an improved intuitive learning of patterns which concedes
effective learning of extensive range of dynamic workload

patterns with optimum accuracy. EL follows EQNN because
of the involvement of the learning capability of multiple
base predictor models which precisely learns the relevant
information from the varying types of workloads. The other
prediction models also show slightly lesser but acceptable
frequency of prediction error which varies according to the
learning capabilities and optimization algorithms involved
in their learning process.

9.5 Trade-offs and Discussion
All the machine learning algorithms have some trade-offs
in relation to the adaptive prediction of extensive range
of workloads. Likewise, the key difference among various
ENNs-based prediction approaches is the evolutionary opti-
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Fig. 12: Absolute Error Frequency

mization algorithm applied for the learning process that di-
rectly impacts the performance of the prediction approach.
The different evolutionary optimization algorithms vary in
exploration and exploitation methods involved in the pop-
ulation update process and control parameters tuning pro-
cess. The evolutionary optimization approach having lesser
number of hyperparameters for tuning is more preferable
as compared to the one having higher number of tuning hy-
perparameters. For instance, a Blackhole learning algorithm
is a parameterless algorithm having lesser time and space
complexity and predicts with higher accuracy than Differen-
tial Evolutionary algorithm that involves tuning of hyperpa-
rameters including crossover-rate, mutation-rate, learning
rate etc. Though the Deep learning approach learns the nat-
ural variations of the data samples faster as compared to the
evolutionary learning based feed-forward neural network
models, they need larger number of data samples for train-
ing to estimate the output precisely. Also,deep learning ap-
proach having higher complexity computationally, requires
expensive GPUs and high processing machines which scales
up the cost of their applications. It has been observerd that
deep learning algorithms perform better in integration with
other machine learning approaches such as random forest
for feature extraction and compiles predicted output with
the cooperation of the other classification approaches. On
the other hand, hybrid and ensemle learning approaches
involve combined operation of multiple machine learning
algorithms consume higher space and time complexity over
the single unit machine learning approaches. Undoubtedly,
they adapt to the unseen data and extensive range of work-
loads with higher efficiency over deep and evolutionary
learning approaches because of inclusion of several machine
learning approaches at a common platform. Among the
hybrid and ensemble learning approaches, the ensemble
approach is more adaptable as it considers prediction output
from all the considered machine learning algorithms and
applies weight optimization for selection of the predicted
outcome associated to these learning algorithms while gen-
erating the final output. The quantum neural network based
learning aproach is most efficient among all the discussed
approaches which is validated from the experiments for
the accurate prediction of varying workloads. In QNN,
the usage of qubits derived from complex numbers having
higher diversity over real-numbered network weight values,

enables to generate more intuitive pattern and learning of
complex relations and helps to predict the output with
higher accuracy.

Finally and most important, the diversity of cloud ser-
vices such as IaaS, PaaS, SaaS, FaaS, etc., has a significant
impact while deciding the heterogeneity of approaching
workloads, and cloud service provider is bound to provide
seamless quality and capacity of resources. There is no per-
fect guideline to select the best model for a particular cloud
service because the resource demands vary dynamically for
all the cloud service models. Also, the cloud workloads
vary because of various features including resource capacity
(viz., CPU, memory, bandwidth, etc.) utilization; priority
constraints such as deadline of execution; cost of execution;
the amount of variability in the number of job requests
over a time period, etc. However, these features (except
the amount of variability in the number of job requests
over a time period) do not have significant impact on the
learning capability of different prediction models because
the corresponding data samples are generated periodically,
as event recordings for every type of workload, reporting
all the relevant information over a timestamp. These data
samples are used for training prediction models which show
varying accuracy and training computation cost for the
estimated workload over the same time period. However,
the prediction models can be selected based on the priori-
ties of constraints, such as; for promising high availability
and deadline sensitivity, high accuracy prediction models
should be selected irrespective of high computation and
training time. On the other hand, if there is a constraint of
minimum execution cost, the prediction model with lesser
computation and training cost is a better option to minimize
the processing cost of the respective workload. Further,
the workload prediction model can be chosen depending
on the diversity of the workloads such as highly random,
periodically variable, randomly variable, uniformly or non-
uniformly diversifying, etc. Based on the above discussion
of the characteristics, design, and capability of the consid-
ered machine learning models, it can be postulated that
EQNN, Hybrid, and Ensemble models are more suitable for
highly random and diversified workloads as they are more
capable of learning and handling highly variable and het-
erogeneous traffic data patterns that involve large amounts
of dynamic data, multiple variables with complicated rela-
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tionships, and even multi-step time series traffic data. While
the Evolutionary learning model is preferably suitable for
periodically and uniformly variable workload observations
recorded sequentially over equal time.

10 CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented a comprehensive survey and perfor-
mance evaluation based comparison of the machine learning
based workload prediction models for resource distribution
and managemment in cloud environments. The operational
design, utility, motivation, and challenges of the workload
prediction approach are discussed. Based on the differences
in the conceptual and operational characteristics of various
prediction models, a classification and taxonomy of machine
learning driven prediction models is presented. The leading
prediction approaches respective to each prediction model is
thoroughly discussed. Further, all the discussed prediction
models are implemented on a common platform for an ex-
tensive investigation and comparison of the performance of
these models. Based on the intensive study and performance
evaluation, a trade-off among these prediction models and
their applicability are discussed to conclude the holistic
study of the cloud workload prediction models. In future,
Explainable Artificial Intelligence (XAI) approach can be
utilized to build more robust workload prediction models
with retraceable mechanism that will help characterize ac-
curacy, transparency, fairness, and prediction outcomes in
AI-powered resource management. Further, the efficiency of
QNN prediction models can be improved by optimizing the
qubit network with a lightweight optimization algorithm
and reducing its computational complexity.
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