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Abstract—This paper presents a case for exemplar parallelism of
neural networks using Go as parallelization framework. Further
it is shown that also limited multi-core hardware systems are
feasible for these parallelization tasks, as notebooks and single
board computer systems. The main question was how much
speedup can be generated when using concurrent Go goroutines
specifically. A simple concurrent feedforward network for MNIST
[1] digit recognition with the programming language Go [2]–[5]
was created to find the answer. The first findings when using
a notebook (Lenovo Yoga 2) showed a speedup of 252% when
utilizing 4 goroutines. Testing a single board computer (Banana Pi
M3) delivered more convincing results: 320% with 4 goroutines,
and 432% with 8 goroutines.

Index Terms—Backpropagation, Exemplar Parallelization, Go
Programming Language, MNIST

I. INTRODUCTION

Neural networks and artificial intelligence are becoming more
and more important not only in research, but also in daily
used technology. Due to higher amounts of data these arti-
ficial agents have to analyze there is the need for a larger
throughput and highly efficient neural networks. The pro-
gramming language Go looks promising for developing such
a highly efficient agent, as the language itself has been
made not only for highly efficient parallelization but also
with fast development in mind. The main question is if
Go is suitable for a highly efficient parallelization of neural
networks. The main objective is the creation of an efficient
parallelized neural network. There is a possibility that Go
could lead to a higher parallelization efficiency/speedup than
other programming languages. As Go is a young programming
language, the literature about this specific topic is very sparse
to almost nonexistent. There are tertiary sources like websites
comparing the general throughput of Go in comparison to
web languages like NodeJS, PHP and Java1. Other literature is
related to parallelization speedup. There are also some neural
networks realized in Go. No sources for a better comparison
of parallelization techniques has been found. The scope of
this work is to find out the speedup when using multiple
goroutines with a neural network while maintaining a high and
sustainable classification accuracy. A working MNIST digit
recognition system has been created for testing the speedup
with up to sixteen cores. The network and parameters have

1https://www.toptal.com/back-end/server-side-io-performance-node-php-
java-go

been optimized, but due to only negligible improvements with
more than 100 hidden layer nodes this amount has not been
exceeded. The execution time for one epoch has been sped
up from 856.57-1271.73 (median 1005.80) seconds with 1
goroutine to only 171.50-221.38 (median 201.82) seconds with
16 goroutines with a Banana Pi M3. The Lenovo Yoga 2
showed a less significant speedup with 137.29-146.01 (median
142.33) for 1 goroutine to 55.10-64.62 (median 56.49) with
4 goroutines. Additional goroutines exceeding the maximum
thread limit brought further speedup due to pipelining with
the Banana Pi, but a negligible speed loss for the Lenovo
Yoga.

II. RELATED WORK AND BASELINE RESEARCH

Artificial neural networks and their parallel simulation gained
high attention in the scientific community. Parallelization is a
classic approach for speeding up execution times and exploit-
ing the full potential of modern processors. Still, not every
algorithm can profit from parallelization, as the concurrent
execution might add a non-negligible overhead. This can
also be the case for data parallel neural networks, where
accuracy problems usually occur, as the results have to be
merged.

In the literature a huge number of papers on parallelizing
neural networks can be found. An excellent source of ref-
erences is the survey by Tal Ben-Nun and Torsten Hoefler [7].
However, only few research was done on using Golang in this
endeavour.

In the following only specific references are listed, which
influenced the presented approach directly. The authors of
[8] presented a parallel backpropagation algorithm dealing
with the accuracy problem only by using a MapReduce and
Cascading model. In the course of our work on parallel and
distributed systems [9]–[11] we developed several approaches
for the parallelization of neural networks. In [12], two novel
parallel training approaches were presented for face recog-
nizing backpropagation neural networks. The authors use the
OpenMP environment for classic CPU multithreading and
CUDA for parallelization on GPU architectures. Aside from
that, they differentiated between topological data parallelism
and structural data parallelism [13], where the latter is focus
of the presented approach here. [14] gave a comparison of
different parallelization approaches on a cluster computer. The
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results differed depending on the network size, data set sizes
and number of processors. Using Go as parallelization tool
was already analyzed for the Single-Program-Multiple-Data
approach [15], [16] and showed promising results. However,
in this paper we focus on exemplar parallelization. Besides
parallelizing the backpropagation algorithm for training speed-
up, alternative training algorithms like the Resilient Backprop-
agation described in [17] might lead to faster convergence.
One major difference to standard backpropagation is that every
weight and bias has a different and variable learning rate. A
detailed comparison of both network training algorithms was
given in [18] in the case of spam classification.

III. DATA AND METHODS

The following data and methods have been used to gain insight
on the speedup possibilities.

A. Choosing the data and parallelization method

Different approaches of which data could be used have been
evaluated. Weather data, crime rates, etc. all seemed to be
a good fit, but with the possibility of very inconclusive
outputs. Finally the "Hello World!" of neural networks has
been chosen: The MNIST dataset [1]. With this ready to use
dataset the development process sped up as the convolutional
part was already done.

Exemplar parallelism [19] has been chosen as parallelization
technique. Within the workers the learning method is stochas-
tic gradient descent [20], but due to combining the data in
the main connectome, it behaves like a mini-batch update
[21].

B. Basic structure

First a functional code for a basic neural network has been
prepared. With this code it is also possible to define simple
multi-layer feedforward networks. From that stable basis more
functionality has been added (i.E. different activation func-
tions) to ease up the future development. Then the paralleliza-
tion of the neural network has been implemented. There were
additional challenges with avoiding possible race conditions.
Go was very helpful with its built in race detector which can
be utilized with the "-race" flag. It was easy to spot any race
conditions and therefore the development sped up in the area
deemed to take the most time. Afterwards the possibility to
input and compute large datasets has been implemented. A
batch file functionality for ease of testing as well as data output
functionality have been added too. Afterwards the code and
neural network have been optimized for a balance of speed,
memory usage and training quality. Shuffling of the training
data has been implemented to prevent any unwanted behavior
that comes from repeated data. The elastic net regularization
[22] has been chosen to get better results and more stability
for the neural network.

C. The math

Different activation functions have been tested to get a high
accuracy, although this is not the purpose of this work. At the

end it has been concluded that the best way is to start without
any data normalization for the data to be put into the input
layer. But before any activation function runs over the layer,
the data is normalized by dividing each value by the size of
the layer (including the bias) to minimize the risk of exploding
gradients [23].

The following activation functions have been used:

• Input layer: Identity
• Hidden layer: ELU [24]
• Output layer: SoftMax

Variables are aas followed:

• η = learning rate
• t = target
• x = neuron value before activation
• φ = activation function
• δ = error
• w = weight

1) Activation functions: Identity
The simplest activation function is the identity function. It
simply states that the value stays the same, as in equation
(1).

φ(x) = x (1)

So the derivation simply is 1 as shown in equation (2).

φ′(x) = 1 (2)

Exponential Linear Unit
In comparison to ReLU and leaky ReLU, ELU "[...] speeds
up learning in deep neural networks and leads to higher
classification accuracies." [24] and therefore has been chosen
over the other options. Equation (3) shows the math, where
alpha is a positive value that can be freely chosen.

φ(x) =

{
x if x ≥ 0
α ∗ (ex − 1) if x < 0

(3)

The derivation for training is shown in equation (4).

φ′(x) =

{
1 if x ≥ 0
φ(x) + α if x < 0

(4)

SoftMax
The SoftMax function gives us a classification of the likelihood
that the current input represents a certain number. The math
is straightforward and shown in equation (5).

φi(
−→x ) =

exi

J∑
j=1

exj

(5)



But with this equation, exploding or vanishing gradients [25]
can become a problem due to the high likelihood of numbers
exceeding.For the SoftMax activation there is a little "trick". It
is possible to add a scalar, as shown in (6), without changing
the value of the softmax function [26].

φi(
−→x ) =

exi + S

J∑
j=1

exj + S

(6)

So, instead of using softmax(x), softmax(z) - with a scalar
value of the negative x maximum - has been used, as in
equation (7).

zi = (xi −maxi(xi)) (7)

If we use the maximum, we push the calculation into the neg-
ative number spectrum. So, instead of having values ranging
over ]-∞ , ∞[, they’ve been shifted to ]0, 1], as in (8).

φi(
−→x ) =

ezi

J∑
j=1

ezi

(8)

Equation (9) derivation for training is a little bit more com-
plicated.

φ′
i(
−→x ) =

∂φi(
−→x )

∂xj
=

{
φi(

−→x ) ∗ (1− φj(
−→x )) i = j

φi(
−→x ) ∗ (0− φj(

−→x )) i ̸= j
(9)

Mathematicans use (10) to shorten the equation to (11).

δij =

{
1 i = j
0 i ̸= j

(10)

φ′
i(
−→x ) =

∂φi(
−→x )

∂xj
= φi(

−→x ) ∗ (δij − φj(
−→x )) (11)

But in the end it comes down to the same function as the
logistic derivation, shown in equation (12). As the result of
the derivation is a diagonal matrix [27] there is no need to
calculate the whole matrix.

φ′
i(
−→x ) = (1− φi(

−→x )) ∗ φi(
−→x ) = (1− x) ∗ x (12)

2) Elastic Net Regularization: The elastic net regularization
[22] has been used for weight updates.

It’s a combination of the lasso regression (13) and the ridge
regression (14).

L1 = λ|w| (13)

L2 = λw2 (14)

The elastic net (15) is simple.

ElasticNet = λ|w|+ λw2 (15)

Computational optimization (16)

ElasticNet = λ(|w|+ w2) (16)

For the derivation (17) the signum function (18) is
needed.

|w| = w ∗ sgn(w) (17)

sgn(w) =


1 w > 0
0 w = 0
−1 w < 0

(18)

Which leads to (19).

ElasticNet′ = λ(sgn(w) + 2w) (19)

3) Loss function: Quadratic loss has been chosen as loss
function. Although the classification of handwritten digits - as
the name says - is a classification problem and therefore cross
entropy loss should show better results. Different loss func-
tions will be implemented in the future of this work.

L = −1

2

nclass∑
i

(
ti − φ(xi)

)
2 + λ

1

2

k∑
i

(
|wi|+ wi

2
)

(20)

The derivative is the logistic equation, therefore the loss
function is equation (21).

L′ = −
nclass∑

i

(
ti − φ(xi)

)
+ λ

k∑
i

(1
2
sgn(wi) + wi)

)
(21)



4) Forward and backward propagation: All the previous
information is needed to understand the forward and backward
propagation methods.

Forward
After setting the inputs and targets, the first layer of the neural
network gets activated. Then for each layer, the next neuron
gets excited with the product of the activated value and the
weight of the connection between the neurons (22).

xj = φ(xi) ∗ wij (22)

Backward
When learning, equation (23) is used to calculate the er-
ror.

δ = t− φ(x) (23)

The formula for the weight update, with learning rate and the
regularization in (24).

∆w = η ∗ (δ ∗ φ(x) + λ(sgn(w) + w)) (24)

The final equation in (25).

wij
+ = wij −∆w, (25)

D. Choosing the parameters

ELU alpha = 0.5 (currently hardcoded)
The alpha value for ELU has been hardcoded as there was
no incentive to do otherwise in the current software itera-
tion.

workerBatch: 100
The worker batch has been chosen to merge the single neural
networks as often as possible, but without losing too much
performance due to context switching.

Minimum/Maximum weight (starting weights): [-0.1; 0.1]
As the weights are usually getting smaller, when learning
occurs, the starting values have to be chosen to be 0.1 instead
of 1. This led to the best outcome.

LearningRate: 0.8
The learning rate has been set to 0.8, as this led to the best
outcome.

Lambda: 0.0000001
The multiplicator for the elastic net has been set to this value,
as it provided the highest accuracy for the training and test
set. As it is hard to tell if either L1 or L2 regularization is
the best, there is only one lambda for setting both methods,
to achieve a balance between the two methods.

IV. RESULTS/EVALUATION

For testing the neural network, two available systems have
been chosen: The Lenovo Yoga 2 laptop, as it is a dual core
consumer product which utilizes threading and a turbo mode
for higher workloads, with 64 Bit Linux. The Banana Pi M3,
as it is a well known octa core home server, with no threading,
and without data distortion due to turbo mode kicking in, and
32 Bit Linux. Both systems have a standard CPU frequency
of 1.80 GHz, although the minimum and maximum values
differ.

There are stark differences in computation speed as well as
speedup between the Intel and the ARM architecture. As RISC
and CISC lost their meaning to describe newer architectures,
it is not possible to draw the conclusion here , although the
main effect could come from the smaller - and therefore faster
access rates - of the Intel L1 and L2 caches, or the lack of an
L3 cache in the ARM architecture. Further research would be
needed.

A. Benchmark

When using pprof for checking the total cpu usage of the code
parts with BenchBatch (it utilizes 4 cores, uses a worker batch
of 100 lines, and processes 1 training with 60.000 MNIST lines
as well as 1 test with 10.000 MNIST lines), it can be seen in
Figure 1 that thinking and training takes up about 96% of
the total time. Thinking takes about 40% of the time, training
takes about 56%. Thinking is the forward propagation, training
is the backward propagation. Due to that high amount of cpu
usage heavy optimizations were made in these code parts, as
these had the greatest effects.

Fig. 1. pprof worker CPU profile

The utility functions only play a marginal role. Even though
they wouldn’t need any optimization, they’ve been optimized
for general code quality reasons. In example the garbage
collector (mallocgc) is hardly used in the utility functions,
and almost never in the main code part. As strings are only
converted when needed, these parts of the code - even though
they’re not impacting the measurements - have been highly
optimized. Maybe there’s still room for further optimization,
but for the general purpose this goal has been exceeded.



B. Test systems

The final tests were made with a "Lenovo Yoga 2 Pro
Multimode Ultrabook" as well as a "Banana Pi M3".

Specifications of the Lenovo: Intel(R) Core(TM) i7-4500U
CPU @ 1.80GHz, Dual Core (4 threads)
Min CPU: 800 MHz, Max CPU: 3.0 GHz
32 KiB L1 cache, 256 KiB L2 cache, 4 MiB L3 cache
2x4096 DIMM @ Clockspeed 1600 MHz
64 Bit Linux Ubuntu 18.04.1 LTS

Specifications of the Banana Pi M3:
A83T ARM Cortex-A7 octa-core CPU @ 1.80 GHz, Octa
Core (8 threads), 4800 BogoMIPS
ARMv7 Processor rev 5 (v7l)
Min CPU: 480 MHz, Max CPU: 1.8 GHz
512 KiB L1 cache, 1 MiB L2 cache
2GB LPDDR3
32 bit (armv7l) Linux Ubuntu 16.04.5 LTS, MATE Desktop
Environment 1.12.1
1) Lenovo Yoga 2: The 252% speedup generated with 4
goroutines on the Lenovo Yoga 2 when utilizing more than
1 processor is clearly visible in Figure 2. It is also visible that
using more goroutines than processors slows the execution
time down only by an almost negligible amount.

Fig. 2. Lenovo Yoga 2 speedup

Parallelization speedup comes at a price. Although very small,
there is a slight decrease in recognition rates when utilizing
more goroutines as shown in Figure 3.

Fig. 3. Lenovo Yoga 2 accuracy

2) Banana Pi M3: When looking at the results of the Banana
Pi M3 in Figure 4, it is apparent that utilizing multiple cores
leads to an even greater benefit than with the Lenovo. It was
possible to generate a 320% speedup with 4 goroutines, and -
due to pipelining - it was even possible to generate over 498%
speedup when using more goroutines than there were threads
available.

The training and test set accuracies look promising too. A
99.26% training set accuracy and 97.14% test set accuracy
with only one core has been accomplished. The accuracy does
not get lower when utilizing more cores, even though quality
differences in the recognition rate can occur. In Figure 5 it
is clearly visible that recognition rate drops can occur at any
time.

C. Accuracy growth depending on goroutines

When only one goroutine is usedFigure 6 with the Banana Pi,
the neural network starts with a very high recognition accuracy
after the first epoch and has a very good learning rate.

With 16 goroutinesFigure 7 the recognition accuracy starts
lower and the network takes longer to learn.

Recognition rates in a nutshell



Fig. 4. Banana Pi M3 speedup

1 Goroutine, accuracy > 90%/95%/99%:
93.24% accuracy after 1 epoch, 1040 seconds
95.22% accuracy after 2 epochs, 2006 seconds
99.03% accuracy after 15 epochs, 15608 seconds

16 goroutines, accuracy > 90%/95%/99%:
90.18% accuracy after 2 epochs, 392 seconds
95.12% accuracy after 8 epochs, 1583 seconds
99.02% accuracy after 49 epochs, 9628 seconds

To reach a higher accuracy with more goroutines more epochs
and training samples are needed. But the speedup allows
to train it in shorter time - or, to look at it from another
perspective - to compute more inputs in a much shorter
timespan.

V. LESSONS LEARNED

The final part of this work is to look at what has been learned
about the "do’s and don’ts of implementing neural networks",
Go as a language, the drawn conclusion, and possible future
work.

A. "To do, or not to do?" of implementing neural net-
works

There are certain roads to victory and many paths to devel-
opment hell. The latter leads to a steeper learning curve and
should therefore be preferred when trying to understand the
implications of certain design decisions - but under normal

Fig. 5. Banana Pi M3 accuracy

circumstances the beaten path is the quicker route. These
recommendations for other coders shall make implementing
neural networks a little bit easier and shine a light on which
thought processes are good and which are impractical to
do.
1) Arrays instead of structs: Do not use one struct instance
per neuron, connection, etc. as it has a large overhead. The
compiler is able to optimize the usage of arrays. The first
iteration of the neural network took hours for just one epoch
on the Lenovo, while the array version takes less than a
minute.
2) Only save when necessary: Only save and load data when
needed. In the context of the neural network: Save either
batchwise or after every epoch. Try to hold the data in the
memory as long as possible.
3) Machine readable is better than human readable: The
conversion of data to XML, JSON, or any other human
readable format takes a higher amount of computation time,
memory, and disk space, than machine readable formats. If a
human readable format is needed, it should only be created,
if a human wants to read it and there is a need for them to
do so. Sifting through millions of weights and updates is not
something a human should do. But, depending on the use case,
the human readable format can be created, when

• The process is finished and the results shall be shown.
• An error occurs and the data is necessary to fix it.



Fig. 6. Accuracy growth with 1 Goroutine

If human entities want to access data while the process is
running (in real time, or stepwise for debugging) there are
different approaches:

• Create only one file every few epochs which can be
accessed by multiple human entities. Do NOT create it
for every entity that accesses the file.

• Duplicate the machine readable results and parse them
on a different system. For snapshots a simple ID can be
given to every file.

4) Parallelization and context switches: It takes time to store
states of threads. Data has to be shoved around between CPU
caches. If applicable give a worker as much data as possible,
with one drawback in mind: More data merges mean higher
fluctuations and slower computation - less data merges can
lead to a more stable convergence and faster computation [28],
as well as a higher level of generalization [23]. All while being
able to perform online learning due to the singular workers
performing stochastic gradient descent.
5) Struct packing: In Go it is possible to pack structs. That
means organizing the data types in a way so that they waste
the least amount of memory. The principle for this work was
"Memory is cheap, but even though students lack the money to
buy some, there is no need to overdo it". But one late evening
(at 7 o’clock in the morning) these principles had been thrown
over board. So structs have been packed.

Fig. 7. Accuracy growth with 16 goroutines

6) Slices: Do not loop through lines of data to append it to a
batch line by line. Use the slice functionality of Go - which
passes them by reference - if applicable. The following data
has been taken from the old model with using the updated
weights for the error calculation Figure 8.

Fig. 8. Code changes from wrong to correct code

In example the code in Figure 9 takes 129.68 seconds for 1
training and 1 testing with the MNIST dataset, 4 cores, and a
worker batch setting of 100, as shown in Figure 10.

In comparison when utilizing slices instead of making a
slice and appending the data lines within core.run() to send
the worker batches to the workers as shown in Figure 11
saved about 17 seconds on the Lenovo, as is visible in
Figure 12.



Fig. 9. Old code, appending to a new slice

Fig. 10. CPU profile before code changes

Fig. 11. New code, using the slice functionality

Fig. 12. CPU profile after code changes

But when comparing the old speedup in Figure 13 with
the new speedup in Figure 14, the computation speed is on
average a little slower. The assumption is that - due to code
optimizations and therefore less workload - the CPU chose
to use a lower clock speed, so computation took longer. This
assumption is untested, but context switching can be ruled out
with a high certainty as the possible speedup of the new code
has been tested with 4 cores: If context switching would have
any negative impact, it should have shown in this test.

Fig. 13. Benchmark before code changes
7) Never trust a single source: "Why is this important, when
the objective is just to write code?" one may ask. The answer
is pretty straightforward and was also a pitfall in the early
stages of this work.

When implementing software to solve a certain problem, there
are often different sources available. It is paramount to not
trust a single source. If possible, look at the original studies,
try to get the original data - but watch out for personal interests
and possible skewed or even fabricated data. Therefore also
look for meta analyses and systematic reviews, which look
at a broader spectrum, the methods used, and other vital data
points to find eventual outliers or problems with the data. Also
don’t trust sources that are given to you by a single source.
Check it first. Everything else costs time and nerves: Only
assuming, but not knowing, that the source is correct can lead
to triple-checking code, math, and data, even though the error
lies somewhere else. Two examples follow.

Many different sources in the web, including Wikipedia,
managed to quote the correct source for linear unit activation



Fig. 14. Benchmark after code changes

functions, but used the old equations from the first two
versions of the paper. There is a small effect on the derivative
functions when x = 0. In example with ELU: The old and new
equation are only equal when α = 1. Otherwise, when x = 0,
f’(x) should be α, not 1.

One trusted source - due to one University module handed out
an excerpt without citing the source which was the basis for
an assignment to calculate a forward, backward, and forward
propagation by hand, and creating a simple neural network,
which both got graded - used the updated weights as basis for
the backpropagation.

There was a larger accuracy dropFigure 15 when using mul-
tiple goroutines.

Although it was possible to see when to tweak the parameters
to gain a higher accuracy with a single coreFigure 16, there
has been found no practical use of these values for the correct
implementation - the hyperparameters vary widely, so they
have to be tuned differently.

Also mathematical sources are often not the best source for
calculations in information systems. Math has been spared the
problem of both errors due to overflow and underflow (except
when using calculators or information systems). Also there is
no need to optimize for memory or computation speed.

The problem with trusting the wrong data has been solved
with further research from different sources and consulting
a mathematician to check if the partial derivatives and all

Fig. 15. Old Plot showing the accuracy decrease

Fig. 16. Accuracy with wrong parameters



formulas have been implemented correctly. The error has then
been found very quick when checking against the standard
reference [26].

B. Comment on Go

Go is a wonderful language to write code. Implementation
and testing of the neural network seemed to be easier than
with other programming languages. But go also has some
drawbacks (as does any language).

The main annoyance were the "unused imports" bugs. Some-
times only certain outputs are needed for testing which will
get dropped by the developer immediately afterwards. It’s
good that the Go compiler sees these oversights as errors,
even though they are a huge annoyance. A probably better
way would be if unused imports won’t be tested in a debug
environment, only in production. But this would have addi-
tional drawbacks when Go is used in environments where code
quality is not highly valued.

Another annoyance is the "sudden ’bad file descriptor’ of
doom". Sometimes it’s just a "data reader error: file already
closed". It was not possible to pin down what exactly causes
the error, only that it affects the file as a whole. Not even
deleting and creating a new file with the same name helps to
overcome that error. Further testing is needed.

An additional observation that can ruin ones day is, that the Go
compiler for some reason accesses trashed files, at least under
Linux. There is no problem when files are overwritten by new
files. But if a file gets deleted, and a new one inserted instead,
Go sometimes seems to try to compile the deleted files, which
can lead to hard to trace errors. If there’s, in example, an
error where the Go compiler expects an integer value, the code
provides an integer value, but recently a file with the same
function expecting a double value had been trashed, simply
empty the trash bin.

Another "hard to debug except when you know it" part is:
"panic: runtime error: invalid memory address or nil pointer
dereference". This error occurs when the object has not been
created with new(...). If it’s further up in the code, i.E. some
struct attribute, this error is not easy to find. When starting with
Go that panic tells almost nothing about its nature.

Circular dependencies are not allowed. They can happen while
refactoring code or when making some design mistake. It’s
good that Go does not permit them as they are a sign of bad
software design.

The short variable declaration := is very handy. Go recognizes
the type and assigns the value to the left hand variable. The
best part: It won’t break type safety, which prevents weird
behavior.

With the test coverage profiler it is easy to see the current code
coverage. There is also the possibility to create test heat maps

and to show the test coverage in the browser with highlighting
good, poor, or not covered code parts2.

There are memory and cpu profilers, and even a profiling tool3.
It is easy to list the top cpu or memory consumers or show a
profiling web. Therefore memory issues can be found easily,
as well as slow code parts.

Go uses function inlining which is a great method for speeding
up code.

Goroutines are very lightweight4. As they’re very efficient and
only start to run if they get data from a channel, there’s the
probability of an application for parallelized neurons instead
of only parallelized networks.

It’s easy to find and fix race conditions with Go as it comes
with its own race detector.

VI. CONCLUSION AND FUTURE WORK

It has been learned how to use the programming language Go
and about its parallel speedup possibilities. The main accom-
plishment of this work is to have managed to create a stable
and fast neural network. The hardest part was to understand
the mathematical concepts and ramifications behind neural
networks and how to implement them software wise.

The main focus of this work was to see how the parallel
speedup of a neural network behaves with the language Go.
Due to time and resource restrictions only little derivations
from the main focus were made. There are still ways left
to make this neural network even more efficient, with higher
accuracy, and so on. The current version could have some
possible memory leaks. They will be fixed in a future version.
As there will be further changes due to development and
additional insights, the code will probably be refined and
refactored in the future.

Some parts of the code are still untested - mainly file reading
and writing. As they work as intended no additional effort has
been made to get 100% test coverage in these areas. Here is
room for improvement.

Optimization of the neural network would be the largest part
of the future work. Currently it is only a simple network with
Bias. It would be possible to implement momentum [29] and
other artifacts to achieve higher accuracies. NADAM and other
stochastic gradient descent optimization algorithms [28] could
be implemented too.

Smaller changes will also include several options, in example
if the user wants bias nodes, which error severity to log, and
to choose different lambdas for the L1 and L2 Regularization
in the elastic net. Adaptive learning rates [29] would be of
interest too. Different loss functions, especially Cross Entropy
Loss [30] will be implemented in the future.

2Go test coverage and html heatmap: https://blog.golang.org/cover
3Go profiling: https://blog.golang.org/profiling-go-programs
4Currently 2, 4, or 8 kB per Goroutine, depending on the version, i.E.

https://github.com/golang/go/issues/7514

https://blog.golang.org/cover
https://blog.golang.org/profiling-go-programs


There is an interest to look into Self-Normalizing Neural
Networks [31].
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