2309.11941v1 [csMA] 21 Sep 2023

arxXiv

A Digital Marketplace Combining WS-Agreement,
Service Negotiation Protocols and Heterogeneous
Services

Ralph Vigne
Faculty of Computer Science
University of Vienna
Vienna, Austria
ralph.vigne @univie.ac.at

Abstract—With the ever increasing importance of web services
and the Cloud as a reliable commodity to provide business value
as well as consolidate IT infrastructure, electronic contracts have
become very important. WS-Agreement has itself established as
a well accepted container format for describing such contracts.
However, the semantic interpretation of the terms contained in
these contracts, as well as the process of agreeing to contracts
when multiple options have to be considered (negotiation), are
still pretty much dealt with on a case by case basis. In this paper
we address the issues of diverging contracts and varying contract
negotiation protocols by introducing the concept of a contract
aware marketplace, which abstracts from the heterogeneous of-
fers of different services providers. This allows for the automated
consumption of services solely based on preferences, instead of
additional restrictions such as understanding of contract terms
and/or negotiation protocols. We also contribute an evaluation
of several existing negotiation concepts/protocols. We think that
reducing the complexity for automated contract negotiation and
thus service consumption is a key for the success of future service
and Cloud infrastructures.

I. INTRODUCTION

Over the last years, WS-Agreement (WSAG) [1], [2] has
become a broadly used standard in the research field of Grid
and Cloud computing for providing electronic contracts [3]-
[6]. Their success is based on a flexible means to (1) define
involved parties, (2) define the context of agreements, and
(3) provide necessary terms for guarantees. This makes them
observable and consumable and therefore enables automated
service integration in Grid and Cloud based systems (see e.g.
(71, [8D.

While the flexibility of WSAG allowed it to become the
de-facto standard for defining electronic contracts, there is
no similar standard to describe negotiation protocols. Re-
search defines automated service negotiation (e.g. [6], [9]-
[14]) as the process of establishing business relations between
service providers and consumers. It builds on the fact that
services providers can guarantee different levels of service to
consumers (traditionally: bandwidth, cpu, ...). These service
properties of course (1) have effects on each other, (2) lead
to different prices, and (3) have to be matched to the prefer-
ences of service consumers. FIPA already standardized some

Juergen Mangler
Faculty of Computer Science
University of Vienna
Vienna, Austria
juergen.mangler @univie.ac.at

Erich Schikuta
Faculty of Computer Science
University of Vienna
Vienna, Austria
erich.schikuta@univie.ac.at

custom negotiation protocols (e.g. [15]) for the Grid / Cloud
communities. These protocols often are very specific to their
respective application domains, i.e. dealing with a specific set
of properties, how to balance them, and how to match them
to user preferences in order to maximize the benefit for all
participants. However, for all these approaches, providers and
consumers have to implement and conform to the negotiation
protocol. A generic way to describe complex protocols is still
missing.

The contribution of this paper is a means to integrate
arbitrary negotiation protocols and enable service domains to
leverage WSAG-based electronic contracts. The vision is to
allow service consumers to participate in negotiations solely
based on their preferences, not on their understanding of
the negotiation protocol, thus allowing for the coexistence of
negotiation protocols, instead of their standardization.

In order to achieve this feat we built on the Marketplace
presented in Vigne et al. [16]. The basic idea behind this Mar-
ketplace is to provide a repository of heterogeneous services
(different APIs, protocols) and a set of microflows (small code
snippets in a process language like e.g. BPEL). While similar
approaches (semantic repositories; UDDI+OWLS) concentrate
on finding services through semantic annotations, the Market-
place focuses on standardizing the interaction with services
for particular application domains. We further improve on this
marketplace concept by ...

1) Utilizing the Marketplace information and conventions
in order to automatically generate contracts. This allows
participating service providers to benefit from WSAG
without the burden of building WSAG handling and
negotiation into their services.

2) Explaining how to facilitate the basic concepts of the
Marketplace in order to standardize electronic contracts
for similar services from different service providers.

3) Explaining how to use the concept of microflows (see
above) in order to realize bilateral (one-to-one) and
multilateral (one-to-many) automated service negotia-
tion. The goal is to abstract from particular services,
and instead allow service consumers to participate in a

negotiation solely based on their preferences, not based
on their knowledge of negotiation protocols.

We further provide an evaluation of the viability of our
approach by means of a case study. This case study consists
of a categorization of analysis of current Grid and Cloud
negotiation protocols and how they can be realized in the
Marketplace framework.

Our research in this area is based on our experience with
large scale data stores [17] and complex applications in Grids
and Clouds [18]-[20], and strongly motivated by our focus
on Web-based workflow optimizations [21], [22] and their
respective management [23].

In Section II we provide a short recap about the used
Marketplace and its provided concepts and functionality. In
Section III we discuss related work from the fields of WSAG
negotiation for Grid- and Cloud-based systems. How WSAG
handling is integrated into the Marketplace is discussed in
Section IV. A case study about bilateral and multilateral
negotiation protocols and additionally an example for strategic
negotiation is given in Section V. In Section VII we conclude
this work and provide an outlook for future work.

II. THE MARKETPLACE

As this work is based on the Marketplace presented by
Vigne et al. [16], it is essential for further discussions to
have a basic understanding of the implemented concepts and
functionality.

Consumer Logic

(includes Workflow Engine) Marketplace

< Microflow
M

icroflows that
describe
interaction with
service providers

More Microflows

Fetch
Microflow

Execute Microflow
in Workflow Engine
+
Microflow fetches other
Microflows

© ®6 O

Use Output of
Worflow Engine

Interaction

e

Service Providers |

Fig. 1. The Marketplace

As can be seen in Figure 1, the Marketplace holds a set
of microflows that describe how to interact with services.
The Marketplace is strictly passive, connotes it does not
act as a middleware or proxy. Its purpose is to allow a
service consumer to implement a consumer logic against a
standardized API for a particular application domain.

There are two kinds of microflows contained in the Mar-
ketplace:

o Service microflows that implement an interaction with
a particular service regarding the requirements of the
domain API. This group of microflows is from now on
referred to as instance level operations.

e Domain microflows that implement logic to fetch and
invoke service microflows to select particular services for
particular inputs. Each microflow correlates with one op-
eration in the domain API. Thus we will further on refer
to this group of microflows as class level operations.

From the service consumer’s point of view, the process of
doing business with service providers that participate in the
Marketplace is totally transparent:

@ The consumer logic fetches the microflow that represent
a particular class level operation from the Marketplace.

The consumer logic instantiates a Workflow Engine
(WFE) with the microflow, and invokes the microflow
with a set of input parameters (the required input param-
eters are also defined at the class level, e.g. as a contract).

While the class level microflow is running, it fetches
and executes further instance level operations from the
Marketplace, in order to find the service provider best
matching the consumer’s preferences and use it. This
(potentially complex) selection of services is furthermore
called negotiation, and is one of the subjects of this
paper. An instance level microflow (also executed by the
WEFE) directly interacts with a service, and transforms
/ filters information to make it usable for class level
microflows.

@ When a particular class level microflow is finished, its
results can be used as part of the consumer logic.

For this paper we again reuse the Cinemas example pre-
sented in [16]. The cinema domain consist of three class level
operations: (1) Search to search for shows of a particular
movie, (2) Book to book tickets for a particular show and
(3) Search & Book which combines the two (to demonstrate
a complex, multi-part negotiation).

III. RELATED WORK

As mentioned before, WS-Agreements have become the
de-facto standard for electronic contracts in the web service
context. In this section we give an overview of WSAG
and autonomous Service Level Agreement (SLA) negotiation
related research.

Since Andrieux et al. specified WSAG [2] in 2004 it has
become a widely used standard in the area of web services to
define contracts between two or more parties. Inside a WSAG,
all agreed information is structured into different parts. The
main parts are namely:

1) Context: This part contains the meta-data of the agree-
ment e.g. participant’s and life-time.

2) Terms: This part contains data about the agreement
itself. It consists of Service Terms, which represent
the functionality that will be delivered (so called Items),
and the Guarantee Terms, which define assurances on
the service quality associated with the defined Service
Terms.

This formalized and comprehensive way of describing

agreements and the according guarantees make WSAG auto-
matically computable and observable [8], [24]. Sakellariou

et al. [4] extended Guarantee Terms to be represented as the
result of a function instead of static values and therefore
making it more flexible when observing complex ones.

As WSAG is originally designed for SOAP-based services,
Kuebert et al. [25] introduced a way to use them also for
RESTful services which increased in numbers rapidly over
the last few years.

Haq identifies in [5] the compensation of the service con-
sumer’s high dependency on the service provider, as a result
of using WSAG, as an additional reason for their common use
in the field of Grid and Cloud computing. He further states
that the emerging of Composite Service Providers leads to
complex value chains and therefore consist of aggregated
WSAG. While our approach provides a simple concatenation
of these WSAGs, he states that not every information, created
during the composition, should be exposed to each partici-
pating party. Therefore he introduced SLA-Views, which are
basically a customized view of the aggregated WSAG for each
participating party.

Broberg et al. [3] gives an overview about state-of-the-
art and future directions in the field of market-based Grid
and Utility computing. Although they focus on negotiation
strategies related to scheduling problems, they additionally
conclude that it is important to overcome the restrictions in
flexibility of negotiation protocols to exploit the benefits for
service consumers generated by a market with competing
service providers.

Zulkernine et al. [6], [26] developed a flexible system for
WSAG negotiation with the focus on multilateral negotiation
strategies based on decision support systems. They also
conclude that a way to define flexible and provider specific
protocols would further increase the quality of negotiation
results.

Faratin et al. [14] give a detailed discussion how such sets
of decisions and preferences could look like. Within their
example implementation of autonomous service negotiation,
different offers are evaluated and counteroffers are created on
the base of a value scoring algorithm. They define negotiation
tactic as the short-term decision making focused on a narrow
set of criteria while the negotiation strategy represents the
weighting of criteria over time.

As more complex negotiation protocols come into focus
of research, WSAG reaches its limitation as it offers only
two messages, namely offer (as an input for negotiation)
and agreement (as the output of an negotiation) and there-
fore makes it only feasible for the “Contract Net Interaction
Protocol” [27] (see also Figure 4). Hung et al. elaborated that
a formalized negotiation must consist of three different parts
which they further used as groundwork when developing the
“WS-Negotiation Specification” [28]. These three parts are
namely:

1) Negotiation Message describes the messages which are
sent and received during a negotiation. These messages
can be of different types, namely Offer, Counteroffer,
Rejected, Accepted, Expired, SinglePartySigned, Signed,
and Unsigned.

2) Negotiation Protocol defines a set of rules and mech-
anisms the negotiating parties must follow. It uses
negotiation primitives to describe different interactions
between the parties and what pre- and post-conditions
are associated to each primitive (similar to declarative
workflow descriptions). The following primitives are
defined: Call for Proposal, Propose, Accept, Terminate,
Reject, Acknowledge, Modify, and Withdraw.

3) Negotiation Decision Making represents an internal
and private decision making process based on a cost-
benefit function and therefore represents the negotiation
strategy.

Venugopal et al. [9] focused on the negotiation protocol
and proposed Rubinstein’s approach of “Alternating Offers”
[29] (see also Figure 5) as one way to increase the quality
of bilateral service negotiation. A multilateral adaptation of
this protocol has been standardized by [15]. Yan et al. [7]
further extended this protocol (see also Figure 6) because of
its shortcomings in negotiation coordination i.e. coordinating
multiple counteroffers for various service providers.

IV. WS-AGREEMENTS & THE MARKETPLACE

As stated in the introduction, we try to reuse the Mar-
ketplace to commoditize the utilization of contracts (in our
case WS-Agreements (WSAG)). We envision this to work
similar to the way the Marketplace deals with heterogeneous
services (i.e. same application domain but different APIs,
slightly different semantics).

A. Concepts

For services in the same application domain, it is possible to
provide a unified contract template [30], that covers possible
terms and restrictions for all services, but has a certain charac-
teristic for particular services. We again propose a split analog
to the class level / instance level differentiation described in
Section II:

« By providing domain contracts that define the interaction
with the Marketplace, as well as common criteria for
selecting any service from the domain.

o By providing service contracts that all have the same
structure and define the level of service (quality) that can
be expected from particular services.

Contracts are not some information that is fetched from a
repository, but they are something that is tightly coupled to the
usage of services. They are created, negotiated, and accepted
while using certain class level operations of the Marketplace.
Contracts may of course differ from customer to customer, and
are strongly depending on the kind of service that a service
consumer tries to utilize (i.e. the input parameters).

Thus before the consumer logic can execute certain opera-
tions from the Marketplace (i.e. fetch microflows and execute
them in a WFE as describe in Section II), it has to ensure that
the properties of a service match its preferences. This can be
done by means of a WSAG.

The typical effort for utilizing WSAG includes (1) fetching
a contract template, (2) making an offer, and (3) receiving

the agreement (or rejection). Of course additional logic may
be necessary to (a) ponder which services to actually make
an offer, and (b) decide between multiple possible agreements
(under the condition that it is not necessary to enact on all
agreements).

Furthermore we have to consider that services may know
nothing about WSAG, by still offer an API to achieve
something similar. We conclude: it will be necessary to (1)
transform WSAG, or (2) implement logic to create WSAG
templates and / or decide if a service accepts an offer.
This logic can, as explained in Section II be expressed in
microflows at service level.

Information Provided by

. Service
Service Consumer Marketplace .
| | Providers
WIE Domain / Service /
: H Class Level | |Instance Level
: : - :
H Request H
' Domain H
. Template H :
Fill-In it : :
A H H H
Template Domain) H :
H Offer M .
Q
H Request
@) q i
' — Template Requ. Tpl
- Aggregated Templates -
. 2 T :
P ezt ' H
— i : Service :
T Offer — Service — Offer H
: z Offer
= Service
H @ - Service n
i 1 Agreement) H
H ' Agreement !
i (] B
H 2 ;
H > see Vigne
1 Q etal. [16.24]
: Domain (=] I -
5 Agreement -
ow + Results H
Results H

Fig. 2. Abstract Communication Overview of Using the Marketplace

For Figure 2 keep in mind, that the Marketplace is no
middleware. It just depicts which kind of information have
to be fetched by the WFE, and which kind of information has
to be provided by the user and services in order to enable
WSAG and SLA negotiation.

As illustrated, the service consumer, after having received
a domain level template, a user has to provide the necessary
information to create a domain offer i.e. WSAG offer. This
domain offer is used as input for the according domain
operation (microflow enacted by the WFE).

First the operation collects (COL) the templates of all
service providers. This is done executing the according class
and succeeding instance level microflows. When all templates
are collected, they are filtered using the information provided
via the domain offer.

Next, these templates are aggregated and presented to the
user who selects (SEL) according to personal preferences.
Now the selected templates are supplemented with information
included in the domain offer and therefore become service
offers.

During the negotiation (NEG) this service offers are used
to negotiate with the according service providers (see Section

V for details about negotiation protocols) using a negotiating
class level operation (microflow) and in succession the specific
instance level operation. At the end of the negotiation, a
service agreement, authorizing for the usage of the service,
is defined.

Providing this service agreement, the service consumer’s
WEFE can use the service (USAGE). How this is done is
discussed in detail in [16].

After the service is used, a domain agreement is created,
using among others the service agreement received during the
negotiation. This domain agreement and the execution results
of the service execution, representing the defined output of the
domain operation, are made persistent for the user.

B. Implementation

The implementation of a WSAG aware system requires
utilizing existing information from the Marketplace about the
(1) included services (their properties) and (2) their usage.

e Service properties are a set of static attributes that each
service provider must provide to participate in a certain
domain of the Marketplace. Examples for the cinema
domain are address, number of cinemas/seats, smoking
allowed, food corner available, ... Service properties lead
to simple WSAG guarantee terms, with a particular unit
and/or value range, that may be observable from the
outside. Also these properties can be used to create the
WSAG business values.

o Required input to class level operations (which is trans-
formed to suitable input for services in instance level
operations). Examples include the actual seat to book.
The presence of such input parameters may be required
or optional, and again expressed in particular units or as
a value range. Thus such input parameters lead to WSAG
qualifying conditions and/or creation constraints (how to
fill out a WSAG template in order to create a valid offer).

o Output of class level operations are the most important
part. For them the main purpose of WSAG, to monitor
the quality of results, fully applies. They lead to WSAG
guarantee terms with a particular unit and/or value range.
The outside observability may of course be very different
across a range of services. Thus it has to be linked to a
class level operation, that in turn may invoke monitoring
functionality at the instance level (e.g. Sakellariou et al.
[4D.

The creation of a WSAG domain template is strictly inter-
nal, and fully transparent for the Marketplace consumers. For
its implementation we are building on the existing mechanisms
of the Marketplace, mainly the definition of properties, and
input / output schemas.

Listing 1. Properties Schema

1 <rng:grammar xmlns:datatypeLibrary="...” xmlns:rng="..."
xmlns:prop="..." xmlns:wsag="..." >
<rng:start>
<prop:properties xmlns:prop="..."7 xmlns:d="..." >

<d:caption xml:lang="en”>Address </d:caption>
<d:caption xml:lang="de”>Adresse </d:caption>

2
3
4 <rng:element name="prop:address”>
5
6
7 <rng:element name="prop:ZIP” wsag:item="Zip">

8 <d:caption xml:lang="en”>ZIP Code</d:caption>

9 <d:caption xml:lang="de”>PLZ</d:caption>

10 <rng:data type="integer’><!-—— 4 digits —>
11 <param name="minInclusive”>1000</param>
12 <param name="maxInclusive”>9999 </param>
13 </rng:data>

14 <wsag:extension>

15 <!-— specific WSAG information —>

16 </wsag:extension>

17 </rng:element>

18

19 </rng:element>

20 </prop:properties >

21 <wsag:general>

22 <!—

23 General information about the WS-A template
24 —>

25 </wsag:general>

26 </rng:start>
27 </rng:grammar>

As can be seen in Listing 1, we added a WSAG specific
section to the already existing XML RNG Schema, to allow
for WSAG specific information to be added (wsag:item). As
properties are class level information, it is up to a service
domain expert to shape this basis for all contracts.

Listing 2. Class Level Input Message Schema

<rng:grammar xmlns:datatypeLibrary="..." xmlns:rng="..." >

»

1

2 <rng:start>

3

4 <rng:element name="input-message” >

5

6 <rng:element xmlns:d="...” name="date” wsag:Item="
DateOfShow”>

7 <d:caption xml:lang="en”>Date </d:caption>

8 <d:caption xml:lang="de”>Datum</d:caption>

9 <rng:data type="date”/>

10 <wsag:extension>

11 <!—— specific WSAG information —>

12 </wsag:extension>

13 </rng:element>

14 <rng:element xmlns:d="...” name="seats” wsag:Item="
NumberOfSeats”>

15 <d:caption xml:lang="en”>Seats </d:caption>

16 <d:caption xml:lang="de”>Sitze </d:caption>

17 <rng:data type="integer”>

18 <param name="minInclusive”>1</param>

19 <param name="maxInclusive”>6</param>

20 </rng:data>

21 <wsag:extension>

22 <!-— specific WSAG information —>

23 </wsag:extension>

24 </rng:element>

25 </rng:element>

26 <wsag:general>

27 <l—

28 General information about the WSAG template

29 —>

30 </wsag:general>

31 </rng:start>
32 </rng:grammar>

In Listing 2 an example class level input schema can be
seen. Again it is possible to reuse datatype related information,
but additionally units and/or expected ranges could be further
described in WSAG.

C. Aggregation

As defined in [16] the Marketplace allows to define class
level operations (microflows) that in turn invoke instance
level operations (microflows). Invocation does not mean that
the microflows are executed by the Marketplace, but can be
fetched from the marketplace in order to execute them in a
Workflow Engine (WFE) at the service consumer’s side.

Domain Input Domain Input

Aggregation

Marketplace

Properties
Schema

Domain Input

Transformation

Fill-In

Domain »/» Domain

Template v Offer

User Input

Fig. 3. Class Level Templates: Aggregation and Transformation of Interfaces

8
2
2
&
g
=
¥
=

But for class level operations it is also allowed to invoke
other class level operations in order to e.g. realize a search &
book operation, which is the fusion of existing operations. As
the domain designer has full control over the class level (API),
it is not possible that semantically identical parameters with
different names may be used (except as an error by the domain
designer). Thus aggregating WSAG is straight forward, pieces
of information can just be concatenated, duplicate information
can be removed.

As properties are valid at class level for all operations, when
concatenating the pieces, identifiers have to be prefixed.

Listing 3. Class Level Template

<wsag: Template xmlns:xsi="...” xmlns:xs="..."
xmlns :wsag="...” xsi:schemaLocation="..."
xmlns:prop="..."7 xmlns:msg="..." >

Search and Book</wsag:Name>
<wsag: Context/><!-— contains general information —>
<wsag: CreationConstraints >

1
2
3
4
5 <wsag:Name>Cinemas Domain:
6
7
8 <wsag:Item wsag:name="Zip">

9 <wsag:Location>

10 //wsag: ServiceDescriptionTerm/prop: address/prop:ZIP
11 </wsag:Location>

12 <xs:minlnclusive xs:value="1000"/>

13 <xs:maxInclusive xs:value=79999"/>

14 </wsag:Item>

15 <wsag:Item wsag:name="DateOfShow”>

16 <wsag:Location>

17 //wsag:ServiceDescriptionTerm/msg: date
18 </wsag:Location>

19 </wsag:Item>

20 </wsag:CreationConstraints>
21 <!—— additionl generated information is
22 </wsag:Template>

palced here —>

This results in a simple concatenation algorithm depicted
in Listing 3. As already described in Subsection IV-A, the
aggregated WSAG template can then be filled out by a user
and utilized to make offers for a subset of services.

V. CASE STUDY

In this Section we justify our approach by analyzing a
set of negotiation protocols. As already mentioned in the

introduction, negotiation is the process of establishing busi-
ness relations between service providers and consumers. In
the context of this paper this means that a WS-Agreement
(WSAG) can be derived, which can be used in order to call
services. Existing class level operations can be extended to
include the functionality to:

(1) Collect WSAG templates by invoking instance level
operations.

(2) Present aggregated templates to users, by utilizing call-
backs that can be injected into class level operations
(microflows) as presented in [16]. It is important to
note that all templates will have the same structure /
terms included, but may contain different WSAG creation
constraints.

(3) Present offers to services by invoking instance level
operations with filled out WSAG templates.

(4) Enact service calls as a result of accepted offers.

The instance level operations (microflows) mentioned in (1)
and (3) can contain any kind of calls to actual services. This
allows for a high degree of flexibility: (a) for WSAG unaware
services, the logic to create a WSAG could be either embedded
in a microflow, or (b) for WASG aware services results can
be just transformed.

Furthermore, as described in (2) the service consumer (user)
can select a subset of templates that match his preferences.
As the service consumer (user) has also an overview of its
past decisions, it can employ strategic or tactic negotiation
as described in the related work. The same goes for service
providers as described in (3).

Because class level operations interact with all participating
service providers, its microflow represents a multilateral ne-
gotiation protocol. A WSAF complaint class level operation
has to define a WSAG offer (domain offer) as an input and zero
to many WSAG agreements (domain agreements) as output.

On the other hand passing a particular WSAG offer to an
instance level operation for a particular service, can be con-
sidered to be an example of a bilateral negotiation protocol.

As already mentioned in the introduction, this separation
between class and instance level is perfectly suited to map
arbitrary per service negotiation protocols in a transparent
fashion. The service consumer can just fetch and execute
microflows, without having to worry about transforming input
or results.

To further exemplify the invoked principles, we evaluated
several common concepts in more detail.

A. Bilateral Negotiation Protocols

Bilateral negotiation protocols represent how a service con-
sumer is able to negotiate with a specific service provider
(one-to-one). As for all negotiations, at the beginning is a
service offer (SO) and at the end there is either a service
agreement (SA) or a cancellation of the negotiation. What
happens in between is covered by the negotiation protocol
(e.g. send offer, confirm agreement or quit negotiation). In
our concept, bilateral negotiation protocols are always defined
using instance level operations. This is completely in line with

their original intent to provide service specific information to
the service consumer which is also considered as one-to-one
information.

In the following, we illustrate our concept with two com-
monly used bilateral negotiation protocols.

1) Contract Net Interaction Protocol: The Contract Net
Interaction Protocol was introduced by Smith [27] in 1980
and represents the protocol which is today often referred
to as “Supermarket Approach”. This means that the service
consumer offers a contract (send offer) for the requested func-
tionality and the service provider either accepts this offer or
rejects it, without providing any counteroffer (“take it or leave
it”). Because there is no counteroffer provided for the service
consumer, its strategic negotiation service is not necessary. As
an example how a microflow, representing this protocol in its
simplest form (without any parameter transformation), could
look like see Figure 4.

SP: Strategic/Tactic Negotiation

confirm
agreement

Instance Level

negotiation

rejected

Operation: Contract
Net Interaction Protocol

Fig. 4. Bilateral Negotiation: Contract Net Interaction Protocol [27]

We decided to include this protocol in our case study as it is
widely used by today’s real world services (e.g. online-shops,
cinema service providers, ...). Furthermore is it referred in
a lot of today’s research (e.g. [2], [6], [12], [13]) and thus
relevant for the Marketplace.

2) Alternate Offers Protocol: The “Alternate Offers Proto-
col” was defined by Rubinstein [29] in 1982 and provides the
possibility for service providers (SP) and service consumers
(SC) to bargain about the delivered functionality and usage
conditions. As illustrated in Figure 5 the protocol allows both
parties to propose counteroffers (SC: create counteroffer and
SP: request counter template) if one is not willing to accept the
current offer. In WSAG, each term defines permissible values
[2] used as constraints when creating the counteroffer. This
cycle goes on until both parties either accept the current offer
or one party quits the negotiation process.

Because this protocol allows counteroffers, the service con-
sumer must provide a strategic negotiation logic, to decide
how the negotiation should continue and create counteroffers
(see Section V-C for details). Doing so allows each service
consumer to realize his own bargaining strategy without cus-
tomizing the instance level operation defined by the service
provider.

Although, as to our best knowledge, not much of today’s
real world services support this protocol, it is quite popular

| SP: Strategic/Tactic Negotiation

Sp confirm
accepted agrement

ILA

v
equest create sc quit
counter tpl. counteroffer quits negotiation
[#] o [#] .

~

Instance Level Operation:
Alternate Offers Protocol

rejected

i countered
R ling
Av4 ;

SC: Strategic/Tactic Negotiation |

Fig. 5. Bilateral Negotiation: Alternate Offers Protocol [9], [29]

among researchers (e.g. [7], [10], [31]). We agree with Ru-
binstein et al. [29] that bargaining is essential for the creation
of mature markets.

B. Multilateral Negotiation Protocols

So far we focused on bilateral negotiation protocols, defin-
ing the interaction between one specific service provider and
a service consumer (one-to-one). In this Section we extend
our focus to multilateral negotiation protocols, as only these
allow a service consumer to use offers from competing ser-
vice providers (one-to-many) for its negotiation strategy. As
discussed in e.g. [3], [29], if this information is used to create
counteroffers, the overall benefits for the service consumer
will significantly increase, because the service consumer is
completely informed about the market.

Multilateral Negotiation is similar to the “Alternate Offers
Protocol” (see Section V-A2), only this time the bargaining is
defined at class level instead of instance level. The according
operation therefore executes the negotiation protocols, defined
by each service provider, every time a new service agreement
should be negotiated'. If re-negotiation with a particular
service providers is not desired, class level logic can easily
exclude them. Again, the service consumer provides a strategic
negotiation logic, which is in charge of creating counteroffers
representing the preferences of the service consumer.

The definition of such protocols is built on the interaction of
class level and instance level operations. As this interaction can
be utilized in various ways, a lot of room for domain specific
customization is left open, e.g. service enactment [31], service
decomposition [7].

We decided to implement the “Iterated Contract Net Interac-
tion Protocol”, which was standardized by the FIPA [15] and
extended with negotiation coordination capabilities by Yan et
al. [7].

As illustrated in Figure 6, during the negotiation service
offers (SO) are sent to various service providers (send offers)
using the individual bilateral negotiation protocol (Instance

U1t can therefore happen that the “Alternate Offers Protocol” is used inside
an iterated multilateral negotiation.

| SP: Strategic/Tactic Negotiation |

i

| Instance Level Operation: Negotiate |
Av4

AN ! H
B9 0 AT

= check confirm
'g E g H >| agreements accsecxed agreements
588 ; o P
g8 H 4 aY
§eax H : :
~oc H H |
o %g filter tpls. H : ; () pa
228 and create H : i
w2 g counteroffers ques! H [quit
962 s < L sc sc Iit
5 g S o FI countl%rl tpl s.J ' countered quits negoatlon

<7 o -

: Av4 kv H

| SC: Strategic/Tactic Negotiation |

Fig. 6. Multilateral Negotiation: Iterated Contract Net Interaction Protocol
(71, [15]

Level Operation: Negotiate) of each service provider. After-
wards the collected service agreements (SA) are sent to the
strategic negotiation logic of the service consumer (check
agreements). The result of the strategic negotiation is either to
accept some of the agreements (confirm agreements), to quit
the negotiation (quit negotiation) or to propose counteroffers.
If counteroffers are placed, first the counter templates (ST) of
the service providers are collected (request counter templates).
Then the strategic negotiation logic of the service consumer
filters these templates and creates counteroffers (SO) for all
service providers included in the next iteration (filter templates
and create counteroffers).

This way of bargaining is also known as “reverse auction”
where many different service providers compete. Therefore,
in each iteration either the price decreases or the offered
functionality increases.

C. Strategic Negotiation

Strategic negotiation is used as a means to enact the service
consumers / providers preferences. Implementing strategic
negotiation as part of class / instance level operations allows
to realize individual service preferences without changing the
negotiation protocol provided by the Marketplace and focus
on the outcome of a specific negotiation.

How these preferences are expressed and how competing
offers are rated is strongly affected by micro economics and
therefore beyond the focus of this paper. As pointed out by
Faratin et al. [14], for autonomous service negotiation three
areas must be considered: (1) Negotiation Protocols, which
are discussed in this case study, (2) Negotiation Issues, which
are covered by WSAG (see Section 1V), and (3) Negotiation
Strategies to define a reasoning model for the service cus-
tomers preferences.

They further define that their approach for autonomous
negotiation uses a value scoring algorithm as a foundation.
In this algorithm, each single criteria of the negotiation is
represented by a tactic. Tactics are functions calculating the
value of the assigned criteria. To create an offer, all tactics are
weighted and combined. By varying the weight of each tactic
over time, the long-term negotiation strategy is realized.

As an example for a negotiation strategy they allege that,
in the beginning of multilateral negotiations, the behavior of
competing service providers may influence the counteroffer
more than the value of a single criteria. Therefore behavior
representing tactics are weighted higher than other tactics.
However, at the end of the negotiation phase, single criteria
may gain importance. How tactics and strategy have to be
combined to achieve the best negotiation results, can be educed
from various sources e.g. historical data or user’s preferences.
In our approach all this logic is provided on behalf of the
service consumer, thus not directly affects the Marketplace.

VI. EXTENDED CINEMAS EXAMPLE

So far we introduced our concept for WSAG integration and
flexible bilateral and multilateral negotiation protocols. In this
Section we integrate them into the cinemas example introduced
in Section II and [16] as illustrated in Figure 7.

Class Level
Operation: Search

Class Level
Operation: S & B

Class Level
Operation: Book

Class Level
Interface: Search

(Aggregated)
Class Level

Interface: S & B

JAN

Instance Level @e@e: Search

Class Level
Interface: Book

parse input
message

Class Level
Interface: Search

Instance Level Operation: Search

1 sa
il missing?

EL" -------------------------------- 1 '
H show
I I I R >

Domain Operation :
Interface: Nego. H select
. show
&<
SO

SA

Class Level
Operation: Nego.

>j00g :uonesadQ [9AST ddURISUT

Joog]9@9 m [2A97 @due3isu]
AV A

Domain Operation
Interface: Nego.

(Aggreagted)
Class Level
Interface: S&b

Class Level
Interface: Book

Instance Level Operation: Negotiate
9
v
S
33
I}
al ()
33
o
=]

Fig. 7. Multilateral Negotiation: Cinemas Example

In order to use this operation, the service consumer provides
a domain offer for the class level operation Search & Book as
only input.

Calling the class level operation Search is the same as
described in [16]. Only the necessary parameter transformation
before and after the call are different, as the interface of Search
& Book and the internal data representation has changed.

Now that all offered shows are known, negotiations for
each show are performed. To do so the according class
level operation is called (negotiate show). It is defined inside
the domain interface of this operation that a reference to a
particular show must be included in the input and agreements
for each show are the output. Using this input message, the
operation is capable to educe the correct service provider
and calls its instance level operation for negotiation (perform
negotiation). Also parameter transformations to create service

offers (SO) and to compute service agreements (SA) must be
performed.

After all shows are negotiated, the service consumer (acting
as the strategic negotiation service) selects the preferred show
(select show). Further must all service agreements, expect the
selected one, be canceled. This is done as described in the
agreement e.g. sending the agreement to a specific URI. It
must be noted that we excluded this message flow in our
illustration to keep it neat.

In the end, the selected service agreement (SA) is used as
an input for the class level operation Book. In our example
this operation defines in its class level operation interface
that either a service agreement or a reference to a particular
show is valid input. Depending on this input, the operation
decides (parse input message) if it must negotiate the show
(negotiate show) before using it or not. In the end the service
operation Book of the according service provider can be called.
It defines in its instance level operation interface that a service
agreement (SA) must be included to authorize the usage. As
output the execution results of the service are define.

This execution results and the selected service agreement
represent the defined output of Search & Book.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented flexible ways to (a) define WSAG
contracts for arbitrary services, and to (b) transparently allow
different services to utilize custom negotiation algorithms
and APIs. We showed that both goals could be achieved by
building on an existing Marketplace concept, that promotes
microflows (small pieces of code executable by a Workflow
Engine) to achieve a high level of abstraction for service
consumers.

We first described how to extend the concept of unified
interfaces to create unified contracts. We then introduced how
to use the concepts of class (domain) and instance (service)
level to provide flexible negotiation protocols. Finally we
provided a case study to justify our approach.

Within the case study we discussed how (1) bilateral nego-
tiation protocols are defined using instance level operations,
(2) how multilateral negotiation protocols are defined using
class level operations, and (3) how service consumers can
include customized negotiation strategies. We presented how
to implement the “Contract Net Interaction Protocol” (because
of its prevalence for real world services) as well as the “Alter-
nate Offers Protocol” (as prerequisite for mature markets). For
multilateral negotiation protocols we presented the “Iterated
Contract Net Interaction Protocol” in order to allow various
service providers to compete about business. Additionally we
presented one negotiation strategy based on a value scoring
algorithm.

The conclusion we can draw from this work is, that by
embracing existing workflow-related concepts, it is possible
to build a lightweight solution for dealing with electronic
contracts, in an environment where not all services support
them (or support them in the same way).

Future work will be to exploit the complexity of different
types of negotiation protocols and to implement some custom
negotiation strategy services. The possibilities to monitor
complex guarantee terms using class level operations in the
context of service composition is also promising. This can
lead to much improved error handling and service selection,
as it may allow for the prediction of service behavior.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

H. Ludwig, “WS-Agreement concepts and Use—Agreement-Based
Service-Oriented architectures,” IBM Research Division, 2006.

A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web services agreement
specification (WS-Agreement),” in Global Grid Forum, 2004.

J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented grids and
utility computing: The state-of-the-art and future directions,” Journal of
Grid Computing, vol. 6, no. 3, p. 255-276, 2008.

R. Sakellariou and V. Yarmolenko, “On the flexibility of WS-agreement
for job submission,” in Proceedings of the 3rd international workshop
on Middleware for grid computing, 2005, p. 1-6.

I. Ul Haq, A. Huqqani, and E. Schikuta, “Aggregating hierarchical
service level agreements in business value networks,” in Business
Process Management: 7th International Conference, BPM 2009, Ulm,
Germany, September 8-10, 2009. Proceedings 7. Springer, 2009, pp.
176-192.

F. H. Zulkernine and P. Martin, “An adaptive and intelligent SLA
negotiation system for web services,” IEEE Transactions on Services
Computing, vol. 4, no. 1, pp. 31-43, Jan. 2011.

J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and J. Zhang,
“Autonomous service level agreement negotiation for service composi-
tion provision,” Future Generation Computer Systems, vol. 23, no. 6,
pp. 748-759, Jul. 2007.

H. Ludwig, A. Dan, and R. Kearney, “Cremona: an architecture and
library for creation and monitoring of WS-agreents,” in Proceedings of
the 2nd International Conference on Service oriented computing, 2004,
p. 65-74.

S. Venugopal, X. Chu, and R. Buyya, “A negotiation mechanism for
advance resource reservations using the alternate offers protocol,” in
Quality of Service, 2008. IWQoS 2008. 16th International Workshop
on, 2008, p. 40-49.

M. Comuzzi and B. Pernici, “An architecture for flexible web service qos
negotiation,” in Ninth IEEE International EDOC Enterprise Computing
Conference (EDOC’05). 1EEE, 2005, pp. 70-79.

M. Parkin, D. Kuo, and J. Brooke, “A framework and negotiation
protocol for service contracts,” in 2006 IEEE International Conference
on Services Computing (SCC’06), Chicago, IL, USA, Sep. 2006, pp.
253-256.

P. Hasselmeyer, H. Mersch, B. Koller, H. N. Quyen, L. Schubert,
and P. Wieder, “Implementing an SLA negotiation framework,” in
Proceedings of the eChallenges e-2007 Conference, Hague, Netherlands,
2007.

A. Pichot, P. Wieder, O. Wildrich, and W. Ziegler, “Dynamic SLA-
negotiation based on WS-Agreement,” in Proceedings of the 4th In-
ternational conference on Web Information Systems and Technologies
(WEBIST 2008), 2008, p. 38-45.

P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation decision functions
for autonomous agents,” Robotics and Autonomous Systems, vol. 24, no.
3-4, p. 159-182, 1998.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

J. Odell, S. Poslad, and R. Levy, “FIPA iterated contract net
interaction protocol specification,” Dec. 2002. [Online]. Available:
http://www.fipa.org/http://fipa.org/specs/fipa00030/SCO0030H. pdf

R. Vigne, J. Mangler, E. Schikuta, and S. Rinderle-Ma, “A structured
marketplace for arbitrary services,” Future Generation Computer Sys-
tems, vol. 28, no. 1, pp. 48-57, 2012.

E. Schikuta, T. Fuerle, and H. Wanek, “Vipios: The vienna parallel
input/output system,” in Euro-Par’98 Parallel Processing: 4th Interna-
tional Euro-Par Conference. Springer, 1998, pp. 953-958.

W. Mach and E. Schikuta, “A generic negotiation and re-negotiation
framework for consumer-provider contracting of web services,” in Pro-
ceedings of the 14th International Conference on Information Integration
and Web-based Applications & Services, 2012, pp. 348-351.

E. Schikuta and T. Weishaupl, “N2grid: neural networks in the grid,” in
2004 IEEE International Joint Conference on Neural Networks (IEEE
Cat. No. 04CH37541), vol. 2. IEEE, 2004, pp. 1409-1414.

E. Schikuta, F. Donno, H. Stockinger, H. Wanek, T. Weishdupl,
E. Vinek, and C. Witzany, “Business in the grid: Project results,” in /st
Austrian Grid Symposium. OCG, December 2005. [Online]. Available:
http://eprints.cs.univie.ac.at/745/

E. Schikuta, H. Wanek, and I. Ul Haq, “Grid workflow optimization
regarding dynamically changing resources and conditions,” Concurrency
and Computation: Practice and Experience, vol. 20, no. 15, pp. 1837-
1849, 2008.

K. Kofler, I. ul Haq, and E. Schikuta, “A parallel branch and bound algo-
rithm for workflow qos optimization,” in 2009 International Conference
on Parallel Processing. 1EEE, 2009, pp. 478-485.

G. Stuermer, J. Mangler, and E. Schikuta, “Building a modular service
oriented workflow engine,” in 2009 IEEE international conference on
service-oriented computing and applications (SOCA). 1EEE, 2009, pp.
1-4.

N. Oldham, K. Verma, A. Sheth, and F. Hakimpour, “Semantic WS-
agreement partner selection,” in Proceedings of the 15th international
conference on World Wide Web, 2006, p. 697-706.

R. Kiibert, G. Katsaros, and T. Wang, “A RESTful implementation
of the WS-Agreement specification,” in Proceedings of the Second
International Workshop on RESTful Design, 2011, p. 67-72.

F. Zulkernine, P. Martin, C. Craddock, and K. Wilson, “A Policy-Based
middleware for web services SLA negotiation,” in IEEE International
Conference on Web Services, 2009. ICWS 2009. 1EEE, Jul. 2009, pp.
1043-1050.

R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” Computers, IEEE Transactions
on, vol. 100, no. 12, p. 1104-1113, 1980.

P. C. Hung, H. Li, and J.-J. Jeng, “Ws-negotiation: an overview of
research issues,” in 37th Annual Hawaii International Conference on
System Sciences, 2004. Proceedings of the. 1EEE, 2004, pp. 10—pp.
A. Rubinstein, “Perfect equilibrium in a bargaining model,” Economet-
rica: Journal of the Econometric Society, p. 97-109, 1982.

1. Brandic, D. Music, P. Leitner, and S. Dustdar, “VieSLAF framework:
Enabling adaptive and versatile SLA-Management,” in Grid Economics
and Business Models, J. Altmann, R. Buyya, and O. F. Rana, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, vol. 5745,
pp. 60-73. [Online]. Available: http://www.springerlink.com/content/
1380u04815284287/

M. B. Chhetri, J. Lin, S. K. Goh, J. Yan, J. Y. Zhang, and R. Kowalczyk,
“A coordinated architecture for the agent-based service level agreement
negotiation of web service composition,” in Software Engineering Con-
ference, 2006. Australian, 2006, p. 10—pp.

