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Abstract—Causal Feature Learning (CFL) infers macro-level
causes (e.g., an aggregation of pixels in a traffic light image)
from micro-level data (e.g., pixels of the image) by clustering the
predicted probabilities of effect states (e.g., state of the traffic
light). The current method for CFL uses a two-step procedure.
First, a classifier for the effect states is trained, and after-
wards, the predicted effect state probabilities are clustered. With
CAFE DBSCAN, we present a novel density-based clustering
method that conducts CFL directly by estimating conditional
probabilities during clustering. To this end, we introduce the
notion of clustering regions with similar conditional probabilities
of the effect states given their micro-level data points. Our single-
step approach has the following benefits: (1) CAFE DBSCAN in-
troduces a comprehensive approach to Causal Feature Learning.
Unlike existing methods, CAFE DBSCAN uses a probabilistic
framework and does not require separate classification and
clustering steps implemented by different algorithms relying on
various assumptions, parameter settings, and optimization goals.
(2) We do not need to train and tune a classifier first, hence the
algorithm is more runtime-efficient than the current approach.
(3) Due to the properties of density-based clustering algorithms,
CAFE DBSCAN is robust against noise and outliers, which
leads to purer clusters. (4) Our algorithm automatically infers
a reasonable number of clusters, i.e., macro-level causes. We
demonstrate the benefits of CAFE DBSCAN on synthetic and
real-world data.

Index Terms—Causal Feature Learning, Density-based Clus-
tering, Macro-level Causal Effects

I. INTRODUCTION

Inferring macro-level causes from micro-level data is one
of the key pursuits in natural sciences. This task is concerned
mainly with finding the right granularity, i.e., how to group
micro-level features into macro-level ones. Applications are
manifold, e.g., in neuroscience, determining which neurons
are responsible for a specific action [1], in computer vision
and human-computer interaction, determining which aggrega-
tion of pixels in an image caused a specific behavior in a
user [2], or meteorology, which composition of micro-level
features, like temperature and wind strength, is causing which
weather phenomenon [3]. A real world example is shown in
Figure 1, different aggregations of micro-level pixels are (not)
responsible for the state of a traffic light image (see Section
VII).

Causal Feature Learning (CFL) is a framework that com-
bines elements from machine learning, data mining, and causal
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Fig. 1. Real World Experiment: Traffic Light Images.
We generated micro-level features of traffic light images and identified
the observational classes ΠGREEN, ΠYELLOW, ΠRED, ΠBG1, ΠBG2 with
CAFE DBSCAN. Each class is represented by an image where the sum of
all data points belonging to their respective class is scaled to [0, 255]. Under
each representative, the corresponding effect state probability distribution is
shown.

inference. Its task is to find macro-variables from given
micro-level data and their corresponding caused effects. These
macro-variables can be learned by clustering the conditional
probabilities of the effect states, e.g., the observed action
of a user, given the micro-level data, e.g., the image they
were shown. The knowledge of the found macro-variables can
then be used to learn causal relations, by doing O(k) exper-
iments/interventions, where we check the causal influence of
each of the k learned macro-variables. After performing the
interventions, one can eliminate non-causal macro-variables



to construct a “causal data set”. This causal data set can
then be used to train a classifier that faithfully represents the
underlying causal relations. E.g., in Figure 1 CAFE DBSCAN
found two different background macro-variables. Apparently,
the used data set consists of more red traffic light images
recorded in the night, whereas the green traffic lights were
more often recorded during day time. With human knowledge
or by performing experiments, we can then deduce that the
background lighting should not have an effect on the state of
the traffic light (see Section VII).

Chalupka et al. proposed in [4] an algorithm that first learns
the conditional probabilities with a classifier and then clusters
the resulting learned class probabilities with k-means. This
two-step solution relies heavily on the performance of the
used classifier. The classifier and the clustering method rely on
different assumptions and follow different optimization goals.
Furthermore, classifier training and hyperparameter tuning
are computationally expensive. Additionally, this approach
assumes that we already know the number of clusters apriori
and that the data contains no noise or outlier points, all of
which limit its applicability in practice.

In our novel density-based clustering algorithm for CFL,
Causal Feature DBSCAN (CAFE DBSCAN), we solve these
problems. We do this by estimating the conditional probabili-
ties through ϵ-neighborhoods. These estimations are computed
during the clustering process, which results in a single-step
approach with no need to train a classifier. Our main con-
tributions are the formulation of how to cluster conditional
probabilities in the CFL setting meaningfully to learn macro-
level variables from micro-level ones and, based on that,
the development of our algorithm. In our experiments in
Section VI, VII, and VIII, we verify that our algorithm out-
performs the current state-of-the-art in the following aspects:

1) Standalone algorithm. CAFE DBSCAN introduces a
comprehensive approach to Causal Feature Learning.
Instead of learning the conditional probabilities first and
clustering them afterwards, we integrate the estimation
of the probability distributions into the clustering algo-
rithm. This makes our algorithm more faithful to the un-
derlying data and improves the clustering performance.

2) Runtime. The training and tuning of a classifier, which
is needed for the two-step approach of CFL, in ad-
dition to the tuning of the clustering algorithm, is
time-consuming. Our novel algorithm does not need a
classifier. Thus, it finds the clusters magnitudes faster
than the current state-of-the-art.

3) Robustness to noise. The micro-level data are often
contaminated by noise. Noise and outliers have a neg-
ative impact on the accuracy of the classifier and the
subsequent algorithm that then clusters the learned con-
ditional probabilities. CAFE DBSCAN is robust against
noise and outlier points due to its relation to DBSCAN,
making it more suitable for real-world data and allowing
us to learn purer clusters that are not contaminated by
noise.

4) Automatic learning of the number of clusters. The
current approach of CFL in [4] assumes that the number
of clusters is already known in advance. Our approach
automatically determines a reasonable number of clus-
ters, as shown by experiments in Section VI.

II. BACKGROUND AND RELATED WORK

There are two main research areas related to our work:
clustering and causality. Regarding clustering, we focus on
density-based clustering, i.e., the DBSCAN family, which
is described briefly in Section II-A. In Section II-B, we
emphasize the difference between clustering in CFL and other
existing clustering methods. For causality, we briefly describe
how CFL relates to existing work on causality in Section II-C.
Finally, in Section II-D, we formally introduce the CFL
framework.

A. Density-based Clustering Algorithms

Clustering is the task of finding groups in a data set. For
density-based clustering, “a cluster is a set of data objects
spread in the data space over a contiguous region of high-
density objects” [5]. High-density clusters are then separated
by low-density regions and points in these regions are con-
sidered as outliers or noise points. The original density-based
clustering algorithm DBSCAN [6] can find arbitrary-shaped
clusters, automatically determines the number of clusters, and
identifies noise points and outliers. Our algorithm CAFE DB-
SCAN is also part of the density-based clustering family and
inherits these advantages.

There exists a plethora of work on density-based clustering
spanning more than twenty years of research. There are many
extensions of DBSCAN, e.g., for high-dimensional data [7]–
[9], for very large data sets [10], varying densities [11] or
automatic estimation of ϵ [12]. CAFE DBSCAN is the first
density-based clustering approach that directly solves CFL.
Hence, we focus on its core properties and neglect all these
extensions. Nonetheless, it would be interesting for future
work to adopt these existing extensions for CFL as well.

B. Clustering of Conditional Probabilities

For clustering, we always need the notion of similarity. In
CFL, similarity is defined w.r.t. the conditional probabilities
of the effect states Y given their (micro-level) data X , i.e.,
two data points in X are considered similar if they have a
similar conditional probability P (Y ∣X), we will explain this
in more detail in Definition 2.

We want to highlight that this is different from the “usual”
clustering setting in which the goal is to infer cluster labels
from the plain data X . Note, that this is also different from just
including the effect state labels Y into our data and clustering
those, which would correspond to clustering the samples of the
joint distribution of data and effect states. (Semi-)supervised
clustering algorithms [13] are also different because they
only (partially) exploit the label information to get a better
clustering. In contrast to CFL, they still cluster the data X
just with the help of the information of Y , but they are not



clustering the conditional probability P (Y ∣X). Probabilistic
clustering methods like EM [14] are also different from the
CFL setting in that they learn the probability distribution
P (X) in the plain data, but are again not clustering with
respect to the conditional probability.

To our knowledge, clustering of conditional distributions
for CFL has not been studied in the clustering community.
There exists related work from statistics on the clustering of
probability distributions [15], [16]. Importantly, these methods
assume that the probability distributions are already given,
which is not the case in the CFL setting. One could estimate
the conditional probability distributions with a classifier first,
but this would lead to the same problems as in the current
CFL approach of [4].

C. Causality

In causality, we originally only focus on causal macro-
variables [17], e.g., the traffic light state, and their influence on
other macro-variables, e.g., the behavior of people recognizing
this state. However, these macro-variables are often an aggre-
gation of smaller micro-variables, e.g., pixels of an image. In
CFL, we now want to learn these aggregations of micro-level
variables automatically. Considering the traffic light example,
this would amount to finding the parts of the image (green,
yellow, and red areas) which cause the traffic light state, but
also the background of the image that does not influence the
traffic light state. Logically, with only observational data, we
can also only find observational macro-variables, but they
are a great help for designing experiments, as they indicate
in which areas we have to intervene in the system to find
the causal macro-variables. In the traffic light example, we
can already deduce the causal macro-variables by ourselves
without experiments with common sense.

D. Causal Feature Learning (CFL)

CFL is the task of learning causal macro-variables given
(high-dimensional) micro-level data and their respective effect
states. [18] calls this problem Causal Representation Learning
and states that it is “a central problem for AI and causality”.
However, their work does not solve this problem, but addresses
basic concepts of causal inference and its relationship to
machine learning under the premise that all causal macro-
variables are already given. Interestingly, CFL was already
introduced earlier in [4] but not mentioned in their work. In
the following sections, we adopt the notion of [4] and state
the main ideas of CFL.

Let X be the domain of the micro-level data and X a
random variable that takes on values x ∈ X . Further, let
Y = {1, 2, ...,m} denote the discrete and finite domain of
effect states1 and Y a random variable that can take on values
y ∈ Y . The intuitive interpretation of an effect state is the
condition, state, or situation which is observed for a given
micro-level data point. E.g., the effect state of all the pixels

1Without loss of generality, we can assume the states to be numbered from
1 to m. Every discrete, finite domain with size m can be mapped to this
range of numbers.
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Fig. 2. Example with m = 5 effect states. The micro-level data points
with their respective effect states are visualized in the top figure. Each effect
state is represented by a unique shape/color. The causal classes Πi can each
be identified by a unique probability distribution (see distribution plots). By
clustering the micro-level features by their conditional probabilities the classes
Πi can be identified.

in one traffic light image is the state of the traffic light in this
image.

In causality, interventions are an important concept. By ap-
plying them, we can deduce which macro-variables are causal
and which are only spurious. However, if the macro-variable
consists of several micro-variables, we need to intervene in
the micro-level domain to find out, which aggregations of
micro-variables are causal. In the traffic light example, one
possible intervention would be setting an aggregation of pixels
to a specific color. Such a micro-level intervention is denoted
with do(X = x) which means that X is set to x while the
rest of the system remains unperturbed in all micro-level data
points. Here, X and x can also be sets, which means that the
do-notation can also be applied to an aggregation of micro-
level variables. If we can apply interventions in the micro-level
domain, we are also able to deduce causal partitions:

Definition 1. (causal partition)
The causal partition Π

(c)(Y,X ) of X w.r.t. the effect states
Y is the partition induced by the equivalence relation ∼ such
that x ∼ x

′ with x, x
′
∈ X iff

P (Y ∣ do(X = x)) = P (Y ∣ do(X = x
′)). (1)

The causal partition groups micro-level data together if
they still have the same conditional probability after applying
the same intervention on all the micro-level data. Such a
group is then called causal class. In the traffic light example,
there exist four causal classes: the green, yellow, and red



areas, respectively, and the background area. Whereby only
the former three are really causal for the traffic light state.

Often, we can not intervene on micro-variables, e.g., due
to ethical considerations (medicine) or physical constraints
(weather). Additionally, there are complexity constraints that
make interventions in the micro-level domain infeasible be-
cause we would have to intervene on all possible combinations
of micro-variables for all data points. In the traffic light
example, we would need to intervene on all possible aggre-
gations and combinations of pixels and their values, which
would be infeasible in practice. To prevent this explosion in
complexity, we can deduce an observational partition to reduce
the number of interventions to O(k), where k is the number
of observational classes:

Definition 2. (observational partition)
The observational partition Π

(o)(Y,X ) of X w.r.t. the effect
states Y is the partition induced by the equivalence relation ∼

such that x ∼ x
′ with x, x

′
∈ X iff

P (Y ∣X = x) = P (Y ∣X = x
′). (2)

A cell of the observational partition Π
(o)
i ∈ Π

(o) is also called
observational class, where i ∈ [1..k] and k = ∣Π(o)∣ is the
total amount of observational classes.

Put in plain words, the observational partition groups the
observed micro-level data into observational classes that have
the same conditional probability over the effect states. In
Figure 2, an example with five possible effect states, three
observational classes, and their corresponding effect state
distributions are illustrated.

In [4] it is proven (see Theorem 1) that in general, the causal
partition is a coarsening of the observational partition, i.e., the
causal partition aligns with the observational partition. This
offers valuable information for practitioners, e.g., on how to
perform experiments/interventions to find the causal partition.

Theorem 1. (causal coarsening theorem) [4]
Among all the generative distributions which induce a given
observational partition Π

(o), all except for a subset of
Lebesgue measure zero induce a causal partition Π

(c) that is
a coarsening of Π(o).

Considering this theorem, it is a good strategy to first
find a meaningful observational partition and then use this
information to design experiments. Through O(k) experi-
ments/interventions, where k is the number of observational
classes, we will obtain the causal partition, which then can be
used for learning a causal classifier. For this reason, we focus
on finding a good observational partition Π

(o) and simplify
the notation for it with Π.

So far, CFL has been performed in a two-step process that
involves training a neural net to estimate the conditional prob-
ability distribution, followed by clustering in the probability
space [3], [4], [19]. Here, we present an algorithm that can
directly learn the partition from the micro-level data.

III. FORMAL DEFINITION

In this section, we formalize the notion of density-based
clustering in the context of CFL. We use the notation of
CFL and density-based clustering to introduce the concept of
clustering conditional probabilities.

Symbol Interpretation

d Dimensionality of micro-level data
m Number of different effect states
n Number of observed data points
k Number of observational classes

X ⊆ R
d Domain of micro-level data

X Random variable of the micro-level domain X
x, x

′
, x

′′ A realization of variable X

Y = {i}mi=1 Domain of effect states
Y Random variable of the effect state domain Y
y Target state of Y

ϵ ∈ R
+ Parameter for the ϵ-neighborhood

µ ∈ N Parameter for minimum number of points
τ ∈ [0..1] Threshold parameter (see Def. 5)
dist(⋅, ⋅) A distance function, e.g., the Euclidean norm
Nϵ(x) The ϵ-neighborhood of x
δ(⋅, ⋅) A probability distance function

D Observed data points {(xi, yi)}ni=1
DX Observed micro-level data points {xi}ni=1
DY Observed effect states {yi}ni=1
xi ith micro-level data point observation
yi ith effect state observation

Π = Π
(o) Observational partition

Πi = Π
(o)
i Observational class, equivalent to a cluster

TABLE I
LIST OF NOTATIONS.

Let D = (DX ,DY ) = {(xi, yi)}ni=1 be a set of n observed
micro-level data points and their respective effect states. We
assume the observed effect states DY to be sampled i.i.d.
from the effect state domain Y by k different not known
probability distributions Pi(Y ∣X = x) with x ∈ Πi for
i ∈ [1, k]. The function dist(⋅, ⋅): Rd × Rd

→ R returns
the metric distance between two points x, x

′
∈ DX , e.g.,

the Euclidean norm (∥x − x
′ ∥2). With an ϵ ∈ R+ the ϵ-

neighborhood of x ∈ DX is denoted by Nϵ(x), i.e., all points
x
′ with dist(x, x′) ≤ ϵ are included in the set Nϵ(x) (cf. [6]).

The ϵ-neighborhood of a set Nϵ(S) contains all points which
are included in the ϵ-neighborhood of all points in the set S ,
i.e., Nϵ(S) = {Nϵ(x) ∣x ∈ S}. Let Π be an observational
partition with the corresponding observational classes Πi ∈ Π.
Then each observational class Πi is characterized by a corre-
sponding probability distribution Pi(Y ∣X) and for all points
x ∈ Πi the probability Pi(Y ∣X = x) is equal.

In the following, we describe how we estimate the proba-
bility distribution of a probability region and how it should
be extended such that the probability distribution remains the
same within one observational class Πi.



We do not know the exact probability distributions
Pi(Y ∣X = x) with x ∈ Πi for i ∈ [1..k], thus, we can only
estimate them. Therefore, we consider a subset D′

⊆ D in
which we assume that the distribution of the effect states does
not change. The random variable X then can take on values in
D′

X . We first estimate the probability for one specific effect
state y of D′

Y with

P̂ (Y = y ∣X) = ∣{(xi, yi) ∈ D′ ∣ yi = y}∣
∣D′∣ . (3)

Definition 3. (estimated probability distribution of D′
X,Y )

We then can define the estimated probability distribution of
D′, P̂ (D′), which contains the conditional probabilities of all
possible effect states in D′:

P̂ (D′) = {P̂ (Y = 1 ∣X), ..., P̂ (Y = m ∣X)} (4)

Note that as a discrete probability distribution the sum of
all the estimates of the conditional probabilities of the effect
states in one estimated probability distribution always sums
up to 1, i.e.,

∣P̂ (D′)∣ = ∑
y∈Y

P̂ (Y = y ∣X) = 1 (5)

Definition 4. (probability region)
Let ϵ ∈ R+ and µ ∈ N+. A probability region is a subset D′

of D w.r.t. ϵ and µ, if
1) ∃x ∈ D′ ∶ ∀x

′
∈ D′

, x
′
∈ Nϵ(x)

2) ∣D′∣ ≥ µ (core region condition).

A probability region is a region where all points are within
the neighborhood of one point and which contains enough
points for an initial estimation of the probability distribution.

We assume, that for small D′ the conditional probability of
the effect states yi given their data points xi is the same for
all (xi, yi) ∈ D′, hence, these points can be grouped together
and their conditional probability can be estimated with the
probability distribution of D′.

Definition 5. (directly reachable probability regions)
Let ϵ, τ ∈ R+, µ ∈ N, and δ(⋅, ⋅) be a statistical probability
distance. A probability region D′′ is directly reachable from
another probability region D′ w.r.t. ϵ, τ , µ, and δ(⋅, ⋅) if

1) ∃x ∈ D′ ∶ x ∈ Nϵ(D′′)
2) δ(P̂ (D′), P̂ (D′′)) ≤ τ .

Intuitively, two probability regions are directly reachable if
they share a point x and the estimated probability distributions
of the two regions do not differ too much. For the latter,
we introduce the threshold variable τ and use the statistical
probability distance function δ. As our domain of effect states
Y is categorical and we are only interested in the difference of
the conditional probabilities of each effect state y, we chose
the total variation distance (see [20] for an overview on com-
paring distributions). In this case, the total variation distance is
related to the Manhattan distance with δ(P,Q) = 1

2
∥P −Q∥1

[21, proposition 4.2, p. 48]. Hence, the δ-distance is bounded
between [0, 1] and thus τ should be chosen from this interval.

Definition 6. (connected probability regions)
A probability region D′ is connected to another probability re-
gion D′′ if there exists a chain of probability regions D1, ...,Dl

with D1 = D′ and Dl = D′′ such that Di+1 is directly reachable
from Di ∀i ∈ [1, l − 1].

All connected probability regions are characterized by the
same estimated probability distribution and form clusters:

Definition 7. (cluster)
Πi is a cluster in D, i.e., an observational class of D, w.r.t. ϵ,
τ , and µ if

1) Πi ≠ ∅
2) ∀ probability regions D′

,D′′ ∶ if D′
∈ Πi and D′′ are

connected to D′
⇒ D′′

∈ Πi.

The conditional probability Pi(Y ∣X) in cluster Πi is then
estimated by the probability distribution P̂ ({x ∣ ∀x ∈ Πi}).
Every cluster Πi represents an observational class where the
estimated probability distribution of the effect states does not
vary much.

Definition 8. (noise)
Let Π be the set of detected clusters, i.e., the observational

partition, of D w.r.t. the parameters ϵ, τ , and µ. All points n ∈

D which do not belong to any cluster Πi ∈ Π are considered
as noise, i.e.,

noise = {n ∈ D ∶ n ∉ Πi ∣ ∀Πi ∈ Π}. (6)

A noise point is a point that does not contribute to any of
the observational classes and can therefore be excluded from
the CFL. By discarding these noise points we get purer obser-
vational classes, which also makes experiments/interventions
on them more reliable by only considering non-noise points
for experiments.

IV. THE CAFE DBSCAN ALGORITHM

Our algorithm CAFE DBSCAN is a density-based clus-
tering method that finds the observational partition Π. In
addition to the parameters ϵ and µ of DBSCAN, our method
needs a threshold parameter τ which indicates how much
the estimated probability distribution of different probability
regions can differ to still be considered as connected. The
core concept of CAFE DBSCAN is that it extends an initial
probability region until the distribution of neighboring regions
changes. Eventually, in addition to the clusters, i.e., observa-
tional classes Πi, CAFE DBSCAN finds the estimation of
the effect state distributions P̂ (Πi). It also separates adjacent
observational classes with different effect state distributions,
while this would not be possible for DBSCAN alone.

The pseudo-code of CAFE DBSCAN is stated in Algorithm
1. We will now go through the algorithm step-by-step. In the
beginning, we regard every ϵ-neighborhood as a possible start
region (Line 1 and 2). If we find a region with enough points,
i.e., the number of unclustered points in the ϵ-neighborhood
exceeds µ (Line 3), we introduce a new cluster Πi (Line 4).
Here the ϵ and µ parameters are responsible for the initial
estimation of the effect state distribution of a cluster. We



Algorithm 1: CAFE DBSCAN
Param.: ϵ, µ, and τ
Input : Observed data points D
Output: Observational partition Π of D

1 foreach unclassified x ∈ D do
2 D′

= {x′ ∣ x′
∈ Nϵ(x), x′ is unclassified};

3 if ∣D′∣ ≥ µ then
4 generate new Πi;
5 assign all x′

∈ D′ to Πi;
6 insert all x′

∈ D′ into queue Φ;
7 while Φ ≠ ∅ do
8 x

′
= first point in Φ;

9 D′′
= {D′′ ∣ x′′

∈ Nϵ(x′), x′′ is unclassified};
10 if δ(P̂ (D′′), P̂ (Πi)) ≤ τ then
11 assign all x′′

∈ D′′ to Πi;
12 insert all x′′

∈ D′′ into queue Φ;
13 end
14 remove x

′ from Φ;
15 end
16 end
17 end
18 mark all unclassified x ∈ D as noise;

assign all the points of this initial ϵ-neighborhood to cluster
Πi (Line 5) and insert them into a queue Φ (Line 6). Now
we go through all points of this queue and calculate the ϵ-
neighborhood for each of them (Line 9). We compare the
estimated probability distribution of each ϵ-neighborhood with
the one of the current cluster (Line 10). If the difference is
within the margin of the threshold parameter τ , we enclose
all the points in this ϵ-neighborhood into the current cluster
Πi (Line 11) and again insert all the points into the queue Φ
(Line 12). Since the effect state distribution within a cluster,
i.e., observational class, stays the same, the estimation of the
effect state distribution of the observational class gets more
accurate with every ϵ-neighborhood which is enclosed in the
cluster. In the end, all remaining unclassified data points are
marked as noise (Line 18).

V. DETERMINING PARAMETERS ϵ, µ, AND τ

We will briefly summarize the interpretation for the param-
eters ϵ, µ, and τ and propose an approach on how to find good
values for them.
ϵ-PARAMETER
The ϵ-parameter defines the size of an ϵ-neighborhood, with
which we are estimating the effect state distribution. Thus ϵ
also influences the accuracy of the estimation.
µ-PARAMETER
The µ-parameter adjusts the sensitivity to noise and the
accuracy of the estimated effect state distribution of the initial
probability region.
τ -PARAMETER
The τ -parameter specifies the maximum allowed distance
between the effect state distributions of two regions.
Setting ϵ, µ, and τ : We start by setting µ high enough so that
the number of clusters is in a sensible range. For our synthetic

data set, values µ ∈ [10, 100] worked best. Secondly, we chose
ϵ such that multiple ϵ-neighborhoods will contain more than
µ points. Note, that the ϵ and µ parameters influence each
other, so for increasing ϵ, one should also increase µ. Finally,
the value for τ slightly depends on ϵ. For small ϵ values,
the estimation of the effect state distribution is less accurate,
hence the value for τ can be chosen high, e.g, τ = 0.3. If
we want more observational classes with more accurate effect
state distributions, the value for τ should be set low, e.g.,
τ = 0.1. In our experiments, values in the range [0.1, 0.4]
worked best.
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Fig. 3. Hyperparameter sensitivity w.r.t. NMI for DS2.

The impact of these parameters from our algorithm is
shown in a hyperparameter sensitivity experiment in Figure 3.
Overall, we see that the sensitivity landscape contains large
regions with high NMI. The parameters are dependent on
each other. For higher values for µ, we also need greater ϵ-
neighborhoods and hence a larger value for ϵ. For very high
ϵ values, the algorithm merges clusters and the NMI gets
worse, but we can still separate adjacent clusters if we set
τ to a small value. Over the different µ values, the NMI
performance is in a similar range for τ ∈ [0.1, 0.4]. We see
that our algorithm returns stable results for various settings of
the hyperparameters.

VI. EXPERIMENTS

The following is an overview of the conducted experiments
that we use to demonstrate our contributions.2 We first describe
and motivate our experiment setup. We use this setup to an-
alyze our cluster effectiveness and show how we outperform
the current CFL approach in the presence of noise, while
automatically determining a reasonable number of clusters.
We conduct a runtime comparison and we have already
analyzed the hyperparameter sensitivity of our algorithm in
the previous section (see Figure 3). Additionally, we performed

2Our Python implementation of CAFE DBSCAN, the performed experi-
ments, and their visualizations are made available here: https://gitlab.cs.univie.
ac.at/pascalw777/cafe-dbscan/



Method
DS1: Separated Circles DS2: Adjacent Circles DS3: Rectangles / Circles

(n = 3, 496, d = 2) (n = 4, 416, d = 2) (n = 9, 343, d = 2)

Clf. acc. k NMI ARI Clf. acc. k NMI ARI Clf. acc. k NMI ARI

Ground Truth 1.00 6(+1) 1.00 1.00 1.00 7(+1) 1.00 1.00 1.00 7(+1) 1.00 1.00

CAFE DBSCAN - 6(+1) 0.97 0.97 - 7(+1) 0.94 0.94 - 7(+1) 0.86 0.85
CAFE DBSCAN+ - 6(+1) 0.98 0.99 - 7(+1) 0.95 0.95 - 7(+1) 0.91 0.91

LR / k-Means 0.33 6
∗

0.66 0.45 0.50 7
∗

0.79 0.74 0.30 7
∗

0.40 0.18
RF / k-Means 0.33 6

∗
0.66 0.46 0.50 7

∗
0.68 0.54 0.32 7

∗
0.78 0.70

SVC / k-Means 0.33 6
∗

0.31 0.13 0.50 7
∗

0.59 0.40 0.27 7
∗

0.38 0.15
MLP / k-Means 0.33 6

∗
0.65 0.41 0.52 7

∗
0.76 0.65 0.34 7

∗
0.79 0.67

LR / DBSCAN 0.33 6(+1) 0.98 0.98 0.50 5(+1) 0.86 0.70 0.30 10(+1) 0.60 0.37
RF / DBSCAN 0.33 6(+1) 0.74 0.60 0.50 45(+1) 0.69 0.50 0.32 10(+1) 0.77 0.70
SVC / DBSCAN 0.33 5(+1) 0.51 0.28 0.50 4(+1) 0.64 0.42 0.27 5(+1) 0.59 0.33
MLP / DBSCAN 0.33 9(+1) 0.86 0.77 0.52 13(+1) 0.87 0.83 0.34 20(+1) 0.77 0.66

LR / HDBSCAN 0.33 6(+1) 0.90 0.83 0.50 5(+1) 0.87 0.71 0.30 27(+1) 0.52 0.25
RF / HDBSCAN 0.33 6(+1) 0.72 0.59 0.50 17(+1) 0.65 0.36 0.32 21(+1) 0.60 0.32
SVC / HDBSCAN 0.33 20(+1) 0.69 0.46 0.50 9(+1) 0.84 0.69 0.27 9(+1) 0.51 0.23
MLP / HDBSCAN 0.33 5(+1) 0.88 0.81 0.52 12(+1) 0.87 0.87 0.34 13(+1) 0.78 0.70

TABLE II
PERFORMANCE OF CAFE DBSCAN AGAINST DIFFERENT COMBINATIONS OF CFL WITH DIFFERENT CLUSTERING ALGORITHMS AND CLASSIFIERS. BEST

VALUES IN BOLD AND RUNNER-UP IS UNDERLINED. FOR DENSITY-BASED METHODS (+1) INDICATES THAT A NOISE CLUSTER WAS FOUND.
(LR=LOGISTIC REGRESSION, RF=RANDOM FOREST, SVC=SUPPORT VECTOR CLASSIFIER, MLP=MULTI-LAYER PERCEPTRON)

real world experiments on traffic light images in Section VII
and weather data in Section VIII.
Experiment Setup: We generated three synthetic data sets
to show that the current approach of CFL, which consists of
training a classifier and clustering the conditional probabilities
with k-means, does not work properly if noise is present.
Additionally, we show that it is not enough to just replace k-
means with DBSCAN or HDBSCAN, but that indeed a new
approach is needed (see Figure 4).

In Table II, we compare CAFE DBSCAN against CFL
with different classifiers and clustering algorithms w.r.t. nor-
malized mutual information (NMI) [22] and adjusted rand
index (ARI) [23], two commonly used metrics in clustering.
For our comparison methods, we choose linear and non-
linear classifiers implemented in scikit-learn. We tuned the
classifiers with a grid search and a train/test split to find
the best hyperparameters. We then trained them on the full
data with the best hyperparameters to estimate the conditional
probabilities of the effect states. Afterwards, we cluster the
conditional probabilities with k-means as in [4] and also with
DBSCAN and HDBSCAN [12]. We tuned the parameters of
(H)DBSCAN using a grid search and chose the parameters
with the highest NMI and ARI. Note, that it is usually not
possible to tune a clustering algorithm with access to ground
truth labels, but this serves as a strong baseline against our
method. For k-means, we set k equal to the number of clusters
(marked with ∗) and report the average of the best ten runs
out of 100 for each data set. For our method, we report two
results. CAFE DBSCAN, which was tuned with our heuristic
described in Section V, and CAFE DBSCAN+, which was
tuned with a grid search (like (H)DBSCAN) and serves as a
best-case scenario.
Cluster effectiveness: Table II shows that our CAFE DB-
SCAN+ performs best for all data sets and the version with

Π1

p(y)

Π2 Π3 Π4

Π5

p(y)

Π6 Π7 noise

Fig. 4. Top left: The micro-level data points with their effect state in
different colors. Top right: The effect state distribution for each macro-level
observational class Πi. Below: Clustering of CAFE DBSCAN; k-means and
DBSCAN on the micro-level data; CFL with two different classifiers.
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Fig. 5. Runtime for different number of samples and 2 dimensions (top)
and different number of dimensions and 10, 000 samples (bottom). For the
former CFL algorithm only the abbreviation of the used classifiers are stated.
The plot then summarizes the time needed for training the classifier and the
k-means clustering. Note, that this excludes the time needed for tuning the
classifier with a grid search and cross-validation.

our heuristic from Section V performs second best, for all but
DS1. This is not surprising as DS1 contains well-separated
clusters and thus DBSCAN is well-performing. For DS2
and DS3, which contain adjacent clusters we outperform all
methods by a large margin. In Figure 4, we visualize the
clustering results of our method against the CFL approach
with k-means for DS2. Additionally, we present the results
of applying k-means and DBSCAN only on the micro-level
data. We see that applying k-means and DBSCAN only on
the micro-level data is not enough to separate the adjacent
clusters. Additionally, the classifiers can not handle the noise
points very well. In contrast, CAFE DBSCAN can find the
clusters almost perfectly, and most importantly it can separate
them from noise, leading to purer clusters.
Runtime comparison: We compare the runtime of the CFL
for an increasing number of data points and dimensions
in Figure 5. We see that CAFE DBSCAN outperforms all
methods in the low sample regime and performs similar
to Logistic Regression (LR) and Random Forests (RF) for
increasing dimensionality. This is of course only a fraction of
the runtime needed for the two-step CFL approach because
usually the classifiers are trained via cross-validation and
tuned via grid search, which can consist of hundreds of runs
and not just a single one. The runtime experiments were

conducted on a server running Ubuntu 20.04 LTS, using two
Intel Xeon processors with 2.20 GHz and 8 GB RAM. For ease
of comparison, we report single-core performance.

VII. REAL WORLD EXPERIMENT: TRAFFIC LIGHT IMAGES

We conducted experiments on real world traffic light images
from the Traffic Light Classifier Project3. We resized 33 green,
yellow, and red images into 64 × 32 pixels and extracted a
micro-level data point for each pixel of one image, resulting
in 2, 048 samples that all have the same effect state (traffic
light state) per image. In total, we obtained 202, 752 micro-
level data points and their respective effect state. On this data
set, CAFE DBSCAN found five observational classes: BG1,
BG2, GREEN, YELLOW, and RED. Each of these observational
classes is associated with a macro-variable that represents the
aggregation of pixels with their corresponding information
(color and location). Figure 1 shows a representative image
for each macro-variable.

C
A

F
E

D
B

S
C

A
N

ΠGREEN ΠYELLOW ΠRED ΠBG ΠBG1 ΠNOISE

M
L

P
/H

D
B

S
C

A
N

ΠGREEN ΠYELLOW? ΠRED ΠBG ΠNOISE

Fig. 6. Top: Observational classes learned by CAFE DBSCAN for traffic
light images with noise ratio = 0.8. Bottom: Observational classes learned by
an MLP classifier and HDBSCAN clusterer. Each image is the sum of all
data points belonging to their respective class scaled to [0, 255].

As mentioned in Section II-D, the traffic light images should
be clustered into four causal classes: the green, yellow, and red
areas, respectively, and the background area. However, some
of the traffic light images were recorded at night and others
during the daytime. That is why CAFE DBSCAN detects two
different observational classes for the background. In class
BG1, we can detect the bright background of images taken
during the day. In class BG2, we can see the reflection in the
yellow and green lights during the night. Apparently, more
green traffic light images were recorded during the day, and
more red traffic light images were recorded at night, leading
to green artifacts in class BG1 and red artifacts in class BG2.
With human understanding, we know that there should only
exist one causal class for the background, so we can merge the
two observational classes BG1 and BG2 into the causal class

3https://github.com/endymioncheung/iSDC-P5-traffic-light-classifier



BG. Contrary, a classifier could mistakenly learn these spurious
macro-variables for classification. With the help of the causal
macro-variables, a “causal” classifier can be trained to better
classify traffic light images.

The probability distribution of the effect states of the causal
class BG is the average of the ones in BG1 and BG2. Hence,
the causal class BG consists of an almost equal number of
pixels from red, yellow, and green traffic light images. Thus,
this class does not provide any information about the traffic
light state. Contrary, the probability distribution in the green,
yellow, and red causal classes indicate that almost all pixels
in these classes belong to their respective traffic light state.
Hence, the corresponding images in Figure 1 visualize the
cause of their respective traffic light states.

We additionally checked the effects of noise on our algo-
rithm and compared it to the state-of-the-art algorithm. To do
this, we added a random value between [−255, 255] multiplied
by a ratio constant to each pixel. In Figure 6, we can see that
CAFE DBSCAN is still able to detect meaningful observation
classes for a ratio of 0.8. On the other hand, if we run
the classifier/clusterer combination which performed best in
Section VI, i.e., learning the probabilities with an MLP first
and cluster them with HDBSCAN afterwards, we can not find
the yellow observation class anymore.

VIII. REAL WORLD EXPERIMENT: EL NIÑO

We analyzed a data set of [3] containing daily wind and
temperature measurements of a spatial grid with an interval of
2.5

◦×2.5
◦ of the (−10◦,+10◦)N ×(140◦, 280◦)E equatorial

band of the Pacific Ocean of 36 years. These result in 13, 140
west-to-east zonal wind strength (ZWS) and sea surface tem-
perature (SST) data points, each represented by a 9×55 matrix,
hence 495 features.

An interesting question is whether there exists an aggrega-
tion of micro-variables in the ZWS data points that influences
the SST. We applied CAFE DBSCAN to the micro-level
measurements of the ZWS and the corresponding averaged
SST of the same time. The results can be seen in Figure 7.
Two out of the four inferred macro-variables can be interpreted
as the climate phenomena El Niño and La Niña.

Altogether the algorithm found four observational classes.
The ZWS consists of “Wind to southeast”, “Wind from south-
east”, “High-pressure area”, and “Low-pressure area” and their
corresponding SST classes “Cold”, “Warm”, “La Niña”, and
“El Niño”. We can see that the winds to the southeast and
northwest probably create a small low-pressure area, where the
cold air from higher altitudes is influencing the SST (“Cold”).
On the other hand, the winds from the southeast and northwest
are creating a small high-pressure area, where the warm air
from above the sea influences the SST (“Warm”). In the third
row, we see how a high-pressure area (the wind goes east
and west creating a suction force downwards) strongly cools
the SST (“La Niña”). In comparison to that, the low-pressure
area (the wind comes from west and east creating a pressure
upwards) strongly heats the SST (“El Niño”).

In [3], the authors considered the same problem with the
difference that they clustered the conditional probabilities
of the high dimensional data of the SST given the high
dimensional data of the ZWS. They used a neural network
to learn the conditional probabilities first and clustered them
afterwards. This procedure is not only more complex, but in
performed experiments also approximately 30 times slower
than our approach.

Wind to Southeast Cold

Wind from Southeast Warm

High-pressure area La Niña

Low-pressure area El Niño

4 2 0 2 4
in m/s

2 1 0 1 2
in °C

Fig. 7. El Niño macro-variables discovered by CAFE DBSCAN. For each
observational class, the average difference from the mean of the data set is
shown. On the left side: The macro-variables of the wind zones. On the right
side: The respective temperature zones.

IX. CONCLUSION

In this work, we have introduced the idea of density-based
clustering of conditional probabilities in the CFL setting and
presented our novel algorithm CAFE DBSCAN, which is the
first single-step clustering algorithm for CFL. We showed in
various experiments that our algorithm outperforms the previ-
ous state-of-the-art approach for CFL, which consists of two
steps, estimating the conditional probabilities of effect states
and clustering them with k-means, in terms of clustering qual-
ity, speed, and robustness to noise. Additionally, we showed
that it is not enough to just use other clustering algorithms,
like DBSCAN, on the learned conditional probabilities of the
classifiers, but that a new approach is needed and justified. For
future work, it would be interesting to consider the variants of
DBSCAN to improve our algorithm, e.g., for high-dimensional
data, varying densities, or automatic estimation of ϵ. Another
research direction for CFL in general and CAFE DBSCAN
in particular, would be interpretable machine learning, e.g., to
automatically find concepts (macro-variables) that then can be
used in concept activation vectors [24].
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APPENDIX

A. Synthetic Data Set Description

Data set description: We generated three synthetic data
sets: Data set 1 (DS1) consists of six well-separated circular
clusters, with n = 3, 496 data points. Data set 2 (DS2) has
seven circular clusters with some of them being adjacent
and n = 4, 416. Data set 3 (DS3) consists of seven clusters
with three adjacent circles and four adjacent rectangles, with
n = 9, 343. All data sets contain uniform noise and are two
dimensional, for plots see Figures 8. In Figure 4 the estimated
probability distributions of the clusters and the performances
of several clustering algorithms on DS2 are shown.

DS 1: micro-level data with effect states DS 1: ground truth

DS 2: micro-level data with effect states DS 2: ground truth

DS 3: micro-level data with effect states DS 3: ground truth

Fig. 8. DS1: Well-separated circular clusters. D2: Adjacent circular clusters.
DS3: Adjacent, differently shaped clusters.


