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Abstract
Explaining how neuronal activity gives rise to behaviour
and cognition is a central goal of cognitive neuroscience.
With the proliferation of larger neuronal datasets, there
have been various attempts to abstract representations of
the neuronal data. Some methods consider behavioural
decoding to be important while other unsupervised meth-
ods like PCA and autoencoder disregard behaviour alto-
gether. Here, we propose an architecture to learn cog-
nitive state representations which preserve information
of both the dynamics and behaviour. We present a neu-
ral network implementation (BunDLe Net) and apply it on
calcium imaging neuronal data of the roundworm C. el-
egans. Our method reveals clear orbit-like trajectories
which are recurrent and structured. It also outperforms
conventional methods in the field such as PCA, autoen-
coders and autoregressors with regards to the dynamical
predictability and behavioural decoding accuracy.
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Introduction
The rapid development of neuroimaging techniques has re-
sulted in neuronal datasets of ever-increasing detail and com-
plexity. More data, however, does not necessarily translate to
a better understanding of brains and neuronal systems. This
is because larger datasets, and models of these datasets, are
often much harder to interpret (Hoel, Albantakis, Marshall, &
Tononi, 2016) even with state-of-the-art tools in computational
neuroscience (Jonas & Kording, 2017). One way to deal with
this is to create a high-level representation of the neuronal ac-
tivity (Marr, 1982; Schölkopf et al., 2021).

Commonly-used methods for learning state representations
in neuroscience include dimensionality reduction techniques,
the majority of which are unsupervised (Kato et al., 2015; Gao
et al., 2017). Such approaches have been criticised since they
attempt to model the brain in isolation, without recourse to the
behaviour it implements (Jonas & Kording, 2017; Krakauer,
Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017). The re-
sulting state representations are of limited practical use since
they are difficult to relate to behaviour, let alone model it.

At the other end of the modelling spectrum are psycholo-
gists who create and employ cognitive models to reason about
a subject’s behaviour. These models are generally arrived at
by empirical behavioural studies. This approach is very use-
ful and one often makes causal statements about behaviour
and cognitive states, for example: The boy started crying [be-
haviour] because he was afraid [cognitive state of fear]. Such
causal statements would become more concrete (and possi-
bly testable) if the cognitive states were to have a grounding
in neuronal activity.

In this work we propose a framework to learn cognitive state
representations directly from neuronal activity with respect to
a behaviour of interest. We first introduce our motivating theo-
retical principles and a working definition of a cognitive state.

Based on this, we propose a generic architecture for learn-
ing neuronal state representations from time-series data. We
then implement and evaluate our algorithm on neuronal and
behavioural data from the nematode C. elegans.

Motivating theoretical principles
For the scope of this paper, we propose the following working
definition of a cognitive state.

Cognitive state: A high-level representation of neuronal
activity that contains sufficient information to model a given
set of behaviours and their dynamics.

Let vector Xt represent the neuronal state at time t. We
wish to learn a mapping τ : Xt 7→ Yt where Yt is the de-
sired cognitive state representation at time t. Typically,
we want the Y -level to be a lower-dimensional and coarser
representation of the X -level. Let TX and TY be transi-
tion models at the neuronal and cognitive level respectively.

Xt Xt+1

Yt Yt+1

TX

τ τ

TY

Our working definition requires the cog-
nitive level to preserve dynamical infor-
mation. This ensures that the cogni-
tive level is self-contained and sealed-
off from fine-grained details at the neu-
ronal level (Hofstadter, 1979). This can
be achieved by requiring the following di-

agram to commute: i.e. it should not make a difference if we
start with Xt and first apply τ and then TY or first apply TX and
then τ.

Aside from preserving dynamical information, we require τ

to preserve behavioural information so that our abstraction is
useful for modelling a specific set of behaviours. At the same
time, τ should ideally discard information that is irrelevant to
the behaviour so as to keep the representation as succinct as
possible. A simple autoencoder framework would be inade-
quate, since it is based on state-reconstruction and would try
to preserve details that are irrelevant to behavioural dynamics
(Zhang, McAllister, Calandra, Gal, & Levine, 2021).

Architecture for learning representations
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Figure 1: Generic architecture for learning neuronal state rep-
resentations with behavioural decoding

We present BunDLe Net (Behaviour and Dynamics
Learning Network), an algorithm for learning continuous-
valued cognitive state representations from neuronal and be-
havioural time-series data. The architecture is based on the



commutativity diagram, where TY and τ are represented by
learnable layers1 in the network. Since we have time-series
data, we need not learn TX , but simply feed in Xt+1 in the
network.

The upper and lower arms correspond to the possible paths
in the commutativity diagram. YU

t+1 and Y L
t+1 result from the

layers in the upper and lower arms respectively. We define
a dynamical loss LD as a mean-squared error that forces
Y L

t+1 and YU
t+1 to be equalised, thus ensuring the commuta-

tivity diagram holds. In the upper channel, YU
t+1 is passed

through a predictor layer which outputs B̃t+1 which is trained
to match the true behaviour Bt+1 through a behavioural loss
LB (cross-entropy). This ensures that Yt contains the same
amount of information about Bt as Xt . Both loss terms are
weighted by a hyperparameter γ and total loss is given by,
L = (1− γ)LB + γLD.

Representation learning on neuronal data
We apply our architecture to learn representations on neu-
ronal data from the nematode C. elegans which consists of
time-series recording of 109 neurons (Kato et al., 2015). The
behavioural data is a time-series of human-annotated be-
haviours that denote the motor state of the worm. The di-
mensionality of the latent space was chosen to be 3 for ease
of visualisation.

To evaluate our algorithm, we compare it with typically-used
representation learning methods in neuroscience, such as
PCA, autoencoder, and an autoregressor implemented with
an autoencoder architecture (ArAe). The autoencoder was
trained with a standard reconstruction loss, while the ArAe at-
tempts to reconstruct Xt+1 from Xt . In Figure 2, we observe
that all representations capture the recurrent nature of the dy-
namics. For both PCA and the autoencoder however, there
is a drift that drags out the dynamics in an arbitrary direction
thus mapping every sample to a different point in state space.
In the representations from ArAe and BunDLe Net, coarse-
graining occurs in a truer sense i.e. neuronal-level information
irrelevant to the behaviour is discarded.

In BunDLe Net’s embedding, we observe branching orbit-
like trajectories. Note that the learned dynamics is largely de-
terministic along a give branch. It is only at the bifurcation
points where stochasticity is seen to emerge. These bifurca-
tion points may be interpreted as where probabilistic decisions
at the cognitive level are made. Thus, the algorithm distils out
the stochasticity and confines it to local regions in state space.
This is a direct result of requiring dynamical information (that
is behaviourally relevant) to be preserved. Owing to this, the
learned representation is visually interpretable and reveals a
structured nature of the cognitive state space.

Discussion
In this work, we have presented a generic architecture to learn
cognitive state representations from neuronal data based on

1These layers are not restricted to typical ANN layers but can be
implemented by any transition model including variational layers

(a) PCA (b) Autoencoder

(c) ArAe (d) BunDLe Net

Figure 2: Dynamics of the neuronal data in the 3-dimensional
latent space learned by various algorithms

a few simple but vital principles. It is noteworthy that our ar-
chitecture is similar to some of those used in the field of con-
trastive learning on image data (Kipf, van der Pol, & Welling,
2020; Illing, Ventura, Bellec, & Gerstner, 2021) but with an
added behavioural context. Having demonstrated BunDLe
Net on C. elegans data we see that it outperforms other stan-
dard algorithms. This work could be useful in gaining auto-
mated insights from neuroscience data. There is also poten-
tial in extending this work in the direction of decision making
based on the bifurcation points in the learned representations.
Finally, this work is a small step in creating causal cognitive
models with a neuronal basis. Further work would involve de-
veloping a causal framework for such an algorithm.

PCA autoencoder ArAe BunDLe
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Figure 3: Quantitative evaluation based on behavioural decod-
ing accuracy (right-axis, brown) and dynamical predictability
(left-axis, green) which is measured by MSE between pre-
dicted and true Yt+1 normalised with respect to a baseline
copy-input-to-output autoregressor
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