
Decision-Making Support for Data Integration
in Cyber-Physical-System Architectures

Evangelos Ntentos1, Amirali Amiri1, Stephen Warnett1, and Uwe Zdun2

1 University of Vienna, Faculty of Computer Science, Software Architecture Group,
Doctoral School Computer Science, Vienna, Austria

firstname.lastname@univie.ac.at
2 University of Vienna, Faculty of Computer Science, Software Architecture Group,

Vienna, Austria
firstname.lastname@univie.ac.at

Abstract. Cyber-Physical Systems (CPS) design is a complex challenge
involving physical and digital components working together to accomplish
a specific goal. Integrating such systems involves combining data from
various distributed Internet of Things (IoT) devices and cloud services to
create meaningful insights and actions. Service-based IoT data integration
involves several steps: collection, processing, analysis, and visualization.
Adopting a holistic approach that considers physical and digital aspects is
crucial when designing data integration in distributed CPS. Architectural
design decisions are vital in shaping a CPS’ functionality and system
qualities, such as performance, security, and reliability. Although several
patterns and practices for CPS architecture have been proposed, much of
the knowledge in this area is informally discussed in the grey literature,
e.g., in practitioner blogs and system documentation. As a result, this
architectural knowledge is dispersed across many sources that are often
inconsistent and based on personal experience. In this study, we present
the results of a qualitative, in-depth study of the best practices and
patterns of distributed CPS architecture as described by practitioners. We
have developed a formal architecture decision model using a model-based
qualitative research method. We aim to bridge the science-practice gap,
enhance comprehension of practitioners’ CPS approaches, and provide
decision-making support.

Keywords: Architectural Design Decisions, Cyber-Physical Systems, Data Inte-
gration, Software Architecture, Grounded Theory

1 Introduction

Several authors have attempted to document patterns and best practices related
to distributed CPS [6,8,10,14]. However, these works focus on applying published
patterns or scientific results. In contrast, established industry practices are
primarily found in grey literature like blogs, experience reports, and system
documentation. While these sources offer some understanding of existing practices,
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they lack systematic architectural guidance. The reported practices vary and
rely on personal experience, creating uncertainty and risk in CPS design. One
needs extensive experience or a comprehensive study of knowledge sources to
address this. We aim to provide a more complete and consistent view of current
industrial practices, complementing existing knowledge.

We conducted an in-depth qualitative study of CPS descriptions provided by
practitioners. These descriptions contain informal information about established
practices and patterns in distributed CPS. Following a model-based qualitative
research method [18], we systematically analyzed the practitioner sources using
coding and constant comparison methods [3], followed by precise software model-
ing. This allowed us to develop a detailed software model of established practices,
patterns, and their relationships. This paper aims to study the following research
questions:

– RQ1 What are the patterns and practices currently used by practitioners
for supporting data integration in CPS architectures?

– RQ2 How are the current data integration patterns and practices related?
In particular, which architectural design decisions (ADDs) are relevant when
architecting data integration in CPS?

– RQ3 What are the influencing factors (i.e., decision drivers) in architecting
data integration in CPS in the eye of the practitioner today?

This paper has three key contributions. Firstly, we conducted a qualitative
study on CPS architectures, analyzing 37 knowledge sources to identify estab-
lished industrial practices, patterns, relationships, and decision drivers. Secondly,
we created a formal architectural design decision (ADD) model. The model
encompasses 7 decisions, 31 decision options, and 22 decision drivers. Lastly,
we evaluated the model’s level of detail and completeness, demonstrating that
our research method provides a more comprehensive examination of established
practices than informal pattern mining. Our approach, derived from practitioners’
perspectives, offers valuable insights into distributed CPS design.

The rest of this paper is structured as follows: In Section 2, we compare
our work to the related work. Section 3 explains the research methods we have
applied in our study and summarizes the knowledge sources. Section 4 describes
our reusable ADD model on CPS. Section 5 evaluates and Section 6 discusses
our results. Finally, Section 7 considers the threats to the validity of our study,
and Section 8 summarizes our findings.

2 Related Work

Several approaches that study CPS patterns and practices exist: Jamaludin et
al. [8] present a comprehensive overview of CPS state of the art and highlight the
importance of understanding CPS characteristics and architectures. This knowl-
edge is crucial for designing and implementing CPS systems that can meet the
requirements of various applications and ensure their reliability and adaptability.
Henneke et al. [6] focus on analyzing communication patterns for CPS, such as
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discovery, request-response, and publish/subscribe. Reinfurt et al. [13] present
five patterns that address various problems derived by examining numerous
production-ready IoT offerings to identify recurring proven solution principles.
Washizaki et al. [16] conducted a systematic literature review, identifying 32
papers from which 143 IoT architecture and design patterns were extracted.
These patterns were analyzed based on various characteristics, and directions
for improvements in publishing and adopting IoT patterns were outlined. Pontes
et al.[12] introduced the Pattern-Based IoT Testing approach to simplify and
organize the testing process for IoT ecosystems. This approach uses testing
tactics that target common behavior patterns in the system, referred to as “IoT
Test Patterns.” Ghosh et al. [2] evaluated the current state of IoT research
and discovered that existing studies were limited, biased, and subjective. Their
study utilized a thorough qualitative approach to systematically analyze the grey
literature on CPS to tackle this issue, providing the first comprehensive analysis.

There are several decision documentation-related approaches (e.g., for service-
oriented solutions [19], service-based platform integration [9], REST vs. SOAP
[11], and big data repositories [4]). However, this kind of research does not yet
encompass CPS architectures. Warnett and Zdun [15] present a Grounded Theory-
based approach to current practitioner understanding and architectural concepts
of ML solution deployment. They formulated seven ADDs along with various
relations between them. In particular, they modeled twenty-six decision options
and forty-four decision drivers in ML deployment. Other authors have combined
decision models with formal view models [5]. We improve these techniques with
a formal modeling approach derived from qualitative research methodology.

Our study analyzes practitioner methods and techniques to bridge the gap
between theory and practice in CPS data integration. Our formal model includes
ADDs, decision options, practices, drivers, and relationships and aims to provide
insights to help practitioners make informed data integration decisions in CPS.

3 Research Method

This section discusses the research method followed in this study and the modeling
tool we used to create and visualize the decision model.

This paper aims to systematically study established practices in data integra-
tion architecture within CPS architectures. We utilize a model-based qualitative
research method described in [18], which combines Grounded Theory (GT) [3]
with pattern mining techniques (e.g., [1]) and their integration with GT [7]. This
approach involves iterative steps of data interpretation to construct a theory
based on the collected data. Data analysis is performed concurrently with data
collection rather than afterward.

Constant comparison is a crucial aspect of GT, where researchers continuously
compare existing and new data, identifying abstract concepts. These concepts
are organized into categories and linked with properties and relationships. This
iterative process guides subsequent research iterations.
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Our knowledge-mining procedure involved searching for new sources, applying
coding techniques to identify model elements and decision drivers, and continu-
ously comparing codes with the existing model to improve it. We stopped the
analysis using the concept of theoretical saturation, where additional sources did
not contribute anything new. Our study had already converged after twenty-five
sources. The sources used are summarized in Table 1, and our search relied on
our experience with relevant tools, methods, patterns, and practices.

We employed three types of coding in our methodology:

– Open coding, which involves developing concepts based on the data, asking
specific and consistent questions, precise and consistent coding, and memo
writing with minimal assumptions.

– Axial coding, which entails developing categories and linking data, concepts,
categories, and properties.

– Selective coding, which focuses on integrating developed categories and
grouping them around a central core category.

Figure 1 illustrates our research method steps. To gather practitioner sources,
we used popular search engines like Google, StartPage, and DuckDuckGo, along
with topic portals like InfoQ and DZone. Initial search terms aligned with
our focus, such as “CPS data integration.” GT coding practices and constant
comparison were employed iteratively to identify concepts, categories, properties,
and relationships. The decision model was developed using the CodeableModels
tool, a Python-based modeling tool3 that enabled precise definition of meta-
models, models, and instances in code.

Subsequent iterations involved searches using relevant terms based on identi-
fied topics from previous iterations, focusing on areas requiring coding and their
potential contributions to the model. Practitioner articles were selected based
on relevance to the topic and not primarily promotional in nature, with both
authors reviewing and approving the source selection.

During the coding process, open coding transformed conceptual details into
labels, while axial coding identified recurring and related concepts. Each source
was carefully examined line by line, with memos documenting thought processes,
interpretations, and reasoning for traceability. Selective coding extracted main
ideas and refined previous sources. Formal UML-based modeling was employed for
axial and selective coding, resulting in a precise and consistent theory represented
as a UML model. Theoretical saturation was reached when approximately twelve
additional sources no longer significantly contributed to our model. A summary
of our knowledge sources can be found in Table 1.

3 https://github.com/uzdun/CodeableModels

https://github.com/uzdun/CodeableModels
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4 Reusable ADD Model for Data Integration in CPS
Architectures

This section presents the reusable ADD model we derived based on our study (see
the data4). Figure 2 depicts the meta-model for the ADD models. This model
encompasses the Decisions within an ADD model. Each Decision is associated
with a Context, represented by a domain object that signifies the specific system
part or aspect to which the decision applies. Decisions consist of Options and
all options are categorized as Solutions. Each option is accompanied by Forces,
which may have an impact on the decision. Furthermore, Decisions, Solutions,
and Options can have Relations among them. A Solution can be linked to another
Solution, with the condition that either the source or target of the relation must
be an Option. It is essential for all Solutions in the model to be directly linked to
a Decision, either through the Decision itself or through other Options. Decisions
and Options can also have next-decision relations, indicating their sequential
order or dependency.

The reusable ADD model consists of a single decision category, the Data
Integration in CPS Category, which comprises seven top-level decisions, as de-
picted in Fig. 3. It is worth noting that all elements of our model are instances
of a meta-model, with meta-classes such as Decision, Category, etc., which are
also included in the model descriptions below. Also note that our model consists
of concepts representing decisions, decision options, practices, patterns, and
forces arising from our sources while applying our research methodology. These
emergent concepts, appropriately named in our model, may be traced back to
the referenced sources.

IoT Data Stream Integration and IoT Data Stream Integration Tasks
(Fig. 4). IoT data stream integration combines and processes data from multiple
devices or sensors to extract meaningful insights and enable better decision-
making [S2, S3, S4, S33, S34, S35, S37]. It involves several steps, including
data acquisition, prepossessing, analysis, and visualization. Several practices
and patterns exist. Edge-based IoT Data Stream Integration is a decentralized
practice for processing and analyzing IoT data. The data is processed closer to
the source rather than transmitted to a central server or cloud-based service [S22,
S3, S33]. Alternatively, Cloud-based IoT Data Stream Integration is a centralized
option for processing and analyzing IoT data, where the data is transmitted to

4 https://doi.org/10.5281/zenodo.8367400

https://doi.org/10.5281/zenodo.8367400
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Table 1. Knowledge Sources Included in the Study

ID Description Reference

S1 How to Build an Industrial IoT Project Without the Cloud https://bit.ly/3KqLsYd

S2 Understand the Azure IoT Edge runtime and its architecture https://bit.ly/3XTSJ5C

S3 Connecting IoT devices to the cloud https://thght.works/
3KvnivM

S4 Real-time Data Streaming in IoT: Why and How https://bit.ly/3kek9Wp

S5 Edge to Twin: A scalable edge to cloud architecture for digital twins https://go.aws/3xIhSFR

S6 Understanding edge computing for manufacturing https://red.ht/3XTy2qw

S7 Husarnet: Connected Things Without a Cloud https://bit.ly/3XN0hHu

S8 How to use digital twins for IoT device configurations https://bit.ly/3kodBEz

S9 Mainflux 0.11 — Digital Twin, MQTT Proxy And More https://bit.ly/3xLbEoU

S10 Connecting OPC UA Publisher to Amazon AWS IoT with MQTT https://bit.ly/3klcDJi

S11 IoT Telemetry Collection using Google Protocol Buffers, Google
Cloud Functions, Cloud Pub/Sub, and MongoDB Atlas

https://bit.ly/3Zb1h9A

S12 Gathering system health telemetry data from AWS IoT Greengrass
core devices

https://go.aws/3YZBmlC

S13 Digital Twins: Components, Use Cases, and Implementation Tips https://bit.ly/3lZNyUH

S14 If You Build Products, You Should Be Using Digital Twins https://bit.ly/3Sj8r9v

S15 Choose a device communication protocol https://bit.ly/3SnEqW2

S16 Through edge-to-cloud integration framework https://bit.ly/3Zs1iFI

S17 Send cloud-to-device messages from an IoT hub https://bit.ly/3lSGRUl

S18 Stream Processing with IoT Data: Challenges, Best Practices, and
Techniques

https://bit.ly/3ILxtLd

S19 Intelligence at the Edge Part 3: Edge Node Communication https://bit.ly/3ZesxUI

S20 7 patterns for IoT data ingestion and visualization- How to decide
what works best for your use case

https://go.aws/3YUNMLg

S21 How does a digital twin work? https://ibm.co/3ZaZxgy

S22 Cloud Edge Computing: Beyond the Data Center https://bit.ly/3Inl92j

S23 Understand Azure IoT Edge modules https://bit.ly/3Ew9sFz

S24 Understand and use device twins in IoT Hub https://bit.ly/3KqHWwU

S25 Understand and use module twins in IoT Hub https://bit.ly/3xJCYDP

S26 How a Cloud Integration Platform Can Help Your Business https://bit.ly/3nmHwy1

S27 Edge-to-cloud communication https://bit.ly/3khYPiL

S28 Device connectivity https://ibm.co/41vHgfZ

S29 How the IoT is creating today’s hottest tech job: Edge analytics https://bit.ly/3lZe8xh

S30 Edge Computing Architecture https://bit.ly/3xTdwvz

S31 The Hark Platform https://bit.ly/3xKFfik

S32 IoT Gateway User Guide https://bit.ly/3InyJTx

S33 How to structure data ingestion and aggregation pipelines https://bit.ly/3StSSMb

S34 What Is Streaming Data Integration? https://bit.ly/3IIFPDp

S35 Plan your IoT real-time data streaming process https://bit.ly/3EumGSZ

S36 What Is an Integration Platform? Do I Need One? https://ibm.co/3kU52Sh

S37 What is Data Streaming? https://bit.ly/3yrJrDI

a remote server or cloud-based service for processing and analysis [S2, S26, S3,
S33]. Another option is Peer-to-peer (P2P) based IoT Integration, which is a
decentralized practice of connecting IoT devices and integrating their data [S2,
S3, S4, S33, S34, S35]. In a P2P network, devices communicate directly with

https://bit.ly/3KqLsYd
https://bit.ly/3XTSJ5C
https://thght.works/3KvnivM
https://thght.works/3KvnivM
https://bit.ly/3kek9Wp
https://go.aws/3xIhSFR
https://red.ht/3XTy2qw
https://bit.ly/3XN0hHu
https://bit.ly/3kodBEz
https://bit.ly/3xLbEoU
https://bit.ly/3klcDJi
https://bit.ly/3Zb1h9A
https://go.aws/3YZBmlC
https://bit.ly/3lZNyUH
https://bit.ly/3Sj8r9v
https://bit.ly/3SnEqW2
https://bit.ly/3Zs1iFI
https://bit.ly/3lSGRUl
https://bit.ly/3ILxtLd
https://bit.ly/3ZesxUI
https://go.aws/3YUNMLg
https://ibm.co/3ZaZxgy
https://bit.ly/3Inl92j
https://bit.ly/3Ew9sFz
https://bit.ly/3KqHWwU
https://bit.ly/3xJCYDP
https://bit.ly/3nmHwy1
https://bit.ly/3khYPiL
https://ibm.co/41vHgfZ
https://bit.ly/3lZe8xh
https://bit.ly/3xTdwvz
https://bit.ly/3xKFfik
https://bit.ly/3InyJTx
https://bit.ly/3StSSMb
https://bit.ly/3IIFPDp
https://bit.ly/3EumGSZ
https://ibm.co/3kU52Sh
https://bit.ly/3yrJrDI
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each other without the need for a central server or cloud-based service. Finally,
some systems require No IoT Data Stream Integration.

Integrating the copious amounts of data IoT devices generate into a larger
system can prove daunting [S1, S3, S4, S18, S33, S34, S35, S37]. Data stream
integration involves several essential tasks, including Data Gathering, which
involves collecting data from various sources to gain insights, make informed
decisions, or optimize business operations [S1, S3, S4, S18, S20, S35]. Data
Normalization arranges data in a database to reduce redundancy and enhance
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consistency [S1, S3, S4, S18, S20]. Data Filtering involves selecting a subset of
data from a larger dataset based on specific criteria. Data Aggregation merges
data from multiple sources or groups into a concise summary view [S1, S3, S4,
S18, S20]. Lastly, Data Anomaly Detection entails identifying patterns or data
points within a dataset that deviates from expected behavior [S18, S4, S20]. The
decision context is the IoT Data Stream, i.e., the decision has to be taken for
every IoT data stream separately.

Several factors influence the decision outcome. For instance, P2P and edge-
based IoT data stream integration offer advantages such as shorter development
time, resilience, as well as increased data security and privacy [S33, S34, S35].
Cloud-based IoT data stream integration may have higher network latency and
may be more susceptible to data security, integrity and privacy concerns. However,
scalability is an advantage of this practice [S2, S3, S4, S34, S35, S37].

IoT Data Stream
Integration Option

IoT Data Stream
Integration

IoT Data Stream
Integration Context

ResilienceData SecurityLow Latancy

No IoT Data Stream
Integration

Peer-to-Peer-based
IoT Integration
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loT Data-based
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Fig. 4. IoT Data Stream Integration and IoT Data Stream Integration Tasks Decision

IoT Integration Platform and IoT Integration Platform Tasks (Fig. 5).
An IoT integration platform is a software solution enabling connecting and com-
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municating between different devices and systems in an IoT ecosystem [S1, S16,
S20, S26, S30, S36]. It provides a central hub for managing and controlling IoT
devices, data, and applications [S16, S20, S21, S26, S30, S36]. IoT integration
platforms typically offer a range of features and functionalities, such as device
management, data analytics, security and authentication, communication pro-
tocols, and integration with third-party systems and applications [S36, S20].
Different patterns and practices are used for connecting and integrating systems,
applications, and services. One option is to use a Cloud Integration Platform From
Cloud Vendor that seamlessly connects cloud-based applications and services [S1,
S26, S30, S36]. Alternatively, Edge Integration Platform from a Cloud Vendor
can integrate edge devices and systems with their cloud-based applications and
services [S2, S30, S23]. Another practice is Open/Standardized Cloud Integration
Platform that provides standard protocols, interfaces, and tools to connect and
integrate different systems, applications, and services [S2, S30, S26]. Similarly, the
Open/Standardized Edge Integration Platform simplifies the integration process
by offering a common framework that can be used across edge devices, vendors,
and domains [S1, S2, S23, S26, S30, S36].

When deciding on an IoT integration platform, the following tasks should be
considered. One possible platform task is Install and Update Device Workloads,
which involves deploying new software or updates to devices in a system [S20,
S23, S26, S30, S36]. Additionally, updating device workloads requires careful
planning and testing to ensure that updates are applied smoothly and do not
cause downtime. Establish Security is another practice that involves implementing
measures to protect against unauthorized access, data breaches, and other poten-
tial security threats [S36, S20]. Another practice is Monitoring referring to the
ongoing observation and analysis of a system’s performance and behavior. Health
Checking evaluates the health status of a system, service, or application [S2,
S20, S23]. The practice Managing Device Communication involves ensuring that
devices can communicate with each other effectively and securely [S23, S3, S28].
Edge/Cloud Platform Integration involves integrating edge devices with cloud
platforms to enable seamless data exchange, processing, and analysis between
edge and cloud [S6, S9, S23]. Both decisions are made in the context of IoT Edge
and Cloud Computing.

According to sources [S26, S30, S36], the Cloud Integration Platform and
Edge Integration Platform provided by the cloud vendor affect system evolvability.
They also impact vendor lock-in [S2, S23, S30]. Conversely, Open/Standardized
Cloud Integration Platform and Open/Standardized Edge Integration Platform
have a positive influence on interoperability [S1, S16, S26] and configuration
effect, ensuring effective implementation of system configuration changes without
negatively affecting performance or stability [S16, S26, S30, S36]. Moreover,
Installing and Updating Device Workloads and Edge/Cloud Platform Integration
contribute to compatibility. Monitoring and health checking ensure data integrity
[S30, S31, S36]. Lastly, Managing Device Communication can impact the security.
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Digital Twins and Digital Twins Tasks (Fig. 6). Digital Twins refer to
virtual representations of physical objects, systems, or processes [ S9, S21]. They
are created using data from sensors, IoT devices, and other sources that collect
data on the object or system in question [S21]. The digital twin mimics the
physical object or system in real-time, allowing for better monitoring, analysis,
and optimization [S5, S8, S9, S13, S14, S21, S24, S25]. Digital Twins enable
remote monitoring, predictive maintenance, and provide insights into performance.
The relation between digital twins and CPS data integration is that digital twins
are an integral part of the data integration process in CPS. There are two
options regarding this decision; one is to use Digital Twin and No Digital Twin.
This decision can be decided in each IoT Data Stream context. If Digital Twin
is chosen, the Digital Twin Tasks decision is an important follow-up decision
on the tasks the twin shall fulfill [S5, S8, S9, S13, S14, S20, S21]. A Device
Metadata Twin is a type of digital twin that reflects a physical device’s metadata
and configuration information, providing a virtual representation of the device
for monitoring, management, and maintenance purposes [S5, S14, S21]. The
IoT Module Data Twin practice involves creating a digital twin that mimics
the behavior and data of an IoT module [S13, S14, S21]. Device Visualization
transforms physical devices into digital representations displayed on dashboards
for easier monitoring, management, and interaction [S14, S20, S21]. Device Control
enables remote management and operation of physical devices through a digital
interface, including functions like power control, settings adjustment, and other
necessary operations [S14, S24, S25]. Device Configuration involves the setup and
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customization of physical devices [S21, S24, S25]. This decision can be made for
each IoT Data Stream where a digital twin is applied.

Device Metadata Twin and IoT Module Data Twin benefit the flexibility
for adapting and changing in response to new requirements or changes in the
physical system it represents, as well as automation for automating tasks and
processes [S5, S8, S9, S14, S20, S21]. Device Visualization positively impacts
visibility for monitoring and visualizing the performance and behavior of physical
systems in a digital form [S20, S21]. Device Configuration and Device Control
practices benefits Configurability.
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IoT Runtime Telemetry Collection (Fig. 7). IoT runtime telemetry col-
lection involves collecting and analyzing data related to the performance and
behavior of IoT devices and systems while in operation [S2, S11, S12, S15, S17,
S19, S27, S28]. The telemetry data includes device status, network connectivity,
sensor readings, and other performance indicators. Options for implementation in-
clude not collecting telemetry, using cloud-based or edge-based runtime telemetry
collection. The option No Runtime Telemetry Collection is the most straightfor-
ward. Cloud-based Runtime Telemetry Collection gathers data and metrics from
cloud-based applications and systems for analysis, collected in a central platform
[S2, S11, S12, S15, S27]. On the other hand, Edge-based Runtime Telemetry
Collection [S2, S11, S12, S15, S27] is a practice that involves the collection of
runtime data from various devices and systems located at the edge of a network.
This practice can use Device Configuration to set up and customize a device’s
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settings to meet specific requirements [S21, S24, S25]. This decision can be made
for each IoT Data Stream.

Cloud-based Runtime Telemetry Collection and Edge-based Runtime Teleme-
try Collection can benefit product quality improvement [S12, S15, S27]. Further-
more, it enables monitoring of connected devices to detect anomalies and prevent
downtime while providing insights into device performance and usage to optimize
operations and improve efficiency. Additionally, by analyzing telemetry data,
organizations can predict when maintenance is needed to improve reliability.
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Fig. 7. IoT Runtime Telemetry Collection

5 Evaluation

We meticulously constructed an ADD model based on the chosen sources following
the sequence presented in Table 1. We named the ADD model elements using
the terminology from the respective sources and generated generic type names
based on these element names. Whenever a new type name arose, we compared
it against the existing names and determined whether the new type name was
required. As illustrated in Figure 8, the theoretical saturation point was attained
after incorporating twenty-five sources. In the initial thirteen sources, we had to
modify the designated type names frequently. However, in the following twelve
sources, such changes were less frequent. No further modifications and additions
were necessary for the remaining sources.

6 Discussion

This section discusses our findings for the research questions from Section 1.
RQ1: After analyzing 37 practitioner knowledge sources, we discovered evidence
for 31 patterns and practices currently used by practitioners for supporting data
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integration in CPS architectures, which we modeled as ADD decision options.
These patterns and practices are associated with ADDs and were found to be
largely independent of each other. An exception is the Edge-based Runtime
Telemetry Collection practice, which can use the Device Configuration practice.
Another commonality is that the IoT Data Stream Integration, IoT Integration
Platform, IoT Integration Platform Tasks and IoT Runtime Telemetry Collection
decisions all offer decision edge-based and cloud-based decision options. Depending
on the specific needs, the practitioner may wish to mix and match these edge
and cloud-based practices.

During our research, we discovered a subtle aspect that the practitioner
should take note of. Both the decisions for Digital Twins Tasks andIoT Runtime
Telemetry CollectionincludeDevice Configuration as an option, while the decision
for IoT Data Stream Integration offers P2P-based IoT Integration. It is important
to highlight that the latter decision option, despite its different description, may
still involve device configuration implicitly. Therefore, when designing CPS, the
practitioner should consider this potential overlap.
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Fig. 8. Number of Elements of Newly-Added Sources

RQ2: Given the central CPS Data Integration decision, we identified 7 top-
level ADDs for supporting data integration in CPS architectures. Our research
revealed subtle relations between ADDs and decision options, which may not be
immediately apparent. For instance, the seemingly loosely-related Data Anomaly
Detection, Digital Twins, IoT Runtime Telemetry Collection, Cloud-based IoT
Data Stream Integration decisions all are applied in the IoT Data Stream context,
which is an important consideration during the planning of a CPS architecture.
RQ3: Our research helped us discover 22 influencing factors (forces) when archi-
tecting CPS in the context of data integration from the practitioners’ perspective.



14 Evangelos Ntentos, Amirali Amiri, Stephen Warnett, and Uwe Zdun

We found that these forces were generally fairly specific to the individual ADDs
and decision options but identified some common to multiple ADDs and their
options. For example, Flexibility, Automation, Visibility apply to the Digital
Twins decision and, assuming the Digital Twin decision option is selected, then
also the decision options for the Digital Twin Tasks decision; Device Configura-
tion applies to decision options for both the Digital Twins Tasks decision and
the IoT Runtime Telemetry Collection decision; Security applies especially to
decision options associated with IoT Data Stream Integration, IoT Data Stream
Integration Tasks and IoT Integration Platform Tasks decisions, but must be
considered throughout.

Since the above forces are central to multiple ADDs and their respective
decision options, the practitioner may wish to consider the significance of these
forces early in the architectural planning of a system and be guided accordingly.

7 Threats to Validity

We discuss the threats to validity based on the threat types by Wohlin et al. [17].
To enhance internal validity, we used independent practitioner reports instead

of interviews to avoid bias. However, interviews could have revealed important
information that might be missing in reports. To address this, we extensively
examined diverse sources, exceeding what was necessary.

To minimize researcher bias, different team members cross-checked all models
independently. Yet, a potential threat to internal validity remains due to possible
biases within the research team. This applies to our coding procedure and formal
modeling as well, where different researchers might have used different approaches.

The experience and search-based procedure for knowledge sources may intro-
duce bias. However, our research method primarily relied on additional sources
adhering to specific criteria, mitigating this threat. Nonetheless, there is still a
potential threat of unconsciously excluding certain sources, which we addressed by
assembling an experienced author team and conducting comprehensive searches.

Our results can likely be generalized to various types of architectures involving
data integration in CPS. However, there is a threat to external validity, indicating
that our findings are applicable only to similar CPS architectures. Generalizing
to novel or unconventional architectures may require modifications to our models.

8 Conclusion

We conducted a GT-based grey literature study to create a model for data
integration in CPS architectures that included ADDs, decision options, relations,
and decision drivers. Our research focused on supporting data integration in CPS
architectures and addressed three research questions. For RQ1, we analyzed 37
practitioner knowledge sources and identified 31 patterns and practices used by
practitioners in data integration. These patterns and practices were modeled
as ADD decision options and were found to be largely independent. We also
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highlighted the relationships between certain practices and the flexibility of mixing
edge-based and cloud-based approaches. RQ2 explored the top-level ADDs for
data integration in CPS architectures. Based on the central CPS Data Integration
decision, we identified seven top-level ADDs and revealed subtle relationships
between them. Understanding the shared contexts and dependencies among these
ADDs is crucial during CPS architectural planning. In RQ3, we identified 22
influencing factors (forces) that impact CPS architecture design in the context of
data integration. These forces varied across individual ADDs and their options.

This paper proposes a promising approach that systematically and impartially
studies multiple sources and integrates findings through formal modeling. By
following this methodology, potential issues can be mitigated, and a rigorous and
unbiased understanding of current practices in specific fields, like data integration
in CSP architecture, can be obtained.
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