
Learning with Noisy Labels by Adaptive
Gradient-Based Outlier Removal

Anastasiia Sedova1,2⋆(�), Lena Zellinger1⋆, and Benjamin Roth1,3

1Research Group Data Mining and Machine Learning, University of Vienna, Austria
2UniVie Doctoral School Computer Science, University of Vienna, Austria

3Faculty of Philological and Cultural Studies, University of Vienna, Austria
{anastasiia.sedova, lena.zellinger, benjamin.roth}@univie.ac.at

Abstract. An accurate and substantial dataset is essential for training
a reliable and well-performing model. However, even manually annotated
datasets contain label errors, not to mention automatically labeled ones.
Previous methods for label denoising have primarily focused on detecting
outliers and their permanent removal – a process that is likely to over- or
underfilter the dataset. In this work, we propose AGRA: a new method
for learning with noisy labels by using Adaptive GRAdient-based outlier
removal1. Instead of cleaning the dataset prior to model training, the
dataset is dynamically adjusted during the training process. By compar-
ing the aggregated gradient of a batch of samples and an individual exam-
ple gradient, our method dynamically decides whether a corresponding
example is helpful for the model at this point or is counter-productive and
should be left out for the current update. Extensive evaluation on sev-
eral datasets demonstrates AGRA’s effectiveness, while a comprehensive
results analysis supports our initial hypothesis: permanent hard outlier
removal is not always what model benefits the most from.

1 Introduction

The quality and effectiveness of a trained model heavily depend on the qual-
ity and quantity of the training data. However, ensuring consistent quality in
automatic or human annotations can be challenging, especially when those an-
notations are produced under resource constraints or for large amounts of data.
As a result, real-world datasets often contain annotation errors, or “label noise”,
which can harm the model’s overall quality.

Previous data-cleaning methods for noise reduction have attempted to im-
prove the data quality by identifying and removing “noisy”, i.e., mislabeled sam-
ples before model training. Some approaches detect noisy samples based on the
disagreement between assigned and predicted labels in a cross-validation set-
ting [35,49], while others leverage knowledge transferred from a teacher model

⋆ Equal contribution
1 We share our code at: https://github.com/anasedova/AGRA

ar
X

iv
:2

30
6.

04
50

2v
3

 [
cs

.L
G

]
 2

0
Se

p
20

23

2 Sedova et al.

Fig. 1: AGRA method for learning with noisy data. Each sample in the update
batch is decided to be either kept for further model training or removed depend-
ing on the similarity of its gradient to the aggregated gradient of the comparison
batch sampled from the same data.

trained on clean data [32]. Such approaches typically rely on certain assump-
tions regarding the label noise, for instance, that the noise follows some particu-
lar distribution, is symmetric [22,5], or class-conditioned [35]. However, the true
data-generating process and noise level are usually unknown, and these methods
easily over- or under-filter the data.

Another subtle problem arises from the static nature of these methods, as
they do not address the cases when problematic training samples for one model
actually be beneficial for another. Take the hypothetical – wrongly labeled –
movie review:

“The movie was by no means great.” – POSITIVE

Despite the incorrect label, a model that does not know anything about senti-
ment prediction still might learn the useful association between the word great
and the class POSITIVE. Therefore, this sample could be a valuable contribution
to the training process. On the other hand, the same sample might be confus-
ing and deteriorating for the same model at a different training stage, when it
already learned to distinguish subtle language phenomena like negation.

In this paper, we reconsider the original motivation behind noise reduction:
instead of tracing the outliers, we focus on obtaining a model that remains unaf-
fected by inconsistent and noisy samples. To achieve that, we suggest to dynam-
ically adjust the training set during the training process instead of denoising it
beforehand. This idea is realized in our new method AGRA - a method for
Adaptive GRAdient-based outlier removal (see Figure 1). AGRA does not rely
on some static, model-independent, implied properties but leverages gradients to
measure the sample-specific impact on the current model. During classifier train-
ing, AGRA decides for each sample whether it is useful or not for a model at the

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 3

current training stage by comparing its gradient with an accumulated gradient of
another batch that is independently sampled from the same dataset. Depending
on the state of the classifier and the experimental setup, the sample is either used
in the model update, excluded from the update, or assigned to an alternative
label. Importantly, the effect of the sample may change in the next epoch, when
the model state has changed. Apart from that, we experimented with different
loss functions and adapted an F1-based loss function which optimizes the model
directly towards the F1 performance metric. Extensive experiments demonstrate
the effectiveness of our method and show that the correctness of a training sam-
ple (as measured by manual annotation) is not the same as its usefulness for
the training process. AGRA reliably detects the latter in a trade-off with the
former, which is crucial for the performance of the trained classifier.

Overall, our main contributions are the following:

– We propose a new gradient-based method for adaptive outlier removal, AGRA,
which dynamically identifies unusual and potentially harmful training sam-
ples during the learning process and corrects or removes them. Since in
our setting labeling errors are unknown at training time, AGRA uses the
detrimental effect on the model w.r.t. to a comparison batch as a proxy to
harmfulness.

– We analyze the effect of cross-entropy- and F1-based loss functions for com-
puting the compared gradients and show that utilizing the F1 loss can im-
prove performance on multiple datasets.

– We demonstrate the effectiveness of our method on several benchmark datasets
where our method outperforms other denoising methods trained in an anal-
ogous evaluation setup.

2 Related Work

The high demand for large-scale labeled training data to train a stable classi-
fier forces researchers and practitioners to look for more feasible solutions than
relying on domain experts to annotate the data [39,46,36]. The cost of such
approaches is usually the annotation quality, and the resulting datasets often
contain mislabeled samples. Moreover, label noise can also be detected in expert
annotations due to different factors in the data collection process [41,14]. As a
result, even widely-used datasets may contain incorrect annotations [35], em-
phasizing the necessity for methods that enable the learning of reliable models
despite the presence of label noise.

Learning with Noisy Labels. There are multiple general strategies for handling
potential label noise. Data-cleaning approaches separate the denoising process
and the training of the final model: likely mislabeled samples are first identified
and removed or corrected, and then the final model is trained on the cleaned
dataset [22,33]. The INCV algorithm [10] iteratively estimates the joint distri-
bution between the true labels and the noisy labels using out-of-sample model

4 Sedova et al.

outputs obtained by cross-validation. On the basis of the estimated joint distri-
bution, the number of labeling errors is gauged and likely mislabeled samples
are removed. Cleanlab [35] estimates the confident joint between true and noisy
labels relying on the assumption of class-dependent noise. Instead of defining
a denoising system that would clean the data before the training of the end
model, AGRA joins the denoising and training into a single process where de-
noising happens during the training of a single model. Moreover, AGRA does not
make any assumption regarding the label noise distribution. Other approaches,
commonly referred to as model-centric, focus on modifying the model architec-
ture or the loss function to facilitate learning with noisy data. Wang et al. [48]
add a noise-tolerant term to the cross-entropy loss, Ziyin et al. [34] propose a
gambler’s loss function, and Sukhbaatar et al. [44] add an additional noise layer
to convolutional neural networks. Other authors have explored more intricate
training strategies for learning with noisy annotations: for instance, Li, Socher,
and Hoi [29] leverage ensemble methods, and Li et al. [30] exploit meta-learning
techniques. In contrast to these approaches, AGRA does not put any restrictions
on the loss function and does not alter the model architecture.

Outlier Detection. Outlier detection is crucial in many real-world applications,
such as fraud detection and health diagnosis [47]. There are several general ap-
proaches for identifying outliers [47]: distance-based methods consider a sample
an outlier if it is far away from its nearest neighbors [27,17], density-based ap-
proaches declare samples in low-density regions as outliers [9,7], clustering-based
strategies identify samples that are not associated with a large cluster [12,2].
AGRA defines outliers in terms of their utility at the current training step and
aims at removing the ones that harm the current model.

Weak Supervision. To reduce the need for manual annotations, datasets can
be labeled by automated processes, commonly referred to as weak supervision
[28,40,13]. In the weakly supervised setting, expert knowledge and intuition are
formalized into a set of rules, or labeling functions [36], which annotate the train-
ing samples with weak, potentially noisy labels. Various approaches to denoise
the weakly supervised data include leveraging labeling functions aggregation
techniques [36,37], learning via user feedback and manual correction [21], sep-
arately modeling labeling-function-specific and task-specific information in the
latent space [43], or utilizing a small set of manually annotated data in addition
to the weakly supervised samples [25]. In contrast to these methods, AGRA is
not restricted to the weakly supervised setting (although it can be applied for
it, even if the labeling functions are not accessible); instead, it is applicable to
any dataset that contains noisy labels, regardless of the labeling process used.

Gradient-based Approaches. AGRA is based on gradient comparisons, which
were studied before in different contexts [52,42,50]. For instance, Zhao et al. [52]
explored gradient matching for generating artificial data points that represent
a condensed version of the original dataset. Unlike their approach, AGRA does
not create any new data instances but adjusts how the already provided ones

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 5

are used during training. Shi et al. [42] leverage gradient matching for domain
generalization. AGRA, on the other hand, tackles a different problem and does
not explicitly assume distribution shifts in the data.

3 AGRA: Adaptive Gradient-Based Outlier Removal

The main goal of AGRA is detecting the instances that would harm the model
in the current training stage and filter them out or assign them to another class
before the update. In order to decide which samples are potentially harmful,
the model gradients for each sample in the update batch (i.e., the batch used
during the training process for the model update) are compared one by one
with an aggregated gradient from another batch sampled from the same data
(comparison batch). Informally, such an aggregated comparison gradient could
be seen as an expected weight change on mostly clean data, assuming that the
overall noise rate is not too high. If the update gradient of a sample from the
update batch and the comparison gradient point in opposing directions, this
could be an indication that the sample is harmful to the training process at this
stage. We refer to such samples as outliers since they may have a negative impact
on the current model update, even though they are not necessarily mislabeled.
Each identified outlier is either removed from the update batch to prevent its
influence on the weight update or reassigned to another class if doing so results
in a higher, positive gradient similarity.

Unlike common denoising approaches that clean and fix the training dataset
for the training process, AGRA does not make any decisions about removing or
relabeling the samples before training the model. Instead, samples are relabeled
or removed from the update batch on the fly, based on the model’s current
state. Their participation in gradient update can therefore be reconsidered in
later epochs. If the model profits from an (even potentially mislabeled) sample
during a particular training stage, this sample is kept. However, the same sample
may be removed during another stage where it would harm the training process.

3.1 Notation

We denote the training set by X = ((x1, y1), ..., (xT , yT)), where yt denotes a
potentially noisy label associated with the input xt. Each yt corresponds to one
out of K classes {c1, ..., cK}. The task is to utilize X to learn a classifier f (·; θ),
parameterized by θ, using an update loss function L (x, y). Additionally, we define

a comparison loss function L̃ (x, y) that is used for computing the compared
gradients. AGRA does not put any restrictions on the used loss functions; the
update loss L (x, y) and the comparison loss L̃ (x, y) can differ.

3.2 Algorithm Description

AGRA consists of a single model training loop. For each update batch B, another
batch B̃ of the same size is independently sampled from the training dataset X .

6 Sedova et al.

While B is leveraged to adjust the model weights during training, B̃ represents
the comparison batch that is used to detect outliers.

First, the batch-wise gradient on the comparison batch B̃ is computed with
respect to the loss function L̃ and flattened into a vector, resulting in the
comparison gradient ∇L̃com. Then, the gradient for each individual data point
(xt, yt) ∈ B is calculated with respect to the loss L̃ and flattened, resulting

in ∇L̃ (xt, yt). Next, the pair-wise cosine similarity of each per-sample gradient
with the comparison gradient is computed as given below2.

simyt = sim
(
∇L̃(xt, yt),∇L̃com

)
=

∇L̃ (xt, yt) · ∇L̃com

||∇L̃ (xt, yt) ||2 ||∇L̃com||2
(1)

In the following, simyt is referred to as the similarity score given label yt.
The next step can be realized in two different settings:

1. without an alternative label : a data sample is removed from the update batch
if its associated similarity score is non-positive and kept otherwise:

B ←

{
B \ {(xt, yt)}, if simyt ≤ 0

B, otherwise

2. with an alternative label : in addition to the options of removing a training
instance or retaining it with its original annotation, the instance can also
be included in the update with the alternative label y′. If such an alterna-

tive label y′ is specified, the similarity simy′ = sim
(
∇L̃ (xt, y

′) ,∇L̃com

)
is

additionally calculated using Eq. 1.
Depending on the values of simyt

and simy′ , the sample is handled as follows:
– if the similarity score is non-positive given both yt and y′, the sample is

removed from the batch,
– if the similarity score given label y′ is positive and higher than the sim-

ilarity score given yt, the original label yt is changed to y′,
– if the similarity score given label yt is positive and higher than or equal

to the similarity score given y′, the original label yt is kept.

B ←


B \ {(xt, yt)}, if simyt ≤ 0, simy′ ≤ 0

B \ {(xt, yt)} ∪ {(xt, y
′)}, if simy′ > 0, simy′ > simyt

B, otherwise

The decision regarding the choice of an alternative label and its sen-
sibility depends on the characteristics and requirements of the specific
dataset. An intuitive approach is to use a negative class if it is present in
the data (e.g., “no relation” for relation extraction, or “non spam” for
spam detection).

After each sample in B is considered for removal or correction, the model
parameters are updated with respect to L and B before the processing of the
next batch starts. The method is summarized in Algorithm 1, and the graphical
explanation is provided in Figure 1.

2 The subscript xt is omitted in the short-hand notation simyt for brevity.

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 7

Algorithm 1: AGRA Algorithm for Single-Label Datasets

Input: training set X , initial model f (·; θ), number of epochs E, batch size
M , (optionally: alternative label y′)

Output: trained model f (·; θ∗)
for epoch = 1,..., E do

for batch B do

Sample a comparison batch B̃, B̃ ⊂ X , |B̃| = M

Compute ∇L̃com on B̃
for (xt, yt) ∈ B do

Compute ∇L̃ (xt, yt)

simyt = sim
(
∇L̃ (xt, yt) ,∇L̃com

)
(Eq. 1)

if an alternative label y′ is specified then

Compute ∇L̃(xt, y
′)

simy′ = sim
(
∇L̃(xt, y

′),∇L̃com

)
(Eq. 1)

if simyt ≤ 0 and simy′ ≤ 0 then
B ← B \ {(xt, yt)}

if simy′ > 0 and simy′ > simyt then
B ← B \ {(xt, yt)} ∪ {(xt, y

′)}
else

if simyt ≤ 0 then
B ← B \ {(xt, yt)}

θ ← Optim (θ,B,L)

3.3 Comparison Batch Sampling

Since the comparison gradient is an essential component of AGRA’s outlier de-
tection, it should be sampled in a way that does not disadvantage instances of
any class. For datasets with a fairly even class distribution, randomly selecting
samples from the training data might be sufficient to get a well-balanced com-
parison batch. However, when dealing with imbalanced datasets, this approach
may result in an underrepresentation of rare classes in the comparison batch.
Consequently, the gradients of samples belonging to rare classes may not match
the aggregated gradient computed almost exclusively on instances assigned to
more common classes.

For such cases, AGRA provides class-weighted sampling in order to ensure a
large enough fraction of minority class instances in the comparison batch. The
weight for class ck is computed as the inverted number of occurrences of class
ck in training set X 3:

1
|X |∑
t=1

1 (yt = ck)

3 In our implementation, these weights are passed to WeightedRandomSampler [1] pro-
vided by the torch library. Note that WeightedRandomSampler does not assume that
the weights sum up to 1.

8 Sedova et al.

As a result, samples of common classes are generally less likely to be included in
the comparison batch than those of rare classes, turning the resulting comparison
batch into a well-formed representative of all classes.

3.4 Selection of Comparison Loss Functions

AGRA does not imply any restrictions on the choice of the comparison loss func-
tion. For example, it can be combined with a standard cross-entropy (CE) loss
function, which is suitable for both binary and multi-class classification prob-
lems, or binary cross-entropy (BCE), which is commonly used in the multi-
label setting. However, despite its effectiveness in many scenarios, the cross-
entropy loss has been shown to exhibit overfitting on easy and under-learning
on hard classes when confronted with noisy labels [48]. Overall, cross-entropy
losses can hardly be claimed robust to noise, making learning with noisy data
even more challenging.

Aiming at reducing this effect, we adapted an F1 loss function which di-
rectly represents the performance metric and aims to maximize the F1 score. The
F1 loss function is similar to the standard F1 score with one major difference:
the predicted labels used for the calculation of true positives, false positives, and
false negatives are replaced by the model outputs transformed into predicted
probabilities by a suitable activation function. This modification enables the F1

score to become differentiable, making it compatible with gradient-based learn-
ing methods. In contrast to previous research on leveraging the F1 score as a
loss function [8], we investigate F1 loss variants outside of the multi-label setting
and gauge its efficacy in the presence of label noise.

For the multi-class single-label case, the F1 loss is based on macro-F1 metric:

LF1M
(B) = 1− 1

K

K∑
k=1

2t̂pk

2t̂pk + f̂pk + f̂nk + ϵ

where

t̂pk =

M∑
t=1

ŷt,k × 1 (yt = ck) ,

f̂pk =

M∑
t=1

ŷt,k × (1− 1 (yt = ck)) ,

f̂nk =

M∑
t=1

(1− ŷt,k)× 1 (yt = ck)

and ŷt,k denotes the predicted probability of class k for sample t after application
of the softmax, × represents the element-wise product, and ϵ = 1e − 05 in our
experiments. The F1 loss for the multi-class multi-label setting is also based on
the macro-F1 score, while for the binary single-label setting, it is based on the F1

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 9

score of the positive class. The exact formulas for these variants are provided in
Appendix B. Our experiments demonstrate that the F1 loss function is beneficial
as a comparison loss for some datasets compared to the classic cross-entropy loss.
However, we emphasize that its use is not mandatory for our algorithm: AGRA
is compatible with any loss function.

4 Experiments

In this section, we demonstrate the performance of our algorithm on several noisy
datasets, compare it with various baselines, and analyze the obtained results.

4.1 Datasets

We evaluate our method AGRA on seven different datasets. First, we choose
three weakly supervised datasets from theWrench [51] benchmark: (1)YouTube
[3] and (2) SMS [4,6] are spam detection datasets, and (3) TREC [31,6] is a
dataset for question classification. The labeling functions used to obtain noisy
annotations based on keywords, regular expressions, and heuristics are provided
in previous work [51,6]. Next, we evaluate AGRA on two weakly supervised topic
classification datasets in African languages, namely (4) Yorùbá and (5) Hausa
[20]; the keyword-based labeling functions were provided by the datasets’ au-
thors. In order to obtain noisy labels for the training instances of the above
datasets, we apply the provided labeling functions and use simple majority vot-
ing with randomly broken ties. Samples without any rule matches (which are
12% in (1), 59% in (2), 5% in (3), and none in (4) and (5)) are assigned to a
random class.

Apart from NLP datasets, we also conduct experiments on two image datasets:
(6) CIFAR-10 [?], for which the noisy labels were generated by randomly flip-
ping the clean labels following Northcutt et al. [35] with 20% noise and 0.6
sparsity, and (7) CheXpert, a multi-label medical imaging dataset [24]. Since
CheXpert test set is not revealed in the interest of the CheXpert competition,
the original hand-labeled validation set was used as a test set as in previous
works [18], while a part of the training set was kept for validation purposes.
We used the noisy training annotations provided by Irvin et al. [24], which were
obtained by applying the CheXpert labeler to the radiology reports associated
with the images4. Since CheXpert is a multi-label classification task, we adapt
our algorithm to the multi-label setting by performing the gradient comparison
with respect to each output node, allowing to ignore individual entries of the
label vector. The exact algorithm can be found in Appendix B.

The dataset statistics are collected in Table 1. Each dataset’s noise amount
was calculated by comparing the noisy training labels to the gold labels. The
gold training labels are not provided for CheXpert, so its noise rate value is
missing in the table. More details about dataset preprocessing, as well as the
label distributions of the datasets, are provided in Appendix C.

4 The reports are not publicly accessible; only the noisy labels are available for the
training data. The gold labels are not provided.

10 Sedova et al.

Dataset #Class #Train #Dev #Test %Noise

YouTube 2 1586 120 250 18.8

SMS 2 4571 500 500 31.9

TREC 6 4965 500 500 48.2

Yorùbá 7 1340 189 379 42.3

Hausa 5 2045 290 582 50.6

CheXpert 12 200599 22815 234 -

CIFAR-10 10 50000 5000 5000 20

Table 1: Datasets statistics. The percentage of noise is calculated by comparing
the noisy labels to the gold-standard annotations.

4.2 Baselines

We compare AGRA towards seven baselines. For datasets that include gold train-
ing labels (i.e., all datasets in our experiments except CheXpert), we trained a (1)
Gold model with ground-truth labels; it can serve as an upper-bound baseline.
(2) No Denoising baseline entails simple model training with the noisy labels,
without any additional data improvement. (3) DP [38] stands for the Data Pro-
gramming algorithm, which improves the imperfect annotations by learning the
structure within the labels and rules in an unsupervised fashion by a generative
model. (4) MeTaL [37] combines signals from multiple weak rules and trains a
hierarchical multi-task network. (5) FlyingSquid [15] rectifies the noisy anno-
tations using an Ising model by a triplet formulation. The experiments with the
above baselines were realized using the Wrench framework [51]. In addition to
the methods (3), (4), and (5) that are specifically designed for the weakly su-
pervised setting, we also compare AGRA with two baselines that have broader
applicability for learning with noisy labels: (6)CORES2 [11], which utilizes con-
fidence regularization to sieve out samples with corrupted labels during training,
and (7) Cleanlab [35], which aims at detecting noisy annotations by estimat-
ing the joint distribution between noisy and true labels using the out-of-sample
predicted probabilities.

Since DP, MeTaL, and FlyingSquid require access to annotation rules and
rule matches, they cannot be applied to non-weakly supervised datasets or other
datasets for which this information is not available (such as CheXpert, for which
the reports used for annotation are not publicly released). In contrast, Cleanlab,
CORES2, and AGRA directly utilize noisy labels and do not require additional
information regarding the annotations, making them more broadly applicable.

4.3 Experimental Setup

AGRA was implemented based on Python using the PyTorch library. We eval-
uate our method with a logistic regression classifier optimized with Adam5. For

5 AGRA can also be used with any PyTorch-compatible deep model as our method
has no model-related limitations.

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 11

YouTube
(Acc)

SMS
(F1)

TREC
(Acc)

Yorùbá
(F1)

Hausa
(F1)

Avg. CIFAR
(Acc)

CXT
(AUR)

Gold 94.8±0.8 95.4±1.0 89.5±0.3 57.3±0.4 78.5±0.3 83.1 83.6±0.0 −
No Denoising 87.4±2.7 71.7±1.4 58.7±0.5 44.6±0.4 39.7±0.8 60.4 82.4±0.2 82.7±0.1

Weak Supervision

DP [38] 90.8±1.0 44.1±6.7 54.3±0.5 47.8±1.7 40.9±0.6 55.6 − −
MeTaL [37] 92.0±0.8 18.3±7.8 50.4±1.7 38.9±3.1 45.5±1.1 49.0 − −
FS [15] 84.8±1.2 16.3±6.0 27.2±0.1 31.9±0.7 37.6±1.0 39.6 − −
Noisy Learning

CORES2 [11] 88.8±3.6 85.8±1.8 61.8±0.5 43.0±0.7 51.2±0.5 66.1 83.4±0.1 −
Cleanlab [35] 91.3±1.2 80.6±0.3 60.9±0.4 43.8±1.3 40.3±0.3 63.4 83.3±0.0 81.2±0.2

AGRA 93.9±0.7 87.7±1.2 63.6±0.7 46.9±1.5 46.2±1.6 67.7 83.6±0.0 83.9±0.3

Table 2: Experimental results on NLP and image datasets averaged across five
runs and reported with standard deviation.

text-based datasets, we use a TF-IDF feature vectors to represent the data.
The CheXpert images were encoded with a fine-tuned EfficientNet-B0 [45], and
the CIFAR-10 images were encoded with a fine-tuned ResNet-50 [19] (following
previous work [35]). More details on the data encoding and resulting feature
vectors are provided in Appendix D. In our experiments with TF-IDF represen-
tations, we found that the gradient entries corresponding to the biases of the
model strongly influence the computed similarity scores despite being feature-
independent. Hence, we exclude the elements corresponding to the biases when
determining the gradient similarity for sparse features. To make our experiments
consistent, we apply the same strategy to CIFAR-10 and CheXpert.

For each dataset, we report the same evaluation metrics as in previous works:
commonly used accuracy and F1 scores and macro-AUROC (Area Under the
Receiver Operating Characteristics) for CheXpert [24]6. The hyper-parameters
were selected with a grid search; more details and the selected parameter values
are provided in Appendix E7. After training each model for 10 epochs (5 epochs
for CheXpert), we reload the best model state based on validation performance
and evaluate it on the test set.

4.4 Results

The results of the experiments across the seven datasets are summarized in Ta-
ble 2. AGRA is the best-performing method overall for three weakly-supervised

6 The AUROC was computed on the nine classes which have more than one positive
observation in the test set.

7 The experiments are performed on a single Tesla V100 GPU on Nvidia DGX-1.
The parameter grid search takes between 24 and 96 hours; the model run with the
selected parameters takes between 1 and 5 minutes depending on parameter values
and dataset size.

12 Sedova et al.

No Weighted Sampling Weighted Sampling

CE/CE CE/F1 CE/CE CE/F1

YouTube 92.0± 1.0 93.9± 0.7 91.9± 0.5 93.4± 0.8

YouTube† 90.5± 1.0 − 92.0± 0.7 −
SMS 79.0± 3.2 61.1± 5.2 87.7± 1.2 49.1± 3.0

SMS† 71.1± 3.1 − 86.3± 1.2 −
TREC 61.6± 0.6 62.1± 0.4 62.8± 1.1 63.6± 0.7

Yorùbá 44.3± 2.5 44.2± 1.4 43.5± 1.0 46.9± 1.5

Hausa 41.2± 0.4 40.9± 0.6 43.8± 2.8 46.2± 1.6

CheXpert 82.6± 0.6 83.9± 0.3 − −
CIFAR 82.2± 0.2 83.5± 0.0 83.1± 0.0 83.6± 0.0

Table 3: AGRA experimental test results with different settings: use of class-
weighted sampling, [training loss]/[comparison loss]. The results marked with †
are obtained by AGRA with an alternative label. All results are averaged across
5 runs and reported with standard deviation.

NLP datasets, providing better results than the methods specifically designed for
weakly supervised data. Among the text-based datasets, the average improve-
ment achieved by AGRA over FlyingSquid, MeTaL, and DP is 28.1 percentage
points (pp), 18.7pp, and 12.1pp correspondingly. Compared to the baselines
designed for weakly supervised data, Cleanlab and CORES2 worked better on
average, but AGRA also demonstrates an improvement over them (by 4.3pp and
1.6pp, respectively). Notably, AGRA improves the results of all datasets over
simple training without additional denoising (7.3pp improvement on average).
For image datasets, AGRA also demonstrates an improvement over Cleanlab
and CORES2 as well as the no denoising baseline; for Cifar dataset, our method
demonstrates even the same result as the model trained with gold labels. The
other baselines are not applicable to these datasets8.

4.5 Ablation Study

Table 3 shows the AGRA performance across all comparison losses and com-
parison batch sampling strategies, the best of which was included in Table 2.
Overall, it outperforms the baselines on most of the datasets in the vast ma-
jority of settings. For the binary YouTube and SMS datasets, we also perform
experiments with an alternative label (the negative “non spam” class for both
datasets). However, the models trained with the alternative label setting are
not the best-performing AGRA configuration for either dataset (although they

8 The weak supervision baselines cannot be run on CIFAR since it is a non-weakly
supervised dataset; they also cannot be run on CheXpert as we do not have access to
the labeling function matches. Furthermore, CORES2 is not applicable for CheXpert
as it does not support multi-label settings.

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 13

sometimes outperform the corresponding settings without the alternative label).
Utilizing an F1-based comparison loss function instead of standard cross entropy
proved beneficial on all datasets except SMS.

Fig. 2: Case study on the YouTube dataset. The plots represent the percentage of
samples in each batch that were correctly kept, correctly removed, falsely kept
and falsely removed during the training of the best-performing models for all
combinations of comparison losses and sampling strategies.

As expected, weighted comparison batch sampling turns out to be especially
helpful for imbalanced datasets such as Hausa (for which the most popular class
is represented by 53.7% training samples, while the least frequent class only cov-
ers 7.9%) and TREC (56.6% and 1.0% correspondingly; see detailed statistics in
Appendix C). On the other hand, the fairly balanced YouTube dataset performs
marginally better without it.

4.6 Case study

Finally, we provide a more fine-grained analysis of our AGRA method on the
example of the YouTube dataset. By comparing the noisy labels to the manual

14 Sedova et al.

labels provided for this dataset, we calculate the fraction of samples in each batch
that are (1) mislabeled and removed, (2) correctly labeled and removed, (3) mis-
labeled and kept, (4) correctly labeled and kept. These statistics are reflected
in Figure 2 for all supported combinations of comparison losses and compari-
son batch sampling strategies9. A remarkable trend is that the correctness of
removed samples appears to be not crucial for training a reliable model. In fact,
the amount of mislabeled samples kept and correctly labeled samples removed
is high for many batches, yet all configurations outperform the baselines (ex-
cluding MeTaL which ties with the CE-based settings). This observation affirms
our hypothesis that mislabeled samples can be beneficial at certain stages of
the training process, and cleaning the dataset by filtering out all presumably
mislabeled samples before training (as is done in common data-cleaning meth-
ods) might be a suboptimal approach. Moreover, the number of “falsely” kept
(mislabeled kept) and removed (correctly labeled removed) samples in some cases
exceeds the amount of “correctly” kept (correctly labeled kept) and removed
(mislabeled removed) ones. This observation reinforces our point that the use-
fulness of a sample at the current training stage cannot be solely determined by
whether it is mislabeled or not. Weighted comparison batch sampling seems to
only have a minor influence on the training process for YouTube. This observa-
tion can likely be explained by the already balanced noisy label distribution of
the YouTube dataset.

5 Conclusion

In this work, we address the challenge of training a classifier using noisy labels.
Most importantly, we reconsider the goal of learning with noisy annotations and
focus on training a stable and well-performing classifier rather than obtaining
clean and error-free data. Instead of following the traditional approach of first
denoising the data and then training a classifier on the cleaned data, we propose
a novel integrated approach that dynamically adjusts the use of the dataset
during the learning process. In our new algorithm AGRA, samples from which
the model can benefit at the current training stage are retained for updating,
while the ones that may hinder the learning process are disregarded or relabeled.
Our algorithm outperforms several recent baselines for training with noisy data.

6 Ethical Statement

Our method can improve the model predictions and produce more useful results,
but we cannot promise they are perfect, especially for life-critical domains like
healthcare. Data used for training can have biases that machine learning methods
may pick up, and one needs to be careful when using such models in actual
applications. We relied on datasets that were already published and did not hire
anyone to annotate them for our work.

9 The hyper-parameters chosen by the grid search were used for each depicted run.
The exact values are provided in Appendix E.

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 15

7 Acknowledgement

This research was funded by the WWTF through the project ”Knowledge-
infused Deep Learning for Natural Language Processing” (WWTF Vienna Re-
search Group VRG19-008).

References

1. Torch.utils.data. https://pytorch.org/docs/stable/data.html (2023), accessed:
June 23, 2023

2. Al-Zoubi, M.B.: An effective clustering-based approach for outlier detection. Eu-
ropean Journal of Scientific Research 28(2), 310–316 (2009)

3. Alberto, T.C., Lochter, J.V., Almeida, T.A.: Tubespam: Comment spam filtering
on youtube. In: 2015 IEEE 14th International Conference on Machine Learning
and Applications (ICMLA). pp. 138–143 (2015)

4. Almeida, T.A., Hidalgo, J.M.G., Yamakami, A.: Contributions to the study of
sms spam filtering: New collection and results. In: Proceedings of the 11th ACM
Symposium on Document Engineering. p. 259–262 (2011)

5. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Unsuper-
vised label noise modeling and loss correction. In: Chaudhuri, K., Salakhutdinov,
R. (eds.) Proceedings of the 36th International Conference on Machine Learning,
ICML 2019 (2019)

6. Awasthi, A., Ghosh, S., Goyal, R., Sarawagi, S.: Learning from rules generalizing
labeled exemplars. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020 (2020)

7. Bai, M., Wang, X., Xin, J., Wang, G.: An efficient algorithm for distributed density-
based outlier detection on big data. Neurocomputing 181, 19–28 (2016)

8. Bénédict, G., Koops, H.V., Odijk, D., de Rijke, M.: Sigmoidf1: A smooth f1 score
surrogate loss for multilabel classification. Transactions on Machine Learning Re-
search (2022)

9. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data. pp. 93–104 (2000)

10. Chen, P., Liao, B.B., Chen, G., Zhang, S.: Understanding and utilizing deep neu-
ral networks trained with noisy labels. In: International Conference on Machine
Learning. pp. 1062–1070 (2019)

11. Cheng, H., Zhu, Z., Li, X., Gong, Y., Sun, X., Liu, Y.: Learning with instance-
dependent label noise: A sample sieve approach. arXiv preprint arXiv:2010.02347
(2020)

12. Elahi, M., Li, K., Nisar, W., Lv, X., Wang, H.: Efficient clustering-based outlier
detection algorithm for dynamic data stream. In: 2008 Fifth International Con-
ference on Fuzzy Systems and Knowledge Discovery. vol. 5, pp. 298–304. IEEE
(2008)

13. Fang, Z., Kong, S., Wang, Z., Fowlkes, C.C., Yang, Y.: Weak supervision and refer-
ring attention for temporal-textual association learning. CoRR abs/2006.11747
(2020)

14. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey.
IEEE transactions on neural networks and learning systems 25(5), 845–869 (2014)

16 Sedova et al.

15. Fu, D., Chen, M., Sala, F., Hooper, S., Fatahalian, K., Re, C.: Fast and three-rious:
Speeding up weak supervision with triplet methods. In: III, H.D., Singh, A. (eds.)
Proceedings of the 37th International Conference on Machine Learning. vol. 119,
pp. 3280–3291 (13–18 Jul 2020)

16. Garbin, C., Rajpurkar, P., Irvin, J., Lungren, M.P., Marques, O.: Structured
dataset documentation: a datasheet for chexpert. CoRR abs/2105.03020 (2021)

17. Ghoting, A., Parthasarathy, S., Otey, M.E.: Fast mining of distance-based outliers
in high-dimensional datasets. Data Mining and Knowledge Discovery 16, 349–364
(2008)

18. Giacomello, E., Lanzi, P.L., Loiacono, D., Nassano, L.: Image embedding and model
ensembling for automated chest x-ray interpretation. In: 2021 International Joint
Conference on Neural Networks (IJCNN). pp. 1–8. IEEE (2021)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
pp. 770–778 (06 2016)

20. Hedderich, M.A., Adelani, D.I., Zhu, D., Alabi, J.O., Markus, U., Klakow, D.:
Transfer learning and distant supervision for multilingual transformer models: A
study on african languages. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2020, Online, November 16-20, 2020. pp. 2580–2591 (2020)

21. Hedderich, M.A., Lange, L., Klakow, D.: ANEA: distant supervision for low-
resource named entity recognition. CoRR abs/2102.13129 (2021)

22. Huang, J., Qu, L., Jia, R., Zhao, B.: O2u-net: A simple noisy label detection
approach for deep neural networks. In: 2019 IEEE/CVF International Conference
on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,
2019. pp. 3325–3333 (2019)

23. Inkawhich, N.: Finetuning torchvision models.
https://pytorch.org/tutorials/beginner/finetuning torchvision models tutorial.html
(2017), (accessed: June 13, 2022)

24. Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H.,
Haghgoo, B., Ball, R., Shpanskaya, K., et al.: Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In: Proceedings of the
AAAI conference on artificial intelligence. pp. 590–597 (2019)

25. Karamanolakis, G., Mukherjee, S., Zheng, G., Awadallah, A.H.: Self-training with
weak supervision. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-
Tür, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (eds.)
Proceedings of the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2021, Online, June 6-11, 2021. pp. 845–863 (2021)

26. Ke, A., Ellsworth, W., Banerjee, O., Ng, A.Y., Rajpurkar, P.: Chextransfer: perfor-
mance and parameter efficiency of imagenet models for chest x-ray interpretation.
In: Proceedings of the Conference on Health, Inference, and Learning. pp. 116–124
(2021)

27. Knox, E.M., Ng, R.T.: Algorithms for mining distancebased outliers in large
datasets. In: Proceedings of the international conference on very large data bases.
pp. 392–403. Citeseer (1998)

28. Li, J., Chen, W., Huang, X., Yang, S., Hu, Z., Duan, Q., Metaxas, D.N., Li, H.,
Zhang, S.: Hybrid supervision learning for pathology whole slide image classifica-
tion. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y.,
Essert, C. (eds.) Medical Image Computing and Computer Assisted Intervention -
MICCAI 2021 - 24th International Conference, Strasbourg, France, September 27
- October 1, 2021, Proceedings, Part VIII (2021)

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 17

29. Li, J., Socher, R., Hoi, S.C.: Dividemix: Learning with noisy labels as semi-
supervised learning. In: ICLR (2020)

30. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to learn from noisy la-
beled data. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 5051–5059 (2019)

31. Li, X., Roth, D.: Learning question classifiers. In: COLING 2002: The 19th Inter-
national Conference on Computational Linguistics (2002)

32. Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., Li, L.J.: Learning from noisy labels with
distillation. In: 2017 IEEE International Conference on Computer Vision (ICCV).
pp. 1928–1936 (2017)

33. Lipton, Z.C., Wang, Y., Smola, A.J.: Detecting and correcting for label shift with
black box predictors. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018. vol. 80, pp. 3128–3136
(2018)

34. Liu, Z., Chen, B., Wang, R., Liang, P.P., Salakhutdinov, R., Morency, L., Ueda,
M.: Learning not to learn in the presence of noisy labels. CoRR abs/2002.06541
(2020)

35. Northcutt, C., Jiang, L., Chuang, I.: Confident learning: Estimating uncertainty
in dataset labels. Journal of Artificial Intelligence Research 70, 1373–1411 (2021)

36. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: Rapid
training data creation with weak supervision. The VLDB Journal 29(2), 709–730
(2020)

37. Ratner, A., Hancock, B., Dunnmon, J., Sala, F., Pandey, S., Ré, C.: Training com-
plex models with multi-task weak supervision. Proceedings of the AAAI Conference
on Artificial Intelligence 33, 4763–4771 (07 2019)

38. Ratner, A.J., De Sa, C.M., Wu, S., Selsam, D., Ré, C.: Data programming: Creating
large training sets, quickly. Advances in neural information processing systems 29
(2016)

39. Raykar, V.C., Yu, S.: Eliminating spammers and ranking annotators for crowd-
sourced labeling tasks. Journal of Machine Learning Research 13(16), 491–518
(2012)

40. Ren, W., Li, Y., Su, H., Kartchner, D., Mitchell, C., Zhang, C.: Denoising multi-
source weak supervision for neural text classification. In: Cohn, T., He, Y., Liu, Y.
(eds.) Findings of the Association for Computational Linguistics: EMNLP 2020,
Online Event, 16-20 November 2020. vol. EMNLP 2020, pp. 3739–3754 (2020)

41. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211–252 (2015)

42. Shi, Y., Seely, J., Torr, P.H., Siddharth, N., Hannun, A., Usunier, N., Synnaeve,
G.: Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937
(2021)

43. Stephan, A., Kougia, V., Roth, B.: SepLL: Separating latent class labels from weak
supervision noise. In: Findings of the Association for Computational Linguistics:
EMNLP 2022. Association for Computational Linguistics, Abu Dhabi, United Arab
Emirates (2022)

44. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolu-
tional networks with noisy labels. arXiv preprint arXiv:1406.2080 (2014)

45. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

18 Sedova et al.

46. Tratz, S., Hovy, E.: A taxonomy, dataset, and classifier for automatic noun com-
pound interpretation. In: Proceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics. pp. 678–687 (Jul 2010)

47. Wang, H., Bah, M.J., Hammad, M.: Progress in outlier detection techniques: A
survey. Ieee Access 7, 107964–108000 (2019)

48. Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., Bailey, J.: Symmetric cross entropy for
robust learning with noisy labels. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 322–330 (2019)

49. Wang, Z., Shang, J., Liu, L., Lu, L., Liu, J., Han, J.: Crossweigh: Training named
entity tagger from imperfect annotations. In: Inui, K., Jiang, J., Ng, V., Wan, X.
(eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019 (2019)

50. Wei, J.: Label noise reduction without assumptions. Dartmouth College Under-
graduate Theses. 164. (2020)

51. Zhang, J., Yu, Y., Li, Y., Wang, Y., Yang, Y., Yang, M., Ratner, A.: WRENCH:
A comprehensive benchmark for weak supervision. In: Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (2021)

52. Zhao, B., Mopuri, K.R., Bilen, H.: Dataset condensation with gradient matching.
In: International Conference on Learning Representations (2021)

A F1-Based Losses

This section contains the formulas for the F1-based loss functions used in the
experiments. In the following, ŷt,k denotes the model output for sample t cor-
responding to the k-th class after application of an activation function. In the
binary single-label setting, where yt ∈ {0, 1}, the positive class is assumed to be
denoted by label 1. A small stabilizer ϵ was added to the denominator of the F1

formula, inspired by past research on F1-based loss functions10; ϵ = 1e− 05 was
used in the experiments.

Binary-F1 Loss for Single-Label Settings The F1 loss geared towards bi-
nary classification tasks aims to maximize the F1 score of the positive class.
Given a batch B, the loss can be computed by the following formula.

LF1
(B) = 1− 2t̂p

2t̂p+ f̂p+ f̂n+ ϵ
,

where

10 e.g., https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d,
accessed: 2022-08-11

https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 19

t̂p =

M∑
t=1

ŷt,1 × yt,

f̂p =

M∑
t=1

ŷt,1 × (1− yt),

f̂n =

M∑
t=1

(1− ŷt,1)× yt,

yt ∈ {0, 1} and ŷt,1 denotes the predicted probability for the positive class for
sample t after application of the softmax.

Macro-F1 Loss for Multi-Label Settings In the multi-label case, we use
a macro-averaged F1 loss, which averages the differentiable F1 scores of all K
classes.

LF1M
(B) = 1− 1

K

K∑
k=1

2t̂pk

2t̂pk + f̂pk + f̂nk + ϵ
,

where

t̂pk =

M∑
t=1

ŷt,k × yt,k,

f̂pk =

M∑
t=1

ŷt,k × (1− yt,k),

f̂nk =

M∑
t=1

(1− ŷt,k)× yt,k,

yt,k ∈ {0, 1} and ŷt,k denotes the predicted probability of class k for sample t
after application of the sigmoid function.

B AGRA Multi-Label Setting

In the multi-label setting, the annotation for each data point is given by a binary
vector of sizeK, whereK is the number of classes. The AGRA multi-label setting
allows to ignore individual entries of this vector for the update. For the following
formulation of the multi-label variant of AGRA, the label-specific gradients are

20 Sedova et al.

denoted by
(
∇L̃ (xt, yt)

)
k
and

(
∇L̃com

)
k
, where k ∈ {1, ...,K}, and the corre-

sponding similarity score is given by simk
yt

= sim
((
∇L̃ (xt, yt)

)
k
,
(
∇L̃com

)
k

)
.

If a particular label yt,k should not be considered for the update, due to simk
yt

being non-positive, it is replaced with the label i. For the model update, we use
a masked version of the BCE loss that ensures that the replaced labels do not
influence the weight update. Namely,

L̃BCE(B) =
1

K

K∑
k=1

1

M̃k

M∑
t=1

−[log(ŷt,k)yt,k + log(1− ŷt,k)(1− yt,k)]1(ỹt,k ̸= i)

where M̃k denotes the number of retained labels for class k and ỹ denotes
the masked label vector.

Pseudocode for the AGRA multi-label setting can be found in Algorithm 2.

Algorithm 2: AGRA Algorithm for Multi-Label Datasets

Input: training set X , initial model f (·; θ), removal threshold τ ,
number of epochs E, batch size M , number of classes K, label assigned
to ignored samples i
Output: trained model f (·; θ∗)
for epoch = 1,..., E do

for batch B do

Sample a comparison batch B̃, B̃ ⊂ X , |B̃| = M

Compute ∇L̃com on B̃
for (xt, yt) ∈ B do

Compute ∇L̃ (xt, yt)
Set up corrected label vector ỹt ← yt
for k=1, ..., K do

simk
yt = sim

((
∇L̃ (xt, yt)

)
k
,
(
∇L̃com

)
k

)
(Eq.1)

if simk
yt ≤ 0 then

ỹt,k ← i
B ← B \ {(xt, yt)} ∪ {(xt, ỹt)}

θ ← Optim (θ,B,L)

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 21

C Dataset Preprocessing & Statistics

We used already preprocessed versions of text datasets For Chexpertin the
Wrench framework [51]. For the medical imaging CheXpert dataset, where each
class corresponds to one pathology that might be present in a training sample,
we needed to additionally adapt the labels so that they can be used for our ex-
periments. In the original dataset a class value for each sample equals either -1
(uncertain), blank (not mentioned), 0 (negative), or 1 (positive). We binarized
the label vector by mapping -1 to 1 (potentially increasing the noise ratio, but
keeping more positive training samples), and blank to 0. The assignment of the
value 0 to the blank labels is somewhat intuitive: not every radiographic report
will mention all 12 pathologies, and if an observation is not even mentioned in
the study report, there likely are no indications for it in the corresponding im-
ages [16,24]. Among the possible ways of handling the uncertainty labels (turning
them to either 0 or 1, ignoring them, or keeping them as a separate class), we
decided to choose the reassignment to label 1 as it was the best performing
method for most of the CheXpert classes in [24]. We focus on predicting the 12
pathologies in the CheXpert dataset, omitting the additional “Support Devices”
and “No Finding” labels.

Table 4 provides information about the number of samples belonging to each
class for all datasets used in the experiments. Note that in a multi-class multi-
label CheXpert dataset, one sample can belong to multiple classes.

D Data Encoding

For the text datasets, we used feature-based TF-IDF vector representations.
The samples were encoded with the TfidfVectorizer tool available in Sklearn
library11.

For the CheXpert dataset we used fine-tuned convolutional neural networks
(CNNs) as feature extractors following Giacomello et al. [18]. In our experi-
ments, the data samples were encoded using a fine-tuned EfficientNet-B0 [45].
The torchvision implementation [23] of EfficientNet-B0 used for our experi-
ments was pre-trained on ImageNet. Despite the fact that the images contained
in ImageNet greatly differ from chest radiographs, the pre-training still gives
good intialization as was shown by Ke et al. [26]. The chest radiographs images
were rescaled to a size of 224x224 and normalized with the mean and standard
deviation from ImageNet. Then, the EfficientNet was fine-tuned on the training
data for two epochs using Adam optimizer with learning rate 0.0001 and batch
size 16. Once the fine-tuning was completed, 1280-dimensional feature vectors
for each image were extracted from the penultimate layer of the network and
used as the data representations.

For CIFAR-10, we fine-tune a pre-trained ResNet-50 for 100 epochs with
learning rate 0.001, batch size 64 and no weight decay and retrieve emeddings
from the penultimate layer.

11 https://scikit-learn.org/stable/

22 Sedova et al.

Dataset Class %Samples

YouTube
SPAM 52.3%

HAM 47.7%

SMS
SPAM 63.8%

HAM 36.2%

TREC

DESC 56.6%

ENTY 8.0%

HUM 12.8%

ABBR 1.0%

LOC 8.0%

NUM 13.6%

Yorùbá

Africa 6.1%

Entertainment 25.2%

Health 6.5%

Nigeria 10.3%

Politics 26.2%

Sport 6.8%

World 18.9%

Hausa

Africa 19.6%

Health 10.1%

Nigeria 8.6%

Politics 7.9%

World 53.7%

CheXpert

Enlarged
10.4%

Cardiomediastinum

Cardiomegaly 15.8%

Lung Opacity 49.8%

Lung Lesion 4.8%

Edema 29.1%

Consolidation 19.1%

Pneumonia 11.1%

Atelectasis 30.1%

Pneumothorax 10.1%

Pleural Effusion 43.7%

Pleural Other 2, 8%

Fracture 4.3%

Table 4: Percentage of samples belonging to each class in all data sets used
for the experiments. Note that CheXpert dataset in designed for a multi-label
classification, meaning more than one class can be assigned to one sample.

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 23

E The Hyper-Parameters and Search Space

The hyper-parameters for our algorithm and baselines were retrieved with a grid
search on the validation sets; each trial was performed 3 times with different ini-
tialization. The search space is provided in Table 6, and the exact selected values
for our method AGRA can be found in Table 5. All AGRA results presented in
the paper are reproducible with the seed value 0.

Dataset Learning
Rate η

Batch
Size
M

Weight
Decay λ

YouTube 1e− 2 32 1e− 3

SMS 1e− 3 128 1e− 3

TREC 1e− 1 32 1e− 4

Yorùbá 1e− 1 512 1e− 4

Hausa 1e− 1 512 1e− 4

CIFAR-10 1e− 3 512 1e− 4

CheXpert 1e− 3 128 1e− 3

Table 5: Selected hyper-parameters with grid search for the best AGRA config-
urations, which are:

– for YouTube: F1 comparison loss, no weighted sampling, no alternative label,
– for SMS: CE comparison loss, weighted sampling, no alternative label,
– for TREC: F1 comparison loss, weighted sampling,
– for Yorùbá: F1 comparison loss, weighted sampling,
– for Hausa: F1 comparison loss, weighted sampling,
– for CIFAR-10: F1 comparison loss, weighted sampling,
– for CheXpert: F1 comparison loss, weighted sampling not implemented.

For CheXpert, the hyperparameters were fixed to learning rate 1e−3, weight
decay 1e−3 and batch size 128 without grid search for AGRA and Cleanlab due
to energy considerations and resource constraints. The Cleanlab hyperparameter
n folds was set to 2 for CheXpert. For CORES2, we choose β = 0.2 ·K, where
K is the number of classes, as suggested by [11]. For CIFAR, we also tuned the
decision threshold value as a hyper-parameter (the range: 0.001, 0.01, 0.5). The
best hyper-parameter values were selected based on one trial.

24 Sedova et al.

Method Hyper-
parameter

Search Space

AGRA

learning rate η 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

batch size M 32, 128, 512

weight decay λ 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

No denoising

learning rate η 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

batch size M 32, 64, 128

weight decay λ 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

DP

DP learning
rate

1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

DP batch size 32, 64, 128

DP num
epochs

5, 10, 50, 100, 200

learning rate η 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

batch size M 32, 64, 128

weight decay λ 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

MeTal

MeTal learning
rate

1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

MeTal weight
decay

32, 64, 128

MeTal num
epochs

5, 10, 50, 100, 200

learning rate η 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

batch size M 32, 64, 128

weight decay λ 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

FlyingSquid

learning rate η 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

batch size M 32, 64, 128

weight decay λ 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

Cleanlab

CL n folds 2, 5, 7, 9, 12

learning rate η 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

batch size M 32, 128, 512

weight decay λ 1e−05, 1e−04, 1e−
03

CORES2

learning rate η 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

batch size M 32, 128, 512

weight decay λ 1e−05, 1e−04, 1e−
03, 1e− 02, 1e− 01

Table 6: Hyper-parameters and search space used for a grid search. The search
spaces for DP, MeTaL, and FS methods were inherited from Wrench [51]. The
search spaces for Cleanlab and AGRA were selected empirically.

	Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal

