
Analytical Modeling and Empirical Validation of
Performability of Service- and Cloud-Based

Dynamic Routing Architecture Patterns
1st Amirali Amiri, 2nd Uwe Zdun

University of Vienna, Faculty of Computer Science,
Research Group Software Architecture

Vienna, Austria
firstname.lastname@univie.ac.at

3rd André van Hoorn
University of Hamburg, Department of Informatics,
Software Engineering and Construction Methods

Hamburg, Germany
andre.van.hoorn@uni-hamburg.de

Abstract—Many dynamic routing architectural patterns are
available, including distributed routing, e.g., using the sidecar
pattern, or centralized routing, e.g., using event stores or ser-
vice buses. Different Quality-of-Service (QoS) factors influence
routing schemas and technology selection, such as performance,
reliability, scalability, and control properties offered by the
patterns. An analytical model can formalize the QoS factors and
facilitate the architectural decision-making when changing the
routing scheme, i.e., to more distributed or centralized routing. So
far, the impact of these architectural patterns on performability,
i.e., the overall performance of a system with impeded reliability,
has not been extensively studied. This is important because
deciding to increase performance, e.g., by parallel processing
of requests, may lead to decreased reliability because of the
added points of a crash. We propose an analytical performability
model during component crashes. For the empirical validation
of our proposed model, we ran an extensive experiment of 2412
hours of runtime on a private cloud infrastructure and Google
Cloud Platform. The low prediction error of 1.75% indicates
the high accuracy of our performability model. These results
provide important insights when making architectural decisions
regarding service- and cloud-based dynamic routing.

Index Terms—Service- and Cloud-based, Dynamic Routing,
Architectural Patterns, Performability, Analytical Model, Em-
pirical Validation, Private and Public Clouds

I. INTRODUCTION

DYNAMIC routing [9] is an important part of today’s
internet applications. Some dynamic routing decisions

are simple, e.g., when using load balancing. However, some
decisions are more complex, e.g., when checking for compli-
ance with privacy regulations such as General Data Protection
Regulation (GDPR)1. GDPR requires that companies comply
with a regulation that European customer data must be stored
on European servers. Dynamic routers can update the data flow
path at runtime to ensure compliant data handling.

A typical cloud-native and distributed dynamic-routing ar-
chitectural pattern is the sidecar pattern [11], [14]. The sidecar
of each service handles the incoming and outgoing traffic [8]
and performs the request flow routing for the services. In

Supported by FWF (Austrian Science Fund) project API-ACE: I 4268.
1https://gdpr.eu

contrast, some architectural patterns use centralized routing to
process the routing decisions. For instance, an API gateway, an
event streaming platform [21], or any kind of central service
bus [5] can be used. In addition, these two extremes are often
combined, and multiple routers are used. For instance, consider
an API gateway, event streaming platforms, and sidecars, all
making routing decisions in a larger cloud-based application.

These architectural patterns are based on vastly different
implementations; however, they all route or block requests.
There is a possibility to change between these dynamic-routing
patterns by changing the number of routers in a service-
and cloud-based system. To do so automatically, we should
monitor the QoS measures and make architectural decisions.
So far, the impacts of dynamic routing architectural patterns
on performability have not been specifically and extensively
studied in the literature. Performability considers the effects
of structural changes in a system, e.g., when a component
crashes (impeded reliability) on the overall performance of
the system [24]. This is an essential factor that needs to
be considered because changing the routing architecture to
improve performance, e.g., adding more routers for parallel
processing of requests, may decrease system reliability as more
points of a crash are introduced to a system.

To the best of our knowledge, there is a lack of an
analytical model of performability specific to dynamic-routing
patterns for architectural decision-making. This makes it hard
to consider performability as a trade-off in design decisions for
centralized or distributed dynamic routing, i.e., choosing the
number of routers. We set out to answer the research questions:

RQ1: What is the impact of service- and cloud-based dynamic-
routing architectural patterns on performability, i.e., perfor-
mance in the presence of component crashes?

RQ2: How well can we predict this impact when making
architectural design decisions regarding performability?

RQ3: Are the model predictions generalizable to other
cloud infrastructures regarding the performability of dynamic-
routing applications?

https://gdpr.eu

«host» «host»
«client»«client»«client»«client»

«host»
«API gateway»

«host»

«host»«host»

«service» «service»«service»

«service» «service»

«sidecar»«sidecar»«sidecar»

«sidecar»«sidecar»

Central Entity Architecture

«client»
«host»

«client» «client» «client»
«host»

«API gateway»
«host»

«host»

«host»«host»

«host»

«service»«service»

«service»

«service»

«service»

«central entity»

«client»
«host»

«client» «client» «client»
«host»

«API gateway»
«host»

«dynamic router»
«dynamic router» «host»

«host»

«host»
«host»

«dynamic router»

«service»«service»

«service»

«service»

«service»

Sidecar Architecture Dynamic Routers Architecture

Fig. 1: Dynamic Routing Architecture Patterns

A major contribution of this research is a novel ana-
lytical model of performability concerning dynamic-routing
architectural patterns. We model performability analytically
when component crashes occur (i.e., impeded reliability). This
analytical model makes our predictions generalizable and ap-
plicable to public cloud platforms. We use the average request
processing time per router as a metric of performability, e.g.,
when parallel processing the incoming requests. This model
considers the impact of dynamic routing when changing from
one architectural pattern to another, i.e., changing the number
of routers and their connected services to address RQ1.

Another contribution of our study is an extensive experiment
of 2412 hours of runtime to evaluate our performability model.
We studied 72 cases for different architectural patterns, i.e.,
centralized and distributed, with different architecture config-
urations, multiple numbers of cloud services, and request call
frequencies. We performed 2400 hours of empirical measure-
ments on our private cloud infrastructure and did a validation
experiment of 12 hours on Google Cloud Platform (GCP)2.

We calculated the prediction error of our model compared
to our empirical measurements. Our results show that our
prediction model of performability is highly accurate with a
prediction error of 1.75% averaged over private and public
clouds, which addresses RQ2. The validation experiment on
GCP with a very low prediction error (0.66%) confirms that
our model is generalizable and applicable to other dynamic-
routing applications addressing RQ3.

The structure of the paper is as follows. Section II presents
our analytical performability model. Section III explains the
empirical validation of our model, and Section IV discusses
the threats to the validity of our study. Section V compares to
the related work. Finally, Section VI concludes the paper.

II. ANALYTICAL MODEL OF PERFORMABILITY

To answer RQ1, we propose an analytical model of average
request processing time per router. This model allows us to

2https://cloud.google.com

quantify the impact of dynamic-routing architectural patterns
on performability in the presence of component crashes (im-
peded reliability). Table I presents the mathematical notations.

A. Dynamic-Routing Architectural Patterns

We studied three architectural patterns as shown in Figure 1.
In the central entity architecture, a central router manages all
request flow decisions. This pattern can be implemented, e.g.,
using an API gateway, an event store, an event streaming plat-
form [21], or a service bus [5]. One benefit of this architectural
pattern is that it is easy to manage, understand, and change
as all control logic regarding request flow is implemented in
one component. On the other hand, Sidecars [8], [11], [14]
offer benefits whenever decisions need to be made structurally
close to the service logic. One advantage of this pattern is that,
compared to the central entity service, it is usually easier to

TABLE I: The Mathematical Notations Used in this Study

Notation Description
T Observed system time

nrout Number of routers
nserv Number of services
ncrash Number of crash tests

P Performability
E[Cc] The expected number of crashes of a component c during T
CI Crash interval
cf Incoming call frequency

Com Set of all components, i.e., routers and services
dc Expected average downtime after a component c crashes
CPc Crash probability of a component c every CI
Req Number of client requests
Rloss Total number of request losses
Rc

loss Number of request losses per crash of component c
r/s Requests per second

MAPE Mean absolute percentage error
MAE Mean absolute error
MSE Mean squared error
MSE Root mean squared error
modelc Result of the model for the experiment case c

empiricalc Measured empirical data for the experiment case c
Cases Set of experiment cases
nc Length of Cases

https://cloud.google.com

«router»
R3

«router»
R1

«host»
VM3

«host»
VM2

«service»
S5

«service»
S6

«host»
VM1

«service»
S1

«service»
S2

«router»
R2

«host»
VM5

«client»
CL

«host»
VM4

«API gateway»
GW

«service»
S4

«service»
S3

Client Request

Fig. 2: Example Model Instance

implement sidecars since they require less complex logic to
control the request flow. Dynamic Routers [9] can use local
information regarding request routing amongst their connected
services. For instance, if multiple services depend on one
another as steps of processing a request, this pattern can
facilitate dynamic routing.

B. Definition of Request Loss

Figure 2 shows an example model with three routers and six
services. We define client requests as those that clients send
to the system. When any component in the system crashes,
client requests will not be processed fully. This results in the
application not being responsive. We define request loss as the
number of client requests not processed during a component
crash. Let dc be the expected average downtime after a
component c crashes, and cf the incoming call frequency,
i.e., the frequency with which a system receives requests. We
define Rc

loss as the request loss per crash of a component c,
which is given as the number of lost requests during downtime
of component c.

Rc
loss = cf · dc (1)

C. Bernoulli Process to Model Request Loss During Crashes

In this section, we model request loss based on Bernoulli
processes [28]. We use this model to have an expected number
of total request losses. This helps us to calculate the average
request processing per router as a metric of performability.
Note that we only model the crash of the routers and services
in Figure 2. This is because we assume an API gateway is
stable and reliable. Since we consider crashes at the container
level, the services and routers have the same properties (e.g.,
probability of container crash), and can be abstracted into one
concept. Thus, throughout the rest of the paper, we use the
common term components for all routers and services.

Number of Crash Tests During an observed system time T ,
all components can crash with certain failure distributions. It
is realistic to assume that these distributions are known with
a certain error, as they can be estimated from past system

runs, e.g., recorded in system logs. Note that many cloud
systems run without being stopped. T should be interpreted
as the interval during which these failure distributions are
observed (e.g., failure distributions of a day or a week). A
crash of each component can happen at any point during T .
We model this behavior by checking for a crash of any of
the system’s components every crash interval CI . That is, our
model “knows” about crashes in discrete time intervals only.
This happens in real-world systems, e.g., when the Heartbeat
pattern [10] or the Health Check API pattern [19] is used
for checking system health. Our model allows any possible
values for T or CI and different crash probabilities for each
component, e.g., based on empirical observations of a system.
Let ncrash be the number of times we check for a crash of
components during T , i.e., the number of crash tests:

ncrash = b T
CI
c (2)

Expected Number of Crashes Each crash test is a
Bernoulli trial in which success is defined as “component
crashed” and failure as “component did not crash”. Assuming
CI > dc (crash interval is greater than the downtime of
a component c), all ncrash crash tests of a component c
are independent of each other. This assumption is justifiable:
When a component crashes and is down, it cannot crash
again. Another crash of the same component can happen only
after the component is up and running, i.e., the component’s
downtime has passed. Thus, we can create a Bernoulli process
of its crash tests for each component. The binomial distribution
of each Bernoulli process gives us the number of successes,
i.e., the number of times a component crashes during T .
Hence, for each component, the expected value of the bi-
nomial distribution is the expected number of crashes of the
component. Let CPc be the crash probability of a component
c every time we check for a crash derived from the failure
distributions. Let E[Cc] be the expected number of crashes of
a component c during T :

E[Cc] = ncrash · CPc (3)

Total Request Loss The total request loss Rloss is the sum
of each component’s request loss per crash. Let Com be the
set of components, i.e., routers and services:

Rloss =
∑

c∈Com

E[Cc] ·Rc
loss (4)

that can be rewritten using Equations (1) to (3) as:

Rloss = b
T

CI
c · cf

∑
c∈Com

CPc · dc (5)

D. Performability Model

We model the average processing time of requests per router
as a performability metric. This metric is important as it
allows us to study the QoS factors, such as the efficiency of
architecture configurations. Let Req be the total number of
client requests, which is the call frequency cf multiplied by
the observed time T :

Req = cf · T (6)

The number of processed requests is the total number of client
requests minus the request loss. Let P be performability and
nrout the number of routers in a dynamic-routing applica-
tion. The average processing time of requests per router is
calculated so that we divide the total system time T over the
processed requests and the number of routers:

P =
T

nrout · (Req −Rloss)
(7)

Using Equations (5) to (7), the average processing time is:

P =
T

nrout · cf ·
(
T − b T

CI c ·
∑

c∈Com CPc · dc
) (8)

Note that our analytical model has some assumptions outlined
in the threats to validity (see Section IV).

III. EMPIRICAL VALIDATION

In this section, we introduce an experiment to empirically
validate the accuracy of our model to address RQ2 and RQ3.

A. Experiment Planning

Goals We aim to empirically validate the accuracy of
our performability model represented by Equation (8) in the
presence of component crashes (impeded reliability). Based
on our experiences from studies of microservice-based cloud
architectures in our prior work (see, e.g., [3]) and the related
literature, we decided on several experiment cases that are
explained below with the rationale behind choosing them. We
realized these architectures using a prototypical implemen-
tation, ran them on private and public cloud infrastructures,
measured the empirical results, and compared them with our
model. We follow the convention for the request flow shown
by the example model in Figure 2. Client requests are sent
to the API gateway, and internal requests are routed between
routers and services. Also, for the sake of simplicity, we label
the services and the routers incrementally from 1 and make
the requests go through all of them linearly.

Technical Details We used private and public cloud
infrastructures to validate the accuracy of our model.

Private Cloud Infrastructure: We used a private cloud with
three physical nodes, each having two identical CPUs. Two
cloud nodes host Intel® Xeon® E5-2680 v4 @ 2.40GHz3 and
the other one hosts the same processor family but version
v3 @ 2.50GHz. The v4 and v3 versions have 14 and 12
cores, respectively, and two physical threads per core (56
and 48 threads in total). On top of the cloud nodes, we
installed Virtual Machines (VMs), each of which uses VMware
ESXi version 6.7.0 u2 hypervisor, has eight CPU cores, 60
GB system memory, and runs Ubuntu Server 18.04.01 LTS4.
Docker5 containerization is used to run the cloud services that
are implemented in Node.js6.

Validation Experiment on a Public Cloud: We used our
private cloud to have control over the infrastructure. On a
public cloud, other factors can influence the results, such
as the parallel workload of other applications. To show that
our approach can also be used on other cloud platforms,
we empirically validated the analysis of our proposed model
on Google Cloud Platform (GCP)2. On GCP, we used 7
instances of a compute-optimized C2 machine type7, each
with 4 vCPUs and 16 GB of memory. We duplicated our
private cloud infrastructure on this machine and repeated the
experiment for a validation run.

Load Generation: We utilized five desktop computers to
generate load, each hosting an Intel®Core™i3-2120T CPU
@ 2.60GHz with two cores and two physical threads per
core. All desktop computers have 8 GB of system memory and
run Ubuntu 18.10. They generate load using Apache JMeter8

that sends Hypertext Transfer Protocol (HTTP) version 1.19

requests to the cloud nodes.
Experiment Cases According to Equation (8), the per-

formability of a system can be influenced by several factors,
such as the incoming call frequency (cf), downtime of each
component (dc), system observation time (T), crash interval
(CI) and crash probability of each component (CPc). Addi-
tionally, a system’s number of components, i.e., routers and
services, can influence the performability. We chose different
levels for cf , CPc, and the number of components to study
their effects. We selected cf based on a study of related work
as 10, 25, 50, and 100 requests per second (r/s). In many
related studies (see, e.g., [6], [26]), 100 r/s (or even lower
numbers) are chosen. Consequently, we selected this number
as our highest bound and selected multiple proportions:

cf ∈ {10, 25, 50, 100} (9)

Let nserv and nrout be the number of services and routers
in a system, respectively. We chose the following values for

3https://www.intel.com/content/www/us/en/homepage.html
4https://www.ubuntu.com
5https://www.docker.com
6https://nodejs.org/en
7https://cloud.google.com/compute/docs/compute-optimized-machines
8https://jmeter.apache.org
9https://tools.ietf.org/html/rfc7230

https://www.intel.com/content/www/us/en/homepage.html
https://www.ubuntu.com
https://www.docker.com
https://nodejs.org/en
https://cloud.google.com/compute/docs/compute-optimized-machines
https://jmeter.apache.org
https://tools.ietf.org/html/rfc7230

these model elements, and the rationale is provided for each
separately. The number of cloud services directly dependent
on each other in a call sequence is usually rather low. As a
result, we selected 3, 5, and 10 as values for the number of
services in a call sequence.

nserv ∈ {3, 5, 10} (10)

We studied three representative architecture configurations (see
Section II-A). Centralized routing, e.g., any kind of enterprise
service bus [5], where there is only one router processing all
incoming requests, i.e., nrout = 1. Completely distributed
routing, e.g., the sidecar pattern [11] using Envoy proxy10,
where there is one router per each service, i.e., nrout = nserv.
Additionally, we studied a combination of these two extremes,
where several routers are processing the requests, e.g., one
router per each geographical region. We chose three routers,
i.e., nrout = 3, each deployed on a separate VM that processes
the requests of services on the same machine.

nrout ∈ {1, 3, nserv} (11)

We simulated a node crash by generating a random number
for each cloud component separately, i.e., the services and
routers. If the generated random number for a component
was below its crash probability, we stopped the component’s
Docker container and started it again after a downtime interval
of three seconds. To study different crash profiles, we selected
two levels of crash probabilities for each component, i.e.,
a low 0.1% and a high 0.5%, each time we checked for a
crash. These profiles are based on our experiments in previous
work [3] and are akin to the related scientific and industrial
studies. Note that the crash probability was uniform for all
components, and we performed the experiment twice, once
with the low and once with the high crash probability.

CPc ∈ {0.1%, 0.5%} ∀ c ∈ C (12)

Data Set Preparation We instantiated the architectures
for each empirical case. We ran the experiment for exactly
ten minutes, i.e., 600 seconds (excluding setup time), during
which we checked for a crash for all routers and services
simultaneously every 15 seconds, resulting in 40 crash tests for
each component during our experiment based on Equation (2).

T = 600 s (13)
CI = 15 (14)

ncrash = 40 (15)

We logged the number of processed requests and calculated
the performability based on Equation (8).

As outlined in the previous section, we studied four levels
of cf , three levels of nserv, three levels of nrout, and two
levels of CPc, resulting in 72 experiment cases. A single run
of our experiment takes exactly 12 hours (72×10 minutes) of
runtime. Since our model revolves around expected values in
a Bernoulli process, we repeated this process 200 times on

10https://www.envoyproxy.io

our private cloud infrastructure, i.e., 2400 hours of runtime.
We reported the arithmetic mean of the results. Moreover,
for public cloud validation, we performed an experiment run
of 12 hours on GCP. Overall, we had an extensive empirical
validation of 2412 hours of runtime (excluding setup time).

Architecture Configurations As in the example model in
Figure 2, we utilized one virtual machine exclusively, with
only one Docker container inside, to run the API gateway.
We distributed the cloud services on a separate container
amongst three VMs. The services were distributed so that
all virtual machines have the same number of cloud services
(with a maximum difference of one service). However, the
placement of the routers on hosts differs from the example
model. We placed the router in a Docker container exclusively
on one VM for centralized routing (nrout = 1). For distributed
routing (nrout = 3), we used three exclusive VMs, each with
only one router container. Finally, for the sidecar architectural
pattern [11] (nrout = nserv), we placed each sidecar in a
separate container on the same VM, on which its directly
linked service resides.

Specific Models (Illustrative Sample Case) As we had a
uniform crash probability and downtime of each component
in our experiment, we can rewrite the performability given by
Equation (8) in ms as follows:

P =
1000

nrout · cf
(
1− (nrout + nserv) · b T

CI c ·
1
T · CPc · dc

)
(16)

Using our experiment values reported in this section, we have:

P =
1000

nrout · cf(1− 0.2 · CPc(nserv + nrout))
(17)

To clarify, we study an illustrative sample case presented in
Figure 2. In this example configuration, we have six services,
i.e., nserv = 6, and three routers, i.e., nrout = 3. We consider
a case where each component c has a uniform crash probability
of CPc = 0.5% and is under stress with an incoming call
frequency of cf = 100 r/s. The performability of such a
system, i.e., the average request processing time per router,
can be predicted using Equation (17) as:

P = 3.36 ms (18)

Methodological Principles of Reproducibility We fol-
lowed the eight principles of reproducibility introduced in
[17]:
• Repeated experiments: Each experiment case is repeated

with precise values (see this section).
• Workload and configuration coverage: We covered 72

empirical cases and modeled the probabilistic behavior
of performability in Section II.

• Experimental setup description: Our experimental setup
is reported in Section III-A.

• Open access artifact: Our code and data are published as
an open access data set to support replicability11.

11https://zenodo.org/record/10022346, doi:10.5281/zenodo.10022346

https://www.envoyproxy.io
https://zenodo.org/record/10022346

• Result description of measured performance: We de-
scribed our results in Section III-B.

• Statistical evaluation: The prediction error of our ap-
proach is reported in Section III-C.

• Measurement units: All units are reported.
• Cost: We had a private cloud setting. For the public cloud

validation, we used the free trial offered by GCP12.

B. Experiment Results

We present the predicted results of our analytical performa-
bility model and the empirical measurements. In Table II, we
grouped our results for the crash probability of CPc = 0.1%
and CPc = 0.5%. We report the mean performability on the
GCP public cloud and our private cloud over 200 experiment
runs. As predicted by our model (see Equation (17)) and
confirmed by our empirical measurements, the call frequency
cf and the number of routers affect the performance con-
versely. When taking the same configuration, i.e., keeping
nserv and nrout constant, increasing cf results in a lower
average processing time per router in all cases. Moreover, the
more routers in a dynamic-routing application, the lower the
performability. This is expected as performability is defined in
our study as the average request processing time per router.

Our performability model predictions compared to the em-
pirical measurements of the GCP public cloud and the private
cloud infrastructure are shown in Figure 3 (only CPc = 0.5%
for space reasons). As can be seen, all of the empirical
measurements are very close to the predictions. When we
investigate the cases with CPc = 0.1% reported in Table II,
the same trend of experiment values being very close to the
model predictions are observed. However, we see a slight
decrease in performability with the central routing (nrout = 1)
only on our private cloud. This is likely because the virtual
machine hosting the one router is overloaded with processing
buffered requests. As can be read in Table II, having a higher
number of routers in DR (nrout = 3) and SA (nrout = nserv)
solves this performability decrease. So we further investigate
the prediction error of our model to ensure its high accuracy.

C. Evaluation of the Prediction Error

We measure the accuracy of our model predictions. The pre-
diction error is calculated using the four error measurements
commonly used in the cloud quality-of-service research [28],
i.e., Mean Absolute Percentage Error (MAPE), Mean Absolute
Error (MAE), Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE). The error measurements are calculated
in terms of performability P . Let modelc and empiricalc be
the result of the model and the measured empirical data for
an experiment case c, Cases is the set of experiment cases,
and nc is the length of Cases. In the error measurements, we

12https://cloud.google.com/free/docs/free-cloud-features

average over the nc = 72 experiment cases (see Section III-A).
We use the following formulae for our error measurements:

MAPE =
100%

nc
·
∑

c∈Cases

∣∣∣∣modelc − empiricalc
empiricalc

∣∣∣∣ (19)

MAE =
1

nc
·
∑

c∈Cases

|modelc − empiricalc| (20)

MSE =
1

nc
·
∑

c∈Cases

(modelc − empiricalc)
2 (21)

RMSE =
√
MSE (22)

Table III presents the prediction error of our performability
model (using the values reported in Table II). Our model has
a MAPE prediction error of 0.66% on GCP and 2.85% on
our private infrastructure over 200 experiment runs. Averaged
over public and private clouds (2412 hours of experiment),
we have a very low error rate of 1.75%. Other low error
measurements also confirm the high accuracy of our prediction
model that answers RQ2. Given the 30.0% target prediction
accuracy commonly used in the cloud performance research
[13], the prediction error of our approach on GCP is more than
reasonable to answer RQ3. That is, our model is generalizable
and applicable to other cloud platforms.

IV. THREATS TO VALIDITY

As in all empirical research, there are several threats to the
validity and limitations of our study that we discuss in this
section based on the four threat types by Wohlin et al. [30].

A. Consttruct validity

This threat concerns a measurement’s accurate representa-
tion of the intended construct. We injected crashes to simulate
real-world crash behavior at a given probability to measure
performability. While this is a commonly taken approach (see
Section V), a threat remains that measuring request loss based
on these crashes might not be well representative of real-
world systems. For example, request loss is also influenced by
cascading effects of crashes beyond a single call sequence [16]
that are not covered in our experiment. More research is
needed to exclude this threat, probably with real-world systems
and crashes. Moreover, component overload is also not con-
sidered, which can influence the system’s performability, e.g.,
when an overloaded component is non-responsive to incoming
requests. As the self-adaptivity of cloud-based systems is
mature in the industrial tools, e.g., using Google Kubernetes13

autoscaling, we believe this threat to be small.
For the sake of simplicity, we made some assumptions when

designing our analytical model of performability, which is
common when modeling a real-world phenomenon. We did
not consider the requests that were in the system already at the
time of a crash of a component as we restarted all containers
for each experiment run to increase internal validity (see the
next section). We assumed the crash probabilities were known

13https://kubernetes.io

https://cloud.google.com/free/docs/free-cloud-features
https://kubernetes.io

0

20

40

60

80

100

120

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(a) nserv = 3
cf = 10 r/s

0

20

40

60

80

100

120

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(b) nserv = 5
cf = 10 r/s

0

20

40

60

80

100

120

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(c) nserv = 10
cf = 10 r/s

0

5

10

15

20

25

30

35

40

45

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(d) nserv = 3
cf = 25 r/s

0

5

10

15

20

25

30

35

40

45

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(e) nserv = 5
cf = 25 r/s

0

5

10

15

20

25

30

35

40

45

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(f) nserv = 10
cf = 25 r/s

0

5

10

15

20

25

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(g) nserv = 3
cf = 50 r/s

0

5

10

15

20

25

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(h) nserv = 5
cf = 50 r/s

0

5

10

15

20

25

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(i) nserv = 10
cf = 50 r/s

0

2

4

6

8

10

12

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(j) nserv = 3
cf = 100 r/s

0

2

4

6

8

10

12

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(k) nserv = 5
cf = 100 r/s

0

2

4

6

8

10

12

CE DR SA

Pe
rf

or
m

ab
ili

ty
 (m

s)

Architecture

Model GCP Private (200 Exp. Runs)

(l) nserv = 10
cf = 100 r/s

Fig. 3: Plots of Model Predictions and Empirical Measurements (CPc = 0.5%)

TABLE II: Model Predictions and Empirical Measurements of Performability (ms)

nrout nserv cf CPc = 0.1% CPc = 0.5% CPc = 0.1% CPc = 0.5% CPc = 0.1% CPc = 0.5%
Model GCP Private (200 Exp. Runs)

1

3

10 100.08 100.40 102.02 100.33 117.27 100.13
25 40.03 40.16 40.14 40.13 45.75 40.04
50 20.02 20.08 20.04 20.15 19.95 20.01
100 10.01 10.04 10.80 9.98 9.98 10.02

5

10 100.12 100.60 99.73 101.83 116.60 100.33
25 40.05 40.24 39.89 40.36 45.66 40.11
50 20.02 20.12 19.99 20.14 19.96 20.06
100 10.01 10.06 10.69 9.98 9.98 10.02

10

10 100.22 101.11 100.23 101.01 116.80 100.80
25 40.09 40.44 39.89 40.25 44.37 40.37
50 20.04 20.22 19.95 20.18 24.69 20.19
100 10.02 10.11 10.04 10.10 12.55 10.08

3

3

10 33.37 33.53 33.24 33.43 33.29 33.43
25 13.35 13.41 13.40 13.53 15.20 13.37
50 6.67 6.71 6.69 6.65 6.65 6.68
100 3.34 3.35 3.34 3.36 3.33 3.34

5

10 33.39 33.60 33.24 33.43 33.31 33.53
25 13.35 13.44 13.30 13.45 13.33 13.42
50 6.68 6.72 6.68 6.68 6.66 6.71
100 3.34 3.36 3.34 3.34 3.33 3.35

10

10 33.63 33.77 33.63 33.80 33.32 33.68
25 13.37 13.51 13.38 13.38 13.33 13.47
50 6.68 6.75 6.68 6.72 6.67 6.72
100 3.34 3.38 3.35 3.53 3.33 3.37

nserv

3

10 33.37 33.53 33.44 33.58 33.28 33.42
25 13.35 13.41 13.41 13.48 13.32 13.38
50 6.67 6.71 6.65 6.87 6.66 6.68
100 3.34 3.35 3.34 3.36 3.33 3.34

5

10 20.04 20.20 20.05 20.16 19.99 20.13
25 8.02 8.08 8.03 8.07 8.85 8.05
50 4.01 4.04 3.99 4.01 3.99 4.02
100 2.00 2.02 1.99 2.02 2.00 2.01

10

10 10.04 10.20 10.02 10.31 10.97 10.21
25 4.02 4.08 3.99 3.99 5.00 4.08
50 2.01 2.04 2.01 2.03 2.00 2.04
100 1.00 1.02 1.00 1.01 1.30 1.02

TABLE III: Predictions Errors of the Performability Model

GCP Private
(200 Exp. Runs) overall

MAPE (%) 0.66 2.85 1.75
MASE 0.13 1.11 0.61
MSE 0.11 12.87 6.49
RMSE 0.33 3.59 2.55

based on the observed system logs in the past and checked
for crashes. This is a common practice in real-world systems,
e.g., when the Heartbeat pattern [10] or the Health Check API
pattern [19] is used for checking system health. Moreover, we
considered a generic downtime of the components and did not
study metrics such as mean time to failure and recovery. This
paper laid the foundation for our future work, where we model
more real-world aspects.

B. Internal validity

Internal validity concerns factors that affect the independent
variables concerning causality. We collected extensive data to
validate our model on public and private cloud infrastructures.
Still, we did so in limited experiment time using simulated

crashes by stopping Docker containers. However, research
observing real-world cloud-based systems for a longer period
would be needed to confirm that no other factors influence
the measurements. One such factor is other workloads being
processed simultaneously on the same infrastructure. We stud-
ied this factor by running a validation experiment on Google
Cloud Platform2 and showed that our model is applicable
(see Section III-C). As we used the standard technology stack
offered by most cloud providers (see Section III-A), we believe
our results represent the service- and cloud-based applications.

C. External validity

External validity concerns threats that limit the ability to
generalize the results beyond the experiment. We designed
our approach with generality in mind and explained how ar-
chitects can specify our model to their needs (see Section III).
Although we evaluated our approach by designing a repre-
sentative experiment and measuring empirical data, the threat
remains that evaluating based on another infrastructure may
lead to different results. To mitigate this thread, we validated
our measurements on GCP infrastructure and showed that our
results are applicable and generalizable (see Section III-C).

Moreover, the results might not be generalizable beyond
the given empirical cases of 10-100 r/s and call sequences of
length 3-10. As this covers a wide variety of loads and call
sequences in cloud-based applications, the impact of this threat
should be limited. Also, the load was constant and not time-
varying. We plan to study bursty load profiles in future work.
A related threat is that we implemented our model instances
with Node.js, not using off-the-shelf implementations, e.g., the
Envoy proxy14. We did so to have a comparable infrastructure
and to avoid technological impacts on our results.

D. Conclusion Validity

This threat concerns factors that affect the ability to con-
clude the relations between treatments and study outcomes.
As the statistical method to compare our model’s predictions
to the empirical data, we used the MAPE metric as it is
widely used and offers interpretability in our research context.
To mitigate the threat that this statistical method might have
issues, we double-checked three other error measures, i.e.,
MAE, MSE, and RMSE. These measures similarly confirmed
the high accuracy of our prediction model (see Section III-C).

V. RELATED WORK

In this section, we present the related work of our research.

A. Studies on Performability of Systems

Ahamad and Ratneshwer [1] provide a review on the
performability of Safety-Critical Systems (SCS). They study
the available approaches and the metrics to evaluate the
performability of SCS. Moreover, they define performance
and reliability challenges in studying the SCS. This study
is related to our work presenting the state of the art in
performability studies. However, in contrast to our work, it
does not provide an analytical model of performability and
its empirical validation to improve the state of the art. Mo
et al. [15] study the performability analysis of multi-state
sliding window systems. Like our study, they propose an
analytical approach based on multivalued decision diagrams.
They analyze this analytical approach in multiple case studies.
Lisnianski et al. [12] present a Markov multi-state model for
large-scale, highly responsive distributed systems. Similar to
our work, they provide an analytical performability model
and present a short-term analysis to prevent performance
and reliability decreases. Unlike our research, none of the
above works provide extensive empirical data supporting the
accuracy of their proposed models.

A particular related work is [27], in which Torquato et
al. study the migration of virtual machines of a cloud-based
system in the presence of workload. Like our work, they
provide a modeling framework to support virtualized envi-
ronment management decisions regarding the performability
of a system. Particularly recent work is [7], in which Di
Mauro et al. study containerized network applications. They
use queuing network theory and consider each container as a

14https://www.envoyproxy.io/

queuing node. Like our research, they performed a cloud-based
experiment to evaluate their performability model. In contrast
to the above studies, our research is specific to dynamic routing
and provides an analytical performability model with extensive
empirical data. To the best of our knowledge, this has not
been considered in the literature concerning dynamic-routing
architectural patterns.

B. Architecture-Based Performance Analysis and Prediction

Several approaches perform architecture model-based per-
formance analysis or prediction. Spitznagel and Garlan [25]
present a general architecture-based model for performance
analysis based on queueing network theory. Sharma and
Trivedi [22] present an architecture-based unified hierarchical
model for software reliability, performance, security, and cache
behavior prediction. Petriu et al. [18] present an architecture-
based performance analysis approach that builds Layered
Queueing Network performance models from a UML de-
scription of the high-level architecture of a system. The
Palladio component model [4], [20] allows precise component
modeling with relevant factors for performance properties and
contains a simulation framework for performance prediction.
Like our study, those works focus on supporting architectural
design or decision-making.

C. Performance Analysis: Internet of Things

Vandikas et al. [29] conducted a performance analysis
of their Internet of Things (IoT) framework to evaluate its
behavior under heavy load produced by different amounts of
producers and consumers. The main purpose of the framework
is to allow producers, such as sensors, to publish data streams
to which multiple interested consumers, e.g., external appli-
cations, can subscribe. This publish-subscribe functionality
is realized by a central message broker implemented with
RabbitMQ. The authors evaluated the system using two sets of
tests: The first one creates a total of 105 HTTP POST requests
that simulate a different number of users (producers). Second
tests were done using a simple Java client to generate various
consumers to see the impact on the system. In contrast to our
work, dynamic data routing is not considered in this article.
The performance evaluation of the framework focuses only on
a single-machine deployment, which may have led to results
that are not easily generalizable to cloud-based deployments.

D. Performance Analysis: Enterprise Service Buses

Several existing works compare the performance of En-
terprise Service Buses (ESB). This is related to our work
because ESBs provide a means for the content-based routing of
messages. In our experiment, no ESB was used to implement
the rule-based dynamic data routing, but the central entity
approach is similar from a structural point of view. Sanjay et
al. [2] evaluate the performance of the three open-source ESBs,
i.e., Mule, WSO2 ESB, and Service Mix. The performance
is measured based on mean response time and throughput for
proxying, content-based routing, and data mediation. However,
the test scenarios only consider client communications and

a single web service. In contrast, our work also considers
communication paths that involve the composition of multiple
services and routing decisions. Shezi et al. [23] provide a
performance evaluation of different ESBs in a more complex
scenario in which multiple services are composed to achieve
a certain business objective. As a test case, a service orches-
tration scenario is simulated, in which a consumer consults
several banking services to find the best loan quote. In contrast
to our work, other routing architectures are not considered.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the performability, i.e., per-
formance in the presence of component crashes (impeded
reliability) of service- and cloud-based systems. For RQ1,
we proposed an analytical performability model. This model
considers the average request processing time per router in
the presence of component crashes. We used Bernoulli pro-
cesses [28] to predict the number of request losses during
crashes. Having this information, we calculated the number of
processed requests during the system observation time. For
RQ2, we designed an extensive experiment of 2412 hours
of runtime (excluding setup time) to validate our analytical
model empirically. The prediction error is 1.75%, indicating
our performability model’s high accuracy. For RQ3, we ran a
validation experiment on Google Cloud Platform2 and showed
that our predictions are applicable and generalizable (see
Section III-C). We double-checked the accuracy with three
other error measurements that confirmed the results.

This paper’s proposed model represents service- and cloud-
based systems. Our performability model can be used in other
environments and applications to give insight to architects
when making architectural design decisions regarding dynamic
routing. For our future work, we plan to use this model in a
self-adaptive architecture that automates this decision-making
process based on an optimization analysis.

REFERENCES

[1] S. Ahamad and Ratneshwer. Some studies on performability analysis of
safety critical systems. Computer Science Review, 39:100319, 2021.

[2] S. P. Ahuja and A. Patel. Enterprise service bus: A performance
evaluation. Communications and Network, 3(03):133, 2011.

[3] A. Amiri, U. Zdun, and A. van Hoorn. Modeling and empirical
validation of reliability and performance trade-offs of dynamic routing in
service- and cloud-based architectures. In IEEE Transactions on Services
Computing (TSC), 2021.

[4] S. Becker, H. Koziolek, and R. Reussner. Model-based performance
prediction with the palladio component model. In Proceedings of the
6th International Workshop on Software and Performance, WOSP ’07,
page 54–65, New York, NY, USA, 2007. ACM.

[5] D. A. Chappell. Enterprise service bus. O’Reilly, 2004.
[6] D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass: Toward

runtime performance anomaly fault localization for infrastructure-as-
a-service clouds. In 6th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 14), 2014.

[7] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and M. Tambasco.
Performability analysis of containerized ims through queueing networks
and stochastic models. In NOMS 2022-2022 IEEE/IFIP Network
Operations and Management Symposium, pages 1–8, 2022.

[8] Envoy. Service mesh. https://www.learnenvoy.io/articles/service-
mesh.html, 2019.

[9] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

[10] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson. Cloud
Design Patterns. Microsoft Press, 2014.

[11] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Mi-
croservices: The journey so far and challenges ahead. IEEE Software,
35(3):24–35, 2018.

[12] A. Lisnianski, E. Levit, and L. Teper. Short-term availability and
performability analysis for a large-scale multi-state system based on
robotic sensors. Reliability Engineering and System Safety, 2021.

[13] D. A. Menascé and V. A. Almeida. Capacity Planning for Web Services:
Metrics, Models, and Methods. Prentice Hall PTR, 2001.

[14] Microsoft. Sidecar pattern. https://docs.microsoft.com/en-us/azure/
architecture/patterns/sidecar, 2010.

[15] Y. Mo, L. Xing, L. Zhang, and S. Cai. Performability analysis of multi-
state sliding window systems. Reliability Engineering and System Safety,
202:107003, 2020.

[16] M. Nygard. Release It!: Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2007.

[17] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski,
A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tuma, and A. Iosup.
Methodological principles for reproducible performance evaluation in
cloud computing. In IEEE Transactions on Software Engineering, 2019.

[18] D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-based per-
formance analysis applied to a telecommunication system. IEEE
Transactions on Software Engineering, 26(11):1049–1065, 2000.

[19] P. Raj, A. Raman, and H. Subramanian. Architectural Patterns: Uncover
essential patterns in the most indispensable realm. Packt Publishing,
December 2017.

[20] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Kozi-
olek, M. Kramer, and K. Krogmann. Modeling and Simulating Software
Architectures: The Palladio Approach. The MIT Press, 2016.

[21] C. Richardson. Microservice architecture patterns and best practices.
http://microservices.io/index.html, 2019.

[22] V. S. Sharma and K. S. Trivedi. Architecture based analysis of
performance, reliability and security of software systems. In Proceedings
of the 5th International Workshop on Software and Performance, WOSP
’05, page 217–227. Association for Computing Machinery, 2005.

[23] T. Shezi, E. Jembere, and M. Adigun. Performance evaluation of en-
terprise service buses towards support of service orchestration. In Proc.
of International Conference on Computer Engineering and Network
Security (ICCENS’2012), 2012.

[24] R. Smith, K. Trivedi, and A. Ramesh. Performability analysis: measures,
an algorithm, and a case study. IEEE Transactions on Computers,
37(4):406–417, 1988.

[25] B. Spitznagel and D. Garlan. Architecture-based performance analysis.
In Proc. the 1998 Conference on Software Engineering and Knowledge
Engineering. Carnegie Mellon University, June 1998.

[26] O. Sukwong, A. Sangpetch, and H. S. Kim. Sageshift: managing slas
for highly consolidated cloud. In 2012 Proceedings IEEE INFOCOM,
pages 208–216, 2012.

[27] M. Torquato, P. Maciel, and M. Vieira. Model-based performability and
dependability evaluation of a system with vm migration as rejuvenation
in the presence of bursty workloads. Journal of Network and Systems
Management, 30(1):3, 2021.

[28] K. S. Trivedi and A. Bobbio. Reliability and availability engineering:
modeling, analysis, and applications. Oxford University Press, 2017.

[29] K. Vandikas and V. Tsiatsis. Performance evaluation of an iot platform.
In Next Generation Mobile Apps, Services and Technologies (NGMAST),
2014 Eighth International Conference on, pages 141–146. IEEE, 2014.

[30] C. Wohlin, P. Runeson, M. Hoest, M. C. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering. Springer, 2012.

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

	Introduction
	Analytical Model of Performability
	Dynamic-Routing Architectural Patterns
	Definition of Request Loss
	Bernoulli Process to Model Request Loss During Crashes
	Performability Model

	Empirical Validation
	Experiment Planning
	Experiment Results
	Evaluation of the Prediction Error

	Threats to Validity
	Consttruct validity
	Internal validity
	External validity
	Conclusion Validity

	Related Work
	Studies on Performability of Systems
	Architecture-Based Performance Analysis and Prediction
	Performance Analysis: Internet of Things
	Performance Analysis: Enterprise Service Buses

	Conclusions and Future Work
	References

