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Abstract—Designing Cyber-Physical Systems (CPS) is a com-
plex task involving integrating physical and digital components
to achieve specific objectives. This process consolidates data from
various Internet of Things (IoT) devices and sources to generate
meaningful insights and actionable outcomes. IoT-cloud data
communication comprises multiple stages, e.g., data collection,
processing, analysis, and visualization. Adopting a comprehensive
approach that considers physical and digital aspects is essential
to ensure effective data communication in CPS. As a result,
architectural design choices are crucial in determining CPS
functionality and runtime qualities, e.g., performance, security,
and reliability. While numerous CPS architectural patterns and
practices have been proposed, much of the relevant knowledge
remains scattered across various sources, such as practitioner
blogs and system documentation. These sources are often based
on personal experiences and lack consistency. To address this
gap, our study presents the outcomes of an in-depth qualitative
investigation into practitioners’ descriptions of the best practices
and patterns in CPS architecture. We have developed a formal
architectural decision model using a model-based qualitative
research method. We aim to bridge the division between scientific
understanding and practical use cases, enhance comprehension of
practitioners’ approaches to CPS, and provide decision-making
support for designing CPS applications.

Index Terms—Architectural Design Decisions, Cyber-Physical
Systems, Edge-Cloud Data Communication, Software Architec-
ture, Grounded Theory, Gray Literature, CPS Practitioners

I. INTRODUCTION

Various authors have tried documenting patterns and
best practices concerning CPS data communication in their
works [8], [12], [14], [19]. Nonetheless, these works primarily
focus on applying published patterns to CPS or patterns derived
from scientific research. Conversely, most well-established
practices in the industry are found in the grey literature,
including practitioner blogs, experience reports, and system
documentation. While these sources may provide insights into
specific patterns, they lack systematic architectural guidance.
The practices reported in these sources often exhibit inconsis-
tencies and rely heavily on personal experiences, resulting in
considerable uncertainty and risk in CPS architectural design.
To mitigate this uncertainty and risk, architects need substantial
personal experience or extensively study various knowledge
sources. We aim to offer a more comprehensive and consistent
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perspective on current industrial data-communication practices,
complementing existing knowledge sources.

We conducted an in-depth qualitative study focusing on prac-
titioners’ CPS descriptions to accomplish our goal. These de-
scriptions encompassed informal information about established
practices and patterns within the CPS data-communication
domain. Our study utilized the model-based qualitative research
method described in [23]. We regarded practitioner sources
as relatively unbiased knowledge repositories and systemat-
ically analyzed them using established coding and constant
comparison methods [5], along with precise software modeling
techniques. Through this approach, we developed a well-defined
software model that captures established practices, patterns,
and their interrelationships. Hence, we aimed to address the
following research questions:
RQ1 What are the patterns and practices currently used
by practitioners for supporting data communication in CPS
architectures?

RQ2 How are the current data-communication patterns
and practices related? In particular, which Architectural
Design Decisions (ADDs) are relevant when architecting data
communication in CPS?
RQ3 What are the influencing factors, i.e., decision drivers,

in architecting data communication in CPS in the eye of the
practitioner today?

Our study brings forth noteworthy contributions. Firstly, we
conducted a qualitative study on CPS architectures involving
an extensive collection of 37 knowledge sources. This effort
aimed to gather comprehensive information about established
industrial practices, patterns, interrelationships, and the driving
factors behind decision-making. Secondly, we contributed by
codifying this knowledge into a reusable ADD model. The
decisions were formally modeled using a UML1 metamodel,
providing a structured representation of the decision-making
process. Our model encompasses 5 decisions, 27 options, and
17 decision drivers or forces. Lastly, we evaluated our model’s
level of detail and completeness. By adopting a practitioner’s
perspective, we gained valuable insights into the design of
cyber-physical systems, further supporting our claim.

1http://www.uml.org/
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Fig. 1: Research Method

The rest of this paper is structured as follows: In Section II,
we compare our study to the related work. Section III explains
our applied research methods and summarizes the knowledge
sources. Section IV describes our reusable ADD model on CPS
data communication. Section V evaluates and discusses our
results. Finally, Section VI considers the threats to the validity
of our study, and Section VII summarizes our research and
concludes the paper.

II. RELATED WORK

Several studies have explored CPS patterns and practices.
Jamaludin et al. [12] provide a comprehensive overview of CPS,
emphasizing the significance of understanding CPS character-
istics and architectures for designing reliable and adaptable
systems that meet diverse application requirements. Henneke et
al. [8] focus on analyzing communication patterns in CPS,
such as discovery, request-response, and publish/subscribe.
Reinfurt et al. [17] identify five patterns derived from examining
multiple production-ready IoT solutions, addressing recurring
problems and proven solution principles. Washizaki et al. [21]
conduct a systematic literature review and extract 143 IoT
architecture and design patterns from 32 papers, analyzing
them based on various characteristics and providing insights
for improving the publication and adoption of IoT patterns.
Pontes et al. [16] introduce the Pattern-Based IoT Testing
approach, which simplifies and organizes the testing process
for IoT ecosystems by targeting common patterns of behavior
known as IoT Test Patterns. Ghosh et al. [4] evaluate the current
state of IoT research, revealing limitations in existing studies
and employing a thorough qualitative approach to analyze the
grey literature on CPS systematically, offering a comprehensive
analysis.

Various decision documentation-related approaches have
been explored in different domains, such as service-oriented
solutions [24], service-based platform integration [13], REST
vs. SOAP [15], and big data repositories [6]. However, these
approaches do not specifically address CPS architectures.
Warnett and Zdun [20] introduce a Grounded Theory-based
approach to examine the current understanding of practitioners
and architectural concepts regarding ML solution deployment.
They formulate seven ADDs and establish various relations
between them. Their modeling efforts include twenty-six
decision options and forty-four decision drivers specific to
ML deployment. Other authors have previously combined

decision models with formal view models [7]. We enhance
these techniques by incorporating a formal modeling approach
derived from qualitative research methodology.

In our research, we investigate the approaches and techniques
practitioners employ to address the disparity between theory and
practice in CPS data communication. Through our study, we
develop a formal model encompassing ADDs, decision options,
practices, drivers, and their interrelationships. Our objective is
to offer valuable insights that empower practitioners to make
informed decisions regarding the data communication of CPS.

III. APPROACH OVERVIEW

This section discusses the research method followed in this
study and the metamodel of our reusable ADDs.

A. Research Method

In this study, we employ a systematic approach to investigate
the established practices in architecting data communication
within CPS architectures. Our research methodology is based
on the model-based qualitative research method, as described
in [23]. This method combines elements of Grounded Theory
(GT) [5], pattern mining [3], and GT with pattern mining
[9] to analyze established practices. We begin by utilizing
the authors’ experiences as a foundation and then search for
relevant sources in the “grey literature”, such as practitioner
reports, system documentation, and practitioner blogs. These
selected sources serve as descriptions of established practices
for further analysis. Similar to GT, our method comprehensively
examines each knowledge source. We derive a model through
coding and constant comparison, starting with an initial research
question, drawing inspiration from Charmaz’s constructivist
GT [2]. Unlike traditional GT, our method translates textual
codes into formal software models at the outset rather than
relying solely on textual analysis.

The knowledge-mining procedure in our study consists of
multiple iterations, as shown in Fig. 1. We searched for new
knowledge sources and applied open, axial, and selective
coding techniques [5] to identify potential categories for
model elements and decision drivers. In the open-coding stage,
we developed concepts based on our gray-literature sources
presented in Table I. This step involves asking specific questions
regarding the data and creating model concepts with minimal
assumptions. Axial coding is the development of categories
to link the data, concepts, categories, and properties. In the



TABLE I: Knowledge Sources Included in the Study

ID Description Reference

S1 How to Build an Industrial IoT Project Without the Cloud https://bit.ly/3KqLsYd

S2 Understand the Azure IoT Edge runtime and its architecture https://bit.ly/3XTSJ5C

S3 Connecting IoT devices to the cloud https://thght.works/3KvnivM

S4 Real-time Data Streaming in IoT: Why and How https://bit.ly/3kek9Wp

S5 Edge to Twin: A scalable edge to cloud architecture for digital twins https://go.aws/3xIhSFR

S6 Understanding edge computing for manufacturing https://red.ht/3XTy2qw

S7 Husarnet: Connected Things Without a Cloud https://bit.ly/3XN0hHu

S8 How to use digital twins for IoT device configurations https://bit.ly/3kodBEz

S9 Mainflux 0.11 — Digital Twin, MQTT Proxy And More https://bit.ly/3xLbEoU

S10 Connecting OPC UA Publisher to Amazon AWS IoT with MQTT https://bit.ly/3klcDJi

S11 IoT Telemetry Collection using Google Protocol Buffers, Google Cloud Functions, Cloud Pub/Sub, and MongoDB Atlas https://bit.ly/3Zb1h9A

S12 Gathering system health telemetry data from AWS IoT Greengrass core devices https://go.aws/3YZBmlC

S13 Digital Twins: Components, Use Cases, and Implementation Tips https://bit.ly/3lZNyUH

S14 If You Build Products, You Should Be Using Digital Twins https://bit.ly/3Sj8r9v

S15 Choose a device communication protocol https://bit.ly/3SnEqW2

S16 Through edge-to-cloud integration framework https://bit.ly/3Zs1iFI

S17 Send cloud-to-device messages from an IoT hub https://bit.ly/3lSGRUl

S18 Stream Processing with IoT Data: Challenges, Best Practices, and Techniques https://bit.ly/3ILxtLd

S19 Intelligence at the Edge Part 3: Edge Node Communication https://bit.ly/3ZesxUI

S20 7 patterns for IoT data ingestion and visualization- How to decide what works best for your use case https://go.aws/3YUNMLg

S21 How does a digital twin work? https://ibm.co/3ZaZxgy

S22 Cloud Edge Computing: Beyond the Data Center https://bit.ly/3Inl92j

S23 Understand Azure IoT Edge modules https://bit.ly/3Ew9sFz

S24 Understand and use device twins in IoT Hub https://bit.ly/3KqHWwU

S25 Understand and use module twins in IoT Hub https://bit.ly/3xJCYDP

S26 How a Cloud Integration Platform Can Help Your Business https://bit.ly/3nmHwy1

S27 Edge-to-cloud communication https://bit.ly/3khYPiL

S28 Device connectivity https://ibm.co/41vHgfZ

S29 How the IoT is creating today’s hottest tech job: Edge analytics https://bit.ly/3lZe8xh

S30 Edge Computing Architecture https://bit.ly/3xTdwvz

S31 The Hark Platform https://bit.ly/3xKFfik

S32 IoT Gateway User Guide https://bit.ly/3InyJTx

S33 How to structure data ingestion and aggregation pipelines https://bit.ly/3StSSMb

S34 What Is Streaming Data Integration? https://bit.ly/3IIFPDp

S35 Plan your IoT real-time data streaming process https://bit.ly/3EumGSZ

S36 What Is an Integration Platform? Do I Need One? https://ibm.co/3kU52Sh

S37 What is Data Streaming? https://bit.ly/3yrJrDI

selective-coding stage, we integrated and grouped the categories
into a central core model. We continuously compared the
newly generated codes with the existing model throughout the
process to enhance it gradually. A crucial aspect of qualitative
methods is determining when to conclude this process. For
this purpose, we adopted the concept of theoretical saturation
[5], which is widely recognized in the field. We concluded our
analysis when twelve additional knowledge sources did not
contribute new insights to our understanding of the research
topic. Although our approach to theoretical saturation was
conservative compared to typical qualitative research, our study
had already reached a point of convergence after examining
twenty-five knowledge sources. The details of the sources
included in our study can be found in Table I. Our search
for sources was based on our experience, i.e., tools, methods,
patterns, and practices we have access to, worked with, or
studied before. We also used major search engines (e.g., Google,
Bing) and topic portals (e.g., InfoQ) to find more sources.

B. Modelling Tool Implementation

To create our decision model, we used our existing modeling
tool Codeable Models2. This tool is a Python implementation
that precisely specifies metamodels, models, and model in-
stances in code. We specified metamodels for components,
activities, and deployments as outlined above. In addition, we
realized automated constraint checkers and PlantUML3 code
generators to generate initial graphical visualizations of all
metamodel and model instances.

C. Metatmodel

Fig. 2 shows our metamodel in data communication of CPS
architectures. Model Element is our root concept. A Category
groups several Decisions with Contexts used. Decisions are
colored white and Contexts green in our ADDs for better

2https://github.com/uzdun/CodeableModels
3https://plantuml.com
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Fig. 2: Metamodel of the Reusable ADDs

readability. A Design Solution / Option has known use cases and
can be different Patterns and Practices. These are colored gray
in our models. A special option is Do Nothing, encountered
in practice repeatedly. There are multiple Decision Drivers
(Forces) for design solutions. These forces help the architects
choose different options of each decision. We colored the forces
in orange in our ADD models.

IV. REUSABLE ADD MODEL FOR DATA COMMUNICATION
IN CPS ARCHITECTURES

This section presents the reusable ADD model based on
our study. The model consists of a single decision category,
the Data Communication in CPS Category, which comprises
five top-level decisions, as depicted in Fig. 3. These ADDs
are: Digital Twins Decision, Device Connectivity Decision,
Handling of IoT Traffic in Edge-Cloud Decision, Edge-Cloud
Communication Decision, and IoT Data-Based Actions Deci-
sion. We explain each ADD separately.

A. Digital Twins Decision

Digital Twins refer to a virtual representation or simulation
of a physical object, system, or process. The sources mostly
related to this decision are the following in Table I: S5, S8,
S9, S13, S14, S21, S24, and S25. Digital twins encompass
the essential attributes, behavior, and characteristics of the
physical entity. This process creates a dynamic and interactive
virtual counterpart, closely mirroring the real-world object
in (near) real-time integrating data, sensor information, and
computational models. Digital twins act as a vital link between
the physical and digital realms, enabling analysis, monitoring,
and optimization of the physical entity’s performance, behavior,
and maintenance throughout its entire lifecycle. Fig. 4 presents
the details of this ADD. There are two options: To use Digital
Twin and No Digital Twin.

Utilization of digital twins can benefit the following at-
tributes: Flexibility refers to the ability of a system to adjust
and respond to evolving circumstances, changing requirements,
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Fig. 3: Overview of the Reusable ADD Model for CPS Data Communication
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or the needs of its users. Automation refers to leveraging
technology to execute tasks or processes that require human
involvement. Visibility refers to the capacity of a system to
deliver pertinent and timely information regarding its status,
performance, and behavior to its users or operators. Cloud
Representation of Device refers to a cloud-hosted platform
encompassing a virtualized physical device representation.
Configurability refers to the extent to which a system can
be tailored or adjusted to fulfill its users’ unique requirements
or preferences, and Development Effort refers to the investment
of time, resources, and expertise needed to develop a system.

There are multiple digital twin tasks. Device Metadata Twin
and IoT Module Data Twin, where the data of IoT devices are
communicated over the cloud. Moreover, Device Control and
Device Visualization refers to the integration of digital twins.
This decision can be decided in each Digital Twins Context,

which is integrated into the Cloud. Device Configuration,
Device Metadata Twin and IoT Module Data Twin benefit the
flexibility to modify and adjust its characteristics and behavior
to effectively respond to novel requirements or alterations in
the physical system it represents, and automation to automate
tasks and processes. Device Visualization positively impacts
visibility to monitor and visualize the performance and behavior
of physical systems in a digital form.

B. Device Connectivity Decision

Device Connectivity refers to the ability of IoT devices
to establish and maintain network connections with other
devices or systems. The sources mostly related to this decision
are the following in Table I: S1, S7, S15, S19, S23, S27,
and S28. Device connectivity seamlessly integrates various
devices, sensors, actuators, and other components into a
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Fig. 5: ADD: Device Connectivity Decision



unified network, allowing them to communicate and exchange
data. This decision enables the IoT ecosystem to function by
facilitating data transmission, remote control, and collaboration
among interconnected devices, both locally and over the
Internet. It involves wireless communication protocols, network
infrastructure, and Application Programming Interfaces (APIs)
that enable reliable and secure connectivity between IoT devices
and between devices and IoT platforms or applications. Fig. 5
gives the details of this ADD. Different options exist: Using
Hardware Communication Module on Device or Containerized
Communication Module on Device, where devices communicate
through the IoT integration platform. These modules can
use Device Protocol and IoT Device SDK to communicate
information. Alternatively, a Peer-to-Peer Communication
eliminates the need for the IoT platform and enables direct
communication between devices.

There are different forces and deciding factors such as
Maintainability, Development Effort, Modularization, and Ease
of Update. All these forces are improved when there is a
containerized module on a device. However, a hardware module
on a device or a device using direct communication with other
devices negatively affects maintainability and ease of update.
This decision can be made in the context of a Device and the
Cloud when using an integration platform.

C. Handling of IoT Traffic in Edge-Cloud Decision

As detailed in Fig. 6, this decision concerns further pro-
cessing of IoT traffic, e.g., for analytics or runtime metrics
assurance, such as quality of service requirements. The sources
mostly related to this decision are the following in Table I:
S2, S3, S9, S10, S11, S12, S17, S29, and S32. We explain
two variants of this decision in our gray literature sources.
The S2 source uses MQTT/AMQP-based messaging or a
Device Protocol for handling the IoT traffic on the edge when
integrating using the Microsoft Azure IoT Edge platform. This
decision must be made in a Device and an Edge context. We
can select one of the options for each device/edge component

combination. Two options are possible: A Direct Connection
with Messaging if messaging is supported on the device, or
a Device Protocol for the connection and then integrating via
the Messaging API Gateway pattern [10], [18]. An alternative
option would be to Directly Connect with Device Protocol, but
this is not recommended.

The S3 source models a more complex variant of the same
decision.The two options are a Multi-Protocol API Gateway or
the Messaging API Gateway pattern, both API Gateway patterns.
As alternatives, the Direct Connection with Device Protocol
and the Direct Connection with Messaging were considered.
Here, the combination of any Device and the Cloud needs to be
considered as the decision context, as this case is about direct
device-to-cloud integration. Four forces are modeled, which are
possible drivers for this decision: Maintainability, Development
Effort, Coupling, and Communication Efficiency. The direct
communication options affect all forces negatively. However,
API gateways positively influence coupling, communication
efficiency, and maintainability but increase development efforts.
Finally, two next decision relations are modeled: Edge-Cloud
Communication and IoT Data-Based Actions.

D. Edge-Cloud Communication Decision

Edge-Cloud Communication involves edge devices sending
data to cloud services for storage, processing, and analysis.
The sources mostly related to this decision are the following
in Table I: S4, S9, S10, S11, S17, S18, S35, and S37. There
is a difference in the focus of this decision compared to the
previous decision. In this ADD, we model different patterns for
communicating the IoT data to the cloud as explained in the
following: This decision is commonly used in IoT scenarios
where edge devices, such as sensors or controllers, collect
data and transmit it to the cloud for analysis and decision-
making. Cloud-based services can provide advanced analytics,
visualization, and reporting capabilities that are not feasible at
the edge due to limited processing and storage resources. IoT
devices can communicate with back-end services in the cloud
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through telemetry and command messages. These devices have
unique characteristics, such as being embedded systems, having
limited power and processing resources, and being located in
remote areas with intermittent network connectivity.

Fig. 7 shows the details of this ADD. There are various
communication patterns and practices. The simplest option is
No Edge-Cloud Communication. Another pattern is Messaging,
which is a lightweight transport protocol ideal for connecting
remote devices; Publish/Subscribe pattern uses topics to
identify messages and route them to publishing and subscribing
clients; Synchronous Calls offers a straightforward means of
exchanging data between edge and cloud. This pattern [11]
involves sending a request, processing it, and returning a

response message. A similar pattern is the Asynchronous Calls
which implements the request/response asynchronously. The
pattern Data Streaming refers to a continuous flow of data
that is generated, transmitted, and received in real-time. Event-
based Interaction is also an asynchronous pattern that ensures
that all changes to the state are stored as a sequence of events.
The outcome of this decision depends on several criteria. If
a system utilizes the patterns associated with asynchronous
communication, it can lead to more loosely coupled interactions,
as it eliminates the need for point-to-point interactions. This
decision can be made in the context of Edge and Cloud.
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E. IoT Data-Based Actions Decision

This decision concerns the cloud-based actions triggered
by an IoT device and the IoT data integration in the cloud.
The sources mostly related to this decision are the following
in Table I: S11, S12, S16, S17, S18, S26, and S33 to S37.
An example action is using sensor data from a smart home
security system to trigger automated actions. For instance, if a
motion sensor detects movement in a specific area of the house
while the occupants are away, the system can automatically
alert the homeowner and activate surveillance cameras to start
recording. Additionally, it can lock all doors and turn on the
alarm system to ensure the security of the premises. These
actions are based on real-time data collected from IoT devices,
enabling immediate responses to potential security threats. As
shown in Fig. 8, this decision has different options: One option
is No IoT Data-Based Actions. Other options include Edge-
Based Actions and Cloud-Based Actions, which consider where
to process the IoT device data. Additionally, Streaming Actions
and Periodic Actions consider how the data is transmitted to
the cloud.

Multiple forces exist: Low Latency, Real-Time Support,
Computing Resources, Product Quality Improvement, Low
Downtime and Elasticity. On the one hand, the Edge-Based
Actions have lower latency than cloud-based actions, but these
edge devices also have lower computing resources. On the other
hand, Cloud-Based Actions offer real-time support, elasticity,
and low downtime, improving product quality. This decision
can be made in the context of Edge and Cloud.

V. DISCUSSION

This section presents the evaluation of our study and
discusses our findings in the context of the research questions
stated in Section I.

A. Evaluation

We created a reusable ADD model, presented in Fig. 3,
based on the gray-literature sources following the sequence
in Table I. We named the ADD model elements using the
terminology from the respective sources and generated generic
type names based on these element names. Whenever a new
type name arose, we compared it against the existing names
and determined whether the new type name was required. For
example, one decision driver (force) of Digital Twins Decision
was given as Design and Implementation Effort. This force is
repeatedly used in the Device Connectivity Decision and the
Handling of IoT Traffic in Edge-Cloud Decision as Development
Effort. Therefore, we renamed the force for consistency.

As illustrated in Fig. 9, the theoretical saturation point was
attained after incorporating 25 sources. In the initial thirteen
sources, we had to modify the designated type names frequently.
However, in the following twelve sources, such changes were
less frequent. No further modifications and additions were
necessary for the remaining sources.

B. Our Findings regarding the Research Questions

RQ1: After analyzing 37 practitioner knowledge sources, we
discovered evidence for 27 patterns and practices currently
used by practitioners for supporting data communication in
CPS architectures. These patterns and practices are associated
with ADDs and were found to be largely independent of
each other. An exception is the options of the following two

Fig. 9: Number of Elements in Newly-Added Sources



decisions: Edge-Cloud Communication Decision and Handling
of IoT Traffic in Edge-Cloud Decision. These two decisions are
closely related to each other. The former focuses on the patterns
concerning the sending of IoT data to the cloud. The latter
focuses on the analytics and quality-of-service requirements
when processing IoT data. Practitioners can choose to make
these decisions in the cloud or on the edge device according
to the need of an application.
RQ2: As shown in Fig. 3, we identified the Data Communi-
cation in CPS Category that incorporates 5 top-level ADDs
supporting data communication in CPS architectures. Our
research revealed that the Handling of IoT Traffic in Edge-Cloud
decision is a central ADD. Other decisions either have this
ADD as an optional next, e.g., the Device Connectivity Decision
and Digital Twins Decision, or are a direct optional next of this
decision, e.g., the IoT Data-Based Actions decision. Therefore,
we recommend that practitioners consider this decision early
in the CPS architectural planning, as changing the architectural
choice for this decision might have severe impacts in the
later stages of CPS-application development. For example,
practitioners can decide on a Messaging API Gateway or a
Multi-Protocol API Gateway pattern as early as possible (see
Fig. 6).
RQ3: Our research helped us discover 17 influencing factors
(forces) when architecting CPSs in data communication from
the practitioners’ perspective. We found that these forces were
generally fairly specific to the individual ADDs and decision
options but identified some common to multiple ADDs and
their options.

• Maintainability and Development Effort apply to the
following three ADDs: Device Connectivity Decision,
Handling of IoT Traffic in Edge-Cloud Decision and
Digital Twins Decision.

• Coupling applies to decision options for both the Handling
of IoT Traffic in Edge-Cloud Decision and the Edge-Cloud
Communication Decision.

We recommend that the practitioners consider these forces
early in the architectural planning of a CPS system. This is
because the above forces are central to multiple ADDs and
their respective options, as explained above.

VI. THREATS TO VALIDITY

We discuss the threats to validity based on the threat types
by Wohlin et al. [22].

A. Construct Validity

This threat concerns the accurate representation of the
intended construct by a measurement. The experience and
search-based procedure for finding knowledge sources may
have introduced bias. However, this threat is mitigated largely
by the chosen research method, which requires additional
sources corresponding to the inclusion and exclusion criteria,
not a specific distribution of sources. In this regard, our proce-
dure is similar to how interview partners are typically found

in qualitative research studies in software engineering. The
threat remains that our procedures introduced the unconscious
exclusion of certain sources. We mitigated this threat by
assembling an author team with many years of experience
in the field and performing general and broad searches.

B. Internal Validity

It concerns factors that affect the independent variables
concerning causality. To increase internal validity, we used
practitioner reports produced independently of our study. This
avoids bias, for example, compared to interviews in which the
practitioners would be aware that their answers would be used
in a study. This introduces the internal validity threat that some
important information might be missing in the reports, which
could have been revealed in an interview. We tried to mitigate
this threat by looking at many more sources than needed for
theoretical saturation, as all different sources are unlikely to
miss the same essential information.

C. External Validity

It concerns threats that limit the ability to generalize the
results beyond the experiment. Due to the many included
sources, our results can be generalized to many kinds of
architecture requiring data integration in CPS architectures.
However, the threat to external validity remains that our results
only apply to similar CPS architectures. The generalization
to novel CPS architectures might not be possible without
modification of our models.

D. Conclusion Validity

This threat concerns factors that affect the ability to conclude
the relations between treatments and study outcomes. We
studied many gray-literature sources and reached theoretical
saturation after studying 25 sources. Moreover, we continued
studying more sources to ensure that the gray literature does
not introduce new concepts in the data-communication domain
for CPS architectures not covered in our ADD model.

VII. CONCLUSION AND FUTURE WORK

We conducted a comprehensive study using Grounded
Theory (GT) and analyzed the grey literature to develop
a model for data integration in CPS architectures. This
model encompasses Architecture Design Decisions (ADDs),
decision options, relations, and decision drivers. Through our
research, we identified interconnected design choices crucial
for effective data integration in CPS architectures, such as
Device Connectivity, Digital Twins, Handling of IoT Traffic in
Edge/Cloud, Edge/Cloud Communication and IoT Data-Based
Actions. Each of these design choices offers multiple options
with varying implications.

To support practitioners in their decision-making process,
we created a UML-based model that enables the evaluation
of specific decision drivers for each option. By providing a
structured framework, our model assists practitioners in making
informed decisions while contributing to advancing scientific
knowledge in this domain. Applying our ADDs can simplify



the decision-making process for architects and engineers
working on CPS architectures. It allows for the evaluation
of architectural practices, the identification of adherence to
established guidelines, and the detection of potential anti-
patterns.

Our research lays the groundwork for further exploration
and advancements in data communication of CPS architectures.
For our future work, we plan to apply our reusable ADD
model presented in Fig. 3 when architecting CPS applications.
Moreover, we plan to define a framework to detect anti-patterns
automatically and give recommendations on how to follow the
established design patterns. For this purpose, we plan to use
machine-learning techniques. We have already published a
tool paper with such a recommender tool [1] in the CPS data-
communication domain.
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Supporting Architectural Decision Making on Quality Aspects of
Microservice APIs. In: 16th International Conference on Service-Oriented
Computing. Springer (2018)

[24] Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.:
Managing architectural decision models with dependency relations,
integrity constraints, and production rules. J. Syst. Softw. 82(8), 1249–
1267 (2009)

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
http://eprints.cs.univie.ac.at/7270/

	Introduction
	Related Work
	Approach Overview
	Research Method
	Modelling Tool Implementation
	Metatmodel

	Reusable ADD Model for Data Communication in CPS Architectures
	Digital Twins Decision
	Device Connectivity Decision
	Handling of IoT Traffic in Edge-Cloud Decision
	Edge-Cloud Communication Decision
	IoT Data-Based Actions Decision

	Discussion
	Evaluation
	Our Findings regarding the Research Questions

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion and Future Work
	References

