Lniversitat
wien

DISSERTATION / DOCTORAL THESIS

Titel der Disseratation / Title of the Doctoral Thesis
,Modeling and Multifaceted Reconfiguration of
Cloud-Based Dynamic Routing*

verfasst von / submitted by
Amirali Amiri, M.Sc.(TUM)

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2023 / Vienna, 2023

Studienkennzahl It. Studienblatt / UA 786 880
degree programme code as it appears on the student
record sheet:

Dissertationsgebiet It. Studienblatt / Informatik
field of study as it appears on the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dr. Uwe Zdun

Acknowledgements

I would like to thank Univ.-Prof. Dr. Uwe Zdun for his supervision in the six years of
working on this dissertation. Moreover, I thank Dr. André van Hoorn for his collaborations
during the writing of the doctoral thesis.

I dedicate this work to my mother, Fattaneh Navi, who supported me throughout my
life.

Danksagungen

Ich bedanke mich bei Univ.-Prof. Dr. Uwe Zdun fiir seine Betreuung wihrend der sechs
Jahre, in denen ich an dieser Dissertation gearbeitet habe. Auferdem danke ich Dr. André
van Hoorn fiir seine Zusammenarbeit wiahrend der Erstellung der Doktorarbeit.

Diese Arbeit widme ich meiner Mutter, Fattaneh Navi, die mich mein ganzes Leben
lang unterstiitzt hat.

Abstract

In today’s digital age, service- and cloud-based applications have become increasingly
dynamic, requiring runtime system adaptations to manage their complex behavior. To
meet this need, cloud computing offers an elastic infrastructure that can dynamically
adjust resources and scale applications as needed. However, as cloud-based systems become
more complex, manual management of these systems becomes increasingly challenging
and cost-ineffective.

To ensure that cloud resources are dynamically reconfigured to meet Quality of Service
(QoS) requirements, various research studies have focused on different approaches, such
as architecture-based reliability modeling, empirical reliability or resilience assessment,
architecture-based performance prediction, and performance analysis in cloud-based
systems. Additionally, self-adaptive systems have been developed that use Monitor,
Analyze, Plan, Execute, and Knowledge (MAKE-K) loops and similar approaches to
realize adaptations, while autoscalers and cloud elasticity promise to maintain stable QoS
measures even when workload intensity changes.

However, a higher level of abstraction is necessary to make the reconfiguration process of
cloud-based systems automatic. This abstraction models the various available technologies
and options, which allows us to capture the domain knowledge needed to make informed
decisions when choosing optimal reconfiguration solutions. Additionally, empirical research
is crucial for supporting the scientific method and creating trust in new technologies and
approaches.

In this doctoral thesis, we have designed and performed multiple experiments to model
and understand different QoS requirements, including reliability, performance, and system
overload. We have modeled these measurements analytically and statistically, then
validated our models empirically. Through this empirical research, we have investigated
the trade-offs of different QoS metrics and studied how these requirements affect reliability
and performance in centralized or distributed systems.

After gathering empirical evidence, we have used our models for multi-criteria optimiz-
ation analyses, which give the system self-management ability. The system can assess the
situation and automatically adapt cloud resources, choosing an optimal reconfiguration
solution. To support this approach, we have focused on capturing domain knowledge in
the context of QoS requirements and abstracting available technologies to study them at
an architectural level of abstraction. We have also provided architectural analysis tools
for self-adaptive service- and cloud-based dynamic-routing systems.

Moreover, we have presented a multifaceted reconfiguration of dynamic routing and
studied scenarios where components are idle, steady, and transient, as well as the interplay
of these scenarios. This dissertation demonstrates the importance of empirical research
in creating trust in new technologies and approaches for managing complex cloud-based

iii

Abstract

dynamic-routing systems. By modeling and understanding different QoS requirements
and their trade-offs, we have developed a self-management system that can dynamically
adapt cloud resources to ensure stable QoS metrics, even in the face of changing workload
intensity.

Kurzfassung

Im heutigen digitalen Zeitalter sind service- und cloudbasierte Anwendungen zunehmend
dynamisch und miissen zur Laufzeit angepasst werden, um ihr komplexes Verhalten zu
steuern. Zur Erfiillung dieser Anforderungen bietet Cloud Computing eine elastische
Infrastruktur, die in der Lage ist, Ressourcen dynamisch anzupassen und Anwendungen
nach Bedarf zu skalieren. Mit zunehmender Komplexitéit der Cloud-Systeme wird die
manuelle Verwaltung dieser Systeme jedoch immer schwieriger und kostspieliger.

Um sicherzustellen, dass Cloud-Ressourcen dynamisch rekonfiguriert werden, um die
Anforderungen an die Quality of Service (QoS) zu erfiillen, haben sich verschiedene
Forschungsstudien auf unterschiedliche Ansétze konzentriert. Diese Studien umfassen
architekturbasierte Zuverlassigkeitsmodellierung, empirische Zuverlassigkeits- oder Resili-
enzbewertung, architekturbasierte Leistungsvorhersage und Leistungsanalyse in Cloud-
basierten Systemen. Dariiber hinaus wurden selbst-adaptive Systeme entwickelt, die
Monitor, Analyze, Plan, Execute und Knowledge (MAKE-K) Schleifen und &hnliche
Ansitze verwenden, um Anpassungen zu implementieren, wihrend Auto-Scaler und Cloud-
Elastizitat versprechen, stabile QoS zu gewéhrleisten, auch wenn sich die Arbeitslast
andert.

Um den Prozess der Cloud-Systemkonfiguration zu automatisieren, ist jedoch eine héhere
Abstraktionsebene erforderlich, um die verschiedenen verfiigbaren Technologien und Op-
tionen zu modellieren und das Doménenwissen zu erfassen, das fiir die Entscheidungsfind-
ung bei der Auswahl optimaler Rekonfigurationslésungen erforderlich ist. Dariiber hinaus
ist empirische Forschung unerlasslich, um die wissenschaftliche Methode zu unterstiitzen.
Sie schafft Vertrauen in neue Technologien und Ansétze.

Zu diesem Zweck haben wir mehrere Experimente entworfen und durchgefiihrt, um
verschiedene QoS-Anforderungen, einschlieflich Zuverléssigkeit, Leistung und Systemiiber-
lastung, zu modellieren und zu verstehen. Wir haben diese Messungen analytisch und
statistisch modelliert und unsere Modelle empirisch validiert. Durch diese empirische
Forschung haben wir die Kompromisse zwischen verschiedenen QoS-Anforderungen unter-
sucht. Wir haben analysiert, wie diese Anforderungen die Zuverléssigkeit und Leistung
des Systems in zentralisierten oder verteilten Systemen beeinflussen.

Nachdem wir die empirische Evidenz gesammelt hatten, haben wir Multi-Kriterien-
Optimierungsmodelle eingesetzt, um das System in die Lage zu versetzen, selbstgesteuert
zu agieren. Das System kann die Situation bewerten und Cloud-Ressourcen automatisch
anpassen, um eine optimale Rekonfigurationslosung auszuwihlen. Um diesen Ansatz zu
unterstiitzen, haben wir uns darauf konzentriert zu modellieren, wie Doménenwissen im
Kontext von QoS-Anforderungen erfasst werden kann und wie verfiigbare Technologien

v

abstrahiert werden konnen, um sie auf einer architektonischen Abstraktionsebene zu
untersuchen. Dariiber hinaus haben wir architektonische Analysewerkzeuge fiir selbst-
adaptive Dienste und Cloud-basierte dynamische Routing-Systeme bereitgestellt.

Nach der Untersuchung verschiedener QoS-Modelle fiir dynamisches Routing stellen wir
eine vielseitige Rekonfiguration fiir dynamisches Routing vor. Wir untersuchen Szenarien,
in denen Komponenten inaktiv, stabil und transient sind, sowie die Interaktion zwischen
diesen Szenarien. Diese Dissertation zeigt die Bedeutung empirischer Forschung, um
Vertrauen in neue Technologien und Ansétze zu schaffen, um komplexe Cloud-basierte
dynamische Routing-Systeme zu verwalten. Durch die Modellierung und das Versténdnis
verschiedener QoS-Anforderungen und ihrer Trade-offs haben wir ein selbstverwaltendes
System entwickelt, das in der Lage ist, Cloud-Ressourcen dynamisch anzupassen, um eine
stabile QoS auch bei sich &ndernder Auslastung zu gewahrleisten.

Contents

[Acknowledgements| i
iii
[List of Tables Xi
[List of Figures| xiii
[List of Algorithms| XV
(1. Introduction| 1
[L1. Motivationl. 1
[L.2. Research Overview] 2
[L3. Stateof the Artl. 9
[L4. Thesis Structurelo 14
[2. Approach Overview| 15
[2.1. Background on Dynamic Routing Patterns 15
[2.2. Adaptive Dynamic Routers Architecture] 17
[2.3. Details of our Scientific Experiments| 23
[3. Reliability Model| 29
[B1. TIntroductionl. 29
[3.2. Model of Request Loss During Router and Service Crashes 31
[3.3. Empirical Validation 35
[3.4. Discussion 39
B.5. Conclusions 43
{4. Performance Models| 45
M1 TIntroductionl. 45
[4.2. Statistical Model of Performancel 46
[4.3. Reliability and Performance Trade-Off Analysis| 51
[4.4. Analytical Performance Modell. 55
[4.5. Empirical Validation of the Analytical Model| 56
[4.6. Threats to Validity 61
4.7, Conclusions o 63

vil

Contents

[5. Trade-Offs Adaptation| 65
5.1, Introduction 65
[5.2. Approach Details| 65
[5.3. Tool Overviewl 69
5.4, Evaluation 73
[5.5. Threats to Validity 75
(.6, Conclusions 77

[6. Multidimensional Autoscaling] 79
[6.1. Introduction 79
[6.2. Approach Overview|. 79
[6.3. Approach Details| 82
[6.4. Parameterization of Model to Experiment Parameter Values 87
[6.5. Illustrative Sample Case| 89
[6.6. Evaluation 91
[6.7. Threats to Validity 95
6.8. Conclusions oo 96

[7. Stateful Container Depletion| 97
[71. Introduction 97
[7.2. Background 98
[7.3. Approach Details| 100
[7.4. Parameterization of Model Elements| 104
[[5._ Evaluation 105
[.6. Discussionlo 111
[7.7. _Conclusions o 114

[8. Multifaceted Reconfiguration| 117
[B1. Introduction 117
[8.2. Approach Overview|. 119
[8.3. Approach Details| 120
[8.4. Tllustrative Sample Cases|, 126
[8.5. Tool Support| 129
[B.6. Evaluation 131
[8.7. Threats to Validity 136
B8 Conclusions o 137

9. Conclusions and Future Work 139

|A. Initial Performance Experiment| 143
[A 1. Introduction 143
[A.2. Experimental Planning|. oL 143
..................................... 147
[A.4. Threats to Validity 155

viil

Contents

[A5, Conclusions . . - -« v v oo 155
[B. Trade-Offs Adaptation: Statistical Performance Model| 157
[B.1. Introduction|. L 157
[B.2. Approach Details| 159
[B.3. Parameterization of Model to Experiment Parameter Values 163
B4, Evaluation 169
[B.5. Threats to Validity 172
B.6. Conclusions o o 173
175

X

List of Tables

[3.1. The Mathematical Notations Used in this Chapter| 30
[3.2. Results of the Model and the Experiment| 38
[3.3. Prediction Error Measurements for Different Number of Experiment Runs| 42
[4.1. The Mathematical Notations Used in this Chapter| 46
4.2, Prediction Models of Performancel. 47
[4.3. Comparison of the Prediction Results of the Performance Models and the |

Empirical Data 50
4.4, Prediction Error of the Performance Models 50
[4.5. Comparison of the Reliability of the Architectures 52
|4.6. The Region Where CE outperforms DR 54
[4.7. Comparison of the Performance of the Architectures| 55
[4.8. Model Predictions and Empirical Measurements of Performance| 58
4.9, Predictions Errors of the Performance Modell 61
[5.1. The Mathematical Notations Used in this Chapter| 66
[6.1. The Mathematical Notations Used in this Chapter| 80
[6.2. MCO Solution Space of the Illustrative Sample Case| 90
[6.3. Statistics of the Evaluation Datar 92
[7.1. The Mathematical Notations Used in this Chapter| 98
[7.2. Model Predictions of Experiment Cases and Empirical Results|. 109
[7.3. Model Predictions and Empirical Results on the GCP Mixed Infrastructurell12
[7.4. Prediction Error of the Proposed Modell 113
[8.1. The Mathematical Notations Used in this Chapter| 118
[A.1. The Mathematical Notations Used in this Appendix| 144
[A.2. Experimental Results of All Architectures 148
[A.3. Prediction Models e 152
[A.4. Second Run of Empirical Results and the Predicted Round-Trip Times . . 153
[B.1. The Mathematical Notations Used in this Appendix| 158
[B.2. Performance Prediction Modell. 160

[B.3. Operational Profiles of Incoming Call Frequency for the Illustrative Example [167
B.4. ADR Reliability and Performance Predictions for the Illustrative Example |

based on its Operational Profiles] 168

X1

List of Tables

[B.5. ADR Empirical Measurements for

the Illustrative Example Case]

IB.6. Statistics of the Gain Percentages|

xii

List of Figures

[1.1. Overview of Research Questions, Problems, and Contributions|. 8
[2.1. Central Entity Architecture| 15
[2.2. Sidecar-Based Architecturel 16
[2.3. Dynamic Routers Architecture|, 18
[2.4. Metamodel of the Adaptive Architecture 19

[2.5. Component Diagram of an Example Configuration (dashed lines represent

the data flow and solid lines the reconfiguration control flow of an application.)| 20

[2.6. Reconfiguration Activities of the Dynamic Configurator| 21
[2.7. Visualization Activities of the Dynamic Configurator 22
[2.8. Example Configuration of Dynamic Routing Applications (solid arrows

show the incoming requests of components.)| 24
[3.1. Specific Metamodel Concepts for Modeling Request Loss| 31
[3.2. Example Model Instance with Internal Requests 32
[3.3. Plots of all Experiment Cases Regarding the Total Internal Loss|. 40
[4.1. The RTT and the Nonlinear Regressions (Dashed Lines) for all Cases . . . 49
[4.2. Reliability Models| 51
[4.3. Performance Models 53
[4.4. Plot of All Intersecting Lines | 53
[4.5. Plots of Model Predictions and Empirical Measurements| 59
[5.1. Tool Architecture Diagram 70
6.2, Model Creation Toolflow] 71
[5.3. Model Reconfiguration Toolflow| 72
[5.4. Reliability and Performance Gains Compared to Fixed Architecture Con-

figurations (each point is an average of 36 experiment cases.) | 74
[6.1. Components as Queuing Stations 81
[6.2. Example Configuration with Incoming Requests for Routers (Solid Lines)

and Services (Dashed Lines)| L. 83
[6.3. Plots of Evaluation Data Regarding the Average Percentage Difference of

Buffer Fill Rate] 93
[6.4. Plots of Evaluation Data Regarding the Average Reconfiguration Cost . . 94
[7.1. The Load Profile of a Busy Container c| 102

[7.2. The Load Profile of a Sporadical Container ¢ (dots represent depletion.) |. 103

xiil

List of Figures

[7.3.

The Sporadical Load Profiles of Two Containers in the Illustrative Sample

| Case (dots represent depletion.) = 104
[7.4. Plots of All Cases without Depletion, and Depletion with T}, seconds| . . 110
[8.1. Components as Queuing Stations 119
[8.2. Example Configuration of Dynamic Routing Applications (solid arrows

| show the incoming requests of routers.)|. 126
[8.3. Tool Architecture Diagram, 129
[8.4. Model Reconfiguration Toolflow| 130
[8.5. Reliability and Performance Gains with Processing Rates of 4 = 64 and

| TO2 175 o o oo 133
[8.6. Plots of Evaluation Data for the Autoscaling of Transient Components| . . 134
[A.1. Results for Fach Architecture |. 150
[A.2. Results for Each Architecture!. 151
[A.3. Weighted Averages of Architecture Configurations on Single-Node and

[Multi-Cloud-Node Environmentsl 154
[B.1. Example ADR/Experiment Configuration| 164

[B.2. ADR Reliability and Performance Gains Compared to CE, DR and SA

Architectures o o o s,

Xiv

List of Algorithms

[I. Reconfiguration Algorithm to Adapt the Reliability and Performance Trade- |

[2. Reconfiguration Algorithm for an Overloading Component | 87

[3. Reconfiguration Algorithm to Statefully Deplete and Deploy Extra Con- |

tadners | Lo 101
[4. Reconfiguration Algorithm to Schedule a Depleted Container |. 102
5. Infrastructure Reconfiguration Algorithm (reconfigure) | 120
6. System-Wide Optimization Analysis (systemWideMCO)]| 122
[7. System-Wide Reconfiguration Steps (systemWideReconfig) | 123
[8 Multifaceted Reconfiguration Algorithm for an Overloading Component |. . 125

[9. Reconfiguration Algorithm for the Adaptation of Reliability and Performance |

Trade-OfIs | o s, 162

XV

1. Introduction

Nowadays, the dynamic behavior of service- and cloud-based applications often requires
runtime system adaptations. Cloud computing provides an elastic infrastructure to
manage this behavior of Internet applications. However, cloud-based systems are becoming
increasingly complex and it is hard and cost-ineffective to manage them manually. The
subject of the thesis concerns the study of automatic adaptation in the context of cloud
resource management. Dynamic reconfiguration of cloud resources typically considers
Quality of Service (QoS) requirements. For example, |90, [54] 27] [24] use architecture-based
reliability modeling, and |19} 165/ [92] consider empirical reliability or resilience assessment.
[86L 181, 169L [77] study architecture-based performance prediction, and [53, [18], 57, 41]
perform a performance analysis in the context of cloud-based systems. Self-adaptive
systems typically use Monitor, Analyze, Plan, Execute, Knowledge (MAPE-K) loops [47,
16| [17] and similar approaches to realize adaptations. Similarly, autoscalers for the
cloud |20, 197] and research on cloud elasticity [42] 137] promise the stable QoS when facing
changing workload intensity.

In all this research, an architect must learn the specific framework and define the QoS
levels the framework tries to reach. For instance, consider an e-commerce shop that offers
discounted products for a specific location during a period. The application must cope
with a sudden incoming load increase which needs to be routed to the services residing
in the location. An architect can manually decide on the combination of autoscalers
and dynamic routers [45], such as an API gateway [79] or an enterprise service bus [26],
to accommodate the system demand. However, to make this process automatic so that
the system automatically decides on an optimal configuration in a given situation, a
higher level of abstraction that models these options should be introduced. Moreover,
a mechanism to model the domain knowledge is required to make an informed decision
when choosing an optimal reconfiguration solution.

1.1. Motivation

Empirical research, when used to support the scientific method, plays a fundamental role
in modern science. Even though empirical research is rather foundational, it is needed
to create trust in new technologies and approaches. Unless we understand how certain
factors affect tools and methods, the development and use of a particular technology
will essentially be a random act. Empirical research represents a key way to move
towards well-founded decisions. In our work, as an initial step, we design and perform
multiple experiments to model and understand different QoS requirements, e.g., reliability,
performance, and system overload. To do so, we analytically and statistically model these

1. Introduction

measurements and empirically validate our models.

We investigate our findings and study the trade-offs of these quality requirements. For
example, in software architecture, there is a trade-off between system reliability and
performance in centralized or distributed systems. In a centralized system, where decisions
are made at one central entity component, e.g., in an API gateway [79] or a message
broker [45], system reliability is higher because there are fewer points of failure. An
architect can replicate this routing scheme to ensure high system reliability [40]. However,
the centralized component harms the system’s performance since all data processing
is done by one component. A distributed architecture can increase performance by
parallelization but harms the system’s reliability by introducing points of failure.

After we have empirical evidence on the trade-offs of different QoS requirements, we
can use our models for Multi-Criteria Optimization (MCO) analyses [4], giving the
system a self-management ability. The system can automatically assess the situation
and adapt the cloud resources. For example, if the incoming load is higher, the system
automatically evaluates different options and chooses an optimal reconfiguration solution.
This approach is similar to using MAPE-K loops [47, 16} [17]. We focus on the knowledge
part and model how to capture domain knowledge in the context of QoS requirements
of cloud resource management. We abstract available technologies to study them at an
architectural level of abstraction. Moreover, we provide an architectural analysis tool
that considers a multifaceted reconfiguration of self-adaptive service- and cloud-based
systems. Additionally, we study whether our reconfiguration concepts can be applied to
other domains using machine-learning techniques.

1.2. Research Overview

This section presents our research method, questions, problems, and contributions.

1.2.1. Research Method

We design multiple scientific experiments to validate different QoS models. These models
form the basis of multiple MCO analyses to give the system the ability to automatically
evaluate different reconfiguration options and choose a final optimal solution. For this
purpose, we develop an architectural analysis tool based on design science research |95 144].
In design science research, first, a research question is posed, then the develop/evaluate
cycle is continuously repeated until a satisfactory solution for the research question has
been obtained. In the course of this process, the research question can be altered or
refined. In the first iterations, usually simplifying assumptions are made, which are
removed in a stepwise fashion during later iterations.

Design science research produces different outputs: constructs, models, methods, and
instantiations [91]. While constructs are the conceptual vocabulary of a domain, models
are a set of propositions expressing relationships among constructs. Methods are steps to
perform a task, and instantiations are operationalized models, constructs, and methods.
Design science research is comprised of five steps:

1.2. Research Overview

1. Awareness of problem: This might result from different sources like earlier
research efforts or other disciplines, resulting in a proposal.

2. Suggestion: This is “a creative step where new functionality is envisioned based
on a novel configuration of either existing or new and existing elements” [91]. This
step results in a tentative design.

3. Development: The tentative design is further developed and implemented.

4. Evaluation: The constructed artifact is evaluated according to criteria implicitly
(or sometimes explicitly) mentioned in the proposal, e.g., concerning performance.

5. Conclusion: In this step, the evaluation results are judged sufficient or insufficient.
They are also consolidated and written up. This last step might create additional
iterations in the research loop.

We aim to contribute towards a more robust, comprehensive, and evidence-based un-
derstanding of architecting self-adaptive service- and cloud-based systems. It is necessary
to collect, model, analyze, assess, and understand both the extant practices and the
theoretical underpinnings of the service- and cloud-based application domain. Specifically,
this requires us to:

1. systematically categorize the extant practices and patterns at an architectural level
of abstraction to model and analyze service- and cloud-based systems.

2. establish an automatic approach to assess different quality-of-service requirements
in the context of cloud resource management.

3. automatically calculate and provide actionable reconfiguration solutions as part of
a feedback loop.

4. provide a prototypical tool to support the architects in applying the actionable
reconfiguration solutions found by our approach.

1.2.2. Research Questions

Based on the information derived from the above process, we aim to answer the following
research questions (RQ,) on architecting self-adaptive dynamic routing systems.

RQ1 What elements are required to automatically assess the different quality-of-service
requirements in cloud resource management of service- and cloud-based dynamic routing
applications?

RQ2 How to choose the final reconfiguration option as part of a feedback loop to manage
cloud resources efficiently, and how well does this reconfiguration solution perform compared
to the case when one architecture configuration runs statically?

1. Introduction

RQs What is the architecture of a supporting tool that analyses the system quality-of-
service requirements and facilitates the reconfiguration of a dynamic routing application
using the optimal configuration solution?

1.2.3. Research Problems

To answer the research questions, we face the following research problems (P,) addressed
by our studies throughout this dissertation.

Py Lack of reliability models specific to service- and cloud-based dynamic routing

To answer RQ1 and RQs, we must provide a reliability model specific to dynamic routing.
This model allows us to formally assess the reliability issues of a system as a QoS metric.
When making architectural design decisions regarding system reconfigurations, we consider
this reliability model to assess the QoS requirements.

P> Lack of performance models specific to service- and cloud-based dynamic routing

There are many different performance models studied in the literature (see Section .
However, they are mostly generic and are not specific to service-and cloud-based dynamic
routing applications. This problem relates to RQ1 and R(Q)5 to assess the QoS requirements
and study their trade-offs.

Ps Lack of an approach to automatically adapt the reliability and performance trade-offs

To answer R(@)2, we must have a formal and automatic approach that performs MCO
analyses using the reliability and performance models to adapt the QoS trade-offs in a
running dynamic-routing system. This problem also relates to RQ3 to provide prototypical
tool that supports the reconfiguration of routing applications.

Py Lack of an approach to autoscale components multidimensionally to prevent overload

This problem relates to RQ2 because when reconfiguring the routing schema, we must
consider that the reconfiguration does not overload the components. Horizontal autoscal-
in and vertical autoscalin address this issue. However, considering both approaches
in one architectural decision-making step regarding dynamic routing must be provided.

Ps Lack of an approach to statefully deplete and reschedule sporadically-active components

This problem relates to RQ2 because to manage cloud resources efficiently, we must
deplete idle containers statefully and schedule active components instead. When a
depleted container becomes active again, there might be a need for container migration
to another cloud node. This process must be formalized and studied.

"https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
*https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler

https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler

1.2. Research Overview

Pg Lack of tool support for the multifaceted reconfiguration of dynamic routing applications

To answer R(Q3, we must provide the prototypical tool support to analyze the system
at runtime and facilitate this multifaceted reconfiguration. This tool focuses on the
dynamic-routing domain and investigates the interplay of the different reconfiguration
views considered in this dissertation.

1.2.4. Research Contributions

This section provides an overview of all contributions of this dissertation linked to their
corresponding research problems described in the previous section. In the course of this
study, the contributions were published in the cloud and services conferences such as
the IEEE World Congress on Service and the International Conference on Service-
Oriented Computin as well as in a prominent journal IEEE Transactions on Services
Computin To support replicability, the data, code, and evaluation logs are available
as an open-access artifact in the online appendix of this dissertatiorﬁ. Moreover, the
research papers relating to each chapter of this doctoral thesis are available in the online
appendix under the corresponding chapter. The contributions (C},) of this work are listed
below. A research-overview figure that visualizes the relations between RQ),,, P,, and C),
are presented in Figure|l.1

C1 Analytical reliability model of dynamic routing

This contribution addresses P; by modeling component crashes using Bernoulli pro-
cesses [90] and calculating the request loss in dynamic-routing applications. We empiric-
ally validate our analytical reliability model using an extensive experiment of 1200 hours
of runtime (see Chapter [2| for details). Moreover, this contribution relates to P3 since the
proposed model is used for reliability and performance trade-offs adaptation.

Reference [11] A. Amiri, U. Zdun, G. Simhandl, and A. van Hoorn. Impact of service-
and cloud-based dynamic routing architectures on system reliability. In International
Conference on Service Oriented Computing (ICSOC), 2020.

DOI 10.1007/978-3-030-65310-1 13

C5 Performance models and trade-offs analysis

To address P5, this contribution calculates the round-trip time of requests as a performance
model and conducts statistical regression analysis from the data of our experiment. The
performance models allow us to precisely analyze the reliability and performance trade-offs
of our private infrastructure.

3https://conferences.computer.org/services
“https://icsoc2022.spilab.es/
®https://ieeexplore.ieee.org/xpl/RecentIssue. jsp?punumber=4629386
Shttps://zenodo.org/record/7886168 doi:10.5281/zenodo.7886168

https://conferences.computer.org/services
https://icsoc2022.spilab.es/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4629386
https://zenodo.org/record/7886168

1. Introduction

Reference [5] A. Amiri, C. Krieger, U. Zdun, and F. Leymann. Dynamic data
routing decisions for compliant data handling in service- and cloud-based architectures: A
performance analysis. In IEEE International Conference on Services Computing (SCC),
2019.

DOT 10.1109/SCC.2019.00044

Reference [12] A. Amiri, U. Zdun, and A. van Hoorn. Modeling and empirical
validation of reliability and performance trade-offs of dynamic routing in service- and
cloud-based architectures. In IEEE Transactions on Services Computing (TSC), 2021.

DOT 10.1109/TSC.2021.3098178

Additionally, to address P» and to provide a generalized model that applies to other
infrastructures, we provide an analytical performance model of dynamic routing. In
addition to analyzing our experiment data, we perform a shorter validation experiment on
the Google Cloud Platform (GCP)E Moreover, the performance models in this contribution
is used for the quality-of-service trade-offs adaptation addressing Pj.

Reference [13] A. Amiri, U. Zdun, and A. van Hoorn. Analytical modeling and empir-
ical validation of performability of service- and cloud-based dynamic routing architecture

patterns. In IEEE Transactions on Services Computing (TSC), forthcoming.

C3 Automatic adaptation of reliability and performance trade-offs

This contribution addresses P3 and details our self-adaptive approach. We use our
reliability and performance models to conduct a multi-criteria optimization analysis and
adjust the quality-of-service trade-offs automatically. Moreover, this contribution relates
to Pg to provide prototypical tool support for dynamic-routing reconfiguration.

Reference [14] A. Amiri, U. Zdun, A. van Hoorn, and S. Dustdar. Automatic adapta-
tion of reliability and performance tradeoffs in service- and cloud-based dynamic routing
architectures. In IEEFE International Conference on Software Quality, Reliability and
Security (QRS), 2021.

DOT 10.1109/QRS54544.2021.00055

Reference [9] A. Amiri and U. Zdun. Tool support for the adaptation of quality of
service trade-offs in service- and cloud-based dynamic routing architectures. In Furopean
Conference on Software Architecture (ECSA), forthcoming.

C4 Multidimensional autoscaling of dynamic routing applications

To address Py, this contribution changes the reconfiguration view to focus on each
component separately. We model system components as queuing stations [51] and perform
an MCO analysis to prevent system overload. We consider the reconfiguration costs

"https://cloud.google.com/

https://cloud.google.com/

1.2. Research Overview

an optimization criterion and perform multidimensional autoscaling to prevent system
overload. This contribution also relates to Ps to provide prototypical tool support.

Reference [15] A. Amiri, U. Zdun, A. van Hoorn, and S. Dustdar. Cost-aware
multidimensional auto-scaling of service- and cloud-based dynamic routing to prevent
system overload. In IEEE International Conference on Web Services (ICWS), 2022.

DOIT 10.1109/ICWS55610.2022.00063

Cs Stateful depletion and rescheduling of idle components

This contribution relates to P; and provides an analytical model and reconfiguration
algorithms to deplete and reschedule idle components statefully. We perform a validation
experiment on GCP and find an optimal reconfiguration solution. This contribution
relates to Pg as well to study the multifaceted reconfiguration of dynamic routing.

Reference [10] A. Amiri, U. Zdun, and K. Plakidas. Stateful depletion and scheduling
of containers on cloud nodes for efficient resource usage. In IEEFE International Conference
on Software Quality, Reliability and Security (QRS), 2022.

DOT 10.1109/QRS57517.2022.00056

Cs Multifaceted reconfiguration of dynamic routing applications

We address Py and introduce a multifaceted reconfiguration of dynamic routing systems.
This contribution studies the interplay of different configuration views studied in this
dissertation. Moreover, we provide prototypical tool support regarding this multifaceted
reconfiguration.

Reference [7] A. Amiri and U. Zdun. Cost-aware multifaceted reconfiguration of
service- and cloud-based dynamic routing applications. In IEEFE International Conference
on Cloud Computing (CLOUD), 2023.

DOT 10.5281/zenodo.7919227

Reference [8] A. Amiri and U. Zdun. Smart and Adaptive Routing Architecture:
An Internet-of-Things Traffic Manager Based on Artificial Neural Networks. In IEEE

International Conference on Software Services Engineering (SSE), 2023.

DOT 10.5281/zenodo.7919351

Figure [L.1 provides a complete overview of the research carried out in this doctoral
thesis by visualizing the research questions (RQ,,), the research problems (P,), and the
contributions (C),) with their connections and relationships between each other. Overall,
we studied ten research papers that were included in this thesis.

1. Introduction

Y

RQ, What elements are
required to automatically
assess the different quality-
of-service requirements in
cloud resource
management of service-
and cloud-based dynamic
routing applications?

.

RQ;, How to choose the
final reconfiguration option
as part of a feedback loop
to manage cloud resources

efficiently, and how well

does this reconfiguration
solution perform compared
to the case when one
architecture configuration
runs statically?

.

O

RQ; What is the

architecture of a supporting

tool that analyses the
system quality-of-service

requirements and facilitates
the reconfiguration of a

dynamic routing application

using the optimal

configuration solution?

.

~
P4 Lack of reliability models
specific to service- and

cloud-based dynamic
routing

P, Lack of performance
models specific to

Y

service- and cloud-based
dynamic routing
S

P3 Lack of an approach to
automatically adapt the

Y

reliability and performance

trade-offs
G

P4 Lack of an approach to
autoscale components

Y

multidimensionally to
prevent overload

P5 Lack of an approach to
statefully deplete and

Y

reschedule sporadically-
active components

~
Pg Lack of tool support for
the multifaceted

reconfiguration of dynamic

routing applications

Y

~
C, Analytical reliability model

of dynamic routing
(Chapter 3)

C, Performance models and

trade-offs analysis
(Chapter 4, Appendix A)

C3 Automatic adaptation
of reliability and
performance trade-offs
(Chapter 5, Appendix B)

C4 Multidimensional
autoscaling of dynamic
routing applications
(Chapter 6)

~
C5 Stateful depletion and
rescheduling of idle
components
(Chapter 7)

Cg Multifaceted
reconfiguration of dynamic
routing applications
(Chapter 8)

Figure 1.1.: Overview of Research Questions, Problems, and Contributions

1.2.5. Published and Ongoing Research not Included in the Dissertation

We published a research paper and submitted one we did not include in the dissertation.
Even though the following research paper is related to our concepts in the sense that
it investigates compliance with different rules, its focus is different from that of this

dissertation and, consequently, not included in the thesis.

Reference [31] C. Czepa, A. Amiri, E. Ntentos, U. Zdun. Modeling compliance
specifications in linear temporal logic, event processing language and property specification

patterns: a controlled experiment on understandability. In Software and Systems Modeling,
18 pp. 3331-3371 ISSN 1619-1366 Springer (2019).

DOT 10.1007/s10270-019-00721-4

The following paper is a collaboration with Siemens Osterreich AGP|l The focus of this

Shttps://www.siemens.at/

https://www.siemens.at/

1.3. State of the Art

research is on pattern mining for cyber-physical systems, which is not relevant to this
dissertation. However, we followed the tool architecture proposed in this paper to provide
our prototypical tool support, i.e., RQ3 and F;.

Reference [6] A. Amiri, E. Ntentos, U. Zdun, and S. Geiger. Tool Support for
Learning Architectural Guidance Models and Pattern Mining from Architectural Design
Decision Models. European Conference on Pattern Languages of Programs (EuroPLoP),

forthcoming.

1.3. State of the Art

We list the studies common to this dissertation to present state of the art.

1.3.1. Service-Specific Reliability Studies

Our approach, in contrast to many existing architecture-based reliability prediction meth-
ods, is focused on a specific category of architectures, namely services-based architectures
for dynamic routing. From a practical point of view, reliability in those kinds of ar-
chitectures has been studied in service and cloud architectures, leading to observations
of patterns and best practices [67]. Some works introduce service-specific reliability
models. For instance, Wang et al. [94] propose a discrete-time Markov chain model for
analyzing system reliability based on constituent services. Grassi and Patella [38] propose
an approach for reliability prediction that considers the decentralized and autonomous
nature of services. Zheng and Lyu [98| propose an approach that employs past failure
data to predict a service’s reliability. However, none of these approaches studies and
compares major architecture patterns in service and cloud architectures (see Chapter
for details). They are rather based on a very generic model with regard to the notion of
service. This makes it hard to apply the approaches for prediction when working with
specific kinds of architectures, such as those for dynamic routing.

1.3.2. Empirical Reliability or Resilience Assessment

Experiment-based resilience assessment approaches aim to assess a software system’s
ability to cope with failures, e.g., by injecting faults and observing their effects. Today
many software organizations use large-scale experimentation in production systems to
assess the reliability of their applications, which is called chaos or resilience engineering [19].
A crucial aspect in resilience assessment of software systems is efficiency [65]. To reduce
the number of experiments needed, knowledge about the relationship of resilience patterns,
anti-patterns, suitable fault injections, and the system’s architecture can be exploited to
generate experiments [92]. For example, Pietrantuono et al. |[71] propose a new method
for adaptive reliability estimation of microservice applications during runtime, which is
evaluated experimentally. Our approach differs from these techniques in that our analytical
model can be employed to predict the reliability of a software system, whereas key design

1. Introduction

decisions, i.e., routers in service- and cloud-based systems, are modeled analytically and
assessed empirically.

1.3.3. Architecture-based Reliability Prediction

To predict the reliability of a system and to identify reliability-critical elements of its
system architecture, various approaches such as fault tree analysis or methods based
on a continuous-time Markov chain have been proposed [54 27]. Our work can be
classified as an architecture-based approach using a Bernoulli process model [90] that
is empirically validated (see Chapter [3] for details). Architecture-based approaches, like
ours, are often based on the observation that the reliability of a system does not only
depend on the reliability of each component but also the probabilistic distribution of the
utilization of its components, e.g., formulated as a Markov model. Other approaches allow
software engineers to improve the reliability of the software architecture systematically.
For example, Brosch et al. [24] suggest an extension of the Palladio component model [21]
along with automated transformations into a discrete-time Markov chain [27]. Pitakrat
et al. [72] use architectural knowledge to predict how a failure can propagate to other
components. They use Bayesian networks to represent conditional dependencies and infer
probabilities of failures and their propagation. Our research differs from these approaches
in that it focuses specifically on the cloud- and service-based dynamic routing architecture
patterns. By focusing on these specific patterns, we can define a more precise model and
reach a high level of prediction accuracy.

1.3.4. Architecture-Based Reliability and Performance Prediction

There are studies in this category [90} 130] that employ probabilistic analytical models such
as discrete-time Markov chains [27] and (layered) queueing networks [86], or high-level
architectural models such as profile-extended Unified Modeling Language (UML) |69] or
Palladio |77, 24] models, which are simulated or transformed into analytical models. The
approaches are based on the observation that the reliability and performance of a system
depend on the reliability and performance of each component, along with the interplay
between them. Moreover, Sharma and Trivedi [81] present an architecture-based unified
hierarchical model for software reliability, performance, security, and cache behavior pre-
diction. Architecture-based MCO [4] builds on top of these prediction approaches and the
application of architectural tactics to search for (pareto) optimal architectural candidates.
Example MCO approaches supporting reliability and performance are ArcheOpterix [3],
PerOpteryx [25], and SQuAT [75]. Like our study, these works support architectural
design. In contrast, our work gives extensive empirical evidence of our architecture-based
reliability and performance models. These empirically-validated models are then used in
our MCO analysis, where we provide tool support for further experimentation.

10

1.3. State of the Art

1.3.5. Architecture-Based Performance Analysis

Spitznagel and Garlan [86] present a general architecture-based model for performance
analysis based on queueing network theory. Petriu et al. [69] present an architecture-based
performance analysis that builds layered-queuing-networks performance models from a
UML description of the high-level architecture of a system. The Palladio component
model |21} [77] allows precise component modeling with relevant factors for performance
properties and contains a simulation framework for performance prediction. Like our
research, those works focus on supporting architectural design or decision-making. In
contrast to our work, they do not focus on specific kinds of architectures or architectural
patterns. Those models offer more generality at the expense of the high accuracy with
which we characterize the three architecture patterns analyzed in our work.

1.3.6. Performance Analysis: Enterprise Service Buses

There are several existing studies comparing the performance of Enterprise Service Buses
(ESB). This is related to our research because ESBs provide a means for the content-based
routing of messages. Sanjay et al. [2] evaluate the performance of the three open-source
ESBs, i.e., WSO2 [48], Mule [35], and Service Mix |74]. The performance is measured
based on mean response time and throughput for proxying, content-based routing, and
data mediation. However, the test scenarios only consider client communications and
a single web service. Shezi et al. [83] provide a performance evaluation of different
ESBs in a more complex scenario in which multiple services are composed to achieve a
certain business objective. As a test case, a service orchestration scenario is simulated,
in which a consumer consults several banking services to find the best loan quote. In
contrast to these studies, our work considers multiple routing architectures. Moreover,
we investigate communication paths that involve the composition of multiple services and
routing decisions.

1.3.7. Performance Analysis: Microservice- and Container-Based Systems

Different studies evaluate the network performance of container-based applications. This
is related to our work, as we analyzed the performance of containerized services. For
example, Kratzke [53| evaluates the performance impact of Docker containers and software-
defined networks in distributed cloud-based systems using HTTP-based communication.
The performance is measured by means of the data transfer rate of m byte-long messages.
A similar work is presented by Bankston et al. [18] to explore the network performance
and system impact of different container networks on public clouds from Amazon Web
Services, Microsoft Azure, and Google Cloud Platform. Another kind of related studies
in a wider sense, compares different service architectures. For instance, Lloyd et al. [57]
compare different states of serverless infrastructure and their influence on microservice
performance. Khazaei et al. [52] study the efficiency of provisioning microservices. All
these studies are related to our research as they also improve the state of (micro)service
performance engineering. Our study contributes new data on common architectures for

11

1. Introduction

evaluating dynamic routing rules, which has not been examined before. The literature
has produced general microservice performance engineering challenges and directions (see
e.g., [41]). Studies like ours and those mentioned above address some of the microservice
performance engineering challenges identified in the literature.

Additionally, Vandikas et al. [93] conducted a performance analysis of their IoT frame-
work to evaluate its behavior under heavy load produced by different amounts of producers
and consumers. The main purpose of the framework is to allow producers, such as sensors,
to publish data streams to which multiple interested consumers, e.g., external applications,
can subscribe. This publish-subscribe functionality is realized by a central message broker
implemented with RabbitMQ. In contrast to our work, dynamic data routing is not
considered in this article. Moreover, the performance evaluation of the framework focuses
only on a single-machine deployment, which may have led to results that are not easily
generalizable to cloud-based deployments.

1.3.8. Studies on Performability of Systems

Performability considers the effects of structural changes in a system, e.g., when there are
component crashes (impeded reliability), on the overall performance of the system [85].
Ahamad and Ratneshwer [1] provide a review on the performability of Safety-Critical
Systems (SCS). They study the available approaches and the metrics to evaluate the
performability of SCS. Moreover, they define the challenges of performance and reliability
in studying the SCS. This study is related to our work as it presents state of the art in
performability studies. However, in contrast to our work, it does not provide an analytical
model of performance and reliability and its empirical validation to improve state of the
art. Mo et al. [62] study the performability analysis of multi-state sliding window systems.
Like our study, they propose an analytical approach based on multivalued decision
diagrams. They analyze this analytical approach in multiple case studies. Lisnianski et al.
[55] present a Markov multi-state model for large-scale and highly responsive distributed
systems. Similar to our work, they provide an analytical performability model and present
a short-term analysis to prevent performance and reliability decreases.

A particular related work is [89], in which Torquato et al. study the migration of
virtual machines of a cloud-based system in the presence of workload. Like our work,
they provide a modeling framework to support virtualized environment management
decisions regarding the performability of a system. A particularly-recent work is [34],
in which Di Mauro et al. study containerized network applications. They use queuing
network theory and consider each container as a queuing node. Like our research, they
performed a cloud-based experiment to evaluate their performability model. In contrast
to the above studies, our research is specific to dynamic routing and provides reliability
and performance models. Unlike our research, none of the above works provide extensive
empirical data supporting the accuracy of their proposed models. To the best of our
knowledge, this has not been considered in the literature with regard to dynamic-routing
architecture patterns.

12

1.3. State of the Art

1.3.9. Self-Adaptive Systems

Our approach is related to self-adaptive systems, which typically use MAPE-K loops [47)
16/, [17] and similar approaches to realize adaptations. Our proposed architecture uses a
similar structure as the MAPE-K loop and extends such approaches with support specific
to the service- and cloud-based dynamic routing architectures. Similarly, works on cloud
elasticity 42l 137] are related to our research. In contrast to the existing related work,
the major contribution of our approach is that we focus on specific architecture patterns
for dynamic routing and consider reliability and performance trade-offs. By focusing on
these specific patterns and possible runtime self-adaptations, we can define a targeted
model along with a specific reconfiguration algorithm and preference functions to perform
MCO analyses, which would be hard in the generic case.

Moreover, research on efficient resource provisioning, e.g., |52l 29] are related to our
work. Our study extends these approaches by analytically modeling the depletion of
idle containers as a reconfiguration measure. Similarly, autoscalers for the cloud |20, 97|,
which promise stable quality-of-service and cost minimization when facing changing
workload intensity, are related work. Multidimensional autoscalers have been studied
in the literature for resource provisioning. AutoMAP [22] uses response time triggers
to provision resources. AutoMAP finds optimal resources using Virtual Machine (VM)
image sizes to support cost efficiency. Nguyen et al. [66] suggest a forecasting model to
predict CPU demand and use these predictions to start new machines before load peak
to increase performance. CloudScale [82] supports scaling CPU and memory resources
when local scaling is possible. Otherwise, it migrates VMs to prevent overloaded hosts.
Our work differs from these studies because they consider auto-scaling at the VM level
and configure the resources. We proposed an approach that works at the container level
by depleting and rescheduling containers on cloud nodes.

1.3.10. Container Scheduling

There is a rich literature on container scheduling in a more general sense. For example,
Stratus [28] is a dynamically-allocating cluster scheduler that orchestrates batch job
execution on clusters of VM instances of public Infrastructure as a Service (IaaS) platforms.
Kubernetes container scheduling strategy [60] offers a novel container scheduling strategy
for Kubernetes. Kaewkasi and Chuenmuneewong [50] use ant-colony-optimization methods
to implement a new scheduler for Docker, whereas Liu et al. [56] provide a new container
scheduling approach based on multi-objective optimization. Cérin et al. [32] introduce a
new Docker Swarm scheduler that uses service level agreement information to provision
a container that must execute the service based on a dynamic computation of available
resources. Sureshkumar and Rajesh [88], in contrast to those other approaches, use load
scheduling to optimize container usage. Our study differs from these works because it is
not specific to container scheduling technology. Our approach tackles containers’ stateful
depletion and rescheduling to cloud nodes from a higher level of abstraction that can be
used with different container orchestration technologies.

13

1. Introduction

1.4. Thesis Structure

The remainder of this thesis is structured as follows: Chapter [2| provides the overview
of our proposed Adaptive Dynamic Routers architecture and the common details of
our scientific experiments. Chapter 3| presents our reliability model of dynamic routing
and its empirical validation as a QoS metric. Chapter [4| introduces our performance
models. Firstly, this chapter studies a statistical performance model specific to our private
infrastructure. This specificity allows us to perform a detailed analysis of reliability
and performance trade-offs discussed in this section. Secondly, this chapter gives an
analytical model of performance for dynamic routing to support generalizability to other
applications outside of our infrastructure. Chapter [5| presents the details of our approach
regarding the automatic adaptation of reliability and performance trade-offs. Moreover,
we present prototypical tool support. Chapter [6] provides a different reconfiguration
view, i.e., the focus is placed on one component. In this chapter, we model components
as queuing stations [51] and present a novel multidimensional autoscaler to prevent
system overload. Chapter [7 focuses on stateful depletion and rescheduling of sporadically-
active components and presents an experiment to validate our self-adaptive architecture
empirically. Chapter [§| presents a multifaceted reconfiguration of dynamic routing and
considers the interplay of the different reconfiguration views. All chapters contain a
conclusions section; therefore, Chapter [9] summarizes the contributions, presents the
planned future work, and concludes the dissertation.

14

2. Approach Overview

In this chapter, we present the overview of our approach followed in the remainder of
this dissertation. Firstly, we provide a background on the dynamic routing architecture
patterns. Secondly, we propose a novel Adaptive Dynamic Routers architecture that
automatically changes the routing schema based on the monitored data at runtime.
Finally, we present the details of the validation experiments that we follow throughout
this thesis.

2.1. Background on Dynamic Routing Patterns

There are many different service- and cloud-based architectures that use or enable dynamic
request routing. We study three of the widely-used architectural patterns, i.e., the Central

«Host»

«Service» «Service» «Service»
«Host» «Host»
«Service» «Service»
«Host»":_»

«Router» E
Central Entity

«Host»

«AP| Gateway» @

«Host» 7 L «Host»

«Client» «Client»

Figure 2.1.: Central Entity Architecture

15

2. Approach Overview

Entity, the Sidecar-based Architecture, and the Dynamic Routers.

2.1.1. Central Entity

In a Central Entity (CE) architecture, the central entity manages all request flow decisions.
Figure 2.1 on the previous page shows an example configuration of CE. One benefit of
this architecture is that it is easy to manage, understand, and change since all control
logic regarding request flows is implemented in one component. However, this introduces
the drawback that the design of the internals of the central entity component is a complex
task. Another advantage is that in an application consisting of stateful request flow
sequences, the state does not need to be passed between various distributed components.
Nonetheless, services need to call back to the central entity component to fetch the
saved state of prior stages to proceed with the next step in a request flow sequence. CE
can be implemented using an API gateway [79], an event store or an event streaming
platform [79], or any kind of central service bus |26]. Note that it is not required that the
central entity component is always deployed on an exclusive host, as shown in Figure [2.1

«Host»
«Service» «Service» «Service»
«Router» E «Router» E «Router» E
Sidecar Sidecar Sidecar
«Host» T «Host»
«Service» «Service»
«Router» E «Router» @
Sidecar Sidecar

" «Host»

«API| Gateway» E

«Host» iie " «Host»

«Client» «Client»

Figure 2.2.: Sidecar-Based Architecture

16

2.2. Adaptive Dynamic Routers Architecture

2.1.2. Sidecar-based Architecture

The Sidecar-based Architecture (SA) is presented in Figure In contrast to the central
entity architecture, the control logic is distributed and placed in so-called sidecars [49, 136],
which are attached to the services. Sidecars offer a separation of concerns since the
control logic regarding request flow is implemented in a different component than the
service. However, sidecars are tightly coupled with their directly-linked services. The SA
architecture offers benefits whenever decisions need to be made structurally close to the
service logic. One advantage of this architecture is that, compared to the central entity
service, it is usually easier to implement sidecars since they require less complex logic to
control the request flow of their connected services. Nonetheless, it is not always possible
to add sidecars, e.g., when services are off-the-shelf products. Sidecars are almost always
implemented on the same host as their directly-linked services.

2.1.3. Dynamic Routers

Dynamic Routers (DR) [45] can be seen as a hybrid of the two extremes, i.e., between the
centralized CE and the fully distributed SA. Figure on the next page shows a specific
DR configuration. One benefit of this architecture is that dynamic routers can use local
information regarding request routing amongst their connected services. For instance, if a
set of services are dependent on one another as steps of processing a request, DR can be
used to facilitate the routing. Nonetheless, dynamic routers introduce an implementation
overhead regarding data structures, control logic, management, deployment, etc., since
they are usually distributed on multiple hosts. We use the common term router for all
request flow control logic components, i.e., the central entity in CE, sidecars in SA, and
dynamic routers in DR. This concept is further explained below.

2.2. Adaptive Dynamic Routers Architecture

The CE, DR, and SA architecture patterns are implemented based on very different
concepts, including API gateways [79], such as NGINXE] or Kongﬂ enterprise service
buses [26], message brokers [45], or sidecars |61} [49] 136] such as Envo Essentially they
all route the incoming requests dynamically. We propose a new approach that realizes
all three architectural patterns, as explained below. We hypothesize that a dynamic
self-adaptation between the three architectures is beneficial over any fixed architecture
selections. If a traffic and load change occurs, our approach can self-adapt the degrees to
which more central or distributed routing is used dynamically. This self-adaptation is
performed to optimize the impacts on quality of service trade-offs, e.g., performance and
reliability.

We suggest that the trade-offs adaptation can be automated using multi-criteria
optimization analyses [4]. This allows us to engineer our novel self-adaptive architecture

"https://www.nginx.com
Zhttps://konghq.com/kong/
Shttps://www.envoyproxy.io/

17

https://www.nginx.com
https://konghq.com/kong/
https://www.envoyproxy.io/

2. Approach Overview

«Host»

«Service» «Service» «Service»

«Router»
Dynamic Router

«Host» - «Host»
=] =l

«Service» «Service»

«Router» E «Host»

Dynamic Router
«Router» @
Dynamic Router

«Host»

«AP| Gateway» 5

«Host»] «Host»

«Client» «Client»

Figure 2.3.: Dynamic Routers Architecture

approach that we call the Adaptive Dynamic Routers (ADR) architecture. ADR is
based on Monitor, Analyze, Plan, Execute, Knowledge (MAPE-K) loops |47, 16| [17] and
dynamically adapts between the architecture patterns on-the-fly. As mentioned, we define
a concept called router and abstract all the controlling logic components, i.e., the central
entity service, the dynamic routers, and the sidecars, under the router. This high-level
router abstraction can be used to reconfigure the routing architecture dynamically. That
is, we can change between the three architectures moving from a centralized approach
with one router to a distributed system with more routers (or vice versa) to adapt based
on the need of an application.

Let us clarify the difference between the DR and the newly-introduced ADR, architec-
tures. DR is a fixed architecture that typically does not change while a system runs. If it
changes in reality, a redeployment has to happen, manually designed and often manually
deployed by system engineers. In our ADR approach, the system dynamically switches
based on the results of optimization analyses that can be triggered, for instance, in

18

2.2. Adaptive Dynamic Routers Architecture

destination

source

Client Reconfigurable Component] [Inlernal Requestl [Client Request

[Scheduler or

L J U

| [fowe] [servs)

Figure 2.4.: Metamodel of the Adaptive Architecture

certain time intervals or whenever certain metrics change. For example, when round-trip
performance degrades, requests fail, incoming load changes, or a different route containing
more services is used. In contrast to all three fixed architecture patterns, ADR is adaptive
and changes at runtime.

2.2.1. Metamodel

Figure presents the metamodel of our architecture. A Model describes multiple Hosts
and Components. Each Component is deployed on (up to) one Host at each point in
time, which is any execution environment for these components, either physical or virtual.
Request models the request flow, linking a source and a destination component. There
are several different component types. Clients send Client Requests to API Gateways. To
process these requests, API Gateways send Internal Requests to Routers and Services.

Routers and Services are both Reconfigurable Components, i.e., they are the adaptation
targets. The Configurator Components perform the reconfiguration. Monitor observes
Reconfigurable Components and the requests that pass the API Gateways. Manager
manages the control flow of the reconfiguration by calling the Infrastructure as Code
(IaC) to update the infrastructure or the Scheduler to reschedule the containers.

2.2.2. Example of a Routing Configuration

Figure presents a component diagram of a sample configuration, in which dashed lines
represent the data flow and solid lines the reconfiguration control flow of an application.
As shown, clients access the system via an API gateway that publishes monitoring
data to the Quality of Service (QoS) monitor. The configuration manager observes the
monitoring data and triggers a reconfiguration. Moreover, the manager can communicate
with the visualizer component to visualize the current architecture configuration. The
manager calls the IaC component if infrastructure changes are needed, which reconfigures
the infrastructure. IaC can also trigger the scheduler to reschedule the containers.

19

2. Approach Overview

Dynamic Configurator

Visualize

Visualize
Infra. Config. Data

Reconfig.

Monitoring Data

Consume Monitoring Data

Services

Reconfig.

Routers \

\ \

Reconfig.

Reconfig.

Figure 2.5.: Component Diagram of an Example Configuration (dashed lines represent the
data flow and solid lines the reconfiguration control flow of an application.)

20

2.2. Adaptive Dynamic Routers Architecture

Dynamic Configurator

Quality of Service Monitor

Read Monitoring Data

P Reconfig. Needed?

Time-Interval / [Nol
Manual Trigger

[Yes]

Reconfig.
Triggered

Manager

Reconfig.
Triggered

[Consume Monitoring Data j

v

EPerform Multi-Criteria Optimization Analyses]

v

E Choose the Final Reconfig. Solution]

Based on a Preference Function

Infra. Reconfig. Needed?

[No] [Yes]
Scheduling Infra. Reconfig.
Triggered Triggered

Infrastructure as Code
Infra. Reconfig.
Triggered

[Reconfigure the Infrastructure j

Scheduling
Triggered

Scheduler

Scheduling
Triggered

v

[Schedule Containers]

Figure 2.6.: Reconfiguration Activities of the Dynamic Configurator

21

2. Approach Overview

Alternatively, if there is no need for infrastructure reconfiguration, the manager directly
triggers the scheduler. After a reconfiguration, the scheduler can call the visualizer
component to visualize the reconfiguration.

2.2.3. Reconfiguration Activities of the Dynamic Configurator

Figure [2.6 shows the reconfiguration activities of the dynamic configurator. The QoS
monitor reads monitoring data and checks for reconfiguration, e.g., when degradation of
reliability and performance metrics are observed. Moreover, the reconfiguration can be
triggered periodically or manually by an architect. When a reconfiguration is triggered,
the reconfiguration manager consumes the monitoring data, performs multi-criteria
optimization analyses [4], and chooses a final reconfiguration solution. Based on this
analysis, either the [aC component is triggered to reconfigure the infrastructure or the
scheduler reschedules the containers. These activities are further explained in this section.
As mentioned, our architecture is based on MAPE-K loops [47, [16] [17]. The QoS monitor
implements the monitor and analyze stages, the manager develops the plan step, and
the IaC component and the scheduler realize the ezecute step. We use our models as
knowledge.

Figure shows the visualization activities of the dynamic configurator. The visualizer

Dynamic Configurator

o
Vi

[Create Visualization]
Visualization Dynamic Configurator

Manager Scheduler

Create .
Visualization \
[Schedule Containers]
Consume Monitoring Data

Visualization Triggered
Triggered

Visualizer
Visualizer
- A Visualization
Visualization Triggered
Triggered \V
Vi li fi i
[Visualize Configuration j [isualize Configuration j

¥ $

(a) Initial Visualization (b) Visualization after Reconfiguration

Figure 2.7.: Visualization Activities of the Dynamic Configurator

22

2.3. Details of our Scientific Experiments

is called upon either by the manager or the scheduler in two different scenarios. The
manager triggers the visualizer when a user requests to create a visualization of the current
architecture configuration as shown by Figure The scheduler calls the visualizer
after a reconfiguration is performed and containers are rescheduled. This visualization
is created to inform the user of the latest changes in the architecture configuration as

shown by Figure

2.3. Details of our Scientific Experiments

In this thesis, we introduce multiple models of quality-of-service attributes. These
models are used in our proposed ADR architecture when making architectural design
decisions (further explained in the remainder of the dissertation). The goal of our multiple
experiments is to validate these models empirically. We provide the details of our main
scientific experiments in this chapter to avoid repetition. These experiments are published
in multiple studies|13], 12, [11] and include a runtime of 1200 hours on our private cloud
infrastructure as well cross-validation on a public cloud infrastructure. Moreover, we
performed shorter empirical validations for different chapters of this dissertation, details
of which we describe in their respective chapters.

2.3.1. Example ADR Model Instance

We use the concepts of our metamodel to instantiate an example model. Figure shows
an ADR model instance with three routers and six services. This figure is repeated in
multiple chapters of this thesis, where different model elements must be illustrated. The
instantiated components send Internal Requests amongst one another to complete the
processing of the one Client Request (see Figure .

2.3.2. Technical Details

This section provides the technical details of our validation experiments.

Private Cloud Infrastructure

We used a private cloud with three physical nodes, each having two identical CPUs. Two
cloud nodes host Intel®Xeon®E5-2680 v4 @2.4OGH7H and the other one hosts the same
processor family but version v3 @2.50GHz. The v4 and v3 versions have 14 and 12 cores
for each CPU and two physical threads per core (in total, 56 and 48 threads). On top of
the cloud nodes, we installed Virtual Machines (VMs), each using VMware ESXi version
6.7.0 u2 hypervisor with eight CPU cores and 60 GB system memory. All VMs run
Ubuntu Server 18.04.01 LTY| Dockerl®| containerization is used to run the cloud services

“https://www.intel.com /content /www /us/en /homepage.html
®https://www.ubuntu.com
Shttps:/ /www.docker.com

23

2. Approach Overview

«host»

«host»

«host»

«Service» {l

servicel

«Service» {l

service2

«Service» {l

service3

«Service» {l

service4

«Service» {l

serviceb

«Service» {l

service6

TV

1

«Router»
routert

TV

1

«Router»

router2

TV

1

2]

«Router»
router3

«host»

«API Gateway E

gateway

N
T
I
I

} Client Request

Internal Request

I «host»
I

«Client» {l

client1

Figure 2.8.: Example Configuration of Dynamic Routing Applications (solid arrows show
the incoming requests of components.)

implemented in Node. j

Public Cloud Infrastructure

We use our private cloud to have control over the infrastructure and have repeatable
experiment runs. On a public cloud, other factors can influence the results, such as the
parallel workload of other applications or the physical distance of the nodes. To show that
our approach can be used on other infrastructures as well, we empirically validate our
results also on Google Cloud Platform (GCP)ﬁ The details of these validation experiments
are reported in each chapter separately.

Load Generation

We used five desktop computers to generate load, each hosting an Intel®CoreT™i3-2120T
CPU @2.60GHz with two cores and two physical threads per core. All desktop computers
have 8 GB of system memory and run Ubuntu 18.10. They generate load using Apache
JMeteIﬂ that sends Hypertext Transfer Protocol (HTTP) version 1.1|E| requests to the

"https://nodejs.org/en/
8https://cloud.google.com
%https://jmeter.apache.org
Yhttps://tools.ietf.org/html/rfc7230

24

https://cloud.google.com
https://jmeter.apache.org
https://tools.ietf.org/html/rfc7230

2.3. Details of our Scientific Experiments
cloud nodes.

2.3.3. Architecture Configurations

Any application that has a request flow can be modeled using our proposed metamodel.
We used a few sample architecture configurations to calculate the accuracy of our models.
These configurations follow the convention for the request flow shown by the example
model in Figure All clients send client requests to the API gateway. Internal requests
are sent one by one from routers to services and vice versa. Also, for the sake of simplicity,
we label the services and the routers incrementally from 1 and make the internal requests
go through all of them linearly. Moreover, we distribute services equally among routers.

As in the example model, we utilized one virtual machine exclusively, with only one
Docker container, to run the API gateway. We distributed the cloud services, each on a
separate container, amongst three VMs. The distribution is so that all virtual machines
have the same number of services (with a maximum difference of one service). However,
the placement of routers on hosts is different from that of the example model. For
centralized routing CE architecture, we placed the router in a Docker container exclusively
on one VM. For distributed DR architecture, we used three exclusive VMs, each with
only one container for the routers. Finally, for the sidecar architecture pattern [49], we
placed each sidecar in a separate container on the same VM, where its directly-linked
service resides.

2.3.4. Experiment Cases

Let ¢f be the incoming call frequency. We selected c¢f based on a study of related works as
10, 25, 50, and 100 requests per second (r/s). In many related studies (see, e.g., |33l 187]),
100 r/s (or even lower numbers) are chosen. Consequently, we have chosen this number
as our highest bound and selected different portions to study its effects.

cf € {10,25,50,100} /s (2.1)

Let ngery be the number of services in an ADR application. Based on our experience
and a survey on existing cloud applications in the literature and industry |5, [12], the
number of cloud services directly dependent on each other in a call sequence is usually
rather low. As a result, we chose 3, 5, and 10 as values for the number of services in the
call sequence:

Nserv € {3,5,10} (2.2)

As mentioned, we study three representative architecture configurations. Let n,.q: be
the number of routers in a dynamic routing application. In a centralized routing schema |79,
26|, only one router processes all incoming requests, i.e., N0yt = 1. On the other hand, in
a completely distributed routing pattern, such as the sidecar pattern [49], there is one
router per each service, i.e., Nyout = Ngery. Additionally, we study a combination of these
two extremes, i.e., the dynamic router pattern [45], where several routers process the
requests, e.g., one router per each geographical region. For this case, we chose a case of

25

2. Approach Overview

three routers, i.e., nyout = 3, each deployed on a separate VM that processes the requests
of services on the same machine.

Nrout € {1737nserv} (23)

In this doctoral thesis, we study component crashes and their effects on quality-of-service
measures (see Chapter E for more details). Let C' P, be the crash probability, C'I the crash
interval, d. the downtime of each component after it crashes, T' the observed system time,
and nepqsn, the number of crash tests per T'. In our experiment, we simulated a node crash
by generating a random number for each cloud component, i.e., the services and routers.
If the generated random number for a component was below its crash probability C' P,
we stopped the component’s Docker container and started it again after a time interval of
d = 3 seconds. We chose T' = 600 seconds, during which we checked for a crash for all
components, i.e., routers and services, simultaneously every C'I = 15 seconds; therefore,
Nerash = 40.

d=3s (2.4)

T =600s (2.5)
CI=15 (2.6)
Nerash = 40 (2.7)

Each component had a uniform crash probability of 0.5% each time we checked for a
crash, as mathematically expressed by Equation . Note that this crash probability
is much higher than observed for real-life cloud applications: We chose a relatively high
crash probability to have a high enough likelihood to observe a few crashes during 7', so
we can study their effects on QoS measures.

CP,=05% V¥ ceC (2.8)

2.3.5. Methodological Principles of Reproducibility
We followed the principles of reproducibility introduced in [68]:

e Repeated experiments: We repeated our scientific experiment with several runs, as
explained in each chapter.

o Workload and configuration coverage: We covered many experimental cases and
different configurations.

o FEzperimental setup description: We reported the technical details of our experiment.
Moreover, in each chapter, we report our setup specific to the experiment performed.

e Open-access artifact: To support replicability, we published the data, code, and
evaluation logs of our experiments as an open-access artifact in the online appendix
of this dissertationt.

26

2.3. Details of our Scientific Experiments
e Probabilistic result description of measured performance: We described our empirical
results in each chapter separately.

e Statistical evaluation: In each chapter, we performed a separate statistical evaluation
of the results.

o Measurement units: We reported all units.

e (ost: We did not have any costs for the experiments as we performed them on our
available private cloud. For the GCP validation experiments, we used the free tier

service.

"https://cloud.google.com/free

27

https://cloud.google.com/free

3. Reliability Model

This chapter presents our analytical models of reliability to address the research problem
Py: Lack of reliability models specific to service- and cloud-based dynamic routing. We
model component crashes and calculate the expected request loss by these crashes. To
validate our models, we analyze the data from our scientific experiment. Our proposed
reliability model is also used in Chapter [4] to study the specific trade-offs analysis of
reliability and performance. Moreover, this chapter addresses Ps: Lack of an approach to
automatically adapt the reliability and performance trade-offs as the presented model is
used for the quality-of-service trade-offs adaptation in the later chapters of this thesis.

3.1. Introduction

Various dynamic routing architectures are used in today’s service- and cloud-based
architectures, including sidecar-based routing |49, [79], routing through a central entity
such as an API gateway [79], or architectures with multiple dynamic routers [45]. So far,
the impacts of such architectures and their different configurations on system reliability
have not been extensively studied. Therefore, it is hard to consider reliability as a trade-off
in the architectural design decision for more centralized or distributed dynamic request
routing. While more centralized approaches tend to be easier to manage, understand
and change, it is more difficult to reach a fine-grained level of control [61]. As reliability
is a core consideration in service and cloud architectures [67], a reasonably accurate
failure prediction for architecture design options is beneficial. This prediction would help
architects better design system architectures considering quality-of-service trade-offs.

We model request loss during router and service crashes in an analytical model based
on Bernoulli processes [90]. Request loss is the externally visible metric indicating the
severity of the crashes’ impacts. The model abstracts central entities, dynamic routers,
and sidecars in a common router abstraction. This abstraction makes it possible to
predict request loss during router and service crashes for any configuration of a request
flow sequence in service- and cloud-based system architectures.

To validate our analytical model, we performed an extensive experiment of 1200
hours of runtime. We study 36 representative experiment cases (i.e., different experiment
configurations) for the three kinds of architectures with different numbers of cloud services,
routers, and request call frequencies (see Section for more details). We compute the
prediction error of our model compared to our empirical results. Our results show that the
error is constantly reduced with more experiment runs, converging at a prediction error of
8.1%. Given the common target prediction accuracy of up to 30% in the cloud performance
domain [59] and the fact that the goal of our study is architecting with a rough prediction

29

3. Reliability Model

of impact on system reliability, these results are more than reasonable. With the same
crash probability for all components, the same frequency of incoming requests, and the
same number of cloud components, our model predicts, and our experiment confirms,
that more decentralized routing results in losing a higher number of requests compared

to more centralized approaches.

The structure of the chapter is as follows: Section presents a specific metamodel and
our analytical reliability model. Next, in Section we describe the empirical validation

Table 3.1.: The Mathematical Notations Used in this Chapter

Notation ‘ Description

T Observed system time
Nrout Number of routers
Nserv Number of services
Nerash Number of crash tests
CI Crash interval
cf Incoming call frequency
A Allocation of routers
Com Set of all components
Terashed A router r when crashed
Serashed A service s when crashed
IR Internal request
IRt Total number of internal requests per a call sequence
ILt Total internal loss
ILR Sum of the internal loss per crash of each router
ILg Sum of the internal loss per crash of each service
IL. Internal loss for a component ¢
ELp Total external loss
Cr Total number of crashes
neree Number of executed internal requests for the crash of a component ¢
de Expected average downtime after a component ¢ crashes
CP. Crash probability of a component ¢ every C'1
E[C] Expected number of crashes of a component ¢ during T
r/s Requests per second
MAPFE Mean absolute percentage error
MAFE Mean absolute error
MSE Mean squared error
MSFE Root mean squared error
model. Result of the model for the experiment case ¢
empirical. | Measured empirical data for the experiment case ¢
Cases Set of experiment cases
Ne Length of Cases

30

3.2. Model of Request Loss During Router and Service Crashes

of our study. We evaluate the prediction error and discuss the threats to validity in
Section [3.4] Finally, Section [3.5] concludes the chapter.

3.2. Model of Request Loss During Router and Service
Crashes

In this section, firstly, we explain the central concepts of our work with a metamodel.
Secondly, we propose a Bernoulli model [90] of request loss during router and service
crashes. Table presents the mathematical notations used in this chapter.

3.2.1. Metamodel

We consider various kinds of Components in service-based architectures as shown in
Figure In this chapter, we consider the following components: API Gateways, Clients,
Services, and Routers. Request models the request flow, linking a source and a destination
component. Client Request is an abstraction of a request flow between a Client and

System Profile

O IRy total internal requests

Component Crash)
P O ngeny, NUMber of services

O IL internal loss O Aallocation of routers
O EL, external loss O C set of all routers and services
O, exec O T observed system time

n, number of executed requests O Cl crash interval

O cf call frequency
O Ngash NUMber of crash tests

uses

Component Profile

Router Crash Service Crash O P, crash probability every C/

O Terashed Fouter r when crashed O Srashed S€IVice s when crashed O E[C] expected number of crashes during T
O d, expected average downtime

1 1 1
|Router| |Service| m

Figure 3.1.: Specific Metamodel Concepts for Modeling Request Loss

31

3. Reliability Model

an API Gateway. Internal Request (IR) models a request flow amongst API Gateway,
Router, and Service components. Figure [3.1 presents our extended metamodel with
specific concepts for modeling request loss. The Profile and Crash classes contain member
variables explained below in our model.

3.2.2. Definition of Internal and External Loss

To illustrate our approach, we use the concepts of our metamodel in Figure 2.4 to
instantiate an example model. Figure [3.2] shows a configuration of the Adaptive Dynamic
Routers (ADR) architecture with three routers and five services. The instantiated
components send internal requests, labeled from IR1 to IR11, amongst one another to
complete the processing of one client request. The partially ordered set representing the
call trace, i.e., the Client Request, IR1, ..., IR11, is called the call sequence. When a
router or a service crashes before it has processed a pending request, client requests will
not be processed fully, which results in the application not being responsive to the client.
We define external loss as the number of client requests not processed during a component
crash and internal loss as the number of lost internal requests.

Internal Loss

Let IR7 be the total number of internal requests per call sequence. When a component
crashes, the internal loss can be counted as I Ry minus the number of already-executed

«host» «host» «host»

«Service» {l

servicel

«Service» {l

service2

«Service» {l

service3

«Service» {l

service4

«Service» {l

serviceb

«Service» {l

service6

32

ﬁRZ \bRS

ﬁm IR5

«Router»
routert

2]

%RG \bFW %RS

«Router»
router2

IR9

ﬁFHO \bRH

«Router»
router3

ﬁFHZ
2]

IR1

«host»

«AP| Gateway» {l

IR13

gateway

N

T
1
!

} Client Request

I «host»
|

«Client» {l

client1

Figure 3.2.: Example Model Instance with Internal Requests

3.2. Model of Request Loss During Router and Service Crashes

requests (per each external loss). Let I L., FL. and n*® be the internal loss, the external
loss, and the number of executed internal requests for the crash of a component c:

IL, = EL,- (IRp — n*e) (3.1)

An Example Crash Scenario

To clarify, we consider the crash of router3 in Figure In this case, IR1 to IR8 will be
executed, i.e., eight executed internal requests. However, we lose five internal requests,
namely IR9 to IR13. We can see that there are a total of thirteen internal requests:

nevee — g (3.2)
IRy =13 (3.3)
IL.=ELc-5 (3.4)

that means per each external loss, we lose five internal requests. Note that I Ry and ng**®

must be parameterized based on the application. An example of this parameterization is
given in Section

External Loss

Let d. be the expected average downtime after a component ¢ crashes and c¢f the incoming
call frequency, i.e., the frequency at which client requests are received. The following
formula gives the external loss per crash of each component ¢. The external loss is
calculated as the number of client requests that were not processed:

EL.=d,-cf (3.5)

3.2.3. Bernoulli Process to Model Request Loss During Router and
Service Crashes

In this section, we model request loss based on Bernoulli processes [90]. Note that we
only model the crash of routers and services sub-components in our metamodel. This
is because we assume an API gateway is stable and reliable. Moreover, a crash of a
client results in requests not being generated, so requests are not lost. Hence, we use the
common term components for all instantiated routers and services throughout the rest of
this chapter.

Number of Crash Tests

Let T be the observed system time. During 7', all components can crash with certain
failure distributions. It is realistic to assume that these distributions are known with a
certain error, as they can be estimated from past system runs, e.g., recorded in system
logs. Note that many cloud systems run without stopping. 1" should be interpreted as the
interval during which these failure distributions are observed (e.g., failure distributions of

33

3. Reliability Model

a day or a week). A crash of each component can happen at any time in 7. We model
this behavior by checking for a crash of any system components in intervals. Let CT
be the crash interval, i.e., the period of time we check for a crash. Our model “knows’
about crashes in discrete time intervals only, as would be the case, e.g., if the Heartbeat
pattern [46] or the health check API pattern [76] are used for checking system health.
Our model allows any possible values for T" or C'I and different crash probabilities for
each component, e.g., based on empirical observations in a system under consideration.
Let neresn be the number of times we check for a crash of components during 7T, i.e., the
number of crash tests:

Y

T
Nerash = &J (36)

Expected Number of Crashes

Each crash test is a Bernoulli trial in which success is defined as “component crashed"
and failure as “component did not crash". Assuming CI > d., all n..qs, crash tests of a
component ¢ are independent of each other. This assumption is justifiable since, in reality,
when a component crashes and is down, it cannot crash again. Another crash of the same
component can happen only after the component is up and running, i.e., the component’s
downtime has passed. Therefore, for each component, we can create a Bernoulli process
of its crash tests. Then, the binomial distribution of each Bernoulli process gives us the
number of successes [90], that is, the number of times a component crashes during 7'. For
each component, the expected value of the binomial distribution is the expected number
of crashes. Let C'P, be the crash probability of a component ¢ every time we check for a
crash which is derived, dependent on the application, from the failure distributions. Also,
let E[C.] be the expected number of crashes of a component ¢ during 7T*:

E[Cc] = Ncrash * CPF, (37)

Total Number of Crashes

Let Cp be the total number of crashes. C'r can be calculated as the sum of the expected
number of crashes of each component.

or=Y B (38)
ceCom
which we can rewrite based on Equations (3.6) and (3.7) as:
T
== P .
Cr =57 ce;mC . (3.9)

Total External Loss

Let E Lt be the total external loss. E Lt can be calculated as the sum of external loss
per the crash of each system component:

ELy=)Y E[C]-EL. (3.10)

ceCom

34

3.3. Empirical Validation

The total external loss can be rewritten using Equations (3.5)) to (3.7)) as:

ELp = Llj ccf- Y CP.-d, (3.11)

c1 ceCom

Total Internal Loss

Let I L7 be the total internal loss. ILp can be calculated as the sum of internal loss per
each component crash. Let Com be the set of all components that can crash, i.e., routers
and services, we have:

ILp=) E[C]-IL. (3.12)
ceCom
which can be rewritten using Equations (3.1)) and (3.5) to (3.7) as:
T
Iy =|7] cf- > CP.-de- (IRp — &™) (3.13)
ceCom

3.3. Empirical Validation

This section introduces the experiment we designed to validate the accuracy of our
reliability model. Moreover, we provide application-specific model formulae regarding our
experiment setup. Finally, we present our empirical results.

3.3.1. Experiment Planning

We present the specific details of our experiment in this chapter. Section [2.3 reports
the general details of our scientific experiment, e.g., the architecture configurations, the
experiment cases, and the methodological reproducibility principles.

Goals

Our experiment aims to empirically validate our model’s accuracy with regard to the
number of crashes as well as the total external and internal loss represented by Equa-
tions and . We realized the architectures using a prototypical implementation,
instantiated and ran them in our private cloud infrastructure, measured the empirical
results, and compared them with our model.

Specific Model Formulae

We parameterize different model elements based on our experiment cases. These para-
meterized models are used in this chapter to compare to the empirical measurements.
Moreover, we use these models in the later chapters, where we compare different quality-
of-service measurements. As explained before, in Equation , IR and n&®® need to
be parameterized based on the application. In these configurations, each service receives
an internal request, processes it, and sends it back to a router or the API gateway. We

35

3. Reliability Model

can calculate I R based on the number of services as the following since there are one
incoming and one outgoing request per each service and one request from the gateway:

IRy = 2ngery + 1 (3.14)

In the example configuration presented in Figure @, we have ngery, = 6 services and
IRy = 13 internal requests.
To calculate nt®*“, we need to differentiate between service and router crashes, that is
why we have different concepts for them in the metamodel shown in Figure In case
of a service crash, all internal requests until the last router will be executed. Let Serqshed
be the label number of the crashed service, then for our architecture configurations, we
have:

et = 28crashed — 1 (3.15)
Remember that we use a uniform crash probability and downtime of components, as well
as constant system time and crash interval (see Section . Using Equation ,

the internal loss for all services, i.e., ILg, can be calculated as:
ILs =0.6-cf - nserv(Nsery + 1) (3.16)

Let A be the allocation of routers, which is a set indicating the number of directly
linked services of each router. In case of a router crash, we must know A. For instance,
the allocation of routers in the example model presented in Figure [3.2]is:

A ={2,2,2} and Ap=0 (3.17)

Let nyout be the number of routers in a system. In our experiment, services were equally
allocated to routers:

A :{nsem Nserv (nserv :Izl)} and Ay=0 (3.18)

) FREY
Nyrout Mrout Nyrout

in which A has the length of n,.,:. In the example model instance, there are six services,
i.e., Ngery = 6, and three routers, i.e., n,.0yt = 3. Therefore, we have the allocation
presented in Equation .

Let 7erqsheqd be the label number of the crashed router. For our architecture configura-

tions, we have:
Terashed

nge =2 " A (3.19)
r=1

which means to find the number of executed requests before the crash of router r, we sum
over the allocated services of all routers up until the crashed router and multiply it by
two since there is one incoming and one outgoing request from a service to a router (see
Figure . Let ILg be the internal loss for all routers:

ILR =0.6- Cf ' [nserv + nrout(nserv + 1)] (320)

36

3.3. Empirical Validation

Finally, we can rewrite Equation (3.12) by adding Equations (3.16) and (3.20) as:
ILr =0.6-cf - [(nserv)2 + (nrout + 2)nserv + nr‘out] (321)

We rewrite Equation (3.21)) for the investigated architectures separately. In the case of
the Central Entity (CE) architecture in our experiment, all services are connected to one
router, i.e., the central entity component (see Section for architecture details).

Nrout = 1 (3.22)
ILy =0.6-cf - [(Nsers)? + 3nsers + 1] (3.23)

In the case of the Dynamic Routers (DR) architecture in our experiment, all nge,, services
are equally distributed (with a maximum difference of one service) on the three dynamic
routers:

Nrout = 3 (3.24)
ILy =0.6-cf - [(Nsers)® + Sserv + 3] (3.25)

In the case of the Sidecar-based Architecture (SA) in our experiment, each service is
connected to one router, i.e., a sidecar.

Nyrout = Nserv (326)
ILr =0.6-cf - [2(nserv)2 + 3nserv] (327)

Since we use a constant system time and crash interval and a uniform crash probability
and downtime of components, we can rewrite Equations (3.9) and (3.11)) for our experiment
using our cases reported in Section [2.3.4}

ELpr =0.6-cf - (Nserv + Nrout) (3.28)
Cr =0.2 (Nserv + Nrout) (3.29)

Data Set Preparation

For each experiment case, we instantiated the architectures. We ran the experiment for
exactly ten minutes (excluding setup time), during which we checked for crashes and
logged the output so we could later calculate the number of external losses precisely. As
outlined above, we studied three architectures, three levels of ngepy, and four levels of cf,
resulting in 36 experiment cases. Therefore, a single run of our experiment takes exactly
six hours (36x10 minutes) of runtime. Since our model revolves around expected values
in Bernoulli processes, we repeated this process for 200 experiment runs, i.e., 1200 hours
of runtime, and reported the arithmetic mean of the results. To support reproducibility,
the code and evaluation scripts are provided in the online artifact of this dissertationl.

37

3. Reliability Model

3.3.2. Empirical Results

In this section, we present the predicted results of our analytical model and the empirical
results shown in Table [3.2] and Figure

ILt is a model element that incorporates crashes of all components. Moreover, it
includes all model views, e.g., architecture configurations, expected average downtime,
etc. Therefore, we conduct our analysis mainly based on ILp. It can be observed from
Table that when we keep nger, constant, increasing cf results in a rise of ELp in all
cases, which leads to a higher value of I L.

Table 3.2.: Results of the Model and the Experiment

Arch. | nger | cf Cr | ELy | ILg Cr | ELy | ILy | |o(Ly)
Model Experiment

10 | [0.800 [24.000 [114.000 0.760 [23.395 [98.960 118.552

3 | 25| [0800] 60.000 [285.000 0.620 | 47.435 | 228.975 292.389

50 | [0.800 [120.000 [570.000 0.705 | 106.370 | 480.235 608.635

100 | | 0.800 | 240.000 | 1140.000 | [0.725 [218.130 | 1045.000 | | 1216.765

10 1.200 [36.000 | 246.000 1.165 | 36.405 | 236.575 236.536

CE 5 |25 1.200 [90.000 [615.000 1110 | 85.400 | 608.040 574.267
50 1.200 | 180.000 | 1230.000 | [1.115 | 172.085 | 1155.550 | | 1173.295

100 | [1.200 [360.000 | 2460.000 | |[1.040 [317.585 | 2223.655 | | 2101.272

10 | [2200 [66.000 [786.000 1.920 [62.000 | 720.190 616.778

10 |25 2.200 | 165.000 | 1965.000 | [2.125 | 171.290 | 2063.305 | | 1711.931

50 | [2.200 [330.000 [3930.000 | [2.160 | 344.765 | 4223.665 | |3458.119

100 | | 2.200 | 660.000 | 7860.000 | [1.960 [590.665 | 6853.500 | | 6567.047

10 1.200 | 36.000 | 162.000 1.075 | 32505 | 153.045 175.952

3 | 25 1.200 [90.000 [405.000 1225 [92.745 | 452.160 466.814

50 1.200 [180.000 | 810.000 1.225 | 182.595 | 882.695 916.540

100 | [1.200 | 360.000 [1620.000 | [1.130 [328.925 | 1477.405 | |1470.332

10 1.600 [48.000 [306.000 1.670 | 51.995 | 319.210 301.989

DR 5 | 25 1.600 | 120.000 | 765.000 1.760 | 135.105 | 816.895 686.709
50 1.600 | 240.000 | 1530.000 | [1.790 | 270.540 | 1597.535 | | 1324.199

100 | | 1.600 | 480.000 [3060.000 | [1.635 [490.990 | 2909.115 | | 2353.168

10 | [2.600 | 78.000 | 930.000 2.525 | 82.255 | 921.610 495.543

10 |25 2.600 | 195.000 | 2325.000 | [2.355 | 187.715 | 2181.590 | |[1275.035

50 | [2.600 [390.000 | 4650.000 | [2.205 | 345.350 | 4043.070 | | 2508.002

100 | [2.600 | 780.000 | 9300.000 | |2.375 [741.870 | 8544.700 | | 5022.780

10 1.200 [36.000 | 162.000 1.140 | 34.910 | 170.265 186.911

3 |25 1.200 [90.000 | 405.000 1.230 | 93265 | 435.685 452.190

50 1.200 | 180.000 | 810.000 1.215 | 181.305 | 883.510 911.088

100 | | 1.200 | 360.000 [1620.000 | [1.185 [345.950 | 1634.850 | | 1844.829

10 | [2.000 [60.000 [390.000 1.795 | 55.745 | 350.055 244.898

SA 5 | 25 2.000 [150.000 [975.000 1.795 [138.910 | 891.525 647.402
50 | [2.000 [300.000 [1950.000 | [1.715 | 261.740 | 1716.095 | |1284.733

100 | | 2.000 | 600.000 [3900.000 | | 1.790 [528.420 | 3385.240 | | 2633.592

10 | [4.000 [120.000 | 1380.000 | |[3.900 | 127.715 | 1443.040 773.632

1o |25 | [4.000 | 300.000 | 3450.000 | |3.745 | 306.745 | 3477.305 | | 1979.270

50 | [4.000 | 600.000 | 6900.000 | |3.860 | 617.375 | 7140.655 | | 4262.114

100 | [4.000 [1200.000 [13800.000 | [3.870 [1232.770 [14072.910 | | 8287.361

38

3.4. Discussion

Since in our experiment, we instantiated the DR architecture with three dynamic
routers, it is interesting to consider the experiment case of nge, = 3. In this case, SA
and DR have the same number of components, i.e., routers and services. Note that SA
uses a sidecar per each cloud service; therefore, with nge, = 3, we will also have three
sidecars. The difference between the two architectures in this experiment case is that
in DR, dynamic routers are placed on a different VM than their directly-linked services.
However, in SA, sidecars are placed on the same VM on which their corresponding cloud
services reside. For this reason, it can be observed that the reported values for SA
and DR closely resemble each other when we have different values of ¢f but keep the
number of cloud services nge, constant at three. This resemblance can also be observed
in Figures|3.3a/ [3.3d} |3.3g and |3.3], especially with higher values of cf, the distributions
of ILy and the interquartile ranges of DR and SA are very close to one another.

Considering the cases with five or ten cloud services, we almost always observe higher
I Ly when we change the architecture from a CE to a DR or from a DR to an SA but keep
the same configurations, that is, if we keep ngery and cf constant. It is because, in our
experiment, CE has only one control logic component (the central entity), DR has three
(dynamic routers), and SA has nger (sidecars). Consequently, the number of crashes
corresponding to control logic components goes up from CE to DR and then to SA. This
increases the total number of crashes Cp (predicted in our model by Equation),
which results in losing more requests.

One interesting observation regarding these cases is that when nge., = 5, we have one
router for CE, three for DR, and five for SA. In Figures [3.3b} [3.3¢} [3.3h| and [3.3k, we can
see in the violin plots and the boxplots that the difference in the internal loss between CE
and DR is close to that of DR and SA. However, in the case of nger, = 10, we observe
a much higher internal loss for SA as shown in Figures [3.3c] [3.31] [3.3i and [3.3]. This is
because, as before, we have one router for CE and three for DR, but now ten for the SA
architecture.

3.4. Discussion

In this section, we evaluate the error of the prediction. Moreover, we discuss the threats
to the validity of our study.

3.4.1. Evaluation of the Prediction Error

We use the predicted results of our model presented in Table to measure the model’s
accuracy compared to the empirical data from our experiment. To do so, we measure
the prediction error by calculating the Mean Absolute Percentage Error (MAPE), Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE) [90]. Let model. and empirical. be the result of the model and the measured
empirical data for the experiment case ¢, respectively. Also, let Cases be the experiment
cases and n. the length of C'ases, which is 36 in this study. We use the following formulae

39

3. Reliability Model

800~

ce DR
Architecture

(a) (Neerv,cf) =

2000~

1000

%

¢ <CF———

o

Archltectu re

(d) (nserv,cf) =

6000 -

4000~

2000~

F

1l

Archltectu re

8000~

™ 4000~

%,

o

Archltectu re

(G) (nserv,cf) =

(nserva Cf) =

(3,100)

2000~
4000~

=
2000~
0-

sa
Architecture

(3,10) (b) (nserv, cf) = (5,10)

3000~
2000~

1000~

CE DR
Architecture

(3, 25) (e) (nservy Cf) = (5’ 25)

25000~
8000~
| 20000~
6000~ !
i 15000~
4000~
- -
= = 10000~
2000~
5000~
0-
. . . -5000-
CE DR SA
Architecture

(3,50)

—~
=

(nser’uv Cf) = (5’ 50)

40000
10000~

30000
-
~— 20000

=
5000~

10000

E—
A Shn

o.
3

CE
Architecture

(k) (nserm Cf) = (5, 100)

()

15000 -

10000~
=
5000-
o
SA

(f) (nserva Cf) =

0-

(1) (serv, cf) =

50000 -

%

0

CE DR SA
Architecture

(nserva Cf) =

(10, 10)

bo!

Archltectu re

(10, 25)

T

CE DR SA
Architecture

(10, 50)

Architecture

(nserm Cf) = (10, 100)

Figure 3.3.: Plots of all Experiment Cases Regarding the Total Internal Loss

40

3.4. Discussion

for our error measurements:

MAPE — 100% ' Z model,. —.empiricalc (3.30)
ne o= empirical,
1
MAE = — . Z |model. — empirical.| (3.31)
Ne ceCases
1
MSE = — - Z (model, — empirical,)? (3.32)
Me ceCases
RMSE = VMSE (3.33)

By definition, the expected value is the mean of a large number of repetitions [39]. As
previously mentioned, a single run of our experiment takes six hours of runtime (plus more
than three hours of experiment setup and post-processing of the results). In total, we were
able to run the experiment 200 times. Table reports prediction error measurements
of our model for a different number of runs regarding multiple model elements. A low
number of repeats is expected to increase the error since the effects of outliers on the
arithmetic mean of the data are considerable.

As the table shows, with a higher number of experiment runs, the prediction error is
reduced, which indicates a converging error rate. After 200 runs, the final prediction
MAPE error of 8.1% regarding I Ly is already low enough for the goal of this chapter,
which is the use of our model for predictions during architectural decision-making, where
even rough estimates would be beneficial. As mentioned, the common target prediction
accuracy in the cloud performance domain is 30% [59].

3.4.2. Threats to Validity

As in all empirical research, there are several threats to the validity and limitations of our
study that we discuss in this section based on the four threat types by Wohlin et al. [96].

3.4.3. Construct validity

In our study, we injected crashes to simulate real-world crash behavior at a given
probability. While this is a common approach (see Section for state of the art), the
threat remains that measuring internal and external loss based on these crashes might not
measure reliability well. For example, system reliability is also influenced by cascading
effects of crashes beyond a single call sequence [67] that are not covered in our experiment.
More research, probably with real-world systems and crashes, would be needed to exclude
this threat.

3.4.4. Internal validity

We collected an extensive amount of data to validate our model. However, we did so
in limited experiment time and with injected crashes, simulated by stopping Docker
containers. We avoided factors such as other loads on the machines where the experiment

41

3. Reliability Model

Table 3.3.: Prediction Error Measurements for Different Number of Experiment Runs

Error Number of | . ELT ILT
Runs
50 12.919 | 12.307 13.946
100 9416 | 8.492 9.593
MAPE (%) 150 8326 | 7.426 8.731
200 8081 | 7.097 8.105
50 0.202 | 24.803 | 251.464
100 0.154 | 18.471 | 205.340
MAE 150 0.139 | 16.290 | 172.579
200 0.130 | 16.743 | 158.877
50 0.057 | 1209.921 | 170988.061
MSE 100 0.037 | 831.525 | 156649.362
150 0.030 | 671.540 | 118297.046
200 0.026 | 611.528 | 74579.457
50 0.240 | 34.784 | 413.507
100 0.192 | 28.836 | 395.790
RMSE 150 0174 | 25.914 | 343.943
200 0.160 | 24.729 | 273.092

ran, and much of the related literature takes a similar approach. Still, research observing
real-world cloud-based systems with crashes would be needed to confirm that there are
no other factors influencing the measurements.

3.4.5. External validity

To increase internal validity, we decided not to run the experiment on a public cloud
where, e.g., other loads on the experiment machines might have had a significant impact
on the results. Consequently, there is the threat that generalization to a public cloud
setting might be limited. As our private cloud setting uses very similar hardware and
software stacks as many public cloud offerings, we believe this threat to be small. The
results might not be generalizable beyond the given experiment cases of 10-100 requests
per second and call sequences of length 3-10. But as this covers a wide variety of loads
and call sequences in cloud-based applications, the impact of this threat should be limited.
A related threat is that we implemented our model instances with Node.js, not using
off-the-shelf implementations, e.g., EnvoyH We did so to have a comparable infrastructure
and to avoid technological impacts on our results.

"https:/ /www.envoyproxy.io/

42

3.5. Conclusions

3.4.6. Conclusion Validity

As the statistical method to compare our model’s predictions to the empirical data,
we used the MAPE metric as it is widely used and offers good interpretability in our
research context. To mitigate the threat that this statistical method might have issues,
we double-checked three other error measures, i.e., MAE, MSE, and RMSE, which led to
similar converging results.

3.5. Conclusions

In this chapter, we studied the impact of an architectural design decision regarding
dynamic routing on system reliability and how this impact can be predicted. In particular,
the important cases of central entity, dynamic routers, and sidecar-based architectures
were investigated (see Sectionfor details). Our study concludes that more decentralized
routing results in losing a higher number of requests than more centralized approaches.
We derived an analytical model for predicting request loss in the studied architectures and
empirically validated this model using 36 representative experiment cases. Our results
indicate that, with more experiment runs, the prediction error is constantly reduced,
converging at a prediction error of 8.1%. The major impact of our work is on architectural
design decisions for the dynamic-routing architectures in service- and cloud-based systems.
Before our work, architects had to rely solely on their experiences as empirical evidence
focusing specifically on cloud-based dynamic routing was not available. To the best of
our knowledge, our work is the first to provide such evidence.

Our analytical reliability model in this chapter is a central point in our study and is used
repeatedly in the remainder of this dissertation. In the next chapter, we provide a detailed
trade-offs analysis of reliability and performance. Moreover, we suggest an analytical
performance model in the presence of component crashes (impeded reliability). Having
defined this model, we provide an approach in Chapter |5/ to automatically adapt the
reliability and performance trade-offs. Furthermore, in Chapter |8] we study a multifaceted
reconfiguration of dynamic routing applications, where we use our reliability model,
introduced and empirically validated in this chapter.

43

4. Performance Models

This chapter presents performance models to address the research problem Ps: Lack
of performance models specific to service- and cloud-based dynamic routing. Firstly, we
perform multiple regression analyses on the round-trip times of the requests recorded
during our experiment. We use this statistical performance model to precisely analyze the
reliability and performance trade-offs of our private cloud infrastructure. Secondly, we
present an analytical performance model that can be generalized to other infrastructures.
This versatile analytical model is used in Chapter [5| for the quality-of-service trade-offs
adaptation addressing Ps3: Lack of an approach to automatically adapt the reliability and
performance trade-offs.

4.1. Introduction

System reliability and performance are crucial quality attributes in almost all service-
and cloud-based systems. Choosing the wrong architecture pattern or configuration may
severely impact the reliability or performance of a software system. We aim to provide
models and empirical evidence to precisely estimate the reliability and performance trade-
offs. In the last chapter, we proposed an analytical model of request loss for reliability
modeling. We studied the accuracy of this model’s predictions empirically and calculated
the error rate in 200 experiment runs, during which we recorded the round-trip time of
requests. In this chapter, we use these values to create statistical performance models
based on multiple regression analyses [80]. Our regression analyses of the performance
data results in prediction models with high statistical significance. The results show that
distributed approaches for dynamic data routing have a better performance compared
to centralized solutions. We use the statistical performance models to precisely study
the reliability and performance trade-offs on our private infrastructure. However, these
statistical performance models do not apply to other infrastructures. Therefore, we
propose an analytical performance model generalizable to cloud-based dynamic routing
applications. We use our analytical model in the rest of this dissertation as it is more
versatile. Our results provide important new insights into dynamic routing architecture
decisions.

The structure of the chapter is as follows. Section presents our statistical perform-
ance model. Section [£.3 gives a detailed reliability and performance trade-offs analysis.
Section [4.4 presents our analytical model of performance, and Section [4.5 explains the
empirical validation of analytical model. Section discussed the threats to the validity
of our study, and Section concludes the chapter.

45

4. Performance Models

4.2. Statistical Model of Performance

This section presents performance models from the data of our experiment. Table 4.1
presents the mathematical notations used in this chapter. To support reproducibility, the
code, data, and log of our study are presented in the online artifact of this dissertation.

Table 4.1.: The Mathematical Notations Used in this Chapter

‘ Notation ‘ Description ‘
RTT Round-Trip Time
SC Service coefficient
FC Frequency coefficient
c Interaction coefficient
Int Intercept
Linear Reg. Linear regression analysis
Nonlinear Reg. | Nonlinear regression analysis
(o First quartile
Q3 Third quartile
o(RTT) Standard deviation of RTT
o(P) Standard deviation of performance
P Performance model
Pren Performance model for each architecture
Peog Performance model for the central entity architecture
Ppr Performance model for the dynamic routers architecture
Peog Performance model for the sidecar architecture
R Reliability model
Raren Reliability model for each architecture
RcE Reliability model for the central entity architecture
Rpr Reliability model for the dynamic routers architecture
Reg Reliability model for the sidecar architecture
T Observed system time
Nrout Number of routers
Nsery Number of services
CI Crash interval
cf Incoming call frequency
Com Set of all components
de Expected average downtime after a component ¢ crashes
CP, Crash probability of a component ¢ every CI
Req Number of client requests
r/s Requests per second
MAPE Mean absolute percentage error
MAE Mean absolute error
MSE Mean squared error
MSE Root mean squared error
model, Result of the model for the experiment case ¢
empirical, Measured empirical data for the experiment case ¢
Cases Set of experiment cases
Ne Length of Cases

46

4.2. Statistical Model of Performance

4.2.1. The Round-Trip Time

To compare and measure the performance of the architectures, we recorded the round-trip
time of requests in our experiment. Let RTT be the round-trip time, which is defined
as the difference in time from the moment the API gateway receives a request until it
is routed through all cloud services involved in the processing of the request. Firstly,
we generate an identification (ID) number for each HTTP request. Whenever the API
gateway receives a request, it starts a timer with an attached ID. Next, the request is
routed through cloud services and returns to the gateway. Finally, the gateway reads the
request ID and stops the corresponding timer. The RTT is the time calculated by the
timer.

4.2.2. Statistical Methods

Multiple regression analysis is a technique used to create prediction models that estimate
the value of a dependent variable based on the values of two or more independent
variables |80]. We consider the round-trip time of requests as the dependent variable and
the number of services and call frequencies as the independent variables. Moreover, we
create separate analyses for each architecture indicated by the number of routers. These
dynamic-routing architectures include the central entity (CE), dynamic routers (DR),
and sidecar-based architecture (SA) as presented in Section The following hypotheses
were formulated for this experiment:

Hy: There is no significant prediction accuracy of the round-trip time of requests by
the number of services and call frequencies.

Hy: There is a significant prediction accuracy of the round-trip time of requests by the
number of services and call frequencies.

We created two prediction models, i.e., linear and nonlinear, per each architecture
configuration to estimate the RTT based on call frequency and the number of services.

Table 4.2.: Prediction Models of Performance

Service Frequency | Interaction . L.

Arch. | Coefficient | Coefficient | Coefficient | Intercept F-statistic:
(SC) (FC) (IC) (Int) p-value
CE 3.384e+00 -3.042¢-01 5.528¢e-02 1.608e+-01 <2.2e-16
7.343e+00 | 0.0265e+00 - -7.599e+00 <2.2e-16
DR 4.881e+00 -1.254e-01 -1.509e-05 1.287e+01 <2.2e-16
4.870e+00 | -0.125e+400 - 12.872e+00 <2.2e-16
SA 3.360e+00 | -0.034e4+00 | -0.011e+00 | 5.708e+-00 <2.2e-16
2.552e+00 | -0.102e+00 - 10.540e+00 <2.2e-16

47

4. Performance Models

We used the R languag for our statistical analysis.

4.2.3. Prediction Models

Let ngery be the number of services and cf the incoming call frequency of a dynamic-
routing application. Also, let SC, F'C, IC, and Int be the service coefficient, frequency
coefficient, interaction coeflicient, and intercept. Table presents our prediction models
for each architecture Our models result in a very low p-value (high statistical significance
of the predicted results) which allows us to reject the null hypothesis and accept the
alternative hypothesis indicating that the number of services and the call frequency affect
the RTT.

LinearReg. = SC - ngery + FC-cf + Int (4.1)
NonlinearReg. = SC - ngery + FC-cf +1C -ngery-cf + Int (4.2)

The interaction term in Equation , ie.,, IC - Ngery - cf, tells us that the effect of the
number of services on the predicted RTT is not constant. It changes with different values
of call frequency (and vice versa). Note that regression models are calculated from all
200 runs of our experiment.

4.2.4. Empirical Results

Table 4.3 and fig. [4.1 compares the empirical data with the predicted results. Let @4
and @3 be the first and third quartiles of the recorded round-trip times, and o(RT'T) the
standard deviation of the empirical data. We report the first quartile, the median, the
third quartile, the 95th percentile, the mean, and the standard deviation of RTT. We
can observe that the predictions in the case of DR and SA lie within the interquartile
range of the empirical data in most cases. Exceptions are the following cases with a call
frequency of 10 r/s: DR with five and ten services and SA with nger, = 10. In these
cases, the nonlinear prediction is slightly below the first quartile of the empirical data.
Moreover, the predicted RT'Ts in the case of DR with nger, = 10 and ¢f = 50 r/s is above
Q3. With CE, the nonlinear predicted results are closer to the arithmetic mean of the
data than to the median, as also confirmed in Table with the lower prediction error of
13.7% compared to 19.3%. Note that the common target prediction accuracy in the cloud
performance domain is 30% [59].

4.2.5. Evaluation of the Prediction Error

We compare the results of our prediction models to another run of our experiment (not
used in the training set). Table presents the prediction error of the regression models.
The nonlinear regression compared to the arithmetic mean of the empirical data results
in a lower prediction error. We use the Mean Absolute Percentage Error (MAPE) [90].
Let model. and empirical. be the result of the model, the measured empirical data for

"https://www.r-project.org

48

50~

40-

30~

RTT (ms)
8

(a) (nSeT’L)7 Cf) ==

(]]

CE DR SA
Architecture

(3,10)

CE DR Sh
Architecture

d nserva Cf 3, 25)

le&
B
Il $
D

() (nserv,cf) = (3,100)

Figure 4.1.:

4.2. Statistical Model of Performance

. RgTT (ms) .
T

ce DR SA
Architecture

(b) (nserva Cf) = (57 10)

RTT (ms)
(1]
(11

cE DR SA
Architecture

(e) (nserm Cf) = (5, 25)

Il THT

CE DR SA
Architecture

(h) (nserm Cf) = (5, 50)

RTT (ms)
) 38 8 5
2- %—_

cE DR
Architecture

(k) (nserva Cf) =

(5,100)

CE DR SA
Architecture

(¢) (nserv,cf) = (10,10)

20-
cE DR SA
Architecture

(f) (nserva Cf) = (10, 25)

RTT (ms)
3 a 3
Jo

ce DR SA
Architecture

(1) (nserv7 Cf) ==

100~

(10,50)

ce DR Sa
Architecture

(1) (nserm Cf) = (10, 100)

The RTT and the Nonlinear Regressions (Dashed Lines) for all Cases

49

4. Performance Models

Table 4.3.: Comparison of the Prediction Results of the Performance Models and the
Empirical Data

Median 95th Mean Linear Nonlinear
Arch. | nserv cf Q1 RTT Qs Percentile RTT o(RTT) | Regression | Regression
(r/s) | (ms) (ms) (ms) (ms) (ms) (ms) (ms)
10 22.173 24.277 27.504 36.627 26.0169 11.899 14.695 24.848
3 25 19.228 21.327 26.773 39.951 24.423 9.466 15.093 22.773
50 16.618 18.339 23.367 35.350 21.333 9.863 15.756 19.314
100 | 13.101 14.597 17.983 27.975 16.938 9.843 17.083 12.396
10 36.490 40.021 44.845 55.381 42.138 15.835 29.381 32.722
CE 5 25 27.564 29.862 33.428 44.942 31.987 12.791 29.780 32.305
50 24.185 26.618 30.752 42.250 28.948 11.276 30.442 31.610
100 | 18.078 19.794 24.810 35.657 23.966 24.713 31.769 30.220
10 64.488 69.357 74.901 88.528 72.344 30.946 66.096 52.406
10 25 47.363 51.796 58.966 72.632 55.832 33.015 66.494 56.135
50 39.035 43.826 50.811 63.718 48.306 37.599 67.158 62.350
100 | 48.634 58.066 70.423 95.812 74.398 139.257 68.484 74.780
10 23.371 26.374 30.955 40.017 28.322 11.521 26.257 26.259
3 25 20.845 23.152 27.744 38.264 25.477 9.504 24.374 24.377
50 18.053 19.601 22.588 35.026 21.901 9.295 21.237 21.241
100 | 13.536 14.817 18.005 28.168 17.192 10.349 14.962 14.968
10 37.844 42.893 49.4277 62.270 45.422 18.780 36.016 36.020
DR 5 25 30.442 34.011 39.034 51.303 36.345 14.731 34.133 34.138
50 23.863 26.637 31.799 43.272 29.350 15.122 30.996 31.001
100 | 18.242 20.235 25.503 36.201 23.584 16.343 24.721 24.727
10 70.034 76.020 83.473 97.357 79.636 36.074 60.414 60.424
10 25 50.677 55.427 60.877 75.861 58.545 29.661 58.532 58.541
50 41.436 46.638 52.788 65.423 51.010 47.884 55.394 55.402
100 | 40.997 47.254 55.167 70.112 54.562 75.960 49.119 49.125
10 13.500 15.938 20.042 26.399 17.427 6.483 17.176 15.106
3 25 11.747 13.381 16.782 22.975 14.881 5.155 15.648 14.083
50 10.449 11.875 16.258 25.607 14.188 6.349 13.102 12.377
100 6.923 7.898 9.975 18.061 9.456 5.196 8.010 8.965
10 21.554 25.185 29.860 37.137 26.561 10.007 22.279 21.601
SA 5 25 17.330 20.227 24.383 33.295 21.881 7.671 20.751 20.239
50 13.573 15.174 18.158 27.103 16.831 6.913 18.205 17.968
100 | 11.456 13.896 17.857 27.665 15.726 7.908 13.113 13.427
10 44.875 48.860 53.678 63.075 50.705 18.464 35.037 37.838
10 25 32.633 | 36.5545 41.214 53.287 38.577 16.120 33.509 35.628
50 26.433 29.718 34.265 45.468 32.117 18.422 30.963 31.946
100 19.509 22.221 26.482 37.321 25.646 27.174 25.871 24.582

a case ¢, Cases be the set of experiment cases, and n. the length of Cases (36 in our
experiment).

MAPE =

100% Z model. — empirical, (4.3)
Ne empirical, '
ceCases

Table 4.4.: Prediction Error of the Performance Models

Regression Empirical CE DR SA
Data (%) (%) (%)
Linear Mean 21.527 | 8.966 | 10.343
Median 25.483 | 9.902 | 11.119
Nonlinear Mean 13.654 | 8.959 | 10.158
Median 19.270 | 9.915 | 8.958

50

4.3. Reliability and Performance Trade-Off Analysis

4.3. Reliability and Performance Trade-Off Analysis

So far, we described a reliability model in Chapter [3) and presented statistical performance
models of Adaptive Dynamic Routers (ADR) applications. In this section, we analyze
the trade-offs of the architectures concerning the two qualities in different combinations
of configurations:

1 S nSE’I”U S 10 (4.4)
1<cf <100 (4.5)

4.3.1. Reliability Comparison

We use the reliability models provided in Section [3.3 “Specific Model Formulae.” Let
Rgren be the analytical reliability model for each architecture:

Rep =0.6-cf - [(nsers)? + 3nsery + 1] (4.6)
RDR =0.6- Cf : [(nserv)2 + dMNgery + 3]
Rsa=06-cf - [Q(nserv)2 + 3nserv]

which are plotted in Figure [4.2] CE results in an equal or higher reliability than SA and
DR. There are some cases Where SA gives higher reliability than DR, especially in the
lower ranges of ngery. We study the architectures more precisely.

— CE
— DR
— SA

Figure 4.2.: Reliability Models

51

4. Performance Models

Reliability Trade-Off Between CE and DR

There is no combination of ¢f and nger, where Rop = Rpgr. Therefore, CE always results
in higher reliability than DR in our focused context.

Reliability Trade-Off Between CE and SA

We find the intersecting line where Pop = Ps4 in our focused context is ngery = 1. That
is when we have only one service. Since we use the prototypical implementations for all
architectures, SA and CE configurations become the same application. Therefore, they
give the same reliability value. In any other case, CE results in higher reliability than SA.

Reliability Trade-Off Between DR and SA

We find the intersecting line where Ppr = Pg 4 in our focused context is nger, = 3. That is
when there are three services, DR and SA are the same application in our implementation
since they both have the same number of routers. Therefore, they result in the same
reliability value. In our experiment, we instantiated DR with three and SA with ngep
routers. When nger, < 3, SA has fewer routers than DR. Consequently, SA results in a
lower number of request loss, i.e., higher reliability, than DR. When nge, > 3, DR has
fewer routers and results in higher reliability than SA.

Summary of the Reliability Trade-Offs

Table [4.5 summarizes the comparison of the architectures. A lower R, means fewer
request losses. When ngery, < 3, the CE reliability predictions are lower or equal to
those of SA, which are less or equal to the DR predictions for all call frequencies. When
Ngery > 3, there is a different trend: The CE predictions are lower or equal to those of
DR, which is less or equal to the SA predictions for all call frequencies.

Table 4.5.: Comparison of the Reliability of the Architectures

Nserv cf (r/s) Reliability
Nserv < 3 all Rce £ Rsa < Rpr
Nserv > 3 all Rce < Rpr < Rsa

4.3.2. Performance Comparison

For the performance models, we used the nonlinear regression, i.e., Equation (4.2), in
which the coefficients are taken from Table Let P,.cp, be the performance prediction
model for each architecture:

Pop = 3.384 - ngepy — 0.3042 - ¢f + 16.08 + 0.05528 - 1oy - Cf (4.9)
Ppr = 4.881 - ngery — 0.1254 - ¢f + 12.87 — 0.00001509 - nigery - cf (4.10)
Pga = 3.360 - ngepy — 0.0340 - f + 5.708 — 0.011 - ngepy - Cf (4.11)

52

4.3. Reliability and Performance Trade-Off Analysis

— CE
— DR
— SA

Round-Trip Time (ms)

Figure 4.3.: Performance Models

The performance models are plotted in Figure In most cases, SA results in a lower
RTT than the other architectures. However, there are some cases that CE outperforms
DR and SA. We compare the architectures to find the exact range of nge, and cf, in

which each architecture performs the highest.

2000
L

1500
L

Call Frequency (1/s)

Call Frequency (1/s)
Call Frequency (r/s)

500
L

o 4

T T T
2 4 6

-100
L

'
'
'
'
t T T T
2 4 6 8 10

Number of Services

Number of Services

Number of Services

(a) CE vs. DR (b) CE vs. SA (c) DR vs. SA

Figure 4.4.: Plot of All Intersecting Lines

53

4. Performance Models

Performance Trade-Off Between CE and DR

To characterize the trade-off more precisely, we have to study the intersecting line where
Pog = Ppp, i.e., the line where the curves of the architectures collide:

1.497 - ngery — 3.21
0.0552951 - ngery — 0.1788

cf = (4.12)
which is plotted in Figure Note that the blue dashed line, i.e., ngery = 3, and the
red dashed line, i.e., ngery = 4, indicate the extrema of the intersecting line; therefore,
CE outperforms DR in the area above the intersecting line when nge, < 3, and below
the intersecting line when ngep, > 4.

Table summarizes the regions of cf and ngepy, in which CE outperforms DR. It can
be confirmed by the results of our model for the experimental cases (see Table |4.3), in
which under nonlinear regression, we can observe that in case of nger, = 3, CE outperforms
DR for all values of cf. However, when we have five or ten services, only in the lower
range of incoming call frequency, i.e., 10 and 25, CE results in a lower performance value.

Table 4.6.: The Region Where CE outperforms DR

Nserv 1 2 3 4 5 6 7 8 9 10
cf (r/s) | >13.87 | >3.17 | >1.00 | <65.55 | <43.77 | <37.73 | <34.90 | <33.26 | <32.19 | < 31.43

Performance Trade-Off Between CE and SA
We find the intersecting line where Pop = Psa in our focused context:

~ —0.024 - ngery — 10.372
~0.06628 - Ngery — 0.2702

cf (4.13)

plotted in Figure In our focused context, CE outperforms SA only with the following
conditions:

Ngerp = 1 and c¢f > 50.98 (4.14)
Ngery = 2 and cf > 75.71 (4.15)

Performance Trade-Off Between DR and SA
The intersecting line where Ppr = Pgy4 is plotted in Figure [£.4c}

_ —1.521 ngepy — 7.162
~0.010985 - ngery — 0.091

cf (4.16)

Summary of the Performance Trade-Offs

Table [4.7 gives a summary of performance analysis, in which lower P,,.., means lower
RTT, i.e., better performance.

54

4.4. Analytical Performance Model

Table 4.7.: Comparison of the Performance of the Architectures

| Nserv | cf (r/s) | Performance |
until 13.87 PSA S PDR S PCE
1 between 13.87 and 50.98 | Psa < Porg < Ppgr
from 50.98 Pecg < Psa < Ppgr
until 3.17 Psa < Ppr < Pog
2 between 3.17 and 75.71 Psa < Pog < Ppgr
from 75.71 Pog < Psa < Ppr
| 3 all | Psa < Pce < Ppr |
4 until 65.55 Psa < Pce < Ppr
from 65.55 PSA S PDR S PCE
5 until 43.77 PSA S PCE S PDR
from 43.77 Psa < Ppr < Pog
6 until 37.73 PSA S PCE S PDR
from 37.73 Psy < Ppr < Pck
,7 until 34.90 PSA S PCE S PDR
from 34.90 Psa < Ppr < Pogp
8 until 33.26 Psa < Pog < Ppgr
from 33.26 Psa < Ppr < Pcg
9 until 32.19 Psa < Pcg < Ppr
from 32.19 Psa < Ppr < Peg
10 until 31.43 Psa < Pce < Ppr
from 31.43 Psa < Ppr < Pcg

4.4. Analytical Performance Model

The statistical models presented in the last sections allowed us to precisely analyze the
trade-offs on our private infrastructure. However, these models are not generalizable
and applicable to other infrastructures such as Google Cloud Platform (GCP)E|. In this
section, we propose an analytical performance model of average request processing time
per router. This model allows us to quantify the impact of dynamic-routing architecture
patterns on performance in the presence of component crashes (impeded reliability). Our
analytical performance model is general and not specific to our infrastructure. Therefore,
it applies to public clouds as well.

4.4.1. Bernoulli Process to Model Request Loss During Crashes

In Chapter [3] we modeled the request loss based on Bernoulli processes [90]. Let R be
reliability, T the observed system time, CI the crash interval, Com the set of components,

2https ://cloud.google. com/

95

https://cloud.google.com/

4. Performance Models

i.e., routers and services, C'P, the crash probability of a component ¢ every CI, and d.
the expected average downtime of a component c after it crashes. Remember that cf is
the incoming call frequency based on requests per second (r/s). We use the external loss
function given by Equation (3.11):

R= L%J cef- Y CP.-d, (4.17)
ceCom
In this formula, request loss is defined as the number of client requests not processed
due to a failure, such as a component crash. Equation gives the request loss as a
reliability metric by calculating the expected value of the number of crashes. Having this
information, we sum up all the lost requests during the downtime of a component.

4.4.2. Average Request Processing Time per Router

We model the average processing time of requests per router as a performance metric.
This metric is important as it allows us to study the quality-of-service factors, such as the
efficiency of architecture configurations. The total number of client requests, i.e., Req, is
the call frequency cf multiplied by the observed time 7"

Req=cf-T (4.18)

The number of processed requests is the total number of client requests minus the
request loss. Let P be performance and 7,4, the number of routers in an ADR application.
The average processing time of requests per router is calculated so that we divide the
total system time 7" over the processed requests and the number of routers:

T
P = 4.19
Nrout - (Req — R) ()

Using Equations (4.17) to (4.19), the average processing time is:
T
j . (4.20)
Nrout - Cf - (T o LWJ ' ZcECom CP.- dc)

Note that our analytical model has some assumptions outlined in the threats to validity

(see Section [4.6)).

4.5. Empirical Validation of the Analytical Model

In this section, we introduce an experiment to empirically validate the accuracy of our
performance model.
4.5.1. Experiment Planning

We present the specific details of our experiment in this chapter. Section [2.3 reports
the general details of our scientific experiment, e.g., the architecture configurations, the
experiment cases, and the methodological reproducibility principles.

o6

4.5. Empirical Validation of the Analytical Model

Goals

We aim to empirically validate the accuracy of our analytical performance model repres-
ented by Equation . We realized the dynamic-routing architecture patterns (see
Section @ for details) using a prototypical implementation, ran them on private and
public cloud infrastructures, measured the empirical results, and compared them with
our model.

Validation Experiment on a Public Cloud

We used our private cloud to have control over the infrastructure. On a public cloud,
other factors can influence the results, such as the parallel workload of other applications.
To show that our approach can be used on other cloud platforms as well, we empirically
validated the analysis of our proposed model on GCP. We used 7 instances of a compute-
optimized C2 machine typ each with 4 vCPUs and 16 GB of memory. We duplicated
our private cloud infrastructure on this machine and repeated the experiment for a public
cloud validation run.

Data Set Preparation

During each experiment case, we logged the number of processed requests and calculated
the average request processing time per router based on Equations and . We
studied four levels of cf, three levels of ngery, and three levels of gy, resulting in 36
experiment cases. A single run of our experiment takes exactly 6 hours (36 x10 minutes)
of runtime. Since our model revolves around expected values in Bernoulli processes, we
repeated this process for 200 experiment runs on our private cloud infrastructure, i.e.,
1200 hours of runtime, and reported the arithmetic mean of the results. Moreover, for
public cloud validation, we performed an experiment run of 6 hours on GCP. Overall, we
had an extensive empirical validation of 1206 hours of runtime (excluding setup time).

Specific Model Formulae

As we had a uniform crash probability and downtime of each component in our experiment,
we can rewrite the performance given by Equation (4.20) in ms:

1000
P= S (4.21)
Nrout * Cf (1 - (nrout + nserv) : {@J ‘T CPC ' dc)

Using our experiment values reported in Section [2.3.4, we have:

1000
p— (4.22)
Nrout * Cf(l - 0001(”567‘1} + nrout))

3h'c‘cps ://cloud.google. com/compute/docs/compute-optimized-machines

o7

https://cloud.google.com/compute/docs/compute-optimized-machines

4. Performance Models

Table 4.8.: Model Predictions and Empirical Measurements of Performance

Nyout
Arch. | ngery | Cf P o(P)
Pattern
Private
Model | GCP (200 Exp. Runs)
10 100.40 | 100.33 | 100.13 0.37
3 25 40.16 40.13 | 40.04 0.16
50 20.08 20.15 | 20.01 0.08
100 10.04 10.03 | 10.01 0.04
10 100.60 | 101.83 | 100.33 0.54
1 5 25 40.24 40.36 | 40.11 0.20
CE 50 20.12 20.14 | 20.06 0.11
100 10.06 9.98 10.02 0.05
10 101.11 | 101.01 | 100.80 0.86
10 25 40.44 40.25 | 40.37 0.38
50 20.22 20.18 | 20.19 0.18
100 10.11 10.10 | 10.08 0.08
10 33.53 33.43 | 33.43 0.19
3 25 13.41 13.53 | 13.37 0.08
50 6.71 6.65 6.68 0.04
100 3.35 3.36 3.34 0.02
10 33.60 33.43 | 33.53 0.2
3 5 25 13.44 13.45 | 13.42 0.09
DR 50 6.72 6.68 6.71 0.04
100 3.36 3.34 3.35 0.02
10 33.77 33.80 | 33.68 0.22
10 25 13.51 13.38 | 13.47 0.10
50 6.75 6.72 6.72 0.04
100 3.38 3.53 3.37 0.02
10 33.53 33.58 | 33.42 0.19
3 25 13.41 13.48 | 13.38 0.08
50 6.71 6.87 6.68 0.04
100 3.35 3.36 3.34 0.02
10 20.20 20.16 | 20.13 0.12
Nsery 5 25 8.08 8.07 8.05 0.05
SA 50 4.04 4.01 4.02 0.02
100 2.02 2.02 2.01 0.01
10 10.20 10.31 10.21 0.19
10 25 4.08 3.99 4.08 0.04
50 2.04 2.03 2.04 0.02
100 1.02 1.01 1.02 0.01

o8

4.5. Empirical Validation of the Analytical Model

mModel WGCP M Private (200 Exp. Runs) mModel BGCP mPrivate (200 Exp. Runs) mModel BGCP M Private (200 Exp. Runs)

120 120 120

100 100 100
8 80 8 80 8 80
H § §
%E' 60 %E' 60 %E' 60
g w0 g w0 g w0

0 o o .-
3 oR sa ce oR sa ce oR sa
Architecture Architecture Architecture

(a) Ngery = 3 (b) Ngery = O (C) Ngery = 10
cf =101/s cf =101/s cf =101/s

mModel mGCP m Private (200 Exp. Runs) mModel WGP m Private (200 Exp. Runs) mModel WGP m Private (200 Exp. Runs)
as as as
2 2 2
3 35 35
830 830 830
H H H
g g g
g0 g0 g0
&5 &5 &5
10 10 10
s s . . . s
0 0 0 -
ce or A c or A c or A
Architecture Architecture Architecture

(d) Nserv = 3 (e) Nserv = 5 (f) Nserv = 10
cf =251/s cf =251/s cf =251/s

mModel WGCP m Private (200 Exp. Runs) mModel WGCP m Private (200 Exp. Runs) mModel WGCP m Private (200 Exp. Runs)
s » »
0 0 »
g g g
£ s £
£ £ £
£ 10 £ 10 £ 10
: 3 3
. . [[1 . - -
" or st e oR sa e oR sa
Architecture Architecture Architecture

(g) Nserv = 3 (h) Nserv = 5 (1) Nserv = 10
cf =501/s cf =501/s cf =501/s

mModel mGCP m Private (200 Exp. Runs) mModel mGCP m Private (200 Exp. Runs) mModel mGCP m Private (200 Exp. Runs)
el e e
10 10 10
g 8 g 8 g 8
§ § §
E s E s E s
s 5 5
2 2 2
& a2 & a2 & a2
o o . . . o I -
ce oR A ce oR A ce oR A
Architecture Architecture Architecture

(.]) Nserv = 3 (k) Nserv =) (l) Nserv = 10
cf =100 /s cf =100 /s cf =100 /s

Figure 4.5.: Plots of Model Predictions and Empirical Measurements

99

4. Performance Models

4.5.2. Experiment Results

Private Cloud Infrastructure We present the predicted results of our analytical model
and the empirical measurements of our private infrastructure. In Table [4.8, we report
the mean performance and its standard deviation o(P) of 200 experiment runs. As
predicted by our model (see Equation (4.22))) and confirmed by our experiment data, the
call frequency cf and the number of routers affect the performance conversely. When
taking the same configuration, i.e., keeping nger, and n,.qu constant, increasing cf results
in a lower average processing time per router in all cases. Moreover, the more routers in
an ADR application, the lower the performance. This is expected as the performance is
defined in our study as the average request processing time per router. The low standard
deviations in all cases indicate that the performance data of 200 runs are clustered around
the mean performance.

Validation Experiment on GCP

Our performance model predictions compared to the empirical measurements of the GCP
public cloud and the private cloud infrastructure are shown in Figure As can be seen,
all of the empirical measurements are very close to the predictions. We further investigate
the prediction error of our model.

4.5.3. Evaluation of the Prediction Error

We measure the accuracy of our model predictions. The prediction error is calculated using
the four error measurements commonly used in the cloud quality-of-service research [90],
i.e., Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE). The error measurements
are calculated in terms of performance P. Remember that model. and empirical, are
the result of the model and the measured empirical data for an experiment case ¢, Cases
is the set of experiment cases, and n. is the length of C'ases. In the error measurements,
we average over the n. = 36 experiment cases (see Section . We use the following
formulae for our error measurements:

1 B .
MAPE — 00% . Z model,. .erlnpzmcalc (4.23)
ne o= empirical,
1
MAE = — Z |model. — empirical.| (4.24)
Me ceCases
1
MSE = — Z (model. — empirical,)? (4.25)
Me ceCases
RMSE = VMSE (4.26)

Table @ presents the prediction error of our performance model (using the values
reported in Table . Our model has a MAPE prediction error of 0.64% on GCP and
0.28 % on our private infrastructure. Averaged over public and private clouds, we have

60

4.6. Threats to Validity

Table 4.9.: Predictions Errors of the Performance Model

Private
GCP (200 Exp. Runs) overall
MAPE (%) | 0.64 0.28 0.46
MASE 0.10 0.06 0.08
MSE 0.05 0.01 0.03
RMSE 0.22 0.10 0.16

a very low error rate of 0.46%. Other low error measurements also confirm the high
accuracy of our prediction model.

4.6. Threats to Validity

As in all empirical research, there are several threats to the validity and limitations of our
study that we discuss in this section based on the four threat types by Wohlin et al. [96].

4.6.1. Construct Validity

We did not consider component overload that can influence the overall system’s perform-
ance, e.g., when an overloaded component is non-responsive to incoming requests. As
the self-adaptivity of service- and cloud-based systems is at a mature level in today’s
industrial tools, e.g., using Google Kubernetea{ﬂ autoscaling, we believe this threat to be
small. For the sake of simplicity, we made some assumptions when designing our analytical
model of performance, which is common when modeling a real-world phenomenon. We
did not consider the requests that were in the system already at the time of a crash of
a component as we restarted all containers for each experiment run to increase internal
validity (see the next section). We assumed that the crash probabilities are known based
on the observed system logs in the past and checked for crashes. This is a common
practice in real-world systems, e.g., when the Heartbeat pattern [46] or the Health Check
APT pattern |76] is used for checking system health. Moreover, we considered a generic
downtime of the components and did not study metrics such as mean time to failure and
recovery.

4.6.2. Internal Validity

Internal validity concerns factors that affect the independent variables with respect to
causality. We collected an extensive amount of data to validate our model on public and
private cloud infrastructures. However, we did so in a limited experiment time using
simulated crashes by stopping Docker containers. More research observing real-world
cloud-based systems for a longer period of time would be needed to confirm that there are
no other factors influencing the measurements. One such factor is other workloads being

“https://kubernetes.io

61

https://kubernetes.io

4. Performance Models

processed simultaneously on the same infrastructure. We studied this factor by running
a validation experiment on the Google Cloud Platform and showed that our model is
applicable. As we used the standard technology stack offered by most cloud providers (see
Section , we believe our results are representative of the service- and cloud-based
applications.

4.6.3. External Validity

External validity concerns threats that limit the ability to generalize the results beyond
the experiment. We designed our approach with generality in mind and explained how
architects could specify our model to their needs (see Section . In spite of the fact
that we evaluated our approach by designing a representative experiment and measuring
empirical data, the threat remains that evaluating based on another infrastructure may
lead to different results. To mitigate this thread, we validated our measurements on GCP
infrastructure and showed that our results are applicable. Moreover, the results might not
be generalizable beyond the given experimental cases of 10-100 requests per second and
call sequences of length 3-10. As this covers a wide variety of loads and call sequences in
cloud-based applications, the impact of this threat should be limited.

In our experiments, we considered a uniform crash probability for all components. This
is a common assumption made in such experiments (see, e.g., |72, [73]) to increase the
control over the experiment’s dependent variables and, thus, the internal validity of the
experiment. At the same time, this might decrease the external validity if the crash
profiles observed in a real-world application are substantially different (see [84] for the
trade-offs between the internal and external validity in empirical software engineering).
To mitigate this threat, our model, in its general form, does not assume a uniform crash
probability for all components. A related threat is that we implemented our model
instances with Node.js, not using off-the-shelf implementations, e.g., Envo We did so
to have a comparable infrastructure and to avoid technological impacts on our results.

4.6.4. Conclusion Validity

Conclusion validity concerns factors that affect the ability to draw conclusions about the
relations between treatments and study outcomes. As the statistical method to compare
our model’s predictions to the empirical data, we used the MAPE metric as it is widely
used and offers good interpretability in our research context. To mitigate the threat that
this statistical method might have issues, we double-checked three other error measures,
i.e., MAE, MSE, and RMSE, that similarly confirmed the high accuracy of our prediction
model.

Shttps://www.envoyproxy.io/

62

4.7. Conclusions

4.7. Conclusions

In this chapter, we investigated three representative service and cloud architecture patterns
for dynamic routing regarding their impact and trade-offs on reliability and performance.
We studied what the performance impact is on service- and cloud-based dynamic routing,
how we can predict these results, and if there is an optimal trade-off between architectures
in terms of performance and reliability. We created prediction models that estimate
the performance impact of the investigated architectures. The found models show high
statistical significance. Moreover, we precisely calculated the range of the incoming
call frequency and the number of services, where each architecture gives better results.
Concerning system reliability, centralized routing results in a lower request loss. However,
the sidecar-based architecture performs better, especially with more services. Dynamic
routers can be seen as a middle ground, particularly with a higher number of services.

To make our performance model generalizable, we also proposed an analytical model
of performance that considers the average processing time of requests per router in ms.
We used Bernoulli processes [90] to predict the number of request losses during crashes.
Having this information, we calculated the number of processed requests and divided
the observed system time by this number. For the empirical validation of our model, we
designed an extensive experiment of 1200 hours of runtime (excluding setup time). The
prediction error indicates the very high accuracy of our performance model. To ensure
that our model is generalizable, we ran a validation experiment of 6 hours on Google
Cloud Platform® and showed that our predictions are applicable and generalizable (see
Section . We double-checked the accuracy with three other error measurements that
confirmed the results.

The major impact of our work is on architectural design decisions for dynamic routing.
Our proposed analytical model is representative of service- and cloud-based systems and
can be used in other environments and applications to give insight to architects. To
the best of our knowledge, our work is the first to provide empirical evidence on the
trade-off analysis of reliability and performance in cloud-based dynamic routing. Our
work’s main contributions are models and empirical research of widely used architectures.
Such empirical studies enable the construction of new algorithms and architectures based
on a solid and well-founded understanding of the existing architectures. To be successful,
such works require careful empirical studies laying the foundation for understanding the
existing state of the art and its limitations, providing ground truths, and offering data
sets for further studies (such as our open access data set in the online artifact of this
dissertation).

63

5. Trade-Offs Adaptation

This chapter presents our approach to automatically adapt reliability and performance
trade-offs to address the research problem Ps: Lack of an approach to automatically adapt
the reliability and performance trade-offs. In this chapter, we use our reliability model
presented in Chapter [3| and the analytical performance model presented in Chapter 4] to
study the trade-off adaptations. This chapter also relates to Ps: Lack of tool support for
the multifaceted reconfiguration of dynamic routing applications.

5.1. Introduction

Dynamic routing is an essential part of service- and cloud-based applications. Rout-
ing architectures are based on vastly different implementation concepts, such as API
gateways [79], enterprise service buses [26], message brokers [45], or sidecars [49, [79].
However, their basic operation is that these technologies dynamically route or block
incoming requests. This chapter proposes the details of our approach that abstracts all
these routing patterns using our proposed Adaptive Dynamic Routers (ADR) architec-
ture. We hypothesize that a self-adaptation of the dynamic routing is beneficial over
any fixed architecture selections concerning reliability and performance trade-offs. Our
approach dynamically self-adapts between more central or distributed routing to optimize
system reliability and performance. This adaptation is calculated using a Multi-Criteria
Optimization (MCO) analysis [4]. We evaluate our ADR architecture by analyzing our
previously-measured data during an experiment of 1200 hours of runtime (see Section
for details). Our extensive systematic evaluation of 4356 cases confirms that our hypo-
thesis holds and our approach is beneficial in terms of reliability and performance. Even
on average, where right and wrong architecture choices are analyzed together, our novel
architecture offers a 9.82% reliability gain and a 47.86% performance gain.

The structure of the chapter is as follows: Section [5.2]explains the details of our analysis,
and Section [5.3 provides the tool that supports our concepts. Section [5.4] presents the
evaluation of the presented approach, and Section discusses the threats to the validity
of our research. We conclude the chapter in Section

5.2. Approach Details

This section presents our reconfiguration algorithm to adapt the reliability and performance
trade-offs. Table presents the mathematical notations used in this chapter.

65

5. Trade-Offs Adaptation

Table 5.1.: The Mathematical Notations Used in this Chapter
Notation | Description

Nrout Number of routers
Nserv Number of services
T Observed system time
r/s Requests per second
cf Incoming call frequency in /s
ELr External request loss
R Reliability model
R, ous Reliability prediction of a respective architecture configurations

Ry, Reliability threshold
P Performance model
Performance prediction of a respective architecture configurations

P,

Nrout

Py, Performance threshold

PW Performance weight
RGain | Reliability gain in %
PGain | Performance gain in %
Cases Set of experiment cases

Ne Length of Cases

5.2.1. Reliability and Performance Models

In Chapters[3 and[d] we introduced analytical reliability and performance models. Let T be
the observed system time, F¥Lp the external request loss of dynamic routing applications,
i.e., the number of requests lost during 7', given by Equation . To study the
adaptation of reliability and performance trade-offs, we use the average request loss per
second (r/s) as a reliability model. Let R be the reliability model, c¢f the incoming call
frequency, nger, the number of services, and n,q,+ the number of routers of an ADR

application.
ELpr =0.6-cf - (Nserv + Nrout) (5.1)
ELp
R=—— 5.2
; (52)
R=0.001-cf- (nserv + nrout) (53)

Moreover, we use the parameterized performance model in ms given by Equation (4.22)).
Let P be the performance model:

1000
p- (5.4)
Nrout * Cf : (1 - 0001(”367‘1} + nrout))

66

5.2. Approach Details

5.2.2. Multi-Criteria Optimization Analysis

In our approach, the reconfiguration between the architecture configurations is performed
based on an MCO analysis [4] automatically. Consider the following optimization problem:
An application using the ADR architecture has ngem, services and is under stress for a
period of time with the call frequency of c¢f. To optimize reliability and performance, the
system can change between different architecture configurations dynamically by adjusting
Nrout, ranging from a centralized routing (n,e,+ = 1) and up to the extreme of one router
per service (Nyout = Nserv)-

and P,

Nrout

We use the notations R, to specify the reliability and performance
of the respective architecture configurations by their number of routers. For instance,
only configuring one router R; indicates the reliability model of centralized routing, and
configuring nger, routers (ie., Ry,..., Ry,.,,) indicates completely distributed routing.
Let Ry, and Py, be the reliability and performance thresholds, respectively. The MCO
question is: Given a cf and ngepry, What is the optimal number of routers that minimizes
request loss and average processing time of requests per router without the predicted

model values violating their respective thresholds?

Minimize
R, 5.5)
P, ou 5.6)
Subject to
R, g < Ran (5.7)
Proue < Pin (5.8)
1 < npout < Nserv 5.9

Typically, there is no single answer to an MCO problem. Using the above analysis, we
find a range of n,o configurations, all meeting the constraints. One end of this range
optimizes reliability and the other performance. Thus, we need a preference function so
our approach can automatically select a final 1,4, value.

5.2.3. Preference Function

An architect defines an importance vector that gives weights to reliability and performance.
Using this vector, the preference function instructs the ADR, architecture to choose a
final 7.0yt value in the range found by the MCO analysis (see Algorithm . Let us
consider an example: When performance is of the highest importance to an application,
an architect gives the highest weight, i.e., 1.0, to performance and the lowest weight, i.e.,
0.0, to reliability. Thus, the preference function chooses the highest value on the 7oy
range to choose more distributed routing. This reconfiguration results in processing client
requests in parallel, resulting in higher performance.

67

5. Trade-Offs Adaptation

5.2.4. Automatic Reconfiguration

As explained in Chapter [2] the QoS monitor reads the monitoring data from the API
gateway and feeds this information to the reconfiguration manager. This manager
reconfigures the infrastructure or reschedules the containers. Algorithm [I| presents our
reconfiguration algorithm. The QoS monitor triggers the algorithm, e.g., whenever
reliability or performance metrics degrade. Time intervals, manual triggering or change
in the incoming load can also be used to trigger the algorithm if more appropriate than
metrics degradation (see Figure .

reconfigureRouters(reconfigSolution) in Algorithm [I] performs the final reconfiguration
based on the chosen solution by either reconfiguring the infrastructure using the IaC
component or rescheduling the containers using the container scheduler. Our supporting
tool presented in Section provides a simple implementation of this step.

5.2.5. lllustrative Sample Case

Let us consider an example application of centralized routing (ne,; = 1) with ten
services (ngsery, = 10). This sample case is operational for the expected call frequency of
cf =100 r/s with a reliability threshold of Ry, = 1.5 r/s and a performance threshold of
P, = 35 ms. Let PW be the performance weight. We study the case where performance

Algorithm 1: Reconfiguration Algorithm to Adapt the Reliability and Perform-
ance Trade-Offs

Input: Rp, P, performanceWeight

Rnrout,7
routersRange «+— MCO(cf, Nserv, Rnrouss Prrous s Bthy Pen)

reconfigSolution + preferenceFunction(routersRange,
performanceWeight)

Pr,ouis Cfy Nserv < consumeMonitoringData()

reconfigureRouters(reconfigSolution)

function preferenceFunction(range, PW)
begin

length < max(range) - min(range) +1
floor < | PW * length |

if floor == maz(range) then
‘ return max(range)
else if floor == 0 then
‘ return min(range)
else
‘ return floor + min(range) -1

end

end

68

5.3. Tool Overview

is of the highest importance, i.e., performance weight is given as PW = 1.0. We do the
MCO analysis by rewriting Equations (5.3 and (5.4) for these values:

Minimize
R =1+0.1np0ut (5.10)
1000
Bt = (99— 0.1 - rgut) (5:11)
Subject to
R, <15 (5.12)
P,,,.. <55ms (5.13)
1 < Npour < 10 (5.14)

In Equation , the constraint on the reliability threshold of R,,,,, < 1.5 gives the
highest value for the number of routers as n,.,+ = 5. Equation informs that the
performance predictions in the range of 1 < n,.¢ < 10 always satisfy the performance
threshold. Therefore, the acceptable range for n,.4,; is given as:

1 <npour <5 (515)

Since performance is of the highest importance (PW = 1.0), the preference function
chooses the highest possible value of the number of routers in this range. Consequently,
the final reconfiguration solution is 7,0y = 5.

Remember that the initial configuration was the central routing, i.e., one router. In
this case, we have the following reliability and performance predictions:

Npout = 1 (5.16)
Ry=11r/s (5.17)
P, =10.11 ms (5.18)
After the reconfiguration, we have five routers:
Nyout = D (5.19)
Rs =1571/s (5.20)
Ps =2.03 ms (5.21)

5.3. Tool Overview

We developed a prototypical tool to demonstrate our adaptive architecture. The tool is

available in the online artifact of this dissertation®.

5.3.1. Architecture

Figure [5.1 shows the tool architecture. We provide two modes, i.e., deployment and
visualization. In the case of deployment, our tool generates artifacts in the form of Bas

"https://www.gnu.org/software/bash/

69

https://www.gnu.org/software/bash/

5. Trade-Offs Adaptation

RESTful Backend

* Performs MCO
* Chooses the final solution
Web Frontend * Manages backend control flow

7
* Inputs arch. config. :

* Inputs model thresholds . 1 -
* Input the importance vector «Docker Container» | «Docker Container»
* Shows the final config. |
! - R El Final Reconfig. «(Ee El
z Solution
«Docker Container» { magagey laC component
|
«Monitor» @ Consume
Monitoring Data Final Retanfig. Solution Infra
QoS monitor Config.
N Arch. Config. Data
«Docker Container» \«Docker Container»
czlgﬁgl; «Visualizer» gl «Scheduler» $:|
Visualizaton S Arch. Config.
visualizer scheduler

i
T
I

* Generate PlantUML visualizations j

Figure 5.1.: Tool Architecture Diagram

scripts and configuration files, e.g., infrastructure configuration data to be used by an IaC
tool. These scripts can be used to schedule containers using the Docker technologylﬂ To
study different scenarios, we also provide a visualization environment that only generates
diagrams using PlantUM

The frontend of our application provides the functionalities of the QoS monitor, i.e., to
specify architecture configurations and model elements such as reliability and performance
thresholds. This information is sent to the manager component in the backend that finds
the final reconfiguration solution (see Algorithm . The manager sends this solution to
the IaC component and the scheduler to generate deployment artifacts. A visualization is
then created in the backend and shown in the frontend. The frontend is implemented in
Reac and the backend is developed in Node.j as a RESTful application.

5.3.2. Toolflow

We divide the flow of our application into two parts, i.e., model creation and model
reconfiguration. Figure shows the flow for the model creation. An architect specifies
the architecture configuration by entering the number of services and routers. Moreover,
they choose the mode, i.e., deployment or visualization. In the case of deployment, the

’https://www.docker.com/
Shttps://plantuml .com/
“https://reactjs.org/
Shttps://nodejs.org/

70

https://www.docker.com/
https://plantuml.com/
https://reactjs.org/
https://nodejs.org/

o
\V/

Specify
Arch. Config.

\L Deployment or
Visualization

e N
Use Deployment Use Visualization
Mode Mode
- \]/ J
e N
Generate
Deployment Artifacts
N \]/ J
e N

Create Visualization
N J

\V/

4 N\

Show Visualization
N J

o

Figure 5.2.: Model Creation Toolflow

5.3. Tool Overview

71

5. Trade-Offs Adaptation

e N

Specify Specify
Model Thresholds Call Frequency

Specify
Performance Weight

L

\
v
k Observe

Time-Interval /

Metrics

Degradation

Manual Trigger \]/

[Perform MCO

\V/

Choose Final
Solution

\L Deployment or

Visualization

\V/

s N
Use Deployment Use Visualization
Mode Mode
N \l/ J
s N
Generate
Deployment Artifacts
N \l/ J
s N

Create Visualization
N J

\V/

4 2\

Show Visualization
N J

®

Figure 5.3.: Model Reconfiguration Toolflow

72

5.4. Evaluation

tool generates deployment artifacts. The visualization mode skips this step. In both
modes, a PlantUML visualization is created and shown.

Figure [5.3 shows the flow regarding the model reconfiguration. Users specify model
thresholds, call frequency of client requests, and performance weight. A reconfiguration is
triggered when metrics degradation is observed, according to timers or manually. When
reconfiguration is triggered, the backend performs an MCO analysis and chooses a final
reconfiguration solution. If the deployment mode is chosen, deployment artifacts will be
generated. The reconfiguration visualization is then created and shown.

5.4. Evaluation

In this section, we evaluate our architecture by comparing the reliability and performance
predictions to the empirical results of our experiment. Note that the ADR architecture is
neither specific to our experiment infrastructure nor to our cases. We use our empirical
data set in the online artifact of this doctoral thesisé for the evaluation of our approach
using measured empirical data (see Section for experiment details).

5.4.1. Evaluation Cases

We systematically evaluate our proposed architecture through various thresholds and
importance weights for reliability and performance. We compare our model predictions
with our 36 experiment cases given below. That is, we compare our results with three
levels of services, three fixed architecture configurations, and four levels of call frequency:

Nserv € { 3,9,10 } (5.22)
Nrout € { 1,3, nserv } (5'23)
cf € { 10, 25, 50, 100 } T‘/S (5.24)

Regarding reliability and performance thresholds, we start with very tight reliability
and very loose performance thresholds so that only centralized routing is acceptable.
We increase the reliability and decrease the performance thresholds by 10% in each
step so that distributed routing becomes applicable. To find the starting points, we
consider the worst-case scenario of our empirical data. A higher ngeq, results in a higher
expected request loss (as analyzed in Chapter . In our experiment, the highest number
of services is ten. With nge, = 10, the worst-case reliability for centralized routing and
completely distributed routing (n,0y¢ = 10) is 1.1 and 2.0 r/s, respectively. Regarding
performance, for the case of nger, = 10, we investigate our predictions to find a range
where a reconfiguration is possible. The lowest possible performance prediction is 33.7
ms, and the highest is 101.1 ms. We adjust these values slightly and take our boundary
thresholds as:

1.1 < Ry, <2.0 /s (5.25)
35 < Py, < 100 ms (5.26)

73

5. Trade-Offs Adaptation

Q
g, 0 o
Q
Q Q
Q fo) OOOOO
30 - o] Q
o o %o Q Oooo
o Oo ooo
o o
20 09 459, o, o
c% 00) o
Oo OO
§10\ 0000 0 g o
< o I o
- OO Q
80\ o] OO Q
o Ooo o

04

Ry, (r/s) 1 0 Reliability Weight

(a) Reliability Gain

04

Py, (ms) 20 o Performance Weight

(b) Performance Gain

Figure 5.4.: Reliability and Performance Gains Compared to Fixed Architecture Config-
urations (each point is an average of 36 experiment cases.)

74

5.5. Threats to Validity

We start with an importance weight of 1.0 for reliability and 0.0 for performance.
We decrease the reliability importance and increase the performance weight by 10% in
each iteration. We evaluate 4356 systematic evaluation cases: 36 experiment cases, 11
importance weight levels, and 11 thresholds. To support reproducibility, the evaluation
script and log are provided in the online artifact of this dissertation.

5.4.2. Results Analysis

We define reliability gain, i.e., RGain, and performance gain, i.e., PGain, as the average
percentage differences of our predictions compared to those of fixed architectures. Let
Cases be the experiment cases and n. the length of Cases. Note that the gains are based
on the Mean Absolute Percentage Error (MAPE) widely used in the cloud quality-of-service
research [90].

1 c— 1In
RGain = 00% . E Re = Bnyoun (5.27)
Nc Ty
ceCases rout
1 P.— P,
PGain = 220%. Yo e T (5.28)

Ne n
ceCases rout

and P,

Nrout

Remember R, ., are reliability and performance predictions (see the MCO
analysis in Section . We have 36 experiment cases and n. = 36 in our evaluation.
Figure [5.4 shows the reliability and performance gains compared to the predictions
of fixed architecture configurations, i.e., when there are no adaptations. Our adaptive
architecture provides improvements in both reliability and performance gains. As more
importance is given to the reliability of a system, i.e., reliability weight increases, our
architecture reconfigures the routers so that the gain in reliability rises as shown by
Figure [5.4al Regarding performance, the same trend can be seen in Figure [5.4b. A
higher performance weight results in a higher performance gain. On average, when
cases with correct and incorrect architecture choices are analyzed together, the ADR
architecture provides 9.82% and 47.86% reliability and performance gains, respectively.
A higher gain for performance compared to reliability is expected. To clarify, studying
Equations and informs that changing the number of routers has a higher effect
on the performance than a system’s reliability. In Chapter [4, we defined performance as
the average processing time of requests per router. Having a higher number of routers to
process the requests in parallel results in dividing the average processing time by more
routers. However, the sum of the number of services and routers affects the reliability.

5.5. Threats to Validity

There are several threats to the validity and limitations of our study that we discuss in
this section based on the four threat types by Wohlin et al. [96].

75

5. Trade-Offs Adaptation

5.5.1. Construct Validity

The accurate representation of the intended construct by a measurement is assessed
through construct validity. We used request loss and the average processing time of
requests per router as reliability and performance metrics, respectively. While this is
a common approach in service- and cloud-based research (see Section @, the threat
remains that other metrics might model these quality attributes better, e.g., a cascade of
calls beyond a single call sequence for reliability |67], or data transfer rates of messages
which are m byte-long for performance [53]. More research, probably with real-world
systems, is required for this threat to be excluded.

5.5.2. Internal Validity

Internal validity concerns factors that affect the independent variables concerning causality.
Dynamic routing architectures are based on many different technologies. Our ADR
architecture abstracts the controlling logic component in dynamic routing under a router
concept to allow interoperability between these architectural patterns. In a real-world
system, changing between these technologies is not always an easy task, but it is not
impossible either. In this chapter, we provided a scientific proof-of-concept based on
an experiment with the prototypical implementation of these technologies. The threat
remains that changing between these technologies in a real-world application might have
other impacts on reliability and performance, e.g., network latency increasing processing
time.

5.5.3. External Validity

External validity concerns threats that limit the ability to generalize the results beyond
the experiment. We designed our novel architecture with generality in mind. However,
the threat remains that evaluating our approach based on another infrastructure may lead
to different results. To mitigate this thread, we systematically evaluated the proposed
architecture with 4356 evaluation cases using the data of our extensive experiment of
1200 hours (see Section . Moreover, the results might not be generalizable beyond the
given experiment cases of 10-100 requests per second and call sequences of length 3-10.
As this covers a wide variety of loads and call sequences in cloud-based applications, the
impact of this threat should be limited.

5.5.4. Conclusion Validity

Conclusion validity concerns factors that affect the ability to conclude the relations
between treatments and study outcomes. As the statistical method to evaluate the
accuracy of our model’s predictions, we defined reliability and performance gains based
on the Mean Absolute Percentage Error (MAPE) metric [90] as it is widely used and
offers good interpretability in our research context.

76

5.6. Conclusions

5.6. Conclusions

In this chapter, we studied a multi-criteria optimization analysis to choose an optimal
solution in service- and cloud-based applications when reliability and performance are
considered. We hypothesized that a self-adaptation between dynamic routing architectures
is beneficial over fixed architecture selections. We proposed a routing architecture that
dynamically self-adapts between different routing patterns based on the need of an
application. Moreover, we systematically evaluated our approach using 4356 evaluation
cases based on the empirical data of our scientific experiment. The results confirm our
hypothesis that the ADR architecture can adapt the routing pattern in a running system
to optimize reliability and performance. Even on average, where cases with the right
and the wrong architecture choices are analyzed together, our approach offers a 9.82%
reliability gain and a 47.86% performance gain.

To the best of our knowledge, no architecture has been presented in the literature that
dynamically adjusts reliability and performance trade-offs, specifically in service- and
cloud-based dynamic routing. Our architecture adapts, based on triggers, e.g., change of
incoming load frequency or degradation of monitoring data, to an optimal configuration
to prevent request loss or an increase in process times of requests. Before our work,
architects needed to redesign and redeploy architecture configurations manually.

7

6. Multidimensional Autoscaling

This chapter addresses the research problem P,: Lack of an approach to autoscale
components multidimensionally to prevent overload. We model the system components as
queuing stations and study them when overloaded. We investigate horizontal autoscaling,
i.e., adding replicas, and vertical autoscaling, i.e., adding resources to a component. In
Chapter |8 we reuse the approach presented here for a multifaceted reconfiguration of
dynamic routing applications to address the research problem Pg: Lack of tool support
for the multifaceted reconfiguration of dynamic routing applications.

6.1. Introduction

Dynamic reconfiguration is commonly used to accommodate the dynamic behavior of
today’s applications. As cloud-based systems become increasingly complex, it is hard and
cost-ineffective to manage them manually. Dynamic routers, such as API gateways [79]
or message brokers [45], in combination with autoscalers can adapt the system to the
resource demands, e.g., when a sudden load spike for a specific part of the system is
observed. Without taking the costs of cloud resources into account, this reconfiguration
can lead to a significant increase in charges. In this thesis, we propose a self-adaptive and
cost-aware Adaptive Dynamic Routers (ADR) architecture. Our approach in this chapter
performs a Multi-Criteria Optimization (MCO) analysis [4] to automatically reconfigure
the routers and the services of a cloud-based system, considering the reconfiguration
costs. This multidimensional autoscaling of resources takes incoming load as an input and
uses queuing theory [51] to find an optimal reconfiguration solution. We systematically
evaluated our architecture with an extensive number of evaluation cases (9600). On
average, over cases where an overload is predicted, our approach reduces the overload
rate by 46.7% and 61.8% for routers and services, respectively.

The structure of the article is as follows. Section gives an overview of the approach
we follow in this chapter. Section [6.3 explains the approach in detail. We study the
parameterization of our models in Section and provide an illustrative sample case in
Section Section 6.6 presents the evaluation of our research. We discuss the threats to
the validity in Section and conclude in Section

6.2. Approach Overview

In this section, we present the overview of our approach to model and prevent system
overload. Table presents the mathematical notations used in this chapter.

79

6. Multidimensional Autoscaling

Table 6.1.: The Mathematical Notations Used in this Chapter

Notation Description
l Length of the number of requests a buffer can store
W Processing rate
7% Processing rate of a reconfigurable component i
Hpro Increased processing rate of a component
A Arrival rate
Ai Arrival rate of a reconfigurable component 4
r/s Requests per second
HAS Horizontal autoscaling
VAS Vertical autoscaling
FS Full state of a buffer
FSyy, Full state threshold
IR; Number of incoming requests for a reconfigurable component 4
BFR Buffer fill rate
BFR; Buffer fill rate of a reconfigurable component
ABFR Average percentage difference of buffer fill rate
BF R(nscal, npro) | Predicted buffer fill rate for ngeq and nppo
Nseal Number of scaling replicas
Npro Processing rate improvements
cf Call frequency
cfscal Call frequency after scaling-out a component
C(nscar) Cost of scaling-out the component by n,.q; replicas
C(npro) Cost of increasing the processing rate by np., /s
C(Nscals Mpro) Reconfiguration cost for ng.q and np,
Cin Cost threshold
C Average reconfiguration cost
RR Reconfiguration ratio
RR(nscals Mpro) | Reconfiguration ratio for ngeq and npy,
Nrout Number of routers
Nserv Number of services
o Standard deviation of the empirical data
Q1 First quartile of the empirical data
Q3 Third quartile of the empirical data
Cases Set of the number of services and the number of routers
Ne Length of Cases

6.2.1. Architecture Extensions

We require a couple of significant extensions to the ADR architecture for our approach
presented in this chapter, i.e., to prevent system overload. Firstly, the configurator

80

6.2. Approach Overview

components monitor and reconfigure the router and the services of an application. As
shown in Figure[2.4] the reconfigurable components refer to services and routers collectively.
Secondly, we perform the reconfiguration to prevent system overload. To do so, we model
reconfigurable components as queuing stations and use queuing theory [51]. We identify
system overload when any reconfigurable system component overloads, resulting in an
application being non-responsive to client requests.

Thirdly, the perspective for the reconfiguration is different in this chapter. The proposed
architecture focuses on each reconfigurable component, i.e., a router or a service, separately
and reconfigures it individually to prevent the overload of that specific component. As a
result, we study reconfiguration measures we did not investigate before, such as autoscaling.
Finally, we consider the reconfiguration cost as a deciding factor, i.e., an optimization
criterion.

6.2.2. Reconfigurable Components as Queuing Stations

We model each reconfigurable component, i.e., a router or a service, as a queuing station
having two subcomponents, namely a buffer and a processor, as shown in Figure [6.1.
Incoming requests are buffered in a queue and processed by the processor one by one
according to a queuing discipline, e.g., a first-come-first-served strategy. Let [be the
length of the number of requests a buffer can store, and p the processing rate of a processor
based on the number of requests per second r/s. We characterize a queuing station by [of
its buffer and p of its processor. Many cloud providers offer a standard service to configure
containers. For instance, Google Kubernetes Engine Autopilo allows the configuration
of vCPUs and memories per containers. The same service is offered by Microsoft Azure
Container Instanced?| and Amazon Elastic Container Servicd’|on Fargatd!|

)\ — —
arrival rate (r/s)
Buffer Processor
length (1) processing
rate (r/s)

Figure 6.1.: Components as Queuing Stations

We indicate a system overload when a buffer of a reconfigurable component overloads.
That is when a component as a queuing station is not in its steady state |51]. Let p; and
A; be the processing and arrival rates of a reconfigurable component i, respectively. For a
reconfigurable component 7 to be in a steady state, its processing rate must be greater
than or equal to its arrival rate:

i = A (6.1)

"https://cloud.google. com/kubernetes-engine/docs/concepts/autopilot-overview
Zhttps://azure.microsoft.com/en-us/services/container-instances/
3https://aws.amazon.com/ecs/

‘https://aws.amazon.com/fargate/

81

https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://azure.microsoft.com/en-us/services/container-instances/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/

6. Multidimensional Autoscaling

When p; < A;, the buffer of a reconfigurable component ¢ eventually overloads which, in
turn, results in a system overload. For the sake of simplicity, we only consider homogeneous
workload, i.e., single class requests.

6.2.3. Measures to Overcome System Overload

When a system overload is predicted (see Section for a reconfigurable component,
i.e., a router or a service, we consider the following measures that can be taken to address
system overload at the component level:

e Scale out the reconfigurable component using replicas, i.e., horizontal autoscaling
HAS.

e Increase the processing rate of the reconfigurable component, i.e., vertical autoscaling

VAS.
e Increase the length of the component’s buffer.

Note that this list is not exhaustive, i.e., many different measures can be taken, e.g.,
using queues with bounded waiting time [58] in which requests will be dropped if the
buffer overloads, using a circuit breaker [78|, changing the router technology, e.g., using
an event streaming platform 79|, or adding more routers and reconfiguring the routing
as presented in Chapter [5]

We can consider the above measures from a high level of abstraction, i.e., at the
component level. Note that if a reconfigurable component is overloading, increasing
the buffer length only slows down the process and does not prevent system overload.
Moreover, the architect can set the buffer length from the beginning to a pre-defined
maximum. Therefore, we specifically study the following measures:

e Scale out an overloading router using replicas, i.e., HAS.
e Scale out an overloading service using replicas, i.e., HAS.
e Increase the processing rate of a router, i.e., VAS.
e Increase the processing rate of a service, i.e., VAS.

These measures are associated with cloud costs since they add cloud resources to the
system (see Section . In the remainder of this chapter, we define an analytical model
of system overload and use this model to automatically adjust the cloud resource usage
considering the cost of cloud deployment. Note that the ADR architecture considers
each component, i.e., a router or a service, separately and performs the reconfiguration
individually, hence the differentiation in the above list.

6.3. Approach Details

In this section, we first introduce our system overload model, then investigate cloud-based
cost models in relation to our model, and present our automatic reconfiguration algorithm.

82

6.3. Approach Details

«host» «host» «host»

«Service» {l «Service» {l «Service» {l «Service» {l «Service» {l «Service» {l

servicel service2 service3 service4 serviceb service6

N N A N
«Router» {l «Router» {l «Router» {l

routert router2 router3
«host» «host»
«API Gateway {l «Client» {l
gateway ClientRequest client1

Figure 6.2.: Example Configuration with Incoming Requests for Routers (Solid Lines)
and Services (Dashed Lines)

6.3.1. System Overload Model

The QoS monitor observes each reconfigurable component, i.e., a router or a service, and
triggers a reconfiguration for each component separately if required (see Figure . To
do so, it monitors the number of requests each component receives, i.e., its arrival rate.
The monitor observes the processing rate of all routers and services. This can be achieved,
e.g., by executing a docker stats command when Docke containerization is used to read
the CPU usage of the container. The QoS monitor can predict a system overload if an
arrival rate of a reconfigurable component is higher than its processing rate and its buffer
is alarmingly full.

Arrival Rate of Reconfigurable Components

To model the arrival rate A; of each reconfigurable component ¢, we define the incoming
requests from the viewpoint of a component. That is the requests received by a component
and stored in its buffer. An example configuration is presented in Figure Solid lines
represent the incoming requests of routers, and dashed lines show those of services. Note
that this figure shows the incoming requests per one client request.

We define call frequency cf as the frequency with which the API gateway receives the
client requests based on requests per second r/s. Let IR; be the number of incoming
requests for a reconfigurable component :

X =cf - IR; (6.2)

The arrival rate for a reconfigurable component i is the call frequency multiplied by the
number of incoming requests I R;. To illustrate, in the example configuration, IR; = 2

5h'c‘cps ://www.docker. com

83

https://www.docker.com

6. Multidimensional Autoscaling

uniformly for all routers. When the application is under stress with, e.g., ¢f = 10 r/s,
each router has an arrival rate of A; = 20 r/s. Note that I R; needs to be parameterized
for each application separately. Section [6.4] presents an example parameterization.

Buffer Fill Rate

Let BEF'R; be the buffer fill rate of a reconfigurable component i. We define BF R; as the
difference between the arrival and processing rates:

BFRi = >\z — W (6.3)

When the buffer fill rate is positive for any reconfigurable component, i.e., a router or
a service, the arrival rate of the component is higher than its processing rate. In this
case, the system eventually overloads if the call frequency cf of client requests does not

decrease. Using Equation (6.2)), we can rewrite Equation (6.3)) as:

BFRZ = Cf . IRZ — Wy (64)

6.3.2. Threshold for Reconfiguration

Let F'S be the full state of a buffer indicating how full a buffer is. The severity of the
damage of a positive buffer fill rate depends on F'S:

0.0<FS<1.0 (6.5)

Let F'Sy, be the full-state threshold. An architect can define an F'Sy, for the buffers of
the reconfigurable components of a system. If any buffer reaches this threshold, the QoS
monitor triggers the manager to reconfigure the architecture (see Figure . In such a
case, the manager reduces the buffer fill rate BF R; of a reconfigurable component i by
performing a combination of the following measures:

e Scale out a reconfigurable component ¢ by using replicas reducing its arrival rate A;.

e Increase the processing rate u; of a reconfigurable component i to reduce its BF'R;
(see Equation (6.3)).

Conversely, if the F'S of a buffer goes below the threshold, the manager can reverse the
steps taken, e.g., scale in the component replicas.

6.3.3. Reconfiguration Algorithm

The proposed architecture automatically reconfigures the system at run-time using an
MCO analysis [4]. We consider the following optimization criteria: The buffer fill rate
prediction and the reconfiguration costs.

84

6.3. Approach Details

Prediction of Buffer Fill Rate

The manager uses the buffer fill rate predictions to decide how much of each reconfiguration
measure to perform. Remind that the architecture monitors each reconfigurable component
separately and reconfigures it individually. Let BF R(nscql, npro) be the predicted buffer
fill rate by improving n units in each reconfiguration measure, i.e., scaling out a component
by nscqr replicas, or improving the processing rate of an alarming component by 7.,
requests per second 7/s.

BFR(nscala npro) = Cfscal : IRZ — Hpro (66)

IR; is the number of incoming requests of a reconfigurable component i, ¢ fsqq; is the call
frequency after scaling out the component and load balancing the cf among the replicas,
and p,r, is the increased processing rate of the component:

)upTO = H; + np'ro (67)

That is, the processing rate p; of the reconfigurable component i is increased by npo 7/s.

Cost of the Reconfiguration Measures

We consider the cost models of widely-used cloud providers so that our proposed approach
can be applied to real-world applications. These cost models relate to resource usage and
are at the container level. That is, customers pay per use of resources their containers
need. For instance, Google Kubernetes Engine Autopilotﬁ and Microsoft Azure Container
Instances[] charge per use of vCPUs and memories in seconds from the time the container
images are pulled until the task is finished and there is no minimum cost. However,
Amazon Fargateﬁ] charges a minimum of one minute. Afterward, the cost is calculated
per second.

The reconfiguration measures mentioned in Section require an increase in cloud
resource usage. We associate costs with improving n units for each reconfiguration
measure. Let C(ngeqar, Npro) be the reconfiguration cost:

C(nscah npro) = C(nscal) + C(npro) (68)

C(nscqr) associates with the cost of scaling out a component by n4.q replicas, and C(np,)
specifies the cost of increasing the processing rate by n,,, requests per second r/s.

Note that the conversion between vCPU and processing rate u; depends on the ap-
plication. There are different CPU types with different processing capabilities (see, e.g.,
Google Cloud CPU Platformﬂ. Moreover, the requests for each application have different
timing needs. We provide a systematic evaluation in Section Also, consider that the
cost model is general and is not specific to these cloud providers. Other cloud cost models
can be used if necessary (see Section for an example specification).

Shttps://cloud.google.com/kubernetes-engine/pricing
"https://azure.microsoft.com/en-us/pricing/details/container-instances/
Shttps://aws.amazon.com/fargate/pricing/
“https://cloud.google.com/compute/docs/cpu-platforms

85

https://cloud.google.com/kubernetes-engine/pricing
https://azure.microsoft.com/en-us/pricing/details/container-instances/
https://aws.amazon.com/fargate/pricing/
https://cloud.google.com/compute/docs/cpu-platforms

6. Multidimensional Autoscaling

Multi-Criteria Optimization

The QoS monitor triggers the manager to reconfigure the components (see Figure .
When the full state threshold F'Sy, has reached for a reconfigurable component, the
configurator automatically adapts the buffer fill rate BF'R of the component based on an
MCO analysis [4]. Consider the following optimization problem: The configurator must
decide how many units of each measure to improve to have the minimum predicted buffer
fill rate. However, simultaneously, the configurator needs to minimize the cost of cloud
resource usage. Let Cy, be the cost threshold:

Minimize
BF R(nscal; Npro) (6.9)
C(nscat; Npro) (6.10)

Subject to
C(nscals Mpro) < Cin, (6.11)

Note that any number of constraints can be added. The objective functions oppose each
other: We want to minimize the buffer fill rate but at the minimum reconfiguration cost.
Typically, there is no single answer to an MCO problem but a set of acceptable points in
the solution space called the Pareto front [4]. Section provides an illustrative sample
case.

Preference Function

The final reconfiguration choice from the Pareto front is upon the decision maker based
on their preference. We define a preference function so the manager can choose a point
as the final solution automatically. Let RR be the reconfiguration ratio, i.e., the ratio
of buffer-fill-rate improvements to the reconfiguration costs. We select a final solution
based on the RR(nscal, pro), i-€., the reconfiguration ratio of a solution with ng.q; scaling
replicas and nyy, /s processing rate improvements:

BFR(O, 0) - BFR(nscal’ inO)

C (nscal s npro)

RR(Nscal Npro) = (6.12)
This gives us the buffer fill rate improvements for each unit of cost spent on the reconfig-
uration. The preference function goes through all points on the Pareto front and chooses
the solution with the highest RR.

Automatic Reconfiguration

The component QoS monitor observes all components, i.e., routers and services, of the
system (see Section . The monitor triggers the manager whenever a system overload
is predicted for a component. This means whenever a component’s arrival rate A is higher
than its processing rate u, and its buffer is alarmingly full (indicated by the full state F'S
of the buffer). In this case, the manager uses the reconfiguration algorithm presented in
Algorithm [2 to deploy new components or reconfigure the existing ones.

86

6.4. Parameterization of Model to Experiment Parameter Values

Algorithm 2: Reconfiguration Algorithm for an Overloading Component

Input: C(nscat), C(Npro), IR
cf, i < consumeMonitoringData()
paretoFront < MCO(cf, IR, 1)

reconfigSolution < preferenceFunction(paretoFront)
reconfigure(reconfigSolution)

function preferenceFunction(paretoFront)
begin

RR+0

reconfigSolution + (0,0)

foreach solution : paretoFront do

BFR(0,0)—BFR(nscal,mpro)
C(nscat>npro)

RR(nscal 5 npro) —

if RR(Nscal,Npro) > RR then
RR + RR(nscah npro)

reconfigSolution < (nscal, Npro)
end

end

return reconfigSolution
end

6.4. Parameterization of Model to Experiment Parameter
Values

In Section we introduced our proposed system overload model, which is general for
dynamic routing architectures. Some model elements need to be parameterized based
on the specific application. Namely, the incoming requests IR; for a reconfigurable
component ¢ must be specified. Additionally, the call frequency after scaling out a
component and load-balancing the call frequency c¢f among the scaling replicas, i.e., ¢fscal,
must be specified. Moreover, the cost functions must be parameterized based on the ADR
application.

6.4.1. Incoming Requests

Figure [6.2|shows an example configuration of our experiment. As can be seen, the number
of incoming requests is different for routers and services in our experiment. For services,
we can easily observe that there is one incoming request for each service:

IR; =1 (6.13)

We parameterize the incoming requests for routers in our experiment. Let ngep, be
the number of services and n,4,; the number of routers of an ADR application. In

87

6. Multidimensional Autoscaling

Section [2.3.2, we mentioned that we distributed services equally among routers:

IR; = “serv (6.14)
Nrout

In Figure [6.2, we have six services and three routers; consequently, we have a uniform
IR; = 2 for all routers.

6.4.2. Predicted Call Frequency

When scaling out an ADR application with ng.,; replicas, we must know the load-balancing
strategy. For the sake of simplicity, we consider an equal load balancing, i.e., an equal
distribution of the call frequency.

cf

_ 6.15
Nscal + 1 ()

Cfscal =

Note that the QoS monitor observes all components, i.e., routers and services, and triggers
the reconfiguration for each component individually. For each alarming component, we
have one instance with ng., replicas after this reconfiguration measure is performed. As
a result, we have ng.q + 1 replicas.

6.4.3. Predicted Buffer Fill Rate
We can parameterize the predicted buffer fill rate presented by Equation using

Equations (6.7)), (6.13) and (6.15) for a service i:

cf

BFR(nscahnpro) - m
sca

— (i + npro) (6.16)

Using Equations (6.7), (6.14) and (6.15), we have the following for a router i:

Nserv Cf
BFR(nscalanpro) = .
Nrout Mscal T 1

— (Hi + Mpro) (6.17)

6.4.4. Cost Functions

As explained before, our model can easily be combined with the cost functions of different
cloud providers. To illustrate this, we show one example by mapping our observed
processing rates to an existing cost model, i.e., the Google Autopilot pricin This can
easily be adapted to the related cost models such as the one of Amazon Fargat Note
that for very different cost models, a new cost function needs to be defined.

Cloud costs relate to the resource demand of an application. An architect must map
the processing rate in requests per second r/s to vCPU usage. Since the focus of the
ADR architecture is on architecting the system and studying different configurations,

Ohttps://cloud.google.com/kubernetes-engine/pricing
Yhttps://aws.amazon.com/fargate/pricing/

88

https://cloud.google.com/kubernetes-engine/pricing
https://aws.amazon.com/fargate/pricing/

6.5. Ilustrative Sample Case

an estimate is sufficient. We used our experiment infrastructure for this estimation (see
Section for details). To do so, we ran different configurations, i.e., multiple incoming
load profiles, and investigated the CPU usage of the containers. Since we use Docker
technology?, the command docker stats gives information regarding CPU usage. In our
experiment, a 100% vCPU usage relates to a processing rate of about 32 r/s.

Multiple cloud providers allow increments of 0.25 vCPUs per container, e.g., Google
Autopilot or Amazon Fargate. Therefore, we consider increments of 0.25 vCPUs cor-
responding to 8 r/s, which costs roughly according to Google Autopilot plricingIm with
maximum memory:

C(vCPU =0.25) =5-10"* cents /s (6.18)

For instance, if a container needs a processing power of 2 vCPUs corresponding to
processing rate p = 64 r/s:

C(Ngeqt = 1) = 8% C(vCPU = 0.25) = 4- 1072 cents /s (6.19)

For C(nscqr), 1., the reconfiguration costs of scaling out the components by ns.q replicas,
we multiply the number of replicas by the cost of the component:

C(nscal) = Nscal * C(nscal = 1) (620)

6.5. Illlustrative Sample Case

This section presents an illustrative example to demonstrate the concepts of this study.

6.5.1. Multi-Criteria Optimization

Let us consider the following example: An ADR application with six services and three
routers (see Figure is under stress with a call frequency of ¢f = 100 r/s. The QoS
monitor asserts that the full state threshold F'Sy;, = 0.6 has reached for the buffer of a
router i, resulting in a reconfiguration trigger (see Section m The processing rate of
the router i is p; = 64 r/s corresponding to 2 vCPUs (see Section [6.4.4)):

— (6.21)
Trout = 3 (6.22)
pi =64.0r/s (6.23)
cf =100.07/s (6.24)
FSy, =06 (6.25)

We can calculate the number of incoming requests for the router i according to

Equation (6.14)) as:

IR; = v — 9 (6.26)
Nrout

89

6. Multidimensional Autoscaling

Using Equation , the arrival rate of the router 7 is:
Xi=cf-IR; =200.0r/s (6.27)
Therefore, the buffer fill rate of the router ¢ can be calculated using Equation :
BFR; = \i — pu; = 136.0 /s (6.28)

Assume an architect has chosen a cost threshold of Cy, = 1 cents/s for the router i.
We can rewrite the MCO analysis in Equations (6.9) and (6.10) using Equations (6.16)

and :

Minimize
100
T T 80 6.29
roea 11 (Mo +80) (6.29)
8 Npro - C(VCPU = 0.25) + ngeqr - C(nsear = 1) (6.30)
Subject to
8 - Npro - C(VOPU = 0.25) + ngear - C(Nsear = 1) < 1 cents/s (6.31)

Remember that we consider increments of 0.25 vCPUs corresponding to 8 r/s.

MCO Solution Space

Table presents the MCO solution space of the illustrative sample case, as well as the
reconfiguration ratio RR for each solution. Note that we only consider the cases where
the buffer fill rate BF R reduces to a minimum of zero to have a bound on the amount of
resource usage. That is, we add enough resources to prevent the overload of a component
and not more. Other strategies could be easily added by an architect based on the need
of an application, e.g., reducing the BFR to a defined sub-zero minimum.

Table 6.2.: MCO Solution Space of the Illustrative Sample Case
’ Npro ‘ MNscal ‘ BFR(nscah npro) ‘ C(nscala npro) ‘ RR ‘

0.0 0.0 136.0 0.0 0.0
40.0 0.0 96.0 16.0 2.5
80.0 0.0 56.0 32.0 2.5
0.0 1.0 36.0 40.0 2.5
120.0 | 0.0 16.0 48.0 2.5
0.0 2.0 3.0 80.0 2.0

90

6.6. Evaluation

6.5.2. Final Reconfiguration Solution

In Section we mentioned that the preference function goes through all points on
the Pareto front and returns the solution with the highest reconfiguration ratio RR. In

Table the final solution is:
(np'rOa nscal) = (407 0) (632)

which gives the highest reconfiguration ratio, i.e., RR = 2.5, with the lowest reconfiguration
cost. That is, by spending 16 cents/s the buffer fill rate BF'R; of the router i reduces
from 136 r/s (calculated by Equation (6.28)) to 96 r/s. Note that an architect can select
a different strategy as well, e.g., choosing the lowest BF R as the final solution, in which
case the more costly (npro, Nscar) = (120, 0) is the answer.

6.6. Evaluation

In this section, we evaluate our approach by systematically calculating the buffer full rate
improvements of an extensive number of 9600 evaluation cases. The evaluation script, the
calculated Pareto fronts, and the evaluation log containing detailed information of each
systematic evaluation case are anonymously downloadable to support reproducibility in
the online artifact of this thesis®. The ADR architecture provides a general approach and
needs to be parameterized based on the application for which it is applied. We use our
experiments reported in Section for this parameterization. Note that the proposed
architecture is not specific to our experiment infrastructure. Architects can easily tailor
ADR to their specific use case, as we explain in this section for our experiment.

To systematically evaluate our approach, we use our experiment cases and go through
a range of values.

Nsers € (3,5,10) (6.33)
nrout e (17 37 nserv) - (17 37 57 10) (634>

In our experiment, we considered the call frequency c¢f between 10 and 100 r/s. Since
we are studying system overload in this chapter, we consider higher loads. That is, we
consider 20 levels of the call frequency cf in the following range, each step increasing 10
r/s:

10 <ecf <2007/s (6.35)
For container configurations, we investigate 20 levels based on the vCPU requirements of a
container between 0.25 and 5 vCPUs. We increase 0.25 vCPUs in each level incrementally.
As explained in Section 0.25 vCPUs correspond to a processing rate of p =8 r/s in
our experiment:

8 <pu<1607/s (6.36)

Regarding the cost threshold, we take Cy;, = 1 cent per second. Note that this threshold
is considered for each reconfiguration step and each component separately. All in all, we

91

6. Multidimensional Autoscaling

performed an extensive evaluation of 9600 cases, i.e., three levels of ngep,, four levels of
Nrout, twenty levels of c¢f, and twenty levels of p, which are all considered for routers
and services separately. Let C be the average reconfiguration cost, ABFR the average
percentage difference of buffer fill rate, Cases the set of the number of services and the
number of routers, and n. the length of Cases.

— 100% BFR(0,0) — BFER(nscal, Npro)
ABFR = . ’ P 6.37
Ne Z BFR(0,0) ()
ceCases
— 1
C=—- Y Clnscar npro) (6.38)
¢ ceCases

Note that ABF'R is based on the Mean Absolute Percentage Error (MAPE) metric [90].
Cases is the set of ngery € (3,5,10) X nypour € (1,3,5,10) and n, = 12.

Figure [6.3 shows the evaluation data regarding the average percentage difference of
buffer fill rate. We can see that as the processing rate p of a container increases, i.e.,
the number of vCPUs per container rises, we have a higher ABF' R, especially with a
higher call frequency c¢f. The ADR architecture yields the most improvements when
a container with a high processing rate is under the stress of a high load. Figure [6.4
presents the evaluation data regarding the average reconfiguration cost. Regarding C for
routers, as shown in Figure the reconfiguration costs rise as the processing rate p of
router containers increases. This is expected because, e.g., scaling out a router with five
vCPUs costs higher than scaling out a router with only one vCPU. However, for service
containers with higher processing power, there is a constant average cost, as shown in
Figure In these cases, our approach chooses the same reconfiguration measure, i.e.,
adding a processing rate of u = 40 r/s to an overloading service. This is because as the
processing power of a service container increases, the cost of scaling out the service also
rises. In this case, adding 40 r/s with an average cost of 0.0016 cents per second gives
the highest reconfiguration ratio RR and is chosen repeatedly.

Table reports the statistics of ABFR and C, in which o, Q1 and Q3 are the standard
deviation, first and third quartiles of the data. The proposed ADR architecture can yield
an average percentage improvement of buffer fill rate up to 100.0 % with an average cost
of 0.0058 and 0.0035 cents per second for routers and services, respectively. Regarding the
mean of data over all overloading cases, i.e., those cases with BFR(0,0) > 0, the proposed
architecture gives an enhancement of ABFR = 46.7% with C' = 0.0024 cents per second

Table 6.3.: Statistics of the Evaluation Data

E‘ﬁ:&?fn min Q1 median Qs max | mean o
Routers ABFR (%) | 9.804 | 32.680 | 49.528 | 57.132 | 100.000 | 46.703 | 15.487
C 25e-5 | 1be-4 25e-4 32e-4 58e-4 24e-4 | 12e-4
Services ABFR (%) | 29.412 | 52.632 | 60.475 | 69.754 | 100.000 | 61.848 | 15.654
C 5e-4 15e-4 16e-4 16e-4 35e-4 16e-4 6e-4

92

6.6. Evaluation

o
100 I
%g@ o
o
80 . ,o 5 .
S 050 09 o@g 00. 0 o
o 620539065 0585R §> o o
x 60 00000055 §>§oooo o@go o) o OO
o 0506 %04 095 & &6 O O o
< 06350000, 0085 o o® X0 o0
05%05%04 o) o
® 05 %05 208FF0° 0 B2 o 3
o 40 0504 S o @
s ©05990064600° Q?g@o%@ Ogp B D
S o O@ ® @ 05 ©
z 0o SS9 B0 5 @ 0%
20 2000 58§ 0P 0 ° 00 o °
o @y ©56° %
S 0 % o0
o, 0 o
0. © O @)Og (®) o ©
200 o)

150

100 100

Call Frequency (r/s)

Processing Rate (r/s)

(a) ABFR for Routers

Average ABFR (%)

150

100 100

50 50

Call Frequency (r/s)

Processing Rate (r/s)
(b) ABFR for Services

Figure 6.3.: Plots of Evaluation Data Regarding the Average Percentage Difference of
Buffer Fill Rate

93

6. Multidimensional Autoscaling

o

3 [o o
*x10 o} o

o 00
6 o o
o o)
o _© 050 5° 4
0. 08 058 0

5 060 205® " 580, P 0
Q %o, 0% e 00 o ©
3 fe) Oo é) (¢} O d)O (¢}
€4 O, %06 %0 08 %o
(7] %o [eXXe] o 5 € o le)
< % Lo °® %606 o (oMY
= 0045 00,08 0455 o % o
33 og Q° S$ 8% 80 P
% 0. 0o, %0 °o oo 0% 02 o o
25 | %0, %09 %30 0,8 %o o R 0% 0
g oo o o oO OO Ogog 260 o o)
< 050 o el o] 0050

1 o6 o oo o 0(290 Do © 00 oo

Call Frequency (r/s)

Processing Rate (r/s)

(a) C for Routers

-3
%10 o
%o
35
o
o
o
3 %o
Qg o
@ o
£25 %o, 008 °
3 %o oOgO e}
K2 0, 09250800
-) 05050900
g 2 %0,08858558SSS°
o 0508585959
05950859590
© 95050850
1oy oo, 85EESE
g %, 0958S
< o ofo
o o, o080
1 o o8o
%6 0g 00O
o (e3¢}
%o o
o o
05. o, o5
o o
200 %6 o
%o

150

50
Call Frequency (r/s)

Processing Rate (r/s)

(b) C for Services

Figure 6.4.: Plots of Evaluation Data Regarding the Average Reconfiguration Cost

94

6.7. Threats to Validity

for routers, and ABFR = 61.8% with C' = 0.0016 cents per second for services.

6.7. Threats to Validity

We study the threats to the validity of our study based on the four threat types by Wohlin
et al. |96].

6.7.1. Construct Validity

The accurate representation of the intended construct by a measurement is assessed
through construct validity. In this chapter, we studied reconfiguration measures of
increasing the processing rate and scaling out a component to prevent system overload.
While this is a common approach in service- and cloud-based research (see Section ,
the threat remains that other measures might work better in terms of system overload
prevention, for instance, changing the routing technology by using a circuit breaker |7§],
or adding more routers and reconfiguring the routing.

6.7.2. Internal Validity

Internal validity concerns factors that affect the independent variables concerning causality.
We considered each component, i.e., a router or a service, of a cloud-based application
separately by modeling them as queuing stations. If a reconfiguration is required, our
approach performs a multi-criteria optimization analysis |4] individually for the component.
The threat remains that these components can have interdependencies, e.g., preventing
overload of an upstream component might stress the downstream components. Moreover,
we only considered constant load when modeling the stress of components using queuing
theory. In reality, cloud-based systems are met with different load profiles, e.g., sudden
load spikes because of a discount offer in an online shopping system. Those load profiles
may require different models not covered in this study.

6.7.3. External Validity

External validity concerns threats that limit the ability to generalize the results beyond
the experiment. We designed our novel architecture with generality in mind and explained
how architects could specify the models to their needs. In spite of the fact that we
systematically evaluated our approach with an extensive number of 9600 evaluation cases
using the experiment infrastructure of our experiment of 1200 hours (see Section ,
the threat remains that evaluating the ADR architecture based on another infrastructure
may lead to different results.

6.7.4. Conclusion Validity

Conclusion validity concerns factors that affect the ability to conclude the relations
between treatments and study outcomes. As the statistical method to evaluate our model

95

6. Multidimensional Autoscaling

in this chapter, we defined the average percentage difference of buffer fill rate ABF'R
based on the Mean Absolute Percentage Error (MAPE) metric [90] as it is widely-used
and offers good interpretability in our research context.

6.8. Conclusions

In this chapter, we extended our Adaptive Dynamic Routers (ADR) architecture. ADR
uses queuing theory to model routers and services of a cloud-based system and performs
multidimensional autoscaling on each component individually to prevent system overload.
We evaluated our approach systematically using 9600 evaluation cases based on our
empirical data®. Our results show that the proposed architecture yields up to 100%
average percentage difference of buffer fill rate for routers and services. Regarding the
mean of the data over cases where an overload is predicted, our approach reduces the
average overload rate by 46.7% and 61.8% for routers and services, respectively. To the
best of our knowledge, there has not been any cost-aware self-adaptive dynamic-routing
architecture in the literature that adjusts the container configurations automatically to
prevent system overload.

96

7. Stateful Container Depletion

This chapter studies the stateful depletion and rescheduling of the containers of idle
components to address the research problem Ps: Lack of an approach to statefully
deplete and reschedule sporadically-active components. In Chapter [8) we summarize the
approach presented here and present a multifaceted reconfiguration of the dynamic-routing
applications. We address the research problem Py: Lack of tool support for the multifaceted
reconfiguration of dynamic routing applications.

7.1. Introduction

Container scheduling is a fundamental part of today’s service and cloud-based applica-
tions. Schedulers operate at different levels depending on how much control the system
developers have. On the one hand, container orchestration managers such as Google
Kubernete manage the scheduling of containers on different nodes. On the other hand,
serverless managers, such as Google Autopilotﬂ take care of the underlying infrastructure
automatically and developers do not need to manage the nodes. However, regarding
container depletion, i.e., removing the assigned cloud resources to an idle container,
current scheduling technologies have limitations. In this chapter, we extend our Adaptive
Dynamic Routers (ADR) architecture to manage cloud-resource usage efficiently when
containers are idle. For this purpose, we deplete idle containers statefully, i.e., propose a
novel manager that monitors idle containers, saves their state, and efficiently depletes
them. This manager reconstructs a depleted container using the saved state when re-
construction is needed. In our approach, we suggest an Infrastructure as Code (IaC)
component to automate the creation of new nodes if a depleted container cannot be
scheduled on the same node, e.g., because of being overloaded. We provide an analytical
model for the stateful depletion of containers and their rescheduling and empirically
evaluate the accuracy of our model. For this purpose, we ran an experiment on a private
cloud infrastructure and Google Cloud Platform’| with a duration of 80 hours. Our model
has a low error rate of 4.28% averaged over public and private clouds.

The structure of the chapter is as follows: In Section we give the background of our
study. Section explains our approach details. Our analytical model is parameterized
in Section [7.4] and evaluated in Section In Section we discuss the prediction error
of our model and present the threats to the validity of our study. Finally, we conclude in

Section [7.71

"https://kubernetes.io
Zhttps://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
3h'c‘cps ://cloud.google. com

97

https://kubernetes.io
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://cloud.google.com

7. Stateful Container Depletion

7.2. Background

This section gives the background of our study. Table [7.1 presents the mathematical
notations used in this chapter.

Table 7.1.: The Mathematical Notations Used in this Chapter
Notation Description

Nbusy Number of busy containers
Nspor Number of sporadical containers
Neptr Number of extra containers
Neepl Number of depleted containers
Cfousy Call frequency of busy containers
cfspor Call frequency of sporadical containers
Cfextr Call frequency of extra containers
c fbcugy Call frequency of a busy container ¢
fspor Call frequency of a sporadical container ¢
cfSoir Call frequency of extra container ¢
T Observed system time
Tspor Active time of sporadical containers
Tocty Overall active time of sporadical containers
Tidie Idle time before depletion of sporadical containers
Tertr Active time of extra containers
Lspor Active time of a sporadical container ¢
T, Idle time before depletion of a sporadical container ¢
tr Time period an extra container c is active
dspor Delay of idleness of sporadical containers
dSpor Delay of idleness of a sporadical container ¢
D act Summation of the periods a sporadical container c is active
r/s Requests per second
PR Number of processed requests without depletion
PRep Number of processed requests with depletion

MAPE Mean absolute percentage error
MAE Mean absolute error

MSFE Mean squared error
MSFE Root mean squared error
APR Percentage improvement of the processed requests
APRS Result of the model for an experiment case ¢
APRgmpm cal | Measured empirical data for an experiment case ¢
Cases Set of the number of services and the number of routers
Ne Length of Cases

98

7.2. Background

7.2.1. Real-World Industrial Case Study

A case study with particular complexity is encountered by fiskaly GmbH, a provider
of cloud-based Certified Technical Security Systems (CTSS) used to combat tax fraud.
According to German leg,‘isla‘cionlz_fl7 every electronic cash register or Point of Sale (PoS)
must be associated with a CTSS instance. This instance is responsible for tracking PoS
business cases, recording them as event logs, and digitally signing and storing these logs
for a future audit by the tax authorities. Each CTSS comprises two main components:
A protocol unit, known as Security Module Application for Electronic Record-keeping
Systems (SMAERS), and a cryptography unit, i.e., the cryptographic service provider.
While multiple SMAERS instances can share the latter, each SMAERS must be assigned
to a customer organization or, in practice, to a specific PoS of such an organization. In
other words, the process data of each customer entity must be kept separate from all
other customers.

As a result, at least one but potentially up to thousands of SMAERS instances, each
running on its own container, must be managed for each customer. Consequently, hundreds
of thousands of containers for the German market alone exist. These containers are
clustered together in groups of more than 100 containers on virtual machines in the cloud.
Depending on the customer’s identity and the location of the associated PoS, a SMAERS
instance may be highly active, processing thousands of transactions each day, or only
sporadically active, with a handful of transactions per week. Larger organizations tend to
batch-create SMAERS instances, meaning that some clusters may feature many high-load
instances belonging to the same customer, while others have more mixed demography.
Fiskaly GmbH needs to regulate resource consumption to ensure very high availability
of the CTSS components per its service-level agreements and low-latency servicing of
customer requests (typically under 250 ms). This regulation is necessary because cash-
register transactions cannot be delayed for long. Furthermore, all signed logs generated
by the CTSS have to be persisted and be constantly available for immediate export of
auditing purposes by the tax authorities. This export includes formally decommissioned
SMAERS instances, which must be kept active and accessible indefinitely.

7.2.2. Existing Solutions
Container Schedulers

Different business-grade container schedulers are available, e.g., Google Kubernetede or
Docker Swar These tools usually work with constraints, with which a system designer
controls on which cloud node a container is scheduled and deployed. However, these
schedulers are mostly static: A designer must usually define the node pools and the
constraints in advance. If a reconfiguration is needed, this information must be updated
manually. Moreover, a container orchestration tool would provide more resources than
needed when containers are idle, resulting in an increase in cloud costs. This increase is

“https://kassensichv.com
https://docs.docker.com/engine/swarm/

99

https://kassensichv.com
https://docs.docker.com/engine/swarm/

7. Stateful Container Depletion

because the depletion of containers cannot be done generically and must be tailored for
each application separately.

Elastic Containers

Many cloud providers offer a standard service to automate this process, i.e., to run
containers without considering the underlying cloud nodes. For instance, Google Auto-
pilotZ, Microsoft Azure Container Instanced’| and Amazon Elastic Container Servicd'|
on Fargateﬂ all of which free a designer from the container scheduling and deployment
decisions. However, these solutions are not always applicable when a degree of control is
needed over the underlying cloud nodes, e.g., following a compliance rule that dictates
which servers store customer data. So the containers might violate deployment regulations
in a fiscal application.

Controllers

Different container-scheduling technologies provide controllers that monitor the state of
a cloud-based application. For example, using a controller in Kuberneteﬂ, the number
of pod can be changed automatically to achieve the desired state of an application.
However, these controllers do not usually focus on a specific container but adjust a
cluster of containers to achieve a goal for that cluster. Using a specific controller for each
container requires additional effort. Furthermore, detailed knowledge of the scheduler is
needed when extending a controller from a specific technology. Also, this process cannot
be easily applied to another technology.

7.3. Approach Details

We study the scenario where containers can be depleted statefully, i.e., their state is saved
for later reconstruction, and their resources are freed. When a new request to a depleted
container is made, our proposed approach reconstructs the container. This container is
scheduled on an existing node, or a new node is created. Our approach is generic and can
be used with different container orchestration technologies, e.g., Google Kubernetedl and
TaC tools such as Ansibl We analyze the improvements in the number of processed
requests when depleting idle containers statefully.

7.3.1. Definition of Container Types

Based on our studied industrial use case (see Section , we define busy containers
as the ones that are active most of the time, processing requests with a high frequency,

Shttps://azure.microsoft.com/en-us/services/container-instances/

"https://aws.amazon.com/ecs/

Shttps://aws.amazon.com/fargate/
%https://kubernetes.io/docs/concepts/architecture/controller/
Ohttps://cloud.google.com/kubernetes-engine/docs/concepts/pod
Yhttps://www.ansible.com

100

https://azure.microsoft.com/en-us/services/container-instances/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/
https://kubernetes.io/docs/concepts/architecture/controller/
https://cloud.google.com/kubernetes-engine/docs/concepts/pod
https://www.ansible.com

7.3. Approach Details

i.e., thousands of requests per day. On the other hand, some containers receive requests
with a lower frequency and are idle between incoming calls. In this chapter, we call these
sporadically-active containers sporadical containers. In our approach, we deplete these
containers when idle and deploy extra containers instead to improve resource usage. Let
Ngept be the number of depleted containers and ne.¢- the number of extra containers.

7.3.2. Reconfiguration Algorithms

Algorithm [3/ proposes a simple depletion strategy that is used by the Manager component
in Figure We monitor sporadical containers for idleness. When depletion is triggered
for a container, we replace it with an extra container, i.e., a new container that has yet to
be deployed. However, deploying an extra container only happens if there are more than
twice as many depleted containers as extra containers in the system. This policy ensures
we do not overload the cloud nodes by deploying extra containers after each depletion.

Algorithm 3: Reconfiguration Algorithm to Statefully Deplete and Deploy Extra
Containers

Input: ngepr, Nextr

foreach container : containers do

if isActive(container) == false then

deplete(container)

Ndepl < Ndepl + 1

if Ngepr >= 2 Nextr + 1 then
replace extra containers()

Negtr < Nextr + 1

end
end

end

return neq,yr

Algorithm [4 shows a simple scheduling algorithm when a request for a depleted container
arrives. In this case, the container is scheduled on an existing node. Alternatively, if
the current nodes are overloaded, the IaC component creates a new node on which the
container is scheduled. Section [7.6 presents an analysis to recognize and predict an
overloaded node. Moreover, in Chapter [8, we introduce more details of the IaC algorithm
by considering the capacity of nodes, which is relevant when studying a multifaceted
reconfiguration of dynamic routing. As a result, these details are not introduced here.
Note that the number of depleted containers ngep, affects the number of extra containers
Nextr Used in our analytical model.

7.3.3. Analytical Model

We present the analytical model of our approach in this chapter.

101

7. Stateful Container Depletion

Algorithm 4: Reconfiguration Algorithm to Schedule a Depleted Container

Input: ngep

foreach container : depleted_ containers do
if isActive(container) == true then
if nodes overloaded() == false then

‘ deploy on_current nodes(container)

else
| deploy on new node(container)
end

Ndepl — Ndepl — 1

end
end

return ngep

Definition of Depletion Events

To calculate the achieved improvements in terms of the number of processed requests
when depleting idle containers statefully, we need a base measurement to compare with.
That is the number of requests that are processed without any depletion of containers.
For this purpose, our approach uses a combination of busy and sporadical services. We
calculate the number of requests processed during a fixed observed time and analytically
model this measurement of requests without depletion. Moreover, we model the depletion
of sporadical containers when idle, and calculate the improvements in the number of
processed requests when busy containers are scheduled instead.

Load Profiles

Let T' be the observed system time in seconds, 14,4, the number of busy containers in a
system, and ¢ ffusy the call frequency of a busy container c. We define a busy load profile
as constantly feeding a busy container ¢ with a call frequency of cfy, sy Without stopping
during T

Tin seconds |——————+—+—F—+—+—+——+—+—+——+—+—+—F—+—+—+—

CfcbusyI ‘

. . . N ¢ ¢
Let ngpor be the number of sporadical containers in an application, and cfg,o, dgpors

T¢,o, and T, be the call frequency, the delay of idleness, the active time, and the idle

spor» %

Figure 7.1.: The Load Profile of a Busy Container ¢

102

7.3. Approach Details

0 100 200 300 400 500 600
Tin seconds |———+——+—+—+——+—+—+——+—+—+—F—+—+—+—F—+—+——
Tcspor
<>
Cc
CfcsporI spor

>

©

Tcidle

Figure 7.2.: The Load Profile of a Sporadical Container ¢ (dots represent depletion.)

time before depletion for a sporadical container ¢. As shown in Figure a sporadical
load profile for a container c is characterized by a call frequency of cfg,,,,. for a short time
Tspor followed by a delay dgpor of no incoming requests. Note that a sporadical load is
repeated with different values of time and delay.

Number of Requests without Depletion Events

Let PR be the number of processed requests without depletion and)., the summation
of the periods a sporadical container c is active. PR can be calculated as the total number
of requests processed by the busy containers plus the requests processed by the sporadical
containers when active:

Npusy Nspor
PR = Z Cfbcusy T+ Z Z Cfscpor ’ Tscpor (71)
c=1 c=1 act

Number of Requests with Depletion Events

We deplete a sporadical container ¢ when it is idle for a period of time T, (represented
by dots in Figure . We deploy extra containers instead according to Algorithm E Let
cfSur be the call frequency of extra container ¢, T7,;, the time period an extra container
c is active, and PRgep the number of processed requests with depletion:

Nextr

PRdepl = PR+ Z ZC ecxtr ’ Tecxtr (72>

c=1 act

Let APR be the percentage improvement of the processed requests. Using Equa-

tion ([7.2), we have:

100%

APR = — 2 - (PRaep — PR) (7.3)
100% Nextr . .

APR = PR : ; %t:cfemtr " Lextr (74)

103

7. Stateful Container Depletion

7.4. Parameterization of Model Elements

Our analytical model can be applied to different scenarios of multiple load profiles with
various numbers of containers. Architects must parameterize our ADR model to their
specific use case at hand. In this section, we introduce an illustrative sample case and
explain how this parameterization of our model elements can be performed.

7.4.1. lllustrative Sample Case

We consider a scenario where the load profiles of multiple sporadical containers are so
that these containers can be swapped without losing any requests. In this case, when a
container is idle, another container receives incoming calls, as shown in Figure [7.3] for
an example. The main benefit of this case is that the node’s resources, e.g., vCPUs,
are not reserved for an idle container and can be used efficiently for a busy container,
resulting in faster response time. This efficient usage can also reduce costs depending on
the cloud-cost profile a user opts for. If customers are billed per resource usage (e.g., see
Google Autopilot pricinglgl), the cost reduction can be significant.

Tin seconds |——————+—+——+—+—+—F—+—+—+—F—+—+—+——+—+—+—

e [[T 1]
— 1L 0N

Figure 7.3.: The Sporadical Load Profiles of Two Containers in the Illustrative Sample
Case (dots represent depletion.)

7.4.2. Model Parameterization for the Sample Case

In Figure the sporadical load profile is repeated homogeneously with constant values.
Let c¢fpusy be the call frequency of busy containers, and ¢fspor, Tspor, and dgpor the call
frequency, active time, and delay of idleness of sporadical containers. As a result of the
homogeneous load for sporadical containers, we can calculate the overall active time of the
sporadical containers as a fraction of T'. Let T,., be the overall active time of sporadical

2https://cloud.google.com/kubernetes-engine/pricing

104

https://cloud.google.com/kubernetes-engine/pricing

7.5. Evaluation

containers, we have:

TS or
Toeto =T - —27 7.5
e TSpOT‘ + dSpOT’ ()
We can calculate the total requests processed by busy and sporadical containers by
rewriting Equation (7.1) for the homogeneous load as:

PR = Npusy Cfbusy T+ Nspor - Cfspor AR TM (76)
spor + dspor
To clarify, we study constant values for call frequencies, active times, and delays of all
containers in our sample case. Hence, Equation can be rewritten as Equation .
Let ¢feqtr and Teqt be the call frequency and active time of extra containers, respectively.
We can rewrite Equation for the illustrative sample case as:

PRdepl = PR+ Negtr - Cfeactr “Tewtr (77>

Following Algorithm [3| the ey, is half the number of sporadical containers in the
sample case. The reasoning behind this is that two containers are swapped repeatedly, as
it can be seen in Figure and one container is replaced in this case:

n
Negtr = SSOT (78)

We mentioned that when we deplete idle containers, we replace them with busy containers,
i.e., we feed them with a busy load profile to maximize the number of processed requests,
therefore:

Cfextr = cfbusy (79)

Let T;45 be the idle time after which we deplete sporadical containers. In this illustrative
sample case, the extra containers are deployed after the first depletion happens, i.e., after
T;q1e, and are active for the rest of the experiment:

Teaztr =T - Edle (71())

Finally, the percentage improvement of the processed requests, i.e., APR, presented in
Equation ([7.4) for this scenario is:

100%

APR = PRO * Nextr - Cfemtr “Teztr (711)
1 spor

APR = 00% . fsp . cfbusy ' (T - ﬂdle) (712)

PR 2

7.5. Evaluation

To evaluate our approach, we designed an experiment on cloud settings representative of

our industrial case study (see Section [7.2.1).

105

7. Stateful Container Depletion

7.5.1. Experiment Planning

In this chapter, we introduce an experiment with a runtime duration of 80 hours.

Goal

We aim to empirically evaluate the improvement in efficient resource usage when idle
containers are depleted statefully and reconstructed at a later time.

Method

We containerize the number of services representative of our industrial case study and
deploy these containers on a virtual node in public and private cloud infrastructures
(see below for details). Afterward, requests with different levels of frequencies are sent
to these containerized services. We deplete idle containers for a period of time and
measure the difference in the number of processed requests with and without depletion.
Our experiment planning follows the illustrative sample case presented in Section
Moreover, we use private and public cloud infrastructures to validate the accuracy of our
model.

Private Cloud Infrastructure

We used a physical server having two identical CPUs, the Intel® Xeon® E5-2680 v4
@ 2.40 GH Each processor has 14 cores and two physical threads per core (56 in total).
We installed a virtual node on the server using VMware ESXi version 6.7.0 u2 hypervisor.
This virtual node has eight vCPU cores, 60 GB system memory, and runs Ubuntu Server
18.04.01 LTY"| Docker technology'| is used to containerize services implemented in
Node.j Each service listens for a request and performs a dummy operation, i.e., a
delay of 1000 loops.

Validation Experiment on Public and Private Clouds

We used our private cloud to have control over the infrastructure. On a public cloud,
other factors, such as the parallel workload of other applications, can influence the results.
To show that our approach can be used on other infrastructures as well, we empirically
validate the analysis of our proposed model on our private cloud infrastructure and Google
Cloud Platform (GCP)B. On GCP, we use two machine types, i.e., general-purpose E2
machine instanc with two vCPUs and 8 GB of memory, and compute-optimized C2
machine instancelf] with four vCPUs and 16 GB of memory. We duplicated our private

https://www.intel.com/content/www/us/en/homepage . html
Yhttps://www.ubuntu. com

15https://www.docker.com

https://nodejs.org/en/
Yhttps://cloud.google.com/compute/docs/general -purpose-machines
18https://cloud.google.com/compute/docs/compute-optimized-machines

106

https://www.intel.com/content/www/us/en/homepage.html
https://www.ubuntu.com
https://www.docker.com
https://nodejs.org/en/
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/compute-optimized-machines

7.5. Evaluation

cloud infrastructure on these machines and repeated the experiment. Overall we have
three repetitions that we call: Private, GCP2 (two vCPUs), and GCP4 (four vCPUs).

Load Generation

For load generation, we utilized a MacBook Pro with an Apple M1 Pro chip and 16 GB
of system memory that runs macOS Montere version 12.2.1. It generates load using
Apache JMete that sends hypertext transfer protocol version 1. requests to the
virtual nodes.

Experiment Cases

Like our other experiments (see Section , we take the duration, i.e., the observed
time, of T = 600 seconds. We define two load profiles, i.e., busy and sporadical profiles
based on our industrial case study (see Section . A busy load profile is active during
the entire experiment run. In our industrial case, busy containers can process thousands
of requests daily. Therefore, we define a representative call frequency of busy containers
based on requests per second (r/s):

Cfbusy =5 T/S (713)

Note that these frequencies result in 432000 requests per day.

Presenting our case study, we mentioned that a sporadical load could be as low as a
handful of weekly requests. As this is not predictive and might result in no requests per
T = 600 seconds of experiment time, we follow the sporadical load profiles presented in
Figure To observe some requests during our experiment time (and for the cases to be
comparable), we give the same call frequency for sporadical and extra containers as for
the busy containers (i.e., 5 7/s):

cfspor = Cfextr =5 T/S (714)

However, as mentioned before, the sporadical load is active for a time period Ty, and
inactive for a short delay dgpor. To more closely resemble our industrial case study and
cover multiple sporadical load profiles, we use two levels for Tipor and dgpor:

(Tapor; dspor) € { (25,125) , (50, 150) } (7.15)

Containers are depleted after a T of inactivity. To study the effects of this model
element, we also use three levels as the following:

Tige € {5,25,45} s (7.16)

Yhttps://www.apple.com/by/macos/monterey/
“Onttps://jmeter.apache.org
2"https://tools.ietf.org/html/rfc7230

107

https://www.apple.com/by/macos/monterey/
https://jmeter.apache.org
https://tools.ietf.org/html/rfc7230

7. Stateful Container Depletion

These levels are chosen so we have a very short delay of 5s and the longest delay of 45 s
that still results in a homogeneous load, as used in our illustrative sample case. Moreover,
we study a middle case, i.e., a delay of 25 s to be thorough.

Following our industrial use case, we use different numbers of busy and sporadical
containers. Remember that the number of extra containers in the illustrative sample
case is half the number of sporadical containers according to Equation (see section
Section [7.4.2 for explanation):

(Rbusys spors Neatr) € { (50,50, 25),
(80, 20, 10),
(100, 20, 10),

(100, 50, 25) } (7.17)

We have 96 evaluation cases in total. These include 32 experiment cases (with and
without depletion) validated on three cloud infrastructures, i.e., private, GCP2, and
GCP4. Moreover, each case was repeated five times and averaged over to mitigate the
influence of other factors on the measurements, such as other workloads in public clouds
(see threats to validity Section . Overall, our experiment had a run-time of 80 hours,
excluding setup and processing time. Details of each evaluation case are provided in the
online artifact of this thesisC.

7.5.2. Experiment Results

Table [7.2 presents our model predictions and empirical measurements, and Figure [7.4
visualizes the data. We analyze the results separately for private and public cloud
infrastructures.

Private Cloud Infrastructure

The experiment results are very close to our analytical model predictions in all cases
of our private cloud infrastructure. Our model predicts, and our experiment confirms
that when having the same number of containers and feeding them with the same load
profile, a shorter Ty (the time period a container is idle before depletion) results in
a higher PRje, (number of processed requests with depletion). This improvement is
because we quickly identify idle containers and replace them with busy ones. Therefore,
more requests are processed during the same period of time, i.e., resources are used more
efficiently.

Moreover, when sporadical load profiles have a longer T, (the time period a sporadical
container is active), we have a higher PRy in all cases when we keep other model
elements constant. This improvement is because when sporadical containers are swapped,
they stay active longer, processing more requests. Another interesting observation is that
the ratio of busy to sporadical containers directly impacts APR, i.e., the percentage
improvement of the processed requests. In all experiment cases with (7pysy, Nspors Textr) Of
(80,20, 10) and (100,20, 10), we have around 10% increase in the number of the processed

108

7.5. Evaluation

Table 7.2.: Model Predictions of Experiment Cases and Empirical Results

Num. of Containers | Load Profile o
ndlE(S) (nbusyr 77‘5[)07‘7 ncwtr) (Tspur‘7 ds[}m‘) PR PRdepl APR(%) PR PRdgpl APR(A)
Model Private

(50,50, 25) (25,125) 175000.00 | 249375.00 42.50 174180.00 | 245020.00 40.67

T (50, 150) 187500.00 | 261875.00 39.87 186810.00 | 256480.00 37.29

(80,20, 10) (25,125) 250000.00 | 279750.00 11.90 250756.00 | 280348.00 11.80

5 T (50,150) 255000.00 | 284750.00 11.67 255580.00 | 285244.00 11.61
(100,20, 10) (25,125) 310000.00 | 339750.00 9.60 310988.00 | 340580.00 9.51

T (50, 150) 315000.00 | 344750.00 9.44 315780.00 | 345462.00 9.40

(100, 50,25) (25,125) 325000.00 | 399375.00 22.88 322420.00 | 388299.00 20.43

R (50, 150) 337500.00 | 411875.00 22.04 335210.00 | 404290.00 20.61

(50,50, 25) (25,125) 175000.00 | 246875.00 41.07 174180.00 | 246335.00 41.42

T (50,150) 187500.00 | 259375.00 38.33 186810.00 | 257460.00 37.82

(80,20, 10) (25,125) 250000.00 | 278750.00 11.50 250756.00 | 279234.00 11.36

%5 T (50, 150) 255000.00 | 283750.00 11.27 255580.00 | 284204.00 11.20
(100,20, 10) (25,125) 310000.00 | 338750.00 9.27 310988.00 | 339314.00 9.11

R (50,150) 315000.00 | 343750.00 9.13 315780.00 | 344224.00 9.01

(100, 50,25) (25,125) 325000.00 | 396875.00 22.12 322420.00 | 392450.00 21.72

T (50, 150) 337500.00 | 409375.00 21.30 335210.00 | 402045.00 19.94

(50,50, 25) (25,125) 175000.00 | 244375.00 39.64 174180.00 | 242355.00 39.14

T (50, 150) 187500.00 | 256875.00 37.00 186810.00 | 252295.00 35.05

(80,20, 10) (25,125) 250000.00 | 277750.00 11.10 250756.00 | 278364.00 11.01

15 e (50, 150) 255000.00 | 282750.00 10.88 255580.00 | 283048.00 10.75
(100,20, 10) (25,125) 310000.00 | 337750.00 8.95 310988.00 | 338080.00 8.71

R (50, 150) 315000.00 | 342750.00 8.81 315780.00 | 343366.00 8.74

(100,50, 25) (25,125) 325000.00 | 394375.00 21.35 322420.00 | 387565.00 20.20

R (50,150) 337500.00 | 406875.00 20.55 335210.00 | 401460.00 19.76

GCP2 GCP4

(50,50, 25) (25,125) 173330.00 | 246935.00 42.47 174650.00 | 245995.00 40.85

T (50, 150) 187060.00 | 249585.00 33.43 187260.00 | 259580.00 38.62

(80,20, 10) (25,125) 250200.00 | 277796.00 11.03 250764.00 | 280276.00 11.77

- T (50, 150) 254924.00 | 283392.00 11.17 257532.00 | 285234.00 10.76
° (100,20, 10) (25,125) 308048.00 | 333166.00 8.15 310904.00 | 340314.00 9.46
R (50, 150) 309600.00 | 335316.00 8.31 318492.00 | 345512.00 8.48

(100, 50,25) (25,125) 320720.00 | 374910.00 16.90 324540.00 | 393010.00 22.00

R (50, 150) 325050.00 | 370295.00 13.92 336530.00 | 407845.00 21.19

(50,50, 25) (25,125) 173330.00 | 243690.00 40.59 174650.00 | 245295.00 40.44

T (50,150) 187060.00 | 257365.00 37.58 187260.00 | 257140.00 37.32

(80,20, 10) (25,125) 250200.00 | 277412.00 10.88 250764.00 | 279374.00 11.41

2% ’ (50, 150) 254924.00 | 281530.00 10.44 257532.00 | 284286.00 10.39
(100,20, 10) (25,125) 308048.00 | 332460.00 7.92 310904.00 | 339402.00 9.17

R (50,150) 309600.00 | 334226.00 7.95 318492.00 | 344340.00 8.12

(100, 50,25) (25,125) 320720.00 | 369435.00 15.19 324540.00 | 395080.00 21.74

R (50, 150) 325050.00 | 372150.00 14.49 336530.00 | 404780.00 20.28

(50,50, 25) (25,125) 173330.00 | 243240.00 40.33 174650.00 | 240820.00 37.89

T (50, 150) 187060.00 | 253500.00 35.52 187260.00 | 253210.00 35.22

(80,20, 10) (25,125) 250200.00 | 277128.00 10.76 250764.00 | 278156.00 10.92

45 T (50,150) 254924.00 | 280468.00 10.02 257532.00 | 282176.00 9.57
(100,20, 10) (25,125) 308048.00 | 329408.00 6.93 310904.00 | 338094.00 8.75

R (50, 150) 309600.00 | 333302.00 7.66 318492.00 | 343506.00 7.85

(100,50, 25) (25,125) 320720.00 | 362720.00 13.10 324540.00 | 392650.00 20.99

R (50,150) 325050.00 | 364810.00 12.23 336530.00 | 398930.00 18.54

109

7. Stateful Container Depletion

mNo Depletion M Deplete 55 M Deplete 255 m Deplete 45s mNo Depletion W Deplete 55 m Deplete 255 m Deplete 455

300000 300000

250000 250000

200000 200000
o @
2 i

3 150000 3 150000
s z
g g
& &

100000 100000

50000 50000

0 0

Model Private Gep2 GCP4 Model Private Gep2 Gepa

(a) Num. of Containers: (50,50, 25) (b) Num. of Containers: (50,50, 25)
Load Profile: (25,125) Load Profile: (50,150)

HNoDepletion M Deplete5s M Deplete 255 1 Deplete 455 HNoDepletion M Deplete 5 M Deplete 255 1 Deplete 455
285000 290000
280000 285000
275000 280000
270000 275000
, 265000 , 270000
g 260000 % 265000
& 255000 & 260000
% 250000 = 255000
245000 250000
240000 245000
235000 240000
230000 235000
Model Private [Gepa Model Private Gcp2 Gepa

(¢) Num. of Containers: (80,20, 10) (d) Num. of Containers: (80,20, 10)
Load Profile: (25,125) Load Profile: (50,150)

WNo Depletion m Deplete 55 m Deplete 255 m Deplete 455 mNo Depletion m Deplete 55 m Deplete 255 ® Deplete 455
350000 350000
340000 340000
330000 330000
] 2
% 320000 $ 320000
S S
g g
& &
310000 310000
300000 300000
290000 290000
Model Private Gep2 Gepa Model Private Gep2 Gepa

(e) Num. of Containers: (100,20, 10) (f) Num. of Containers: (100,20, 10)
Load Profile: (25,125) Load Profile: (50,150)

mNo Depletion mDeplete 55 m Deplete 255 m Deplete 455 mNo Depletion mDeplete 5 Deplete 255 m Deplete 455

450000 450000
400000 400000
350000 350000
300000 300000
§ 250000 % 250000
E 200000 5’ 200000
150000 150000
100000 100000
50000 50000
0 0

Model Private GCP2 GCPa Model Private GCP2 GCP4

(g) Num. of Containers: (100, 50, 25) (h) Num. of Containers: (100, 50, 25)
Load Profile: (25,125) Load Profile: (50,150)

Figure 7.4.: Plots of All Cases without Depletion, and Depletion with T;4,. seconds

110

7.6. Discussion

requests. As we increase the number of sporadical containers (and consequently the
number of extra containers) in the experiment case of (100,50, 25), the APR also rises to
a value close to 20%. A one-to-one ratio of busy and sporadical containers results in the
highest APR as predicted by our models and confirmed by our experiment of (50, 50, 25)
containers.

Public Cloud Infrastructure

The experiment measurements on GCP follow the data trend of the private cloud. However,
as seen in Figure|7.4], as the number of containers goes higher, GCP2 has lower processed
requests compared to our model predictions and other experiment infrastructures. This
deterioration is because GCP2 has an E2 machine instance with two vCPUs. This
machine can handle a lower number of containers, i.e., (Nyyusy; Nspor; Neatr) of (50,50, 25)
and (80, 20, 10), closely to the other experiment infrastructures. Nonetheless, when a high
number of containers are deployed on this machine, i.e., (100,20, 10) and (100, 50, 25)
containers, the E2 machine is saturated and results in fewer processed requests. As seen
in Table [7.2/ and Figure [7.4, a more powerful C2 machine in GCP4 with four vCPUs
can handle all our experiment cases, and the experiment results are close to our model
predictions.

7.6. Discussion

This section studies container migration. Moreover, we calculate the prediction accuracy
of our model and present the threats to the validity of our study.

7.6.1. Container Migration

As we studied in Section [7.5.2] the GCP2 infrastructure becomes saturated when the
number of containers increases. The IaC component can automatically start a new
machine to migrate the depleted containers, i.e., schedule the containers on a newly-
created machine (see Figure . In our experiment, the GCP2 infrastructure performed
close to our model predictions with (npysy, Tspors Nextr) of (50,50,25) and (80, 20, 10).
That is when there are up to 100 deployed containers in a system, i.e., busy and sporadical
containers.

Npusy + Nspor < 100 (7.18)

However, with more than 100 deployed containers, i.e., (Npysy; Tspors Neatr) of (100,20, 10)
and (100, 50, 25), the GCP4 infrastructure gave values close to our model predictions.
Therefore, we can empirically conclude that for our experiment cases, the decision point
to start a new machine is when we have 100 deployed containers. We call this GCP
Mixed. The IaC component uses the following formula to change the infrastructure and

111

7. Stateful Container Depletion
schedules a container using Algorithm

GCP2 if (nbusy + Nspor < 100)
GCP4 otherwise

GCP Mixed =

Table [7.3 presents the model predictions of our experiment cases and the empirical
measurements on this infrastructure.

7.6.2. Evaluation of the Prediction Error

We measure the accuracy of our model predictions compared to the empirical results of our
private infrastructure (see Table and the GCP Mixed infrastructure (see Table [7.3).
We calculate the prediction error by calculating four error measurements commonly
used in cloud research, i.e., Mean Absolute Percentage Error (MAPE), Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) [90]. We
calculate the error measurements in terms of APR. Let APRY .. and APRempmcal
be the result of the model, and the measured empirical data for an experiment case c,
and n. be the number of measured empirical cases. We have n, = 24 AR values per
ecach experiment infrastructure (see Tables [7.2 and [7.3). The error measurements are

Table 7.3.: Model Predictions and Empirical Results on the GCP Mixed Infrastructure

Num. of Containers | Load Profile

Tid]e(S) (”busya Nspor ”eztr) (Tspor; dspor) PR PRdepl APR(%) PR PRdepl APR(%)
Model GCP Mixed

(50,50, 25) (25,125) 175000.00 | 249375.00 42.50 173330.00 | 246935.00 42.47

T (50, 150) 187500.00 | 261875.00 39.87 187060.00 | 249585.00 33.43

(80,20, 10) (25,125) 250000.00 | 279750.00 11.90 250200.00 | 277796.00 11.03

5 . (50, 150) 255000.00 | 284750.00 11.67 254924.00 | 283392.00 11.17
(100, 20, 10) (25,125) 310000.00 | 339750.00 9.60 310904.00 | 340314.00 9.46

T (50, 150) 315000.00 | 344750.00 9.44 318492.00 | 345512.00 8.48

(100, 50, 25) (25,125) 325000.00 | 399375.00 22.88 324540.00 | 393010.00 22.00

. (50, 150) 337500.00 | 411875.00 22.04 336530.00 | 407845.00 21.19

(50,50, 25) (25,125) 175000.00 | 246875.00 41.07 173330.00 | 243690.00 40.59

T (50, 150) 187500.00 | 259375.00 38.33 187060.00 | 257365.00 37.58

(80,20, 10) (25,125) 250000.00 | 278750.00 11.50 250200.00 | 277412.00 10.88

25 R (50, 150) 255000.00 | 283750.00 11.27 254924.00 | 281530.00 10.44
(100, 20, 10) (25,125) 310000.00 | 338750.00 9.27 310904.00 | 339402.00 9.17

T (50,150) 315000.00 | 343750.00 9.13 318492.00 | 344340.00 8.12

(100, 50, 25) (25,125) 325000.00 | 396875.00 22.12 324540.00 | 395080.00 21.74

. (50, 150) 337500.00 | 409375.00 21.30 336530.00 | 404780.00 20.28

(50,50, 25) (25,125) 175000.00 | 244375.00 39.64 173330.00 | 243240.00 40.33

T (50, 150) 187500.00 | 256875.00 37.00 187060.00 | 253500.00 35.52

(80,20, 10) (25,125) 250000.00 | 277750.00 11.10 250200.00 | 277128.00 10.76

45 ’ (50,150) 255000.00 | 282750.00 10.88 254924.00 | 280468.00 10.02
(100, 20, 10) (25,125) 310000.00 | 337750.00 8.95 310904.00 | 338094.00 8.75

R (50, 150) 315000.00 | 342750.00 8.81 318492.00 | 343506.00 7.85

(100, 50, 25) (25,125) 325000.00 | 394375.00 21.35 324540.00 | 392650.00 20.99

. (50,150) 337500.00 | 406875.00 20.55 336530.00 | 398930.00 18.54

112

7.6. Discussion

calculated as follows:

MAPE _ 100% ‘ Ncase APR’andel _C APRgmpiTiCCLl (719)
Ne —1 APRempirical
1 Ncase
MAFE = ;c : Z ‘APanodel - APRgmpirical’ (7'20)
c=1
1 Ncase 9
MSE = 170 . Z (APRinodel - APRgmpirical) (721)
c=1
RMSE =vVMSE (7.22)

Table[7.4] Presents the prediction error of the proposed model compared to the measured
data on different experiment infrastructures. Our model has a MAPE prediction error of
4.28% averaged over Private and GCP infrastructures. Given the 30.0% target prediction
accuracy commonly used in the cloud quality-of-service field [59], The prediction error of
our approach is more than reasonable. Other low error measurements also confirm the
high accuracy of our model.

Table 7.4.: Prediction Error of the Proposed Model

Measurement | Private | GCP Mixed | Overall
MAPE(%) 2.96 5.60 4.28
MAE 0.69 0.95 0.82
MSFE 1.11 2.40 1.33
RSME 1.05 1.55 1.3

7.6.3. Threats to Validity

As in all empirical research, there are several threats to the validity and limitations of our
study that we discuss in this section based on the four threat types by Wohlin et al. [96].

Construct Validity

The accurate representation of the intended construct by a measurement is assessed
through construct validity. In our study, we modeled the depletion of containers based on
the number of requests they process at a given time period. This approach is a common
criterion in the cloud quality-of-service research (see state of the art in Section and in
current container scheduling technologies such as Google Kubernetes to define controllers
based on the incoming load. However, a threat remains that other measures, such as CPU
usage percentage, might result in more accurate modeling of container depletion. More
research with several real-world systems would be needed to cover other measurements
and exclude this threat.

113

7. Stateful Container Depletion

Internal Validity

Internal validity concerns factors that affect the independent variables concerning causality.
We performed an experiment based on our studied industrial use case to evaluate our
proposed model. However, we did so in limited experiment time and had control over
the workload on cloud infrastructures. We avoided factors such as other loads on the
machines where the experiment ran. To mitigate this threat, we repeated each experiment
case five times and averaged the empirical measurements. However, more research with
multiple real-world workloads would be needed to confirm that no other factors influence
the measurements.

External Validity

External validity concerns threats that limit the ability to generalize the results beyond
the experiment. We designed our approach with generality in mind and explained in detail
how architects could tailor ADR to their needs (see Section . Although we evaluated
our approach by designing a representative experiment and measuring empirical data,
the threat remains that evaluating based on another infrastructure may lead to different
results. To mitigate this thread, we validated our measurements on Google Cloud Platform
infrastructure and showed that our results are applicable (see Section . Also, we
considered multiple load profiles, including a sporadical load profile (see Section and
Figure . However, the load was constant regarding the frequency of incoming calls
during active periods. A related threat is that we implemented all our services with
Node.j§E and did not use an off-the-shelf implementation, e.g., Envo We did so to
have a comparable infrastructure and to avoid technological impacts on our results.

Conclusion Validity

Conclusion validity concerns factors that affect the ability to draw conclusions about the
relations between treatments and study outcomes. As the statistical method to compare
our model’s predictions to the empirical data, we used the MAPE metric as it is widely
used and offers good interpretability in our research context. To mitigate the threat that
this statistical method might have issues, we double-checked three other error measures,
i.e., MAE, MSE, and RMSE, which confirmed our results reported in Section [7.6.2.

7.7. Conclusions

In this chapter, we proposed the details of our Adaptive Dynamic Routers (ADR)
architecture. Our approach is based on MAPE-K [47, |16 [17] loops to monitor containers
for idleness and deplete them if necessary. For this purpose, we proposed an analytical
model. We explained the details of our approach that can also work with off-the-shelf
orchestration solutions adding depletion-management capabilities. Moreover, we discussed
how architects could parameterize our analytical model to different scenarios by following

https://www.envoyproxy.io/

114

https://www.envoyproxy.io/

7.7. Conclusions

an illustrative sample case. For the empirical validation of our models, we designed and
performed an experiment on a private cloud infrastructure, as well as on Google Cloud
Platform®. Based on the details of our studied industrial use case (see Section ,
we defined multiple experiment cases and compared our empirical results to our model
predictions.

We found out empirically that, for our experiment, 100 deployed containers is a decision
point to start a new machine automatically using the IaC component of our proposed
approach (see Figure . We calculated the prediction error of our model as 4.28%
based on the widely-used mean absolute percentage error [90] averaged over private and
public clouds. To the best of our knowledge, stateful depletion of containers has yet
to be extensively studied in the literature. Moreover, current container orchestration
technologies, such as Google Kubernetedk, consider container depletion minimally. We
believe our proposed approach can provide a solid base for further research in this area.

115

8. Multifaceted Reconfiguration

This chapter studies the interconnection between different configuration views studied
in Chapters [5] to [7l We introduce a multifaceted reconfiguration of dynamic routing to
address the research problem Py: Lack of tool support for the multifaceted reconfiguration
of dynamic routing applications. We investigate three scenarios, i.e., when components
are idle, active, and overloaded. Moreover, this chapter provides prototypical tool support
to demonstrate our reconfiguration concepts.

8.1. Introduction

Dynamic reconfiguration is commonly used in service- and cloud-based applications. In
combination with autoscalers, dynamic routers can adapt the system to the resource
demands, e.g., in an e-commerce application offering discounts for services in a specific
location. Without such measures, the quality-of-service metrics are affected negatively,
and a system overload can lead to an application being non-responsive. However, our
Adaptive Dynamic Routers (ADR) architecture must consider the cost of cloud resource
usage when performing these reconfiguration steps to avoid adding high additional
costs. This chapter proposes a cost-aware multifaceted reconfiguration of dynamic
routing applications. We study the depletion and rescheduling of idle containers and
use an Infrastructure as Code (IaC) component to apply changes to the infrastructure.
Moreover, when system components, i.e., the routers and services, are in a steady state,
our approach dynamically self-adapts between more central or distributed routing to
optimize reliability and performance. This adaptation is calculated based on a system-
wide optimization analysis. When system components are overloaded, we perform a
per-component optimization to autoscale the system multidimensionally. Our extensive
systematic evaluation shows improvements in quality trade-off adaptations and system
overload prevention. We provide prototypical tool support to demonstrate our concepts
with illustrative sample cases.

The structure of the chapter is as follows: Section presents an approach overview.
Section explains our approach in detail, and Section gives illustrative sample cases.
Section [8.5 provides our prototypical tool support. Section [8.6 presents the evaluation
of the presented approach, and Section [8.7] discusses the threats to the validity of our
research. Finally, we conclude in Section

117

8. Multifaceted Reconfiguration

118

Table 8.1.: The Mathematical Notations Used in this Chapter

Notation Description
Nrout Number of routers
Nserv Number of services
Nscal Number of scaling replicas
Npro Number of processing rate improvements
IR Number of incoming requests
r/s Requests per second
R Reliability Request loss model in r/s
Ry, Reliability threshold in r/s
RGuain Reliability gain in %
R Reliability prediction in r/s
R, Reliability of an evaluation case ¢
P Performance model in ms
Py, Performance threshold in ms
PGain Performance gain in %
P o Performance prediction in ms
P, Performance of an evaluation case ¢
T Observed system time in s
CcI Crash interval in s
cf Incoming call frequency in r/s
Com Set of all components
Rout Set of all routers
de Average downtime of a component ¢ in r/s
CP. Crash probability of a component ¢ in %
BFR Buffer fill rate in r/s
BFR, Buffer fill rate of a router r in r/s
BF R(nscal, npro) | Buffer fill rate for autoscaling in /s
W Processing rate of a component in r/s
jrs Processing rate of a router r in r/s
A Arrival rate of a component in /s
Ar Arrival rate of a router r in r/s
RR Average reconfiguration ratio
C Average reconfiguration costs in cents/s
Cy, Cost Threshold in cents/s
C(nrout) Reconfiguration costs in cents/s
C(nsear = 1) Cost of scaling out in cents/s
C(npro =1) Cost of increasing the processing rate in cents/s
C(Nscals Mpro) Cost of multidimensional autoscaling in cents/s
Cases Set of experiment cases
Ne length of Cases

8.2. Approach Overview

8.2. Approach Overview

This section overviews our approach regarding the multifaceted reconfiguration of dynamic
routing applications. Table presents the mathematical notations used in this chapter.

Remember that a router is defined as an abstraction for any controller component
that makes routing decisions, e.g., an API gateway [79)], an enterprise service bus [26], or
sidecars [49] (see Chapter [2). We model the system components, i.e., services and routers,
as queuing stations|51] having two subcomponents, a buffer and a processor, as shown in
Figure Let A be the arrival rate and p the processing rate of a component based on
the number of requests per second r/s. Incoming requests are buffered in a queue by a
rate of A and processed by a rate of u.

)\ — —
arrival rate (r/s)
Buffer Processor
processing
rate (r/s)

Figure 8.1.: Components as Queuing Stations

A component is in a steady state when its processing rate is greater than or equal to
its arrival rate:

> A (8.1)

In the steady state, a component is not overloaded and can process incoming requests
without delay because of buffering. On the other hand, the transient state refers to when
a component is overloaded because its processing rate is lower than the arrival rate of the
requests:

<A (8.2)

We study three interrelated scenarios for components:

e when components are idle and can be depleted.

e when components are active and steady.

e when components are overloaded.
The first scenario considers the infrastructure changes when a reconfiguration occurs.
The second scenario studies a per system reconfiguration, which means we monitor the
state of a system as a whole and reconfigure the components. The third scenario is a per

component reconfiguration, i.e., our approach monitors and reconfigures each component
separately.

119

8. Multifaceted Reconfiguration

8.3. Approach Details

This section presents the details of our approach regarding the investigating scenarios in
this chapter.

8.3.1. Depletion of Idle Components

Some containerized system components process requests sporadically, so we deplete these
containers when idle (see Chapter . However, the depleted containers can become active
again and must be rescheduled. So we must consider the infrastructure changes, e.g., not
overloading cloud nodes. We use an [aC component to automatically create and free cloud
nodes to efficiently use resources and reduce costs. On the one hand, when depleting
idle containers, efficiently rescheduling other active containers might free a node. On the
other hand, when a depleted container receives a request and needs to be rescheduled, all
nodes might be occupied. TaC mponent can create a node and schedule the container.
Assume the capacity of each node is known based on the number of scheduled containers.
Algorithm [5| provides the steps to reconfigure the infrastructure. The IaC component
calculates the total capacity of nodes. If the number of system components exceeds
the total capacity, a new node is created, and containers are scheduled. Otherwise, IaC
checks if the containers can be rescheduled efficiently on fewer nodes. Having defined the
reconfiguration steps, we check if a container is idle and deplete it. When a request is
received for a depleted container, ADR schedules it either on existing nodes or a new one.

Algorithm 5: Infrastructure Reconfiguration Algorithm (reconfigure)

Input: nserv, Nrout
totalCapacity < 0
foreach node : nodes do
totalCapacity < totalCapacity + capacity(node)
end
scheduleContainers()
if (Mserv + Nrout) > totalCapacity then

createNode()
scheduleContainers()

else
foreach node : nodes do

restCapacity < totalCapacity — capacity (node)
if (Nserv + Nrout) < restCapacity then

scheduleContainers()
deleteNode(node)

end

end
end

120

8.3. Approach Details

8.3.2. Reconfiguration of Steady Components

When all components are active and steady according to Equation (8.1), we consider a
system-wide Multi-Criteria Optimization (MCO) [4] optimizing reliability and performance
trade-offs of the system.

Definitions

Remember that we defined the following elements in our reliability and performance
models: 7oyt and Ngery are the number of routers and services of an ADR application. CI
is the crash interval, i.e., the interval during which we check for a crash of a component.
Assuming the heartbeat pattern [46] or the health check API pattern [76] are used, CT is
the time between two consecutive health checks. cf is the call frequency based on requests
per second (r/s). Com is the set of components, i.e., routers and services. C'P. is the
crash probability of each component, and d. is the average downtime of a component ¢
after it crashes.

Reliability Model

Let R be reliability. Based on Bernoulli processes [90], we model request loss during
component crashes as explained in Chapter [3.

L%J) Cf) ZcECom CP.-d.

R= T

(8.3)

In this formula, request loss is defined as the number of client requests not processed due
to a failure, such as a component crash. Equation gives the request loss per second as
a metric of reliability by calculating the expected value of the number of crashes. Having
this information, we sum all the requests received by a system during the downtime of a
component and divide them by the observed system time.

Performance Model

Let P be performance. We model the average processing time of requests per router as a
performance metric. This metric is important as it allows us to study the quality of service
factors, e.g., the efficiency of architecture configurations as elaborated in Chapter

T
P= (8.4)
Nrout * Cf (T - L%J ’ ZcECom CPC ’ dc)

We count the processed requests in this formula by subtracting the request loss from the
total requests. We divide the observed time by the processed requests and the number of
routers. Section presents an illustrative sample case.

121

8. Multifaceted Reconfiguration

System-Wide MCO

We perform a multi-criteria optimization analysis to reconfigure an application by adjusting
Nrout- We use the notations R,, ., and P, ,, to specify the reliability and performance
predictions of an ADR configuration by their number of routers. Let Ry, and Py, be the
reliability and Py, performance thresholds. We define C(n,u:) as the reconfiguration
costs for an architecture configuration and Cyj, as the cost threshold. We must ensure
that we do not overload the routers. Let Rout be the set of routers of a system:

Minimize
Ry (85
Pryour (8.6
Subject to
R, e < Run (8.7)
Pryoue < Pin (8.8)
C(nrout) < Ctn (8.9)
I < Nrout < Nserv (8.10)
pr > A ¥ 1 € Rout (8.11)

Algorithm 6: System-Wide Optimization Analysis (systemWideMCO)

Input: cf, nserv, Rin, Pen, Cin

highBound < (R = R) and (1 < highBound < nsery)
lowBound < (P = P,) and (1 < lowBound < highBound)
routersRange + {}

foreach solution : [lowBound, highBound] do
solutionInRange < true

if C(nrout) > Cin then

solutionInRange <+ false
end

foreach r : Rout do
if A\, > p,r then

solutionInRange <+ false
end
if solutionInRange then

‘ routersRange < routersRange U {solution}
end

end

return routersRange

122

8.3. Approach Details

In the aforementioned system-wide MCO, we aim to minimize request loss and average
processing time of requests per router without the prediction values violating Ry, and
Py,. Typically, there is no single answer to an MCO problem but a set of acceptable
points in the solution space [4]. Algorithm @ provides a simple solution to find a range
of acceptable n,qut. The lower end of this range represents more centralized routing,
so we find the lowest acceptable n,..,; that does not violate the performance threshold.
Conversely, the highest possible n.q,+ is bound by the reliability threshold. Having found
the lower and upper values, we exclude the solutions that violate the cost threshold or
result in overloading a router.

Preference Function

We must choose a final reconfiguration solution on the n,.,; range returned from the
above analysis. An architect assigns weights to reliability and performance, so a preference
function can automatically choose a final solution. For example, when performance is
highly important, the preference function selects a higher n,.,,+ to choose more distributed
routing. This reconfiguration processes requests in parallel, giving higher performance.

Reconfiguration Algorithm

Algorithm [7 presents our reconfiguration steps triggered, for instance, whenever reliability
or performance metrics degrade. Time intervals, manual triggering, or changes in the
incoming load can also trigger the algorithm if more appropriate than metrics degradation.

Algorithm 7: System-Wide Reconfiguration Steps (systemWideReconfig)

Input: R, Pin, Cin, performanceWeight

¢f, Nserv < consumeMonitoringData()
routersRange < systemWideMCO(cf, nserv, Rih, Peny Ctn)
reconfigSolution + preferenceFunction(routersRange, performanceWeight)

reconfigure(nserv, reconfigSolution)

function preferenceFunction(range, PW)
begin

length + max(range) - min(range) +1
floor + | PW * length |

if floor == maz(range) then
‘ return max(range)
else if floor == 0 then

‘ return min(range)
else

| return floor + min(range) -1
end

end

123

8. Multifaceted Reconfiguration

8.3.3. Autoscaling of Overloaded Components

When a system component is in a transient state following Equation @, request
processing is delayed because of buffering in an overloaded component. In this case, we
use multidimensional autoscalingﬂ to bring the transient component to a steady state. We
consider two reconfiguration measures in a per-component MCO analysis, i.e., horizontal
autoscaling (scaling out the component) and vertical autoscaling (adding resources to the
component).

Buffer Fill Rate

Let BFR be the Buffer Fill Rate, defined as the difference between the arrival and
processing rates.

BFR=)\—p (8.12)

This metric is an indicator that a component is in a transient state. In this case,
we reconfigure an overloaded component. Let ng. be the number of scaling replicas,
Npro the number of processing rate improvements, BF R(ngcql, Npro) the buffer fill rate
predictions for multidimensional autoscaling, and IR the number of incoming requests
for a component.

IR - cf

BFR(nscabnpro) = m
sca

— (1 + Npro) (8.13)

This formula comes from the fact that scaling out an overloading component divides its
arrival rate by the total number of replicas (ngs.q + 1). The BF'R is also affected by the
added processing rate (u + npro) as explained in Chapter @

Reconfiguration Cost

The cost of reconfiguration must be considered as well. Let C(ngcq1, Mpro) be the cost
of multidimensional autoscaling, C'(ns. = 1) the cost of scaling out a component by
one replica, and C(np,, = 1) the cost of increasing the processing rate of an overload-
ing component by one 7/s. The reconfiguration cost depends on the ngsq and npo
improvements.

C(nscala npro) = Ngeal * C(nscal = 1) + Npro - C(inO = 1) (814)

Section [8.4.2 presents a parameterization and a sample case.

Reconfiguration Algorithm

Algorithm [presents the reconfiguration steps to autoscale a transient component.

"https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscalin
g

124

https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling
https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling

8.3. Approach Details

Algorithm 8: Multifaceted Reconfiguration Algorithm for an Overloading Com-
ponent

Input: R:n, Pin, Cin, performanceWeight
cf, Nserv, [R, 1 < consumeMonitoringData()
paretoFront < perComponentMCO(cf, IR, j1, Cir)

reconfigSolution < preferenceFunction(paretoFront)

reconfigure(nserv, reconfigSolution)
systemWideReconfig(R:n, Pin, Cin, performanceWeight)
function preferenceFunction(paretoFront)

begin

C «+ Cth

reconfigSolution «+ (0,0)

foreach solution : paretoFront do

C(nscal,np'ro) < Mscal * C(nscal = 1) + Npro * C(np'ro = 1)

if C(nscat, npro) < C then
C + C(nscah npro)

reconfigSolution < solution
end
end

return reconfigSolution
end

Per-Component MCO

We adjust the buffer fill rate of an overloading component to bring it to a steady state. This
reconfiguration is based on a second multi-criteria optimization analysis performed for each
component separately. We aim to minimize BF R but with a minimum reconfiguration
cost given by the following formulae:

Minimize
BF R(nscals npro) (8.15)
C(nscats Mpro) (8.16)

Subject to
A< p (8.17)
C(nscals Npro) < Cip, (8.18)

Remember that there is typically no single answer to an MCO problem but a set of
acceptable points called the Pareto front [4]. Using a preference function, we choose a
final solution that brings the component to a steady state according to Equation ({8.1)
with a minimum cost. Having done this analysis for overloaded components, all system
components are in a steady state. We must perform a system-wide MCO as described in

Section [8.3.2

125

8. Multifaceted Reconfiguration

«host»

«host»

«host»

«Service» {l

servicel

«Service» {l

service2

«Service» {l

service3

«Service» {l

service4

«Service» {l

serviceb

«Service» {l

service6

o

AN

«Router»
router1

o

AN

2]

«Router»
router2

o

AN

2]

«Router»
router3

2]

«host»

«host»

«Client» {l

client1

«AP| Gateway» {l
gateway

ClientRequest

Figure 8.2.: Example Configuration of Dynamic Routing Applications (solid arrows show
the incoming requests of routers.)

8.4. lllustrative Sample Cases

We provide a parameterization of our models alongside illustrative sample cases of steady
and transient components.

8.4.1. Reconfiguration of Steady Components

We study an example from the data set of our experimentd to parameterize our models
and give sample cases (see Section . An example configuration, where clients send
requests to an API gateway that forwards them to the services, is shown in Figure We
observed the system for T" = 600 s, had a crash interval of C'I = 15 s and studied uniform
crash probabilities and downtimes for all components as CP. = 0.5% and d. = 3s. We can
parameterize our reliability model (r/s) and performance model (ms) in Equations
and (8.4) as the following:

R =cf-0.001(nsery + Nrout)
1000
P= (8.20)
Nrout * Cf(l - ODOl(”serv + nrout))

In the example configuration, we have n,.,; = 3 routers and nger, = 6 services. Let
us consider that this sample case has an expected call frequency of c¢f = 257/s, and all
routers have a processing rate of yu = 64r/s. We parameterize the arrival rates and the
number of incoming requests of routers (solid arrows in Figure |8.2) to check if they are
overloaded. In our experiment, we allocated services equally to routers:

(8.19)

IR = “serv (8.21)
Nyrout
Mo=ef IR =Ly pout (8.22)
Nyrout

126

8.4. Ilustrative Sample Cases

In our sample case, IR = 2 and A, = 501 /s. Therefore, all routers are steady according
to Equation (8.1). To parameterize the cost functions, we use the Google Autopilot
pricingﬂ Autopilot allows increments of 0.25 vCPUs per container (same is offered by
Amazon FargateED that corresponds to 8 r/s in our experiment:

C(npro =8) =5-10"* cents /s (8.23)
The scaling cost of our routers with p = 64 /s accounts to:
C(ngea = 1) =4-1073 cents /s (8.24)

Regarding thresholds, we consider a reliability threshold of 1.2 r/s, a performance
threshold of 35 ms, and a cost threshold of 1 cent/s. We study a case where an architect
assigns a weight of 1.0 to performance and 0.0 to reliability. We perform the system-wide

MCO analysis in Section [8.3.2 by rewriting Equations (8.19) and (8.20) for these values:

Minimize
Ry, = 0.075 + 0.025 - nout (8.25)
1000
oo = 34,995 — 0.025 - 1) (8.26)
Subject to
Ry, <12 (8.27)
P,,,.<35ms (8.28)
C(nrout) < 1 cent/s (8.29)
1< Nyout < 6 (8.30)
pr > A ¥ 1 € Rout (8.31)

Equation (8.25) informs that the reliability predictions in the 1 < n,ue < 6 always
satisfy the reliability threshold. In Equation (8.26]), the constraint on the performance
threshold of P, ., < 35 ms gives the lowest value for the number of routers as 1ot = 2.

Therefore, the range for 1.y is:
2 <nypout <6 (832)

Following Algorithm @ we see that the cost threshold of 1 cent/s is always satisfied in
this range. We check if any solution results in overloading the routers in this range. On
the lowest bound, i.e., n.out = 2, we have the following according to Equations (8.21))

and (8.22):
IR=3 (8.33)
Ar=T7571/5s (8.34)

Zhttps://cloud.google.com/kubernetes-engine/pricing
3https://aws.amazon.com/fargate/pricing/

127

https://cloud.google.com/kubernetes-engine/pricing
https://aws.amazon.com/fargate/pricing/

8. Multifaceted Reconfiguration

Since p, = 64r/s, this overloads the routers according to Equation (8.1). So we
exclude this solution, and all the other points on the range are acceptable. Therefore, the
acceptable n,q+ range is the following:

3 < Nyoyt <6 (835)

The performance weight is 1.0, so the preference function chooses the highest possible
value for n,q: according to Algorithm [7l Therefore, the final solution is a configuration
with six routers, i.e., .ot = 6. We use this analysis also when illustrating our other
scenario, i.e., the multidimensional autoscaling of transient components to prevent system
overload.

8.4.2. Autoscaling of Overloaded Components

Let us consider the studied example in Figure [8.2. Assume this application is stressed
with a call frequency of ¢f = 100r/s. According to Equations (8.13), (8.21) and (8.22),
we have the following:

IR =2 (8.36)
A =2007r/s YV r € Rout (8.37)
ur =64 r/s Y r € Rout (8.38)
BFR,=136r/s Y r € Rout (8.39)

Having the same cost threshold of Cy, = 1 cents/s, we can rewrite the per-component
MCO analysis in Section [8.3.3:

Minimize
nsi?il — (npro + 80) (8.40)
8 Npro 51074 + mgeq - 41073 (8.41)
Subject to
A<p (8.42)
C(Nscal, Npro) < 1 cents/s (8.43)

We choose a final solution that brings the component to a steady state with a minimum
cost. Following Algorithm [8] this reconfiguration solution is:

(nscala npro) = (17 40) (844)

which gives the buffer fill rate of BF R(1,40) = —4. This solution results in scaling out
each router and increasing n,4,; from three to six routers. Therefore, we must check
that the system-wide MCO does not violate the thresholds. As we calculated before in
Equation , the acceptable range of routers is 3 < nypout < 6. So the solution is
acceptable.

128

8.5. Tool Support

Backend

* Performs MCO
Frontend * Chooses the final solution
* Manages backend control flow
* Inputs arch. config. — 1L
* Inputs model thresholds - T
* Input the importance vector «Docker Comalner»:
* Shows the final config.
7 -
| Optimizer
|
| Reconfig. Solution
o , P ——
«Docker Container» | «Docker Container» ;é’g"m «Docker Container»
I
Visualization
Web Frontend RESTful API laC Component
Monitoring
Data \
Arch. Config.
———————— Arch. Config.
«Docker Container»
Visualization N

Visualizer

Figure 8.3.: Tool Architecture Diagram

8.5. Tool Support

We provide a prototypical tool to demonstrate our approach in the online artifact of this
thesids.

8.5.1. Tool Architecture

Figure shows the high-level tool architecture. We have a slightly different architecture
than the one presented in Figure [5.1. Because we study multifaceted optimization of
dynamic routing in this chapter, we decided to define an Optimizer container. The Web
Frontend of our application provides functionalities to specify architecture configurations
and model elements, such as thresholds. This information is sent to the RESTful API
in the backend that invokes the Optimizer to perform MCO analyses and find the final
reconfiguration solution. The IaC Component generates artifacts in the form of Bas
scripts and configuration files, e.g., infrastructure configuration data to be used by an [aC
tool. These scripts can be used to schedule containers using the Docker technolog The
Visualizer creates diagrams of the configurations using PlantUMIE] that are shown in the
Web Frontend. The frontend is implemented in React’ and the backend in Node.jsf|

“https://www.gnu.org/software/bash/
https://www.docker.com/
Shttps://plantuml.com/
"https://reactjs.org/
8https://nodejs.org/

129

https://www.gnu.org/software/bash/
https://www.docker.com/
https://plantuml.com/
https://reactjs.org/
https://nodejs.org/

8. Multifaceted Reconfiguration

®
v

Specify
Model Elements

Observe Metrics x

Degradation

Time-Interval /

\l/ Manual Trigger

e N

Perform MCO
G \l/ J
e N

Choose Final

Solution

G \l/ J
e N

Reconfigure

v

Create Visualization
G J

v

4 N\

Show Visualization
G J

.

Figure 8.4.: Model Reconfiguration Toolflow

8.5.2. Toolflow

Figure [8.4 shows the flow regarding the model reconfiguration. An architect specifies
various model elements, i.e., the number of routers and services, thresholds, incoming call
frequencies, performance weight, processing rates of components, and cost functions. A
reconfiguration is triggered when metrics degradation is observed, according to timers or
manually. When reconfiguration is triggered, the backend performs an MCO analysis,
chooses a final reconfiguration solution, and generates 1aC artifacts. The reconfiguration
visualization is then created using PlantUML and shown in the frontend.

130

8.6. Evaluation

8.6. Evaluation

This section evaluates our approach in both scenarios illustrated in Section [8.4 system-
atically. We compare the model values to our empirical data set reported in the online
artifact of this dissertation® Note that our study is neither specific to our experiment
infrastructure nor our cases. We use our empirical data set to evaluate our approach
using measured data from an extensive experiment (see Section for details).

8.6.1. Reconfiguration of Steady Components

This section presents our evaluation of when components are steady.

Evaluation Cases

We systematically evaluate our method through various thresholds and importance weights
for reliability and performance. We compare our model predictions with 9 experiment
cases, i.e., three levels of routers and three levels of services, each operational for four
levels of cf.

Nserv € { 3,5,10 } (845)
Nrout € { 1,3, nserv } (846)
cf € {10,25,50,100 } r/s (8.47)

Regarding the cost thresholds, we take Cy, = 1cent/s as in our illustrative sample
cases. For the processing rates, we investigate 9 levels as follows. In Section we
mentioned that a component with one vCPU has a processing rate of roughly 327/s in
our experiment. We start with components having two vCPUs up to six in increments of
0.5 vCPUs.

64 <pu<1927r/s (8.48)

Regarding reliability and performance thresholds, we start with tight reliability and
loose performance thresholds so that more centralized routing is acceptable (lower value
of Nyoyut). We increase the reliability and decrease the performance thresholds by 10%
in each step so that distributed routing becomes applicable. To find the starting points,
we consider the worst-case scenario of our empirical data. Equation (8.3) informs that
a higher ngem, results in a higher expected request loss as the number of components
increases. In our experiment, the highest number of services is ten. With nge, = 10, the
worst-case reliability for centralized routing and fully distributed routing (n,,: = 10) is
1.1 and 2.0 r/s, respectively.

Regarding performance, for the case of nger, = 10, we investigate our predictions to find
a range where a reconfiguration is possible. The lowest possible performance prediction
is 33.7 ms, and the highest is 101.1 ms. We adjust these values slightly and take our

131

8. Multifaceted Reconfiguration

boundary thresholds as follows. We analyze step-by-step by increasing the reliability
threshold and decreasing the performance threshold by 10% as before.

1.1 < Ry <20 1/s (8.49)
35 < Py, < 100 ms (8.50)

Results Analysis

We evaluate 9801 systematic evaluation cases: 9 experiment cases, 9 processing rate levels,
11 importance weights, and 11 thresholds. We define reliability gain, i.e., RGain, and
performance gain, i.e., PGain, as the average percentage differences of our predictions
compared to those of fixed architectures. Let R. and P, be the reliability and performance
of an evaluation case ¢, Cases the set of experiment cases, and n. the length of Cases.
Note that the following formulae are based on the Mean Absolute Percentage Error
(MAPE) widely used in the cloud quality-of-service research [90].

100 R.— R
RGain = 200% . o e (8.51)
Ne Nrout
ceCases
100 P.— P,
PGain = 000 . y o e (8.52)
Ne ceCases Trout
Remember R,, . and P,, ,, are reliability and performance predictions. The gains are

averaged over n. = 9 experiment cases.

Figure [8.5 shows the reliability and performance gains. Moreover, each figure shows
the plots for our lowest studied processing rate of y = 64r/s and the highest bound
in our research, i.e., up = 192r/s. Regarding reliability, we can see in Figure that
with a higher reliability weight, we have an increase in reliability gain with g = 192r/s.
Remember in Algorithm [6] we check that the components are not overloaded when
choosing a more centralized routing to increase reliability. Having a higher processing
rate results in a component processing higher call frequencies without being overloaded.
However, as a result of choosing a less centralized routing, the gain in reliability is at
most 16.60%.

Our approach provides significant improvements in performance gains. As more
importance is given to the performance of a system, i.e., performance weight increases,
our approach reconfigures an application by choosing more distributed routing. This
reconfiguration results in a rise of a performance gain as shown by Figure [8.5b. On
average, when cases with correct and incorrect architecture choices are analyzed together,
our adaptive method provides 74.22% performance gain. A higher gain for performance
compared to reliability is expected. To clarify, Equations and inform that
changing the number of routers has a higher effect on the performance than a system’s
reliability. We define performance as the average processing time of requests per router.
Having a higher number of routers to process the requests in parallel results in dividing
the average processing time by more routers.

132

8.6. Evaluation

Processing Rate s«

O e
O 1929

04

02
10 Reliability Weight

Processing Rate (¢

O e
O 1929

Py, (ms)

20 ¢ Performance Weight

(b) Performance Gain

Figure 8.5.: Reliability and Performance Gains with Processing Rates of u = 64 and
192 1/s

133

8. Multifaceted Reconfiguration

o o
0014 - o @ o
% ol o
%%, o L %o
0012 - o, O o, © o
— o o %5 o o
g RPo o 07, o
E 001 . o o o o Ie) o
o © @ o o @Y o
§ o o] o o (]
< 0008 | o o o 08
g o © 0 © oOO o o 0 ,° © -
) o (]
o @ o
&0.0%-\ OO Ooo o © o e} o 8 o
° o %o o © % o Q
§ 0004 % o o 0o 0% o
S o] o o Qo o [}
Z Q 050 o, o o o
0002 °_85 2. 0% o oo
09 © O 50 o © o
0.l o OOO (o]
100

200

40

Call Frequency (r/s) 0 50
Processing Rate (r/s)

(a) Average Cost

3
29 2 P
. o
1 o
o oK)
%0 907070 © 00
& 28 @ o® o
0s° oo ° %7 o o
§ o~ © © 0 on2° >
o)
§27\ Oo o0 © o oo o o
< o o 900 g 8 o
0% "¢ ©
26 © o o~ 0 ° o o
®700 "o o ©°°©)
o o o
00 o o %0, o
25) o Q 0 OOO o
100

200

40

Call Frequency (r/s) 0 s0
Processing Rate (r/s)

(b) Average Reconfiguration Ratio

Figure 8.6.: Plots of Evaluation Data for the Autoscaling of Transient Components

134

8.6. Evaluation

8.6.2. Autoscaling of Overloaded Components

This section evaluates our approach systematically regarding component overload preven-
tion.

Evaluation Cases

We go through the same range of values as in the previous scenario:

Nserv € { 3,5,10 } (8.53)
Nrout € { 1,3, Nserv } (8.54)
10 < cf <100 7/s (8.55)
64 < pu <196 /s (8.56)
Cin =1 cent/s (8.57)

As before, we study increments of 0.5 vCPUs resulting in 9 p levels. We consider the
same range of call frequencies. However, since we are studying component overloads, we
evaluate increments of 5 r/s, resulting in 19 cf levels.

Results Analysis

We evaluated 1539 cases for this scenario, i.e., three levels of nge.y, three levels of
Nrout, 9 levels of u, and 19 levels of ¢f. We define the average cost C' and the average
reconfiguration ratio RR, that is, the amount of BF' R improvements per cost spent as:

— 1
C = nfc ’ Z C(nscal; npro) (858)

ceCases

RR = i i Z BFR(OaO) - BFR(nscalanp'r’o)
C(”scala npro)

T

(8.59)

ceCases

BFR(0,0) is the buffer fill rate without reconfiguration. We average over three levels of
services and three levels of routers, i.e., n. = 9.

In Figure we can see that the reconfiguration costs increase as the processing rate
and the call frequency goes higher. This is expected as reconfiguring a component with
a higher processing rate is more expensive, especially when scaling out an overloaded
component. Moreover, a higher incoming call frequency results in more overloaded com-
ponents and, consequently, higher reconfiguration costs. However, as seen in Figure
a higher cf results in a higher reconfiguration ratio. Our approach balances the costs
with a bigger buffer fill rate improvement converging RR to an average of 2.62. The
average reconfiguration cost over all cases is 0.0065 cents/s, bringing all overloading
system components to a steady state.

135

8. Multifaceted Reconfiguration

8.7. Threats to Validity

There are several threats to the validity and limitations of our study that we discuss in
this section based on the four threat types by Wohlin et al. [96].

8.7.1. Construct Validity

We used request loss and the average processing time of requests per router as reliability
and performance metrics, respectively. The threat remains that other metrics might
model these quality attributes better, e.g., a cascade of calls beyond a single call sequence
for reliability [67], or data transfer rates of messages which are m byte-long for perform-
ance [53]. Moreover, we studied reconfiguration measures of increasing the processing
rate and scaling out a component to prevent system overload. While this is a common
approach in service- and cloud-based research (see state of the art in Section , other
measures might work better in terms of system overload prevention, for instance, changing
the routing technology or using a circuit breaker [78]. More research with real-world
systems is required to mitigate this threat.

8.7.2. Internal Validity

Internal validity concerns factors that affect the independent variables concerning causal-
ity. We considered a simple reconfiguration strategy to start the new setup in parallel
with the running configuration to avoid impacts on reliability (e.g., request loss due to
reconfiguration) and performance (e.g., increased processing time while reconfiguring). In
a real-world system, this solution is cost-ineffective that introduces additional resource
demands. The architects must specify a reconfiguration strategy based on their application
needs to exclude this threat. Moreover, we only considered constant load when modeling
the stress of components using queuing theory. In reality, cloud-based systems are met
with different load profiles, e.g., sudden load spikes.

8.7.3. External Validity

External validity concerns threats that limit the ability to generalize the results beyond
the experiment. We designed our novel architecture with generality in mind. However,
the threat remains that evaluating our approach based on another infrastructure may
lead to different results. To mitigate this thread, we evaluated our proposed approach
with an extensive systematic evaluation using the data of our experiment of 1200 hours
(see Section . Moreover, the results might not be generalizable beyond the given
experiment cases of 10-100 requests per second and call sequences of length 3-10. As this
covers a wide variety of loads and call sequences in cloud-based applications, the impact
of this threat should be limited.

136

8.8. Conclusions

8.7.4. Conclusion Validity

Conclusion validity concerns factors that affect the ability to conclude the relations between
treatments and study outcomes. As the statistical method to evaluate the accuracy of
our prediction models, we used the Mean Absolute Percentage Error (MAPE) metric [90].
We defined reliability and performance gains, as well as the average percentage difference
of buffer fill rate based on MAPE, as it is widely used and offers good interpretability in
our research context.

8.8. Conclusions

In this chapter, we proposed a multifaceted reconfiguration approach that self-adapts
between different routing patterns considering the component overloads and idleness.
Moreover, we provided a prototypical tool that provides visualizations to study different
architecture configurations. We systematically evaluated our approach based on our
empirical data (see Section [8.2 for details). Our extensive systematic evaluation shows
significant improvements in quality trade-off adaptations and system overload prevention.
In our experiment cases, our approach can yield up to 16.60% reliability gain. On average,
where cases with the right and the wrong architecture choices are analyzed together, our
approach offers a 74.22% performance gain.

137

9. Conclusions and Future Work

In this dissertation, we investigated the modeling and multifaceted reconfiguration of
cloud-based dynamic routing. Each chapter includes a conclusions section; hence we
provide an overall thesis summary in this chapter. Moreover, we plan our future studies
that use machine-learning techniques such as an Artificial Neural Network (ANN) [64] to
learn the studied reconfiguration concepts. In this doctoral thesis, we investigated the
following research questions:

o RQ1 What elements are required to automatically assess the different quality-of-
service requirements in cloud resource management of service- and cloud-based
dynamic routing applications?

e RQ> How to choose the final reconfiguration option as part of a feedback loop to
manage cloud resources efficiently, and how well does this reconfiguration solution
perform compared to the case when one architecture configuration runs statically?

o RQ3 What is the architecture of a supporting tool that analyses the system quality-
of-service requirements and facilitates the reconfiguration of a dynamic routing
application using the optimal configuration solution?

For RQ1, we provided reliability and performance models in Chapters [3|and [4] For
RQ2, we proposed the Adaptive Dynamic Routers (ADR) architecture and presented our
approach details in Chapters 5] to [7] For RQs, we provided prototypical tool support for
the multifaceted reconfiguration of dynamic routing applications in Chapter [8 (Chapter
also provides tool support).

Our study concludes that more decentralized routing results in losing more requests,
i.e., lower reliability, compared to more centralized approaches. However, our results show
that distributed settings indicate better performance, especially under high load, because
of using more routers. The major impact of our work is on architectural design decisions
for dynamic routing. Our proposed analytical models represent service- and cloud-based
systems. They can be used in other environments and applications to give insight to
architects when making architectural design decisions regarding dynamic routing. To
the best of our knowledge, this work is the first to provide empirical evidence on the
trade-off analysis between reliability and performance in cloud-based dynamic routing
systems. The primary achievements of our research comprise models and an empirical
examination of prevalent dynamic routing architectures. Such in-depth empirical studies
establish a firm basis for comprehending the current state of the art and its constraints,
defining fundamental facts, and delivering data sets for subsequent research, all of which
are essential for the development of novel algorithms and architectures.

139

9. Conclusions and Future Work

For this purpose, we provide an extensive data set of 36336300 points in our online
artifact® based on the concepts introduced in this dissertation. The input of our data set
is all combinations of the following six monitoring data. The output is the result of the
multifaceted reconfiguration of dynamic routing as presented in Chapter |8l Remember
that we studied the following model elements: 7.0yt and nger, are the number of routers
and services of an ADR application. cf is the call frequency based on requests per second
(r/s). Ry is the reliability threshold based on the number of request losses per second.
Py, is the performance threshold as the average processing time of requests per router.
PW is the performance weight, i.e., a number between 0.0 and 1.0, giving the importance
of performance compared to reliability. We have the following ranges in our data set, and
the rationale behind choosing them is given below:

3 < Ngery <10 (9.1)
1 < nyout < Nserv (9.2)
10<ecf <1007/s (9.3)
11< Ry <27/s (9.4)
35 < Py, <100ms (9.5)
0.0 < PW < 1.0 (9.6)

These values are based on an extensive experiment of 1200 hours, in which we measured
the quality-of-service metrics of dynamic routing applications (see Section . The
call frequency of ¢f = 1007/s, or even lower numbers, is chosen in many studies (see, e.g.,
[33,187]). Therefore, we chose different portions between 10 to 100 r/s. As for the number
of services ngery, based on our experience and a survey on existing cloud applications in
the literature and industry (see, e.g., |5, [11} [12]), the number of cloud services that are
directly dependent on each other in a call sequence is usually rather low. As a result, we
study 3 to 10 services in a call sequence. For the reliability and performance thresholds,
we studied our empirical data and chose the worst-case scenarios for centralized and
distributed routing (see Chapter . The importance weights are required to choose a
final reconfiguration solution based on the need of different applications. For example,
giving a higher weight to performance opts for more distributed routing because of the
parallel processing of requests. A performance weight of 1.0 emphasizes performance, and
0.0 gives weight to reliability when choosing the final solution.

This data set can be used to train an ANN for the multifaceted reconfiguration of the
dynamic-routing architectures. For our future work, we plan to investigate different ANN
configurations in a series of studies. To this end, we have already published one research
paper [8] analyzing a deep neural network [64] that has learned our data set. In this
study, we used the TensorFlo and the Keras sequential mode A sequential model has
exactly one input and one output. The introduced ANN has 5 densely-connected layers,
each with 40 neurons. We used the standard rectifier-linear-unit activation function, the
mean-squared-error loss function, and the Adam optimizer [23] with a learning rate of

"https://www.tensorflow.org/
’https://www.tensorflow.org/guide/keras/sequential_model

140

https://www.tensorflow.org/
https://www.tensorflow.org/guide/keras/sequential_model

0.001. We trained the deep neural network with 100 epochs. The ANN and the paper
are available in the online appendix of this dissertation. Moreover, we plan to combine
reinforcement learning [63] with neural networks to predict architecture configurations,
load profiles, infrastructure changes, etc.

141

A. Initial Performance Experiment

This appendix relates to Cy: Performance models and trade-offs analysis. In the research
paper [5], we performed an initial experiment and studied statistical regression analyses
of the empirical data. This paper was the foundation for our performance study [12],
where we investigated a larger-scale scientific experiment presented in Chapter [4| of the
dissertation.

A.l. Introduction

In many service-based applications, decisions about data routing need to be made at
runtime, for instance, to ensure compliant data handling. In the context of software
systems, compliant data handling is concerned with ensuring that the system handles
data in accordance with established laws, regulations, and business policies. Different
service- and cloud-based architectures to make dynamic data routing decisions exist,
including central entities, multiple dedicated decision services, or using a sidecar for
each involved service. These architectures differ in various quality attributes, including
complexity, understandability, and changeability of the decision logic. A crucial concern
in cloud-based settings with a high load of incoming requests is the performance of
the chosen architecture, which is often hard to predict in early architecture designs.
Choosing the wrong architecture for decision-making at runtime may severely impact
the performance of the software system. In this appendix, we evaluate the performance
of three representative approaches for processing compliance rules concerned with data
routing in service- and cloud-based architectures (see Section [2.1). The results show that
distributed approaches for dynamic data routing have a better performance compared to
centralized solutions. On the other hand, centralized solutions are easier to understand
and change, but this depends on the domain problem strongly. Our study provides
prediction models to estimate the performance trade-offs an architect has to accept for
improvement in other relevant qualities, such as the number of required cloud resources.

The structure of this appendix is as follows: Section explains our experiment
planning. Section presents the analysis of the experimental results, and Section
considers threats to validity. Finally, Section summarizes our findings and concludes
this appendix.

A.2. Experimental Planning

In this section, we present the details of our initial experiment. Table presents the
mathematical notations used in this appendix.

143

A. Initial Performance Experiment

Table A.1.: The Mathematical Notations Used in this Appendix
’ Notation ‘ Description

RTT Round-trip time
RTT, Median round-trip time of a number of services
Q1 First quartile of the recorded RTT values
Q3 Third quartile of the recorded RTT values
o Standard deviation of the recorded RTT values
W Avg Weighted Average
r/s Requests per second
cf Incoming call frequency
Nserv Number of services
SC Service coefficient
FC Frequency coefficient
e Interaction coefficient
Int Intercept
A.2.1. Goals

The experiment aims to measure the performance of the three approaches for processing
compliance rules concerned with data routing in service- and cloud-based architectures,
i.e., the Central Entity (CE), Dynamic Routers (DR), and the Sidecar-based Architecture
(SA) as presented in Section

A.2.2. Experiment Design

The experiment design presented in this study is slightly different from that of our main
experiment (see Section [2.3.2).

Technical Details

We used a private cloud with four nodes, each having two identical CPUs. Two cloud nodes
host Intel®Xeon®E5-2680 v4 @ 2.40GH2E] and the other two host the same processor
family but version v3 @ 2.50GHz. The v4 and v3 versions have 14 and 12 cores respectively
and two physical threads per core (56 and 48 threads in total). All cloud nodes have 256
GB of system memory and run Ubuntu Server 18.04.01 LT. On top of the operating
system, Docke containerization is used to run the cloud services implemented using
Node.jsﬂ We utilized five desktop computers to simulate load generation, each hosting
an Intel®CoreT™i3-2120T CPU @ 2.60GHz with two cores and two physical threads per
core (four threads in total). All desktop computers have 8 GB of system memory and run

"https://www.intel.com/content/www /us/en/homepage.html
https://www.ubuntu.com

Shttps://www.docker.com

“https://nodejs.org/en/

144

A.2. Experimental Planning

Ubuntu 18.10. They generate load using Apache J Mete that sends Hypertext Transfer
Protocol (HTTP) version 1.1@ requests to cloud nodes.

Architecture Configurations

We used one cloud node with 56 threads to run the API gateway and distributed cloud
services among the remaining three nodes. The services are distributed so that all nodes
have the same number of cloud services (with a maximum difference of one service). In the
case of CE, the central entity service is also placed on the node where the API gateway is
scheduled to minimize network communication. For DR, we placed a router on each of the
three nodes that host cloud services. Each bucket controls data communication regarding
services on their corresponding node. We call this configuration Dynamic Routers With
Three Routers (DR_3). We added another configuration for DR in the sense that we put
two routers on each cloud node and let each router control data flow for half of the cloud
services on the corresponding node. We call this configuration Dynamic Routers With
Siz Routers (DR_ 6). SA places one sidecar per each cloud service on the corresponding
node. Additionally, we implemented the aforementioned configurations on a single-node
environment to be able to compare the performance of architectures when deployed on a
distributed or a local setup.

We chose to implement all three architecture options from scratch in Node.js and did
not use existing implementations of these options, such as Envo for sidecar architectures.
The reason is that we wanted comparable implementations to avoid measuring the
impact of a particular technology implementation rather than the impact of the canonical
architecture.

Round-Trip Time Calculation

Let RT'T be the round-trip time. To measure the performance of the different prototypical
architectures, we calculated the RTT of requests, which is defined as the difference in
time from the moment a request enters the application through the API gateway until
it is routed through all cloud services involved in the processing of the request. JMeter
generates an identification (ID) number for each HTTP request. Whenever the gateway
receives a request, it starts a timer with an attached ID. The request is routed through
cloud services and returns to the gateway when processing is finished, i.e., either the
request reaches its destination or the controlling logic cuts the data flow short before the
request is processed by its final cloud service. Next, the gateway reads the request ID
and stops the corresponding timer. The RT'T is the time calculated by the timer.

Shttps://jmeter.apache.org
Shttps://tools.ietf.org/html/rfc7230
"https://www.envoyproxy.io,/

145

A. Initial Performance Experiment

Experiment Cases

Many factors can influence RT'T, out of which we chose two to study their effects: The
call frequency and the number of cloud services. Let c¢f be the incoming call frequency,
which is defined as the number of requests per second coming from service clients. cf
affects RT'T since a higher frequency of calls requires either more processing power or
buffering. Let ngery be the number of services of a dynamic routing application. A higher
Nsery iNCreases RTT because there are more rules to be checked by controlling services.

In this experiment, we chose call frequencies of 100, 500, and 1000 requests per second
(r/s). We selected these numbers based on a study of related works. In many related
studies, 100 requests per second (or even lower numbers) are chosen (see, e.g. |33, 87]).
Focusing on higher loads, we chose 100 7/s as our lowest studied call frequency. A recent
benchmark for self-adaptive Infrastructure as a service (IaaS) cloud environment [43]
uses 339 requests per second as its upper limit. We thus chose 500 r/s as a close but
slightly higher number to focus on high-load scenarios. Finally, to study even higher
load conditions, we took 1000 r/s into consideration. In the case of 100 r/s, one desktop
computer generates the load. For the call frequencies of 500 and 1000 /s, we used two
and five computers, respectively.

We chose the experimental cases of 5, 10, 25, and 50 services, which we believe
represent most cloud-based applications. Note that today many real-world microservice
architectures use a much larger number of microservices. Still, in our experience, the
number of microservices with close interactions (like a common compliance rule base)
is usually in the range of 5-50. From our point of view, early performance analysis in
early architecture design should be focused on such interacting clusters of microservices
rather than considering microservices that have little impact on the performance aspects
in focus.

Data Set Preparation

We executed each experimental case 5 times and reported minimum, first quartile (Q;),
median, third quartile (Q3), 95th percentile, maximum, mean, and standard deviation
(o) of the recorded round-trip times. Additionally, a weighted average of median RT'T is
calculated over the number of cloud services. Let RTT,, be the median round-trip time
for a number of cloud services and W Avg the weighted average, which is calculated using
the following formula:

RTT; RTTig RTTys RTTs0
- - -
W Avg = —2 10 - 25 50 (A1)

The weighted average corresponds to the average RT'T per one cloud service in different
experiment cases. W Avg is used to normalize the results and make them comparable
across the studied architectures.

A.2.3. Statistical Details

This section presents the details of our statistical analysis.

146

A.3. Analysis

Statistical Methods

We first report descriptive statistics, then perform a multiple regression analysis, a
technique used to create prediction models that estimate the value of a dependent variable
based on values of two or more independent variables [80]. The following hypotheses are
formulated for this experiment:

Hy: There is no significant prediction of the round-trip time RTT of requests by the
number of cloud services nger, and call frequencies cf.

Hy: There is a significant prediction of the round-trip time RTT of requests by the
number of cloud services nger, and call frequencies cf.

We created four prediction models for each architecture configuration, in total 16
models, to estimate the RT'T', as the dependent variable, based on call frequency and the
number of cloud services, as the independent variables. Out of these models, we report
those two for each architecture configuration with the lowest p-values (i.e., those with the
highest statistical significance of the predicted results). We used the R languag(ﬂ for our
statistical analysis.

Cross-Validation of the Regression Models

To cross-validate the regression models and assess their predictive abilities [70], we
performed a second run of our experiments with slightly changed parameters. We used
our regression models to estimate round-trip times in multiple instances of the number of
cloud services and call frequencies. Then, we ran the experiments, recorded RTT values,
and compared the actual results with the estimated ones. The number of cloud services
has been chosen to differ from those we trained our models with, but they are in the same
range, i.e., 30, 40, and 60 services. Furthermore, to find out if our regression models can
estimate results for a call frequency not used in the original data set, in addition to 500
and 1000, we used a new call frequency of 800 r/s, for which four desktop computers are
utilized to generate the load.

A.3. Analysis

This section presents the analysis of our results.

A.3.1. Experiment Results

Table presents the experimental results of all architectures for the multi-cloud-node
scenario. We can see that for CE, when taking the same number of cloud services,
increasing call frequency from 100 to 500 r/s results in a nonlinear rise of median RTT
of more than five times. However, when we double the call frequency from 500 to 1000
r/s, the median increases almost linearly. We observe the same trend with a weighted
average of round-trip times.

8https://www.r-project.org

147

A. Initial Performance Experiment

Table A.2.: Experimental Results of All Architectures

Min. Median 95th Max. Mean
Arch. cf Nserv RTT Q1 RTT Qs Percentile RTT RTT o WAvg
(r/s) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)
5 25.598 31.377 37.884 77.283 466.155 631.252 98.059 136.076
100 10 62.059 107.9975 136.734 323.3727 1179.303 1292.048 325.288 367.279 37.131
25 351.298 | 1191.604 | 1438.716 | 1849.310 3131.327 3325.957 | 1651.817 | 732.885
50 1558.662 | 3198.889 | 3486.238 | 3888.954 8763.811 8813.965 | 4174.527 | 1938.576
5 14.965 951.199 1114.719 | 1274.4817 | 1413.479 1998.354 | 1033.383 | 336.828
CE 500 10 199.221 | 2485.889 | 2669.604 | 3080.838 3403.013 3959.199 | 2664.332 | 546.876 295.815
25 1848.500 | 7482.008 | 8077.590 | 8519.928 9132.945 9987.151 | 7843.596 | 1089.819
50 8800.803 | 17552.022 | 18510.818 | 19030.105 | 19701.113 | 20501.393 | 18043.396 | 1569.938
5 10.021 2116.356 | 2770.525 | 3229.294 3914.324 4909.937 | 2673.797 | 842.366
1000 10 213.977 | 5622.522 | 6741.707 | 7574.174 8658.320 15762.526 | 6484.570 | 1584.818 797784
25 4928.274 | 16971.840 | 19620.402 | 21115.877 | 22539.220 | 35547.201 | 18650.974 | 3394.748
50 12779.84 | 39582.05 | 44902.12 | 47242.38 | 49364.520 | 75751.217 | 42879.598 | 7349.506
5 12.407 17.962 20.614 45.938 219.418 358.606 49.327 67.591
100 10 24.475 31.143 42.555 117.595 622.318 786.069 131.759 184.488 8,979
25 58.763 110.093 178.123 619.097 1948.941 2145.527 534.422 649.009
50 207.219 517.992 1020.674 | 1554.446 3530.587 3681.506 | 1381.369 | 1080.652
5 9.1600 20.973 54.699 142.444 510.137 663.389 122.964 155.557
DR 3| 500 10 36.760 378.067 497.419 590.276 1146.401 1484.203 506.953 265.814 111.427
- 25 57.249 2505.792 | 3965.498 | 4866.302 5527.488 6279.350 | 3676.808 | 1444.207
50 570.627 | 8326.662 | 11320.266 | 12351.667 | 13032.551 | 13774.296 | 10092.286 | 2917.993
5 7.070 329.4105 | 595.3050 | 893.1605 1499.987 2576.772 653.093 437.785
1000 10 15.125 1185.353 | 1946.702 | 2856.923 3497.138 4297.438 | 1994.626 | 1035.537 241.631
25 22.686 4440.487 | 6943.560 | 9629.477 | 10971.649 | 12175.990 | 6937.950 | 2862.820
50 4085.752 | 11233.909 | 18752.584 | 24458.039 | 26567.286 | 28846.745 | 17818.120 | 6870.081
5 13.130 18.081 21.482 53.835 292.091 439.211 66.442 92.213
100 10 24.523 31.956 41.547 154.331 588.913 692.254 140.782 187.354 5345
25 59.725 88.546 143.640 698.237 1612.439 1669.844 478.032 550.105
50 129.424 249.395 359.192 1872.233 3896.844 4033.159 | 1273.733 | 1377.067
5 6.053 56.572 83.383 130.114 456.810 587.507 126.677 123.246
DR 6| 500 10 15.222 133.602 226.448 354.651 695.318 860.288 278.271 194.367 47.934
— 25 51.818 883.619 1432.079 | 1801.626 2371.261 5103.557 | 1450.629 | 852.522
50 202.680 | 2709.620 | 4746.551 | 6618.730 7636.278 9139.602 | 4639.890 | 2152.850
5 6.0190 362.8822 | 563.8395 | 722.0797 1279.516 1679.144 568.558 326.043
1000 10 6.369 575.932 829.978 1170.606 2386.818 3425.810 938.111 614.172 125.817
25 28.540 2183.593 | 3450.883 | 4693.387 5855.607 6720.997 | 3367.412 | 1595.319
50 71.612 5548.778 | 8473.436 | 11046.606 | 13570.286 | 15530.022 | 8232.277 | 3465.464
5 13.939 18.297 21.818 53.860 174.662 465.173 48.827 96.112
100 10 27.784 34.110 42.278 175.466 601.827 731.133 142.529 188.345 5.218
25 66.538 93.071 130.398 639.999 1411.885 1570.485 426.281 465.568
50 144.760 201.866 353.252 1280.374 2977.373 3112.574 981.886 | 1031.220
5 7.019 25.249 49.632 93.276 308.843 462.864 80.743 89.948
SA 500 10 16.027 99.895 142.365 183.956 1523.994 1685.055 308.145 448.920 14.494
25 44.503 316.710 426.120 771.040 1702.167 2350.455 625.794 490.145
50 162.088 658.954 838.437 1052.560 1882.903 2297.493 893.149 431.288
5 5.155 169.817 346.633 547.109 1148.907 1695.961 412.302 328.463
1000 10 3.111 385.790 674.881 1259.548 2086.450 3670.457 852.858 643.786 55.965
25 12.249 864.723 1152.719 | 1539.998 2848.677 | 4187.7180 | 1320.540 | 761.473
50 45.632 1341.721 | 1906.893 | 2643.657 3641.671 4805.411 | 2011.770 | 942.661

148

A.3. Analysis

standard deviations are highest in CE compared to the other architectures. This is
explainable since there is only one service that receives all requests and checks compliance
rules, i.e., the central entity service. At the beginning of a run, lower round-trip times are
captured; however, as more requests arrive and this service becomes overloaded, delays
become larger, resulting in higher RT"T" towards the end of a run. This causes the high o
in the CE architecture.

For DR_ 3, as expected, we achieve a lower mean RTT compared to CE since we have
three routers that can process requests simultaneously instead of one central entity that
processes requests in sequence. Similarly, the weighted averages are reduced compared to
CE. We can see that choosing a higher number of cloud services, i.e., 25 and 50, results
in an almost linear rise of median round-trip times when increasing call frequency from
500 to 1000 r/s. We observe lower standard deviations for DR 3 compared to CE, most
likely because three routers become less overloaded than only one central entity service.

For DR_ 6 and SA, when having five or ten cloud services, we see almost identical num-
bers. This is because, in our implementation, which aims to implement the architectures
in a comparable way, these architectures are identical when having 5 cloud services and
only slightly different when having ten. With the increase of cloud services to 25 and 50,
we also increase the number of sidecars in SA but still have only six routers in DR_ 6,
resulting in higher numbers in median round-trip times, weighted averages, and standard
deviations in DR_ 6 compared to SA. In both of these architecture configurations, we can
see an almost linear increase of median round-trip times when having 25 and 50 cloud
services and doubling call frequency from 500 to 1000 r/s.

Furthermore, in SA, we observe an almost linear rise of median RTT when we in-
crease the number of cloud services but keep the call frequency constant. SA results
in lower standard deviations compared to the other architectures in most cases, likely
because we have more controlling services, i.e., sidecars, which process incoming requests
simultaneously; therefore, they become less overloaded.

Figures and show the distribution of RTT values for each experimental case
for all architecture configurations. It can be observed that round-trip times rise when the
number of cloud services or call frequencies increase. Another obvious observation is the
decrease of ¢ when moving from CE to DR and SA architectures. In CE, we observe a
rather low interquartile range. By adding more controlling services, i.e., dynamic routers
and sidecars, we get a higher interquartile range in DR and SA.

An interesting observation is that in all architectures, the outliers mostly lie between
minimum RTT and Qp except for the call frequency of 100 r/s. As explained before, at
the beginning of a run, round-trip times are very low, and as more requests arrive, the
times go up. In the case of 100 r/s, since the frequency of calls are not so high that they
can overload cloud nodes, the majority of the RTT values stay in the lower range, and
only some calls are delayed, resulting in outliers plotted above the interquartile range.

A.3.2. Multiple Regression Analysis

Table [A.3 presents the top two prediction models based on statistical significance for each
kind of architecture that we created based on our multiple regression analysis. All of our

149

A. Initial Performance Experiment

100000~
H
. i
i !
10000- i
i i
]
!]
1]
g
£ 1000- I
o ; ! !
1 HEE B
| . i 3
I [H
] : ¢
]
]
100~ | !
| '
I |
']
i I
i
o
10- ¢
IS s IS
o o o = o 9\ I 9 g\ g g 8\
Number Of Services_Hr/s
(a) Central Entity
10000-
H
H
1000- !
P
E H
: = I
= i
o
|
: .
N
L)
100- ' .
.
L)
3
3
!
10-
o o (=3 S o (=3 S o o =3
8 8§ 8 & 8 ¢ 2 8 & 2 8 ¢
@ ow o J 2 2 o 8 & 4 8 8 g
Number Of Services_Hr/s

(b) Dynamic Routers 3

Figure A.1.: Distribution of Experimental Results for CE and DR 3 Architectures

150

A.3. Analysis

10000~

RTTinms

[=3 (=3 (=3 =3 (=3 [=3 =3 [=3 [=3 8
s g 8 &8 g 5 8 § 8 8 g8 g
My - I | Y | | Ny I | My
Wow g2 2 J ' & g 8 8 g
Number Of Services_Hr/s
(a) Dynamic Routers 6
1000- I E
’ Q
1
2
e
£ H
i
E 10 ¢
H
: .
i |
)
H
10-
H
H
]
(=] o (=] =3 o o =3 o o k=3
8 8§ 8 ¢ § 8 ¢ g 8 g g 8
-] - | | - | | - | | I
w o w4 2 2 o ®& & g 8 8 g
Number Of Services_Hr/s

(b) Sidecar-Based Architecture

Figure A.2.: Distribution of Experiment Results for DR 3 and SA Architectures

151

A. Initial Performance Experiment

Table A.3.: Prediction Models

Arch. SC: Service | FC: Frequency | IC: Interaction Int: Intercept F-statistic:
Coefficient Coefficient Coefficient p-value
CE -82.506e+00 -2.503e+00 0.974e+00 22.994e+00 <2.2e-16
6.693e-+02 1.677e+00 - -5.196e+03 <2.2e-16
DR 3 3.844e+01 -1.124e+00 3.488e-01 -7.251e+02 <2.2e-16
— 3.242e+02 6.724e+00 - -7.156e+03 <2.2e-16
DR 6 2.298e+01 -2.006e-01 1.516e-01 -4.635e+02 <2.2e-16
— 1.472e+-02 3.211e+00 - -3.259¢e+03 <2.2e-16
SA 6.987e+00 5.215e-01 2.573e-02 -1.290e+02 <2.2e-16
28.072e+00 1.100e+00 - -603.403e+00 <2.2e-16

models result in a very low p-value which allows us to reject the null hypothesis and accept
the alternative hypothesis that the number of cloud services and call frequency affect the
RTT. For cross-validation and assessment of the predictive abilities of the models, we
ran our experiments for a second time and compared the results with predictions of all
models. We found that using interaction terms in our regression models results in more
accurately predicted round-trip times. The interaction term tells us that the effect of
Nsery ON the estimated RTT changes with different values of ¢f (and vice versa). Let SC
be the service coefficient, F'C' the frequency coefficient, IC' the interaction coefficient, and
Int the intercept. Our prediction models are based on the following formula:

RTT = SC ngepy + FC-cf 4+ IC -ngery-cf + Int (A.2)

Table compares predicted round-trip times with the second run of our empirical
results. We ordered the reported statistics based on nge, as it makes comparison easier.
Except for the central routing, all predicted round-trip times lie in the interquartile range
of the actual results. In the case of CE, although our prediction models have a very low
p-value suggesting the statistical significance of the predicted results, some estimated
round-trip times are slightly higher than Q3 or lower than Q. However, the predictions
are not far off. This is explainable since there are large standard deviations in CE, as
shown in Table Therefore, prediction models are trained on a widely-spread set of
data. In the case of DR and SA, we get lower standard deviations meaning the round-trip
times are not as widely spread as in the case of CE. We can observe that our predictions
are very close to the median of the actual results with DR_3 and DR_ 6 under call
frequencies of 800 and 1000 r/s.

A.3.3. Single-Node Environment

In addition to our main focus on multi-cloud-node performance, we studied single-node
performance to get a rough comparison of the impact of distributed communications.
Therefore, we executed the experiments on a single-node setup and compared the results
(only in the overview) to the multi-node configuration.

Weighted averages of all architectures can be seen in Figure[A.3. The W Avg is calculated
when implemented on single-node or multi-cloud-node environments. The figure illustrates

152

A.3. Analysis

Table A.4.: Second Run of Empirical Results and the Predicted Round-Trip Times

Median Estimated
Arch. | ngepry cf Q1 RTT Qs RTT
(r/s) | (ms) (ms) (ms) (ms)
500 9083.668 | 10119.824 | 10459.467 | 10909.028
30 800 | 14888.795 | 16157.245 | 17029.664 | 18925.731
1000 | 18815.264 | 22402.055 | 24335.038 | 24270.199
500 | 14001.234 | 14620.704 | 14911.775 | 14954.882
CE 40 800 20937.26 | 24084.266 | 25230.38 25894.125
1000 | 29397.73 | 33857.476 | 35722.81 33186.954
500 19996.99 | 21326.758 | 22240.68 19000.736
60 800 33497.17 | 37169.810 | 38182.12 39830.913
1000 | 45520.67 | 52991.573 | 56520.75 51020.461
500 3379.516 5842.062 6577.077 5098.099
30 800 5301.085 7948.498 9864.858 7900.100
1000 | 5920.507 9535.263 | 12997.476 9768.100
500 6274.714 8476.561 9322.539 7226.500
DR _ 3 40 800 8282.451 | 10954.531 | 13713.971 | 11074.900
1000 | 9102.496 | 13627.311 | 19351.622 | 13640.500
500 | 10534.364 | 14531.970 | 15798.849 | 11483.300
60 800 | 10876.653 | 17206.1335 | 21745.091 | 17424.500
1000 | 13964.748 | 22423.751 | 30804.183 | 21385.300
500 | 13964.748 | 2224.4155 | 30804.183 2399.600
30 800 2313.973 | 3310.6625 | 4531.752 3703.819
1000 | 3022.064 | 4394.1155 | 6576.130 4573.300
500 2038.993 3654.794 4973.425 3387.400
DR _6 40 800 2994.578 5081.697 6194.052 5146.420
1000 | 3894.233 6426.936 8054.121 6319.100
500 3454.181 5145.119 7964.733 5363.000
60 800 5533.973 8065.514 | 10947.300 8031.620
1000 | 6101.927 9551.363 | 13187.443 9810.700
500 551.958 691.218 719.194 727.310
30 800 825.058 1017.261 1135.050 1115.33
1000 958.909 1353.016 1681.329 1374.01
500 657.204 894.185 923.209 925.830
SA 40 800 974.586 1278.070 1458.266 1391.040
1000 | 1313.515 1713.703 2148.084 1701.180
500 851.668 1180.670 1486.216 1322.870
60 800 1213.473 1608.923 2069.630 1942.46
1000 | 1606.438 2172.414 2690.043 2355.520

153

A. Initial Performance Experiment

800

Central Entity
Dynamic Routers 3
Dynamic Routers 6
Sidecar Architecture
Multi-Cloud-Node
Single-Node

copnnn

Weighted Average
400
1

200
|

100 500 1000

Call Frequency

Figure A.3.: Weighted Averages of Architecture Configurations on Single-Node and
Multi-Cloud-Node Environments

that CE always performs poorly compared to other architectures. Moreover, CE has even
worse performance when implemented on a multi-node environment compared to the
single-node setup (a higher weighted average means lower performance). This is expected
since all cloud services must send requests to the central entity service. Implementing CE
on multiple cloud nodes requires additional network communications between different
hosts.

The performance differences of the other three architectures are negligible when deployed
on single- or multi-node configurations under 100 r/s. However, at 500 r/s, we can see
that DR_3 and DR_ 6 perform better on multiple nodes. With 1000 r /s, they perform
slightly better in a single-node environment. SA results in performance increases on the
higher frequencies of 500 and 1000 /s when implemented on multi-cloud-node compared
to a single-node setup. These results suggest that adding more cloud resources, i.e.,
controlling services and cloud nodes, does not always result in a significant performance
improvement. It can be seen that increasing the number of controlling services from 1
in CE to 3 in DR_ 3 and doubling it to 6 in DR_ 6 enhances performance considerably.
However, having 1 sidecar per each service results in a marginal boost in performance.
The same is true when adding more cloud nodes. Although we see the highest performance
of all architecture configurations in the case of SA on a multi-cloud-node environment,
the difference when implemented on a single node is marginal.

154

A.4. Threats to Validity

A.4. Threats to Validity

A threat to internal validity refers to the extent to which independent variables caused the
observed variation in the dependent variables. Concerning this threat, we ensured that all
experiment artifacts were deployed on the same infrastructure with the same distribution
of cloud services. Furthermore, the experiment applications are composed using the exact
same cloud service instance so that there are no implementation differences between the
services that might affect the dependent variables. Nonetheless, such internal validity
threats cannot be completely excluded. In particular, despite our careful implementation
and deployment work, some aspects may have been slightly different in the multiple
implementations and deployments. We mitigated this threat by carefully double-checking
all technical aspects of our experiment. We ensured the machines we ran our study on
were idle, but possibly other services, e.g., of the operating systems, may have influenced
our measurements. We mitigated this threat through a warm-up phase and multiple
experiment runs.

One external threat to validity is that potentially our experiment setup for cloud
environments is not chosen well. As a result, the setup might not be comparable to
real-world scenarios hosted on cloud infrastructures. Another related threat is that we
implemented all three architecture options from scratch in Node.js. We did not use
existing implementations of these options to make the implementations comparable in an
experiment. However, the threat remains that our implementations might not represent
the existing off-the-shelf tools like EnvoyZ for sidecars or enterprise service buses for central
entities. These threats are at odds with internal validity. We modeled, implemented, and
similarly deployed the tested architectures as much as possible to ensure comparability.
From our experience, they are close to existing architectures in the cloud. However,
further research is needed to transfer our results to specific technologies and settings.
The cloud services are deployed using container technology Dockel®, which is commonly
used in cloud-based architectures. Real-world cloud applications are often composed
of different computing and storage services offered by multiple cloud providers. Such
scenarios may have additional effects on the performance of the evaluated architectures.

A.5. Conclusions

In this appendix, we investigated three representative service- and cloud-based archi-
tectures for making and enacting dynamic data-flow-routing decisions concerning their
performance. To do so, we designed an experiment and used our findings as follows.
Firstly, we created prediction models providing estimation for architects on the perform-
ance impact of the investigated architectures. The found models show high statistical
significance. Moreover, we cross-validated the estimated round-trip times with measure-
ments from an additional experiment run. Our results show that using more controlling
services improves the performance as expected (i.e., the more distributed settings show
better performance, especially under high load). However, there appears to be a cut-off
point, after which the gained performance increase is marginal. The architect must then

155

A. Initial Performance Experiment

decide, in relation to other relevant qualities of the viable architectural options, whether
the performance is of the highest priority or a trade-off is acceptable.

Secondly, we calculated RT'T weighted averages of all configurations. We did so to
compare the performance of architectures when services are implemented locally or
distributed on multiple cloud nodes. While a single-node setup leads to a noticeable
improvement of the central entity architecture in our settings, the performance differences
in the other three architecture configurations are less evident. In those cases, the negative
impact of distributed communication and the positive impact of more cloud resources
almost balance out in most of our empirical results.

156

B. Trade-Offs Adaptation: Statistical
Performance Model

This appendix presents our approach to automatically adapt reliability and performance
trade-offs. We study a statistical performance model to address the research problem Pis:
Lack of an approach to automatically adapt the reliability and performance trade-offs. Our
work is published as a conference paper [14] and is the basis of the dissertation. Chapter
studies the approach presented here further and uses our analytical performance model,
which is generalizable to other infrastructures.

B.1. Introduction

Many dynamic routing architectures are available, including sidecar-based routing, routing
through a central entity such as an event store or gateway, or architectures with multiple
routers. These architectures are based on vastly different implementation concepts, such
as API gateways |79], enterprise service buses [26], message brokers [45], or sidecars [61}
49, 136]. However, they essentially all dynamically route or block incoming requests. We
propose the details of our approach, which abstracts these architectural patterns using
one Adaptive Dynamic Routers (ADR) architecture. We hypothesize that a dynamic self-
adaptation of the routing architecture is beneficial over any fixed architecture selections
for reliability and performance trade-offs. That is, if encountered with traffic and load
changes, our approach dynamically self-adapts between more central or distributed routing
to optimize system reliability and performance. This adaptation is automated based on
a multi-criteria optimization analysis [4]. We evaluate our approach by analyzing our
empirical data during an experiment of 1200 hours of runtime (see Section for details).
Our extensive systematic evaluation of 1089 cases confirms that our hypothesis holds and
our approach is beneficial regarding reliability and performance. Even on average, our
novel architecture offers, on average, 14.0% higher reliability gain compared to completely
distributed routing and 7.5% more performance gain compared to centralized routing.
Moreover, we empirically validate our results on Google Cloud PlatformE] infrastructure.

The structure of this appendix is as follows: In Section [B.2, we explain the proposed
adaptive dynamic routers architecture in detail, and in Section provide the paramet-
erization of our models. Section presents the evaluation of the presented approach.
Section [B.5 discusses the threats to the validity of our research. Finally, we conclude in

Section [B.6.

1h'c‘cps ://cloud.google.com

157

https://cloud.google.com

B. Trade-Offs Adaptation: Statistical Performance Model

158

Table B.1.: The Mathematical Notations Used in this Appendix

Notation | Description
R Reliability model
Rservice Reliability model for service crashes
Ryouter Reliability model for router crashes
P Performance model
T Observed system time
CcIl Crash interval
cf Incoming call frequency
Com Set of all components
CP,. Crash probability of a component ¢ every CT
de Expected average downtime after a component ¢ crashes
IRt Total number of requests exchanged between components
ngree Number of successfully executed requests before the crash of a component ¢
Nserv Number of services in an ADR instance
Nrout Number of routers in an ADR instance
Scrashed A service s when crashed
T erashed A router » when crashed
A Allocation of routers
Sc Service coeflicient
Re Router coefficient
Fe Frequency coefficient
SFc Service vs. frequency coefficient
RFec Router vs. frequency coefficient
SRc Service vs. router coefficient
SRFc Service vs. router vs. frequency coefficient
R, ot Reliability of an ADR architecture configuration by the number of routers
Pt Performance of an ADR architecture configuration by the number of routers
Ry, Reliability threshold
Py, Performance threshold
MAPE | Mean absolute percentage error
ErrR Prediction error regarding reliability
ErrP Prediction error regarding performance
AR Reliability average percentage difference
AP Performance average percentage difference
RGain Reliability gain
PGain Performance gain
RWeight | Reliability weight
PWeight | Performance weight
Q1 First quartile
Q3 Third quartile
o Standard deviation
AR Performance average percentage difference
AP Reliability average percentage difference
R, Reliability of an evaluation case ¢
P, Performance of an evaluation case ¢
model, Result of the model for experimental case ¢
empirical. | Measured empirical data for experimental case ¢
Cases Set of all incoming call frequencies and the number of services
Ne Length of Cases

B.2. Approach Details

B.2. Approach Details

We introduce the ADR reliability and performance models and present our reconfiguration
algorithm. Table |B.1 presents the mathematical notation used in this appendix.

B.2.1. ADR Models

This section summarizes our reliability model reported in Chapter |3 Moreover, we present
a statistical performance model, which is based on the approach presented in Chapter

Reliability Model

We used Bernoulli processes [90] to model request loss during router and service crashes.
Request loss was defined as the number of incoming requests that were not processed due
to a failure, such as a crash of a component. We calculated the total request loss during
an observed system time T' as a metric of reliability:

R— L%J ccf S CP.-dy- (IRp — n&) (B.1)

ceCom

Remember that CT is the crash interval, i.e., the interval in which we check for a crash of
a component. Assume the Heartbeat pattern [46] is used to check the system health, C'T
is the time between two consecutive health checks. cf is the incoming call frequency based
on requests per second (r/s), C' is the set of components, i.e., routers and services, C'P, is
the crash probability of each component, d. is the average downtime of a component after
it crashes, I Ry is the number of requests exchanged between components, and ng** is
the number of successfully executed requests before the crash of a component. Note that
IRr and nf**¢ must be parameterized based on the application presented in the next
section.

To empirically validate our model, we ran an extensive experiment (see Section @
for details). We compared our analytical model of reliability with the empirical results
of our experiment by using the Mean Absolute Percentage Error (MAPE) [90]. With
more experiment runs, we observed an ever-decreasing error, converging at 8.1%. We
also double-checked the accuracy of our models with three other error metrics, i.e., Mean
Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE),

which yielded the same trend of the prediction error being constantly reduced.

Performance Model

Remember that RTT is the round-trip time. During our experiment, we recorded RTT
of each request, which was defined as the difference in time from the moment a request
was received until it was routed through all cloud services involved in the processing
of the request. The round-trip times indicated the performance impact of the studied
architectures, i.e., the Central Entity (CE), Dynamic Routers (DR), and the Sidecar-based
Architecture (SA) presented in Section

159

B. Trade-Offs Adaptation: Statistical Performance Model

ADR is a reconfigurable architecture that can be configured as any of the aforementioned
architectures by changing the router configurations. We introduce a variable 7,4, Which
defines the number of routers in an ADR instance. To illustrate, CE has one router that
processes requests centrally. Therefore, ADR with n,.,,; = 1 indicates the central-entity
architecture. On the other hand, the SA architecture is completely distributed and has
one router, i.e., a sidecar, per service. The number of routers in SA is the same as the
number of services (nsery). Consequently, the sidecar-based architecture is ADR with
Nrout = Nserv- 1he dynamic routers architecture was a middle ground with three routers,
i.e., Npout = 3, among which we distributed services equally.

For the study in this appendix, we did a multiple regression analysis [80] on the
recorded round-trip times. We created a prediction model of performance for ADR based
on the independent variables n,out, Nserv, and cf. Note that the nonlinear regression
in Equation is system-specific and needs to be performed for each application
separately. We used the R languag

P =Int+ (Sc-nserv) + (Re - nypout) + (Fe-cf)+
(SFC *Nserv * Cf) + (RFC s Nyout Cf)+
(SRC *Ngerv * n?“out) + (SRFC *Ngerv * Nrout * Cf) (B2)

Table reports the coefficients of our performance model. As it can be seen, all of the
calculated coefficients of our regression model resulted in a very low p-value that indicates
a high statistical significance of the prediction results.

As before, we used the MAPE [90] to compare the ADR performance prediction model
with the recorded round-trip times. The prediction error converged at 14.7% with more
experiment runs. We double-checked the error with MAE, MSE, and RMSE. Note that
the regression analysis needs to be performed for each application separately. Since in the
cloud performance field, 30.0% is commonly used as the target prediction accuracy [59],
and the fact that our focus is to have a rough prediction of the impact of performance
when architecting a system, the prediction accuracy is reasonable.

Table B.2.: Performance Prediction Model

Coeflicient Sc Rc Fc SFc RFc SRc SRFc Int
(RClath Variablc) (”semr) (nTout) (Cf) (”semr : Cf) (nrout : Cf) <nsemr : 7Lraut) <nsemr * Nyrout * Lf) (Inte’rcept)
F-statistic 9.20-16
p-value

4.128 | -3.032 | -2.249 3.682 1.228 1.308 -4.530 1.714

Value e+00 | e+00 | e-01 02 e-02 e-01 e-03 e+01

B.2.2. ADR Reconfiguration Algorithm

This section presents the details of our reconfiguration algorithm.

’https://www.r-project.org

160

https://www.r-project.org

B.2. Approach Details

Multi-Criteria Optimization Analysis

In our approach, the reconfiguration between the architecture configurations is performed
automatically based on a Multi-Criteria Optimization (MCO) analysis [4]. Consider the
following optimization problem: An application using the ADR architecture has ngery
services and is under stress for a period of time with the call frequency of cf. To optimize
reliability and performance, the system can change between different ADR architecture
configurations dynamically by adjusting the number of routers (1,0,), ranging from the
extreme of a centralized routing (only one router), over any dynamic router configurations,
up to the extreme of one router per service (nser, routers), i.e., the SA configuration.

We use the notations R,,,,, and P, . to specify the reliability and performance of
the respective architecture configurations by their number of routers. For instance, only
configuring one router R; indicates the reliability model of an ADR with only one router
(i.e., the CE architecture), and configuring nge., routers (i.e., Ry,..., Ry,.,,) indicates
SA. Ry, and Py, are the reliability and performance thresholds.

Minimize
Ry (B.3)
Poout B.4)
Subject to
Riyour < Rin (B.5)
Prroue < Pin (B.6)
1 < Npout < Nserw (B.7)

The MCO question is: Given a c¢f and nger,, what is the optimal number of routers
which minimizes request loss and average RTT per each request without the predicted
ADR reliability and performance going beyond a certain threshold? Typically, there is
no single answer to an MCO problem. Using the above MCO analysis, we find a range
of nyout configurations that all meet the constraints. One end of this range optimizes
reliability and the other performance, thus, we need a preference function so ADR can
automatically select an 1,0, value. Appendix presents an illustrative example.

Preference Function

We can define different criteria to choose the final ADR router configuration. We study a
scenario: In Chapter [3] we empirically validated that centralized routing offers higher
reliability than distributed approaches. On the other hand, Chapter [4] showed that
decentralized routing improves performance by processing incoming requests in parallel.
An architect can define operational profiles for low and high levels of ¢f, based on which
ADR adapts to more centralized routing (a lower 7,4, to improve reliability) or more
distributed approaches (a higher n,,,; to improve performance). As shown in Figures
and the Quality of Service (QoS) monitor observes the incoming call frequency and
triggers the manager to reconfigure the routers when there is a change in these defined
cf levels.

161

B. Trade-Offs Adaptation: Statistical Performance Model

Based on these operational profiles, the preference function instructs ADR to choose
a final n,qy value in the range found by the MCQO analysis. This selection is based
on an importance vector that gives weights to reliability and performance given by
Algorithm [91 For example, when reliability is of the highest importance to an application,
an architect gives the highest weight, i.e., 1.0, to reliability and the lowest weight, i.e.,
0.0, to performance. Thus, the preference function chooses the lowest value on the 7,4yt

range to choose more centralized routing. This selection results in higher reliability, as
illustrated in Appendix [B.3.3]

Automatic Reconfiguration

Figure shows that the QoS monitor reads the monitoring data from the API gateway.
The monitor feeds this information to the manager that deploys new routers or reconfigures
the existing ones. Algorithm [9]presents our reconfiguration algorithm used by the scheduler.
The reconfiguration algorithm is triggered, for instance, whenever reliability or performance
metrics degrade, e.g., observed as an increase in request loss or a decrease of average
RTT. Time intervals, changes in incoming load, or a different route with more or fewer
services can also trigger the algorithm if more appropriate than metrics degradation (see

Figure [2.6|for details).

Algorithm 9: Reconfiguration Algorithm for the Adaptation of Reliability and
Performance Trade-Offs

Input: Rp, P, performanceWeight

Rnrout,7
routersRange «+— MCO(cf, Nserv, Rnrouss Prrous s Bthy Pen)

Pr,ouisCfy Nserv < consumeRPData()

reconfigSolution + preferenceFunction(routersRange,
performanceWeight)

reconfigureRouters(reconfigSolution)
function preferenceFunction(range, PW)
begin

length < max(range) - min(range) +1
floor < | PW * length |

if floor == maz(range) then
‘ return max(range)
else if floor == 0 then
‘ return min(range)
else
‘ return floor + min(range) -1

end

end

162

B.3. Parameterization of Model to Experiment Parameter Values

reconfigureRouters(reconfigSolution) in Algorithm @ performs the final reconfiguration
based on the chosen solution. This step differs based on an ADR application and needs
to be specified. In this appendix, we assume a very simple and cost-ineffective strategy
of starting the new configuration in parallel with the running setup. Afterward, when
the infrastructure is ready to process the incoming requests, we change to the new
configuration and tear down the old setup. Note that the purpose of this appendix is to
provide a scientific proof-of-concept and not a fully functioning code base. The simple
strategy fits this purpose and does not result in reliability or performance degradation
because of the reconfiguration.

B.3. Parameterization of Model to Experiment Parameter
Values

As mentioned, our analytical reliability model is general for routing architectures. There-
fore, it needs to be parameterized based on the application. Note that the performance
model is a regression analysis that has to be performed for each application separately.
We parameterize Equation for our experiment by specifying request loss for the
ADR with the introduction of the n,..,; variable, i.e., the number of routers.

B.3.1. Experiment Details

This section presents the details of our experiment (see Section for general details).

Experiment on Private Cloud

We ran an experiment of 200 runs with a total of 1200 hours of runtime (excluding setup
time). We had a private cloud setting with three physical nodes, each having two identical
Intel® Xeon® E5-2680 CPUs. We installed Virtual Machines (VMs) with eight cores
and 60 GB of system memory. Each router or service was containerized in a DockeIEI
container. We deployed one router exclusively on one VM for CE, three routers each
deployed on one VM for DR, and one router per service deployed on the same VM for SA.

We had three levels for the number of services (nsery), i.€., 3, 5, and 10 services, and
four levels for incoming call frequency (cf), i.e., 10, 25, 50, and 100 r/s, totaling twelve
experimental cases for each of the three architecture (36 cases overall). We utilized five
desktop computers for load generation, each hosting an Intel® Core ' i3-2120T CPU
with 8 GB of system memory, which used Apache J Mete to send Hypertext Transfer
Protocol (HTTP) version 1.1@ requests to the VMs. The routing of requests was as
follows: For the sake of simplicity, we labeled the services incrementally from 1 and let
the incoming requests go through all services one by one. An example of an experiment
configuration is shown in Figure [B.1.

3https://www.docker.com
Yhttps://jmeter.apache.org
"https://tools.ietf.org/html/rfc7230

163

https://www.docker.com
https://jmeter.apache.org
https://tools.ietf.org/html/rfc7230

B. Trade-Offs Adaptation: Statistical Performance Model

«host» «host» «host»

«Service» {l «Service» {l «Service» {l «Service» {l «Service» {l «Service» {l
servicel service2 service3 service4 service5 service6
R2 bR ﬁH4 %R bFﬂ %F{ mm bRﬂ me

% 8 IR5 6 8 IR9 0
«Router» «Router» «Router» {l
routert router2 router3
«host»
IR1 «API Gateway» {l IR13
gateway
N

T
|
|
|
|

Client Request

t
I «host»
]

«Client» {l

clientt

Figure B.1.: Example ADR/Experiment Configuration

Validation Experiment on Public and Private Clouds

We use our private cloud to have control over the infrastructure and have repeatable
experiment runs. On a public cloud, other factors can influence the results, such as the
parallel workload of other applications or the physical distance of the node. To show that
our approach can be used on other infrastructures as well, we empirically validate the
analysis of an illustrative sample case (see Appendix once on our private cloud
infrastructure and once on Google Cloud Platform (GCP)* We run our experiment a
second time using the values of the sample case, i.e., with 10 services, i.e., Ngery = 10
and three call frequencies, i.e., 25, 50, and 100 r/s. In this scenario, ADR changes the
routing configuration, i.e., the value of n,qy, automatically. On GCP, we started E2
machine instancesﬁ with 2 vCPUs and 8 GB of memory and duplicated our experiment
infrastructure.

B.3.2. Parameterization

Figure shows an example ADR (and experiment) configuration with three routers
and six services. When a router or a service crashes, some requests are not processed. To
know how many of these requests are lost, we use the total number of requests (I Rr),

from which we subtract the number of already executed ones (n"“). Let us consider an

Shttps://cloud.google.com/compute/docs/general - purpose-machines

164

https://cloud.google.com/compute/docs/general-purpose-machines

B.3. Parameterization of Model to Experiment Parameter Values

example: Assume serviceb crashes in the example configuration. In this case, IR1 to
IR9 are processed (n** = 9) but IR10 to IR13 (four requests) are lost. In this example,
we can see that there are 13 requests (I Ry = 13). Therefore, the number of lost requests
in this example is:

IRp —n*¢=13-9=4 (B.8)

We calculate I R based on the number of services as the following since there are one
incoming and one outgoing request per each service and one request from the gateway:

IR = 2ngery + 1 (B.9)

In the example ADR configuration, we have nger, = 6, so IR = 13. To calculate ni*¢°,

we must differentiate between service and router crashes. We define s.,qsneq as the label
number of the crashed service. In our experiment for service crashes, we have:

N = 28 ashed — 1 (B.10)

C

Note that in our example case, we considered the crash of serviceb, i.e., Scrashed = D,
and calculated nt** = 9. We observed the system for 10 minutes (600 seconds) for
each experimental case and checked for a crash every 15 seconds with a uniform crash
probability of 0.5% for all components (see Section @ for experiment cases):

T =600 s (B.11)
CI=15s (B.12)
CP.=0.5% (B.13)

Therefore, we can rewrite Equation (B.1) for service crashes using Equations
to (B13):

Rgervice = 0.6 - Cf * Nserv (nserv + 1) (B14)

In case of a router crash, we define the allocation of routers (A) as a set indicating the
number of directly linked services of each router. For instance, the allocation of routers
in the example ADR configuration (see Figure is:

A ={2,2,2} (B.15)
In our experiment, services were equally allocated to routers:

A :{nserv Nserv (nserv :I:l)} (Blﬁ)

M))
Nyrout MNrout Nyrout

in which A has the length of n,,y. In Figure there are six services, i.e., Ngery =
6, and three routers, i.e., n,out = 3. Therefore, we have the allocation presented in

Equation (B.15).

165

B. Trade-Offs Adaptation: Statistical Performance Model

Let r¢rasheqd be the label number of the crashed router. For router crashes, we have:

Terashed

nge =2 3" A (B.17)
r=1

Therefore, we can rewrite Equation (B.1) for router crashes as:

Ryouter = 0.6 - Cf : [nserv + nrout(nserv + 1)] (B18)

Finally, we can rewrite Equation (B.1) by adding Equations (B.14) and (B.18) as:

R=06"cf- [(nserv)2 + (nrout + 2)”86’!"1} + nrout] (Blg)

B.3.3. lllustrative Sample Case

We provide an illustrative example to explain our concepts.

Multi-Criteria Optimization

We customize the MCO analysis presented in Appendix|B.2.2/ with our experiment models’

setup, using Equations (B.2) and (B.19):

Minimize
an“t =0.6- Cf : [(nserv)Q + (nmut + 2)nserv + nrout] (B~2O)
Pp,... = 1714+

4.128 - ngery — 3.032 - nypoyr — 0.2249 - cf +
0.1308 - Ngery - Nyrout + 0.03682 - ngery, - cf+

0.01228 - nyous - ¢f — 0.00453 - Ngery - Nyout - Cf (B.21)
Subject to

Ry < Rur (B.22)

Pavone < Py (B.23)

1 < nypout < Nserv (B.24)

Operational Profiles

Let us consider an example ADR application having ten services, i.e., ngery, = 10, which
is operational for the expected input call frequency of 10 < ¢f < 100 r/s with a reliability
threshold of Ry, = 10000 request loss per 10 minutes of the experiment (on average a very
high rate of 16.667 requests per second), and a performance threshold of Py, = 60 ms
average RT'T per each request. We do the MCO analysis for different chunks of call

166

B.3. Parameterization of Model to Experiment Parameter Values

frequency starting with the lower bound, i.e., ¢f =10 r/s:

Minimize
R,our = 720 4 66 - npoys (B.25)
P, .. =59.853 —2.0542 - nyoyt (B.26)
Subject to
Ry,... < 10000 (B.27)
Py, ,.. <60ms (B.28)
1 < npour < 10 (B.29)

In Equations and , the performance and reliability thresholds are always
satisfied in the range of 1 < nyoy < 10. In Appendix [B.2.2, we mentioned an example
preference function with an importance weight of 1.0 for reliability and 0.0 for performance
giving the highest priority to reliability. This preference function chooses the lowest
possible value for n,qyt, i.€., it favors more centralized routing to improve reliability. Using
the example function, we can choose n,t = 1, i.e., a central routing configuration, on
the lower bound of the expected frequency range (¢f = 10 r/s). We now find the highest
possible ¢f where central routing is still applicable, in other words, the reliability and
performance predictions are below the thresholds. Using Equations and

when N,y = 1 and ngepy, = 10:

Ry =786 cf < 10000 (B.30)
Py = 56.696 + 0.11028 - cf < 60 ms (B.31)

Within the expected frequency range, i.e., 10 < cf < r/s, the reliability predictions
are always below the threshold. However, when solving the performance model given by
Equation , the highest acceptable frequency is ¢f = 29.960 r/s, with which central
routing stays within the defined thresholds. Remember in Appendix [B.2.2, we mentioned
that an architect could define operational profiles for the incoming frequency. Therefore,
we can define a low level for c¢f, in which central routing is reasonable as:

10.000 < cf < 29.960 r/s (B.32)

We take the higher bound of the operational profile in the above formula, i.e., ¢f =
29.960 r/s, and repeat the process in Equations (B.25]) and (B.31)). Table reports

all operational profiles of the expected incoming frequency, i.e., 10 < ¢f < 100, and

Table B.3.: Operational Profiles of Incoming Call Frequency for the Illustrative Example

Nserv | ¢f Operational Profile (r/s) | nypout
10.000 < ¢f < 29.960 1
10 29.961 < c¢f < 65.079 2
65.080 < ¢f < 100.00 3

167

B. Trade-Offs Adaptation: Statistical Performance Model

the respective final reconfiguration choice based on the preference function. Note that
as soon as there is a call frequency outside of this range, the QoS monitor triggers the
manager to reconfigure the routers (see Figure . We consider a frequency level from
our experiment in each operational profile, i.e., ¢f € {25,50,100} r/s. Table presents
the ADR model predictions.

Table B.4.: ADR Reliability and Performance Predictions for the Illustrative Example
based on its Operational Profiles

Nserv | Cf (/3) | Npout R P (ms)
25 1 1965.000 | 59.453

10 50 2 4260.000 | 58.835
100 3 9180.000 | 57.672

B.3.4. Empirical Validation

Table [B.5 presents the empirical measurements of the adaptation using the ADR archi-
tecture on our private cloud and the GCP infrastructure. We calculate the prediction
error of our models reported in Table using the Mean Absolute Percentage Error
(MAPE) [90]. Let model. and empirical. be the result of the model and the measured
empirical data for the experiment case ¢, Cases the set of all incoming call frequencies
and the number of services, and n. the length of Cases:

>

ceCases

100% _

T

VAPE — model. — empirical,

B.33
empirical, ()

The prediction errors of our models are reported in Table Let ErrR and ErrP
be the prediction error regarding reliability and performance, respectively. On our
experiment infrastructure, we have ErrR = 8.9% and ErrP = 17.0%. As mentioned, the
performance model is a system-specific regression analysis that needs to be performed
for each application separately. Therefore, on GCP, we only empirically validate the
reliability model. The prediction error regarding reliability on GCP is ErrR = 14.0%.
Given the commonly used target prediction accuracy of 30.0% in the cloud quality of
service research 59|, these results are reasonable.

Table B.5.: ADR Empirical Measurements for the Illustrative Example Case

Rsery | ¢f (t/5) | rout R [P (ms) | ErrR (%) | ErrP (%) R [ErrR (%)
Experiment Infrastructure Google Cloud Platform
25 1 2450.000 | 54.116 1792.000
10 50 2 4434.000 | 44.100 8.852 16.973 6014.000 14.015
100 3 9448.000 | 53.577 9486.000

168

B.4. Evaluation

B.4. Evaluation

In this section, we evaluate the ADR architecture by comparing the ADR performance and
reliability predictions to the empirical results of our experiment. The ADR, architecture
is not specific to our experiment infrastructure or cases. Architects can freely use the
proposed architecture and adjust it to their needs, as explained in the last section. That
is, we use our empirical data set in the online artifact of this thesis® to evaluate ADR
using measured data of an extensive experiment.

Systematic Analysis

In the last section, we studied one sample case with specific reliability and performance
thresholds, plus an example preference function. To systematically evaluate our proposed
ADR architecture, we go through a range of thresholds and importance weights for
reliability and performance. We compare ADR model predictions (see Table @ for an
example) with our experiment cases reported in Appendix @ That is, we compare ADR
with its fixed counterparts, i.e., CE (nyout = 1), DR (nyout = 3), and SA (nyout = Nserv)-
As mentioned, we had three levels for ngepy, i.€., 3, 5, and 10, for each of which we consider
the expected incoming call frequency of 10 < ¢f < 100 r/s (see Appendix @ for an
illustrative example). In this range, we studied four levels of ¢f, i.e., 10, 25, 50, and 100
r/s, in our experiment. Therefore, we have nine experiment cases: Three architectures,
each configured with three nge., values, which are operational for four levels of call
frequencies.

Regarding reliability and performance thresholds, we start with very tight reliability
and very loose performance thresholds so that only centralized routing is acceptable. We
slightly increase the reliability and decrease the performance thresholds by 10% in each
step so that distributed routing becomes applicable. To find the starting points, we take
the worst-case scenario of our empirical data into consideration. In Equation ,
a higher nger, results in a higher expected request loss. In our experiment cases, the
highest value for ngeq, is 10 services. As mentioned before, CE is the most reliable,
and SA gives the best performance. With nge, = 10, the worst-case reliability and
performance predictions for CE are 7860 request losses per 10 minutes of system time,
i.e., 13.1 requests per second and 67.724 ms average RTT per each request. On the
other hand, the worst-case predictions for SA with ten services are 13800 requests per 10
minutes of experiment, i.e., 23.0 requests per second and 39.311 ms average RTT. We
adjust these values slightly and take our boundary thresholds as follows:

8000 < Ry, < 14000 (B.34)
40 < Py, < 70 ms (B.35)

We start with an importance weight of 1.0 for reliability and 0.0 for performance giving
the highest priority to reliability. We decrease the reliability importance (consequently
increasing the performance weight) by 10% in each iteration. We evaluate 1089 systematic
evaluation cases: 11 threshold and 11 importance weight levels, each evaluated for 9

169

B. Trade-Offs Adaptation: Statistical Performance Model

Table B.6.: Statistics of the Gain Percentages

Reliability Performance
Arch. CE ‘ DR ‘ SA CE ‘ DR ‘ SA

Min -27.923 | -18.245 | -2.344 -2.240 | -11.390 | -22.848

Q1 -5.854 | -2.1640 | -0.658 -0.324 | -8.798 | -11.809

Median -1.845 4.762 6.125 1.845 | -4.762 | -6.125

Qs 0.324 8.798 | 11.810 5.854 2.164 0.658

Max 2.240 | 11.390 | 22.848 27.923 | 18.245 | 2.344

o 6.204 7.000 7.607 6.204 7.000 7.607

Mean -3.981 2.535 7.089 3.981 | -2.535 | -7.089
Mean

RWeight > 0.5 -0.963 8.145 | 13.997 0.963 | -8.145 | -13.997
Mean

RWeight < 0.5 -7.454 | -3.550 | 0.073 7.454 3.550 | -0.073

experimental cases. To support reproducibility, the evaluation script and the log containing
detailed information on each systematic evaluation case are available in the online artifact
of this dissertation®. Let AR and AP be the average percentage difference of reliability
and performance, and R, and P, the reliability and performance of the evaluation case
c. Remember that R, ,, and P, ,, are the reliability and performance predictions of

an ADR architecture configuration by the number of routers. We calculate the average
percentage differences as follows:

—— 100% R.— R,
R _ . 2 : rout B36
Ne Nrout ()
ceCases
— 1 P.— P,
Ap _ 100% S Fem P (B.37)

Ne Ty
ceCases rout

Here, Clases is the set of all incoming call frequencies and the number of services, i.e.,
cf € {10,25,50,100} and nger € {3,5,10}. Therefore, n. = 12, i.e., the length of Cases.

We define reliability gain as the percentage of reliability improvement in contrast to
the performance worsening. Similarly, performance gain is defined as the percentage of
performance increase compared to reliability degradation:

RGain = |AR| — |AP| (B.38)
PGain = —RGain (B.39)

Figure shows the reliability and performance gains of ADR compared to the CE,
DR, and SA architectures. As seen in Figure ADR almost always has the highest
reliability gain compared to SA in our experiment cases. This is expected because SA is a
completely distributed routing extreme resulting in the lowest reliability compared to the
other architectures. Note that a higher number of routers results in a higher request loss,

170

B.4. Evaluation

o CcE
© DR
SA
30
> o
20 o O
o
o
. o
10 ©
s o o ©
S IS e} §
c 0 © & § o
] - © @ [9)
g , | © 8 9 ?
-10 ; > g g § S
2 4 I g s ©
-20 ® S0 ©
o 5 8 o
g o
-30 . & g @]
15 8 5
© 1
x10*
5 0.4
2
Rin 0 o Reliability Weight
(a) Reliability Gain
o CE
o DR
SA
? o
30 o ©°, 5
] 5 fe) 5
O q fe) O o]
20 8 O g 8 } @) 3 . o0 o
O o o) /CL)
10 o o 8 845 90 . oo ©
= o o 0© ° e} g
IS o _a o o 8 o Ls0p 0
< o) e o [e] ~ [e2Ne] [o5
c O o o & ® ® L0 4 0 * &P o 0
£ o © 000 Q)Q~ @ P 1) £ a Ou o)
g 00" 0000 PP B, Payo o FH s
-10 (e} OOO(OO - Dol Ro -9®o 0
o) 2700 0068 ® 8~ A
© 609 5°%0 %0 OOOOCOO %5 Oo &
_ S S O 0 O Q
20 5 c\/ » O‘C‘ "(@OG) o o
9 o @ J0o0
-30 P 5 [} o OO Q
70 <

0.4

0.2
Pin (ms) 40 o Performance Weight

(b) Performance Gain

Figure B.2.: ADR Reliability and Performance Gains Compared to CE, DR and SA
Architectures

171

B. Trade-Offs Adaptation: Statistical Performance Model

according to Equation (B.19)). As the reliability weight increases and the performance
importance lowers, the reliability gain improves.

The dynamic routers, i.e., a static configuration with three routers, were considered a
middle ground of the three studied architectures in our experiment. Here, the same holds
true, i.e., the reliability and performance gains of DR, are between those of CE and SA
architectures. Figure [B.2b shows that ADR has the highest performance gain compared
to CE. However, the ADR performance gain does not differ greatly from the architectures.
We investigate the statistics of the data reported in Table [B.6, in which Q1, Q3, o, and
RWeight are the first and the third quartiles, the standard deviation and the reliability
weight, respectively. Note that according to Equation , the statistics regarding
the mean of performance gains are the negative of those of reliability gains as shown in
Table The mean of data is calculated over 121 cases, i.e., 11 threshold levels and 11
weights.

This investigation should illustrate that in cases where the wrong architecture choice
is made, significant increases in reliability or performance are offered by ADR, i.e.,
22.8% reliability gain compared to SA and 27.9% performance gain compared to CE
architecture. Let us now investigate the mean of data, i.e., where cases with correct
and incorrect architecture choices are analyzed together, to show that even here, ADR
provides improvements. The mean performance gain compared to CE is 4.0%, averaged
over all cases, ADR gains more performance than it loses reliability compared to the
centralized routing. When taking those cases into account, in which performance has a
higher importance weight than reliability, i.e., RWeight < 0.5, the mean percentage gain
for CE is 7.5%. On the other hand, the mean reliability gain for SA is 7.1%, i.e., ADR
offers a higher reliability gain than performance loss compared to a completely distributed
routing averaged over all experiment cases. Taking only those cases where reliability is of
higher importance than performance, i.e., RWeight > 0.5, the mean reliability gain is
14.0%.

B.5. Threats to Validity

In this section, we discuss the threats to the validity, along with some limitations of our
study.

B.5.1. Construct Validity

We used request loss and the round-trip times of requests as metrics of reliability and
performance, respectively. While this is a common approach in service- and cloud-based
research (see Section , the threat remains that other metrics might model these quality
attributes better, e.g., a cascade of calls beyond a single call sequence for reliability [67],
or data transfer rates of messages which are m byte-long for performance [53]. More
research, probably with real-world systems, is required for this threat to be excluded.

172

B.6. Conclusions

B.5.2. Internal Validity

The dynamic-routing architectures are based on many different technologies. Our ADR
architecture abstracts the controlling logic component in dynamic routing under a concept
called router to allow interoperability between these architectures. In a real-world system,
changing between these technologies is not an easy task, but it is not impossible either.
In this appendix, we provided a scientific proof-of-concept based on an experiment with
the prototypical implementation of these technologies. The threat remains that, in a
real-world application, changing between these technologies might have other impacts on
reliability and performance, e.g., network latency increasing processing time.

Moreover, we considered a simple reconfiguration strategy to start the new setup in
parallel with the running configuration to avoid impacts on reliability, e.g., request loss
due to reconfiguration and performance, e.g., increased processing time while reconfiguring.
In a real-world system, this solution is cost-ineffective that introduces additional resource
demands. The architects must specify a reconfiguration strategy based on their application
needs to mitigate this threat.

B.5.3. External Validity

We designed our novel architecture with generality in mind and explained in detail how
architects could specify ADR to their needs (see Appendix . In spite of the fact
that we systematically evaluated ADR using the data of our extensive experiment of
1200 hours with 1089 evaluation cases, the threat remains that evaluating ADR based
on another infrastructure may lead to different results. To mitigate this thread, we
empirically validated our measurements on the Google Cloud Platformi infrastructure
and showed that our results are applicable.

B.6. Conclusions

We proposed the details of the Adaptive Dynamic Routers (ADR) architecture that
automatically adjusts performance and reliability trade-offs based on a multi-criteria
optimization analysis. We systematically evaluated ADR using 1089 evaluation cases
based on the empirical data of our extensive experiment of 1200 hours of runtime (see
Appendix @ for details). Our results show that ADR can adapt the architecture
configuration in a running system to optimize reliability and performance. If the wrong
architectural choice has been made, ADR can lead to substantial gains in reliability or
performance.

Even on average, where cases with the right and the wrong architecture choice are
analyzed together, ADR offers good results. For example, on average, it offers 14.0%
higher reliability than performance loss compared to completely distributed routing when
reliability is of higher importance, and 7.5% more performance gains than reliability
decrease compared to centralized routing when performance is a higher priority. Moreover,
we empirically validated our model predictions on our private experiment infrastructure

173

B. Trade-Offs Adaptation: Statistical Performance Model

and the GCP public cloud. The empirical validation had a prediction error of 14.0%,
which indicates that our approach is applicable outside of our private infrastructure.

To the best of our knowledge, there has not been any architecture presented in the
literature that automatically adjusts reliability and performance trade-offs, specifically in
service- and cloud-based dynamic routing. Our proposed ADR architecture adapts, based
on triggers, e.g., change of incoming load frequency or degradation of monitoring data, to
an optimal configuration to prevent request loss or increase of round-trip times. Prior to
our work, architects needed to manually redesign and redeploy architecture configurations.

174

Bibliography

(1]

2]

3]

4]

[5]

(6]

7]

18]

19]

[10]

S. Ahamad and Ratneshwer. Some studies on performability analysis of safety critical
systems. Computer Science Review, 39:100319, 2021.

S. P. Ahuja and A. Patel. Enterprise service bus: A performance evaluation. Com-
munications and Network, 3(03):133, 2011.

A. Aleti, S. Bjérnander, L. Grunske, and I. Meedeniya. Archeopterix: An extendable
tool for architecture optimization of AADL models. In ICSE 2009 Workshop on
Model-Based Methodologies for Pervasive and Embedded Software, MOMPES 2009,
pages 61-71. IEEE, 2009.

A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software architec-
ture optimization methods: A systematic literature review. IEEE Trans. Software
Eng., 39(5):658-683, 2013.

A. Amiri, C. Krieger, U. Zdun, and F. Leymann. Dynamic data routing decisions for
compliant data handling in service- and cloud-based architectures: A performance
analysis. In IEEE International Conference on Services Computing (SCC), 2019.

A. Amiri, E. Ntentos, U. Zdun, and S. Geiger. Tool support for learning architectural
guidance models and pattern mining from architectural design decision models. In
European Conference on Pattern Languages of Programs (EuroPLoP), forthcoming.

A. Amiri and U. Zdun. Cost-aware multifaceted reconfiguration of service- and
cloud-based dynamic routing applications. In IEEE International Conference on

Cloud Computing (CLOUD), 2023.

A. Amiri and U. Zdun. Smart and adaptive routing architecture: An internet-of-
things traffic manager based on artificial neural networks. In IEEFE International
Conference on Software Services Engineering (SSE), 2023.

A. Amiri and U. Zdun. Tool support for the adaptation of quality of service trade-offs
in service- and cloud-based dynamic routing architectures. In European Conference
on Software Architecture (ECSA), forthcoming.

A. Amiri, U. Zdun, and K. Plakidas. Stateful depletion and scheduling of containers

on cloud nodes for efficient resource usage. In IEEE International Conference on
Software Quality, Reliability and Security (QRS), 2022.

175

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

176

A. Amiri, U. Zdun, G. Simhandl, and A. van Hoorn. Impact of service- and cloud-

based dynamic routing architectures on system reliability. In International Conference
on Service Oriented Computing (ICSOC), 2020.

A. Amiri, U. Zdun, and A. van Hoorn. Modeling and empirical validation of
reliability and performance trade-offs of dynamic routing in service- and cloud-based
architectures. In IEEE Transactions on Services Computing (TSC), 2021.

A. Amiri, U. Zdun, and A. van Hoorn. Analytical modeling and empirical validation
of performability of service- and cloud-based dynamic routing architecture patterns.
In IEEFE Transactions on Services Computing (TSC), forthcoming.

A. Amiri, U. Zdun, A. van Hoorn, and S. Dustdar. Automatic adaptation of reliability
and performance tradeoffs in service- and cloud-based dynamic routing architectures.
In IEEE International Conference on Software Quality, Reliability and Security
(QRS), 2021.

A. Amiri, U. Zdun, A. van Hoorn, and S. Dustdar. Cost-aware multidimensional
auto-scaling of service- and cloud-based dynamic routing to prevent system overload.
In IEEE International Conference on Web Services (ICWS), 2022.

P. Arcaini, E. Riccobene, and P. Scandurra. Modeling and analyzing mape-k feedback
loops for self-adaptation. In 2015 IEEE/ACM 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pages 13-23. IEEE,
2015.

P. Arcaini, E. Riccobene, and P. Scandurra. Formal design and verification of self-
adaptive systems with decentralized control. ACM Transactions on Autonomous and

Adaptive Systems (TAAS), 11(4):1-35, 2017.

R. Bankston and J. Guo. Performance of container network technologies in cloud
environments. In 2018 IEEE International Conference on Electro/Information
Technology (EIT), pages 0277-0283. IEEE, 2018.

A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and
C. Rosenthal. Chaos engineering. IEEFE Software, 33(3):35-41, 2016.

A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev. Chameleon: A hybrid,
proactive auto-scaling mechanism on a level-playing field. IEEE Transactions on
Parallel and Distributed Systems, 30(4):800-813, 2018.

S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with
the palladio component model. In Proceedings of the 6th International Workshop
on Software and Performance, WOSP ’07, page 54—65, New York, NY, USA, 2007.
ACM.

M. Beltran. Automatic provisioning of multi-tier applications in cloud computing
environments. The Journal of Supercomputing, 71:2221—2250, 2015.

[23]

[24]

[25]

[26]
[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

Bibliography

S. Bock and M. Weifs. A proof of local convergence for the adam optimizer. In 2019
International Joint Conference on Neural Networks (IJCNN), pages 1-8, 2019.

F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-based reliability
prediction with the palladio component model. IEEE Transactions on Software
Engineering, 38(6):1319-1339, 2011.

A. Busch, D. Fuchss, and A. Koziolek. Peropteryx: Automated improvement of
software architectures. In IEEFE International Conference on Software Architecture
ICSA Companion 2019, pages 162-165. IEEE, 2019.

D. A. Chappell. Enterprise service bus. O’Reilly, 2004.

R. C. Cheung. A user-oriented software reliability model. IEEE transactions on
Software Engineering, pages 118-125, 1980.

A. Chung, J. W. Park, and G. R. Ganger. Stratus: Cost-aware container scheduling
in the public cloud. In Proceedings of the ACM Symposium on Cloud Computing,
2018.

J. Comden, S. Yao, N. Chen, H. Xing, and Z. Liu. Online optimization in cloud re-
source provisioning: Predictions, regrets, and algorithms. In Publication: Proceedings
of the ACM on Measurement and Analysis of Computing Systems, 2019.

V. Cortellessa, A. Di Marco, and P. Inverardi. Model-based software performance
analysis. Springer, 2011.

C. Czepa, A. Amiri, E. Ntentos, and U. Zdun. Modeling compliance specifications in
linear temporal logic, event processing language and property specification patterns:
a controlled experiment on understandability. Software and Systems Modeling, pages
3331-3371, 2019.

C. Cérin, T. Menouer, W. Saad, and W. B. Abdallah. A new docker swarm scheduling
strategy. In 2017 IEEE 7th international symposium on cloud and service computing

(SC2), 2017.

D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass: Toward runtime
performance anomaly fault localization for infrastructure-as-a-service clouds. In 6th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14), 2014.

M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and M. Tambasco. Performability
analysis of containerized ims through queueing networks and stochastic models. In
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,
pages 1-8, 2022.

D. Dossot, J. D’Emic, and V. Romero. Mule in action. Manning Greenwich, 2014.

Envoy. Service mesh. https://www.learnenvoy.io/articles/service-mesh.html, 2019.

177

Bibliography

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

48]
[49]

[50]

178

G. Galante and L. C. E. de Bona. A survey on cloud computing elasticity. In 2012
IEEE Fifth International Conference on Utility and Cloud Computing, pages 263-270.
IEEE, 2012.

V. Grassi and S. Patella. Reliability prediction for service-oriented computing
environments. IEEFE Internet Computing, 10(3):43-49, 2006.

G. Grimmett and D. Welsh. Probability: An Introduction. Cambridge University
Press, 1986.

R. Guerraoui and A. Schiper. Fault-tolerance by replication in distributed systems.
In Strohmeier A. (eds) Reliable Software Technologies - Ada-Europe ’96. Springer,
1996.

R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S. Schulte,
and J. Wettinger. Performance engineering for microservices: research challenges
and directions. In Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, pages 223-226. ACM, 2017.

N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in cloud computing: What it
is, and what it is not. In 10th International Conference on Autonomic Computing

({ICAC} 13), pages 23-27, 2013.

N. R. Herbst, S. Kounev, A. Weber, and H. Groenda. Bungee: An elasticity
benchmark for self-adaptive iaas cloud environments. In Proceedings of the 10th

International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’15, pages 46-56, Piscataway, NJ, USA, 2015. IEEE Press.

A. R. Hevner, S. T. March, and S. Ram. Design science in information systems
research. In MIS ()., volume 28(1), pages 75-105, 2004.

G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.

A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson. Cloud Design
Patterns. Microsoft Press, 2014.

D. G. D. L. Iglesia and D. Weyns. Mape-k formal templates to rigorously design
behaviors for self-adaptive systems. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 10(3):1-31, 2015.

K. Indrasiri. Beginning WSO2 ESB. Apress, 2016.

P. Jamshidi, C. Pahl, N. C. Mendonga, J. Lewis, and S. Tilkov. Microservices: The
journey so far and challenges ahead. IEEE Software, 35(3):24-35, 2018.

C. Kaewkasi and K. Chuenmuneewong. Improvement of container scheduling for
docker using ant colony optimization. In IEEE 10th International Conference on
Autonomic Computing, 2013.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Bibliography

V. V. Kalashnikov. Mathematical Methods in Queuing Theory. Springer, 2013.

H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu. Efficiency analysis of
provisioning microservices. In Cloud Computing Technology and Science (CloudCom),
2016 IEEE International Conference on, pages 261-268. IEEE, 2016.

N. Kratzke. About microservices, containers and their underestimated impact on
network performance. arXiv preprint arXiv:1710.04049, 2017.

G. Kumar, M. Kaushik, and R. Purohit. Reliability analysis of software with three
types of errors and imperfect debugging using markov model. International Journal
of Computer Applications in Technology (IJCAT), 2018.

A. Lisnianski, E. Levit, and L. Teper. Short-term availability and performability
analysis for a large-scale multi-state system based on robotic sensors. Reliability
Engineering and System Safety, 205:107206, 2021.

B. Liu, P. Li, W. Lin, N. Shu, Y. Li, and V. Chang. A new container scheduling
algorithm based on multi-objective optimization. In Soft Computing, 22(23), 7741-
7752, 2018.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless computing:
An investigation of factors influencing microservice performance. In Cloud Engineering
(IC2E), 2018 IEEFE International Conference on, pages 159-169. IEEE, 2018.

M. A. Matalytski. Analysis and forecasting of expected incomes in markov net-
works with bounded waiting time for the claims. Automation and Remote Control,
76(6):1005-1017, 2015.

D. A. Menascé and V. A. Almeida. Capacity Planning for Web Services: Metrics,
Models, and Methods. Prentice Hall PTR, 2001.

T. Menouer. Kcss: Kubernetes container scheduling strategy. In The Journal of
Supercomputing, 77(5), 4267-4293, 2021.

Microsoft. Sidecar pattern. https://docs.microsoft.com/en-us/azure/archite
cture/patterns/sidecar, 2010.

Y. Mo, L. Xing, L. Zhang, and S. Cai. Performability analysis of multi-state sliding
window systems. Reliability Engineering and System Safety, 202:107003, 2020.

T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker. Model-based reinforcement
learning: A survey. Foundations and Trends®) in Machine Learning, 16(1):1-118,
2023.

G. Montavon, W. Samek, and K.-R. Miiller. Methods for interpreting and under-
standing deep neural networks. Digital Signal Processing, 73:1-15, 2018.

179

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

180

R. Natella, D. Cotroneo, and H. S. Madeira. Assessing dependability with software
fault injection: A survey. ACM Computing Surveys (CSUR), 48(3):44, 2016.

H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Agile: Elastic distributed
resource scaling for infrastructure-as-a-service. In 10th International Conference on
Autonomic Computing, 2013.

M. Nygard. Release It!: Design and Deploy Production-Ready Software. Pragmatic
Bookshelf, 2007.

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-Eldin,
C. L. Abad, J. N. Amaral, P. Tuma, and A. Iosup. Methodological principles for
reproducible performance evaluation in cloud computing. In IEEE Transactions on
Software Engineering. IEEE, 2019.

D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-based performance analysis
applied to a telecommunication system. IEEE Transactions on Software Engineering,
26(11):1049-1065, 2000.

R. R. Picard and R. D. Cook. Cross-validation of regression models. Journal of the
American Statistical Association, 79(387):575-583, 1984.

R. Pietrantuono, S. Russo, and A. Guerriero. Run-time reliability estimation of
microservice architectures. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE), pages 25-35. IEEE, 2018.

T. Pitakrat, D. Okanovi¢, A. van Hoorn, and L. Grunske. Hora: Architecture-aware
online failure prediction. Journal of Systems and Software, 137, 2017.

T. Pitakrat, D. Okanovi¢, A. van Hoorn, and L. Grunske. An architecture-aware ap-
proach to hierarchical online failure prediction. In 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA), 2016.

T. Rademakers and J. Dirksen. Open-Source ESBs in Action: Example Implementa-
tions in Mule and ServiceMix. Simon and Schuster, 2008.

A. Rago, S. A. Vidal, J. A. Diaz-Pace, S. Frank, and A. van Hoorn. Distributed
quality-attribute optimization of software architectures. In Proceedings of the 11th

Brazilian Symposium on Software Components, Architectures and Reuse, SBCARS
2017, pages 7:1-7:10. ACM, 2017.

P. Raj, A. Raman, and H. Subramanian. Architectural Patterns: Uncover essential
patterns in the most indispensable realm. Packt Publishing, December 2017.

R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek,
M. Kramer, and K. Krogmann. Modeling and Simulating Software Architectures:
The Palladio Approach. The MIT Press, 2016.

78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[33]

[89]

[90]

[91]

Bibliography

C. Richardson. Microservices Patterns: With examples in Java. Manning, 2018.

C. Richardson. Microservice architecture patterns and best practices.
http://microservices.io/index.html, 2019.

D. L. Rubinfeld. Reference guide on multiple regression. Federal Judicial Center,
2nd edition, 2000.

V. S. Sharma and K. S. Trivedi. Architecture based analysis of performance, reliability
and security of software systems. In Proceedings of the 5th International Workshop
on Software and Performance, WOSP ’05, page 217-227, New York, NY, USA, 2005.
Association for Computing Machinery.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In 2nd ACM Symposium on Cloud Computing, 2011.

T. Shezi, E. Jembere, and M. Adigun. Performance evaluation of enterprise service
buses towards support of service orchestration. In Proc. of International Conference
on Computer Engineering and Network Security (ICCENS’2012), 2012.

J. Siegmund, N. Siegmund, and S. Apel. Views on internal and external validity
in empirical software engineering. In 37th International Conference on Software
Engineering (ICSE), 2015.

R. Smith, K. Trivedi, and A. Ramesh. Performability analysis: measures, an
algorithm, and a case study. IEEE Transactions on Computers, 37(4):406-417, 1988.

B. Spitznagel and D. Garlan. Architecture-based performance analysis. In Proc.
the 1998 Conference on Software Engineering and Knowledge Engineering. Carnegie
Mellon University, June 1998.

O. Sukwong, A. Sangpetch, and H. S. Kim. Sageshift: managing slas for highly
consolidated cloud. In 2012 Proceedings IEEE INFOCOM, pages 208-216, 2012.

M. Sureshkumar and P. Rajesh. Optimizing the docker container usage based on load
scheduling. In 2017 2nd International Conference on Computing and Communications

Technologies (ICCCT), 2017.

M. Torquato, P. Maciel, and M. Vieira. Model-based performability and dependability
evaluation of a system with vin migration as rejuvenation in the presence of bursty
workloads. Journal of Network and Systems Management, 30(1):3, 2021.

K. S. Trivedi and A. Bobbio. Reliability and availability engineering: modeling,
analysis, and applications. Oxford University Press, 2017.

V. K. Vaishnavi and K. W. Design Science Research Methods and Patterns: Innov-
ating Information and Communication Technology. Auerbach, 2007.

181

Bibliography

[92] A. Van Hoorn, A. Aleti, T. F. Diillmann, and T. Pitakrat. Orcas: Efficient resilience
benchmarking of microservice architectures. In 2018 IEEE International Symposium
on Software Reliability Engineering Workshops, pages 146-147. IEEE, 2018.

[93] K. Vandikas and V. Tsiatsis. Performance evaluation of an iot platform. In Next
Generation Mobile Apps, Services and Technologies (NGMAST), 2014 Fighth Inter-
national Conference on, pages 141-146. IEEE, 2014.

[94] L. Wang, X. Bai, L. Zhou, and Y. Chen. A hierarchical reliability model of service-
based software system. In 2009 33rd Annual IEEE International Computer Software
and Applications Conference, volume 1, pages 199-208, July 2009.

[95] R. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer, 2014.

[96] C. Wohlin, P. Runeson, M. Hoest, M. C. Ohlsson, B. Regnell, and A. Wesslen.
Ezxperimentation in Software Engineering. Springer, 2012.

[97] F. Zhang, X. Tang, X. Li, S. U. Khan, and Z. Li. Quantifying cloud elasticity with
container-based autoscaling. Future Generation Computer Systems, 98:672-681, 2019.

[98] Z. Zheng and M. R. Lyu. Collaborative reliability prediction of service-oriented
systems. In 2010 ACM/IEEFE 32nd International Conference on Software Engineering,
volume 1, pages 3544, May 2010.

182

Name

Amirali Amiri, M.Sc.

Address Wahringer Gurtel 146 / 17, 1090 Vienna
Telephone +4368110689758
Email amirali.amiri@univie.ac.at
Webpage http://cs.univie.ac.at/amirali.amiri
Birth March 26", 1989 — Iran
Languages Persian (Native), English (C2), German (C1)
Education
Now Doctoral Candidate in Computer Science
2017 Apr University of Vienna, Austria
Design and modeling of architectural requirements of cloud-based systems
2015 sep Master of Science in Informatics
2012 Apr Technical University of Munich, Germany
Computer architecture
2012 Feb Bachelor of Science in Computer Engineering
2007 sep Ferdowsi University of Mashhad, Iran

Hardware design

Work Experiences

Now
2017 Apr

Now
2022 Feb

2022 Feb
2020 Nov

University of Vienna, Austria

Research and teaching staff (Software Architecture Group)
Modeling and empirical validation of architectural design decisions

Siemens Osterreich, Austria

Machine-learning operations for distributed cyber-physical systems
Research project in collaboration with Uni Wien Software Architecture Group

fiskaly GmbH, Austria

Generic eFiscalization in the cloud for different organizations
Research project in collaboration with Uni Wien Software Architecture Group

http://cs.univie.ac.at/amirali.amiri

2016 open ideas GmbH, Germany

Nov — Dec Embedded software design of an industrial cyber-physical control system
2015 University of Texas at Arlington Research Institute, USA
Jun —Sep Cooperative control of cyber-physical systems, e.g., robot cars and drones

open ideas GmbH, Germany

Jan — May MS Thesis: Evaluation of face recognition algorithms on embedded platforms
2014 open ideas GmbH, Germany
Aug — Dec Embedded software design of an industrial cyber-physical control system

Ferdowsi University of Mashhad, Iran

May — Aug Evaluation of temperature-sensor implementations on Xilinx virtex-5 FPGA
2013 Infineon Technologies AG, Germany
Jun — Dec Support related to test of an ARM microprocessor-based system

Technical University of Munich, Germany

May — Jun Implementation of computer vision applications with OpenCV

2012 Technical University of Munich, Germany

Aug — Dec Adaption of a NoC router to enable configuration on Xilinx Virtex-5 NetFPGA
Teaching

Since 2019 | have taught Master- and Bachelor-level courses in Advanced Software
Engineering and Software Engineering 2 as a Senior Universitatsassistent Praedoc.

My responsibilities include scheduling the courses, managing room reservations,
setting up Moodle course pages, setting up student Git repositories, forming student
teams, supervising students, coordinating tutors, dealing with students
(de)registrations, designing semester projects, writing and correcting exams, dealing
with student reviews, publishing grades, and supporting three new teachers.

Publications

| have published 11 research papers in top venues, including the A*-ranked TSC
journal and A-ranked conferences, e.g., ICSOC. The publication list follows.

List of Publications

. Cost-Aware Multifaceted Reconfiguration of Service- and
Cloud-Based Dynamic Routing Applications

Amirali Amiri, Uwe Zdun

o |EEE International Conference on Cloud Computing (CLOUD), 2-8 Jul 2023, Chicago,
lllinois USA (2023)

DOI 10.5281/zen0do.7919227

. Smart and Adaptive Routing Architecture: An Internet-of-
Things Traffic Manager Based on Artificial Neural Networks

Amirali Amiri, Uwe Zdun
IEEE International Conference on Software Services Engineering (SSE), 2-8 Jul 2023,
Chicago, lllinois USA (2023)

DOI 10.5281/zenod0.7919351

. Cost-Aware Multidimensional Auto-Scaling of Service- and
Cloud-Based Dynamic Routing to Prevent System Overload

Amirali Amiri, Uwe Zdun, André van Hoorn, Dustdar Schahram

IEEE International Conference on Web Services (ICWS), 11-17 Jul 2022, Barcelona, Spain
(2022)

DOI 10.1109/ICWS55610.2022.00063

https://swa.cs.univie.ac.at/research/publications/publication/7670/
https://swa.cs.univie.ac.at/research/publications/publication/7670/
https://swa.cs.univie.ac.at/research/publications/publication/7669/
https://swa.cs.univie.ac.at/research/publications/publication/7669/
https://swa.cs.univie.ac.at/research/publications/publication/7436/
https://swa.cs.univie.ac.at/research/publications/publication/7436/
https://eprints.cs.univie.ac.at/7670/1/paper.pdf
https://eprints.cs.univie.ac.at/7669/1/paper.pdf
https://eprints.cs.univie.ac.at/7436/1/paper.pdf

. Stateful Depletion and Scheduling of Containers on Cloud
Nodes for Efficient Resource Usage

Amirali Amiri, Uwe Zdun, Konstantinos Plakidas

IEEE International Conference on Software Quality, Reliability and Security (QRS), 5-9
Dec 2022, Quangzhou, China (2022)

DOI 10.1109/QRS57517.2022.00056

. Automatic Adaptation of Reliability and Performance Trade-
Offs in Service- and Cloud-Based Dynamic Routing
Architectures

Amirali Amiri, Uwe Zdun, André van Hoorn, Schahram Dustdar

IEEE International Conference on Software Quality, Reliability and Security (QRS), 6-10
Dec 2021, Hainan Island, China (2021)

DOI 10.1109/QRS54544.2021.00055

. Modeling and Empirical Validation of Reliability and
Performance Trade-Offs of Dynamic Routing in Service- and
Cloud-Based Architectures

Amirali Amiri, Uwe Zdun, André van Hoorn

IEEE Transactions on Services Computing (TSC), ISSN 1939-1374 (2021)

DOI 10.1109/TSC.2021.3098178

https://swa.cs.univie.ac.at/research/publications/publication/7493/
https://swa.cs.univie.ac.at/research/publications/publication/7493/
https://swa.cs.univie.ac.at/research/publications/publication/7137/
https://swa.cs.univie.ac.at/research/publications/publication/7137/
https://swa.cs.univie.ac.at/research/publications/publication/7137/
https://swa.cs.univie.ac.at/research/publications/publication/6890/
https://swa.cs.univie.ac.at/research/publications/publication/6890/
https://swa.cs.univie.ac.at/research/publications/publication/6890/
https://eprints.cs.univie.ac.at/7493/1/paper.pdf
https://eprints.cs.univie.ac.at/7137/1/paper.pdf
https://eprints.cs.univie.ac.at/6890/1/TSC3098178.pdf

. Impact of Service- and Cloud-Based Dynamic Routing
Architectures on System Reliability

Amirali Amiri, Uwe Zdun, Georg Simhandl, André van Hoorn

International Conference on Service-Oriented Computing (ICSOC), 14-17 Dec 2020,
Dubai, UAE (2020)

DOI 10.1007/978-3-030-65310-1_13

. Dynamic Data Routing Decisions for Compliant Data
Handling in Service- and Cloud-Based Architectures: A
Performance Analysis

Amirali Amiri, Christoph Krieger, Uwe Zdun, Frank Leymann

IEEE International Conference on Services Computing (SCC), 8-13 Jul 2019, Milan, Italy
(2019)

DOI 10.1109/SCC.2019.00044

. Modeling compliance specifications in linear temporal
logic, event processing language and property specification

patterns: a controlled experiment on understandability

Christoph Czepa, Amirali Amiri, Evangelos Ntentos, Uwe Zdun

Software and Systems Modeling, 18 pp. 3331-3371 ISSN 1619-1366 Springer (2019)

DOI 10.1007/s10270-019-00721-4

https://swa.cs.univie.ac.at/research/publications/publication/6561/
https://swa.cs.univie.ac.at/research/publications/publication/6561/
https://swa.cs.univie.ac.at/research/publications/publication/6057/
https://swa.cs.univie.ac.at/research/publications/publication/6057/
https://swa.cs.univie.ac.at/research/publications/publication/6057/
https://swa.cs.univie.ac.at/research/publications/publication/6059/
https://swa.cs.univie.ac.at/research/publications/publication/6059/
https://swa.cs.univie.ac.at/research/publications/publication/6059/
https://eprints.cs.univie.ac.at/6561/1/ICSOC_2020.pdf
https://eprints.cs.univie.ac.at/6057/8/IEEE_SCC_2019.pdf
https://eprints.cs.univie.ac.at/6059/1/art_10.1007_s10270-019-00721-4.pdf

. Performance evaluation metrics for ring-oscillator-based
temperature sensors on FPGAs: A quality factor

Navid Rahmanikia, Amirali Amiri, Hamid Noori, Farhad Mehdipour

INTEGRATION, the VLSI journal, 57 pp. 81-100 ISSN 0167-9260 (2017)

DOI 10.1016/j.vlsi.2016.12.007

. Exploring Efficiency of Ring Oscillator-Based Temperature
Sensor Networks on FPGAs (Abstract Only)

Navid Rahmanikia, Amirali Amiri, Hamid Noori, Farhad Mehdipour

Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 22-24 Feb 2015, Monterey, California, USA (2015)

DOI 10.1145/2684746.2689104

https://swa.cs.univie.ac.at/research/publications/publication/6078/
https://swa.cs.univie.ac.at/research/publications/publication/6078/
https://swa.cs.univie.ac.at/research/publications/publication/6079/
https://swa.cs.univie.ac.at/research/publications/publication/6079/
https://eprints.cs.univie.ac.at/6078/1/Rahmanikia_Journal_2017.pdf
https://eprints.cs.univie.ac.at/6079/1/FPGA_2015.pdf

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Research Overview
	State of the Art
	Thesis Structure

	Approach Overview
	Background on Dynamic Routing Patterns
	Adaptive Dynamic Routers Architecture
	Details of our Scientific Experiments

	Reliability Model
	Introduction
	Model of Request Loss During Router and Service Crashes
	Empirical Validation
	Discussion
	Conclusions

	Performance Models
	Introduction
	Statistical Model of Performance
	Reliability and Performance Trade-Off Analysis
	Analytical Performance Model
	Empirical Validation of the Analytical Model
	Threats to Validity
	Conclusions

	Trade-Offs Adaptation
	Introduction
	Approach Details
	Tool Overview
	Evaluation
	Threats to Validity
	Conclusions

	Multidimensional Autoscaling
	Introduction
	Approach Overview
	Approach Details
	Parameterization of Model to Experiment Parameter Values
	Illustrative Sample Case
	Evaluation
	Threats to Validity
	Conclusions

	Stateful Container Depletion
	Introduction
	Background
	Approach Details
	Parameterization of Model Elements
	Evaluation
	Discussion
	Conclusions

	Multifaceted Reconfiguration
	Introduction
	Approach Overview
	Approach Details
	Illustrative Sample Cases
	Tool Support
	Evaluation
	Threats to Validity
	Conclusions

	Conclusions and Future Work
	Initial Performance Experiment
	Introduction
	Experimental Planning
	Analysis
	Threats to Validity
	Conclusions

	Trade-Offs Adaptation: Statistical Performance Model
	Introduction
	Approach Details
	Parameterization of Model to Experiment Parameter Values
	Evaluation
	Threats to Validity
	Conclusions

	Bibliography

