Lniversitat
wien

DISSERTATION / DOCTORAL THESIS

Titel der Disseratation / Title of the Doctoral Thesis
,Modeling and Multifaceted Reconfiguration of
Cloud-Based Dynamic Routing*

verfasst von / submitted by
Amirali Amiri, M.Sc.(TUM)

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2023 / Vienna, 2023

Studienkennzahl It. Studienblatt / UA 786 880
degree programme code as it appears on the student
record sheet:

Dissertationsgebiet It. Studienblatt / Informatik
field of study as it appears on the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dr. Uwe Zdun






Acknowledgements

I would like to thank Univ.-Prof. Dr. Uwe Zdun for his supervision in the six years of
working on this dissertation. Moreover, I thank Dr. André van Hoorn for his collaborations
during the writing of the doctoral thesis.

I dedicate this work to my mother, Fattaneh Navi, who supported me throughout my
life.

Danksagungen

Ich bedanke mich bei Univ.-Prof. Dr. Uwe Zdun fiir seine Betreuung wihrend der sechs
Jahre, in denen ich an dieser Dissertation gearbeitet habe. Auferdem danke ich Dr. André
van Hoorn fiir seine Zusammenarbeit wiahrend der Erstellung der Doktorarbeit.

Diese Arbeit widme ich meiner Mutter, Fattaneh Navi, die mich mein ganzes Leben
lang unterstiitzt hat.






Abstract

In today’s digital age, service- and cloud-based applications have become increasingly
dynamic, requiring runtime system adaptations to manage their complex behavior. To
meet this need, cloud computing offers an elastic infrastructure that can dynamically
adjust resources and scale applications as needed. However, as cloud-based systems become
more complex, manual management of these systems becomes increasingly challenging
and cost-ineffective.

To ensure that cloud resources are dynamically reconfigured to meet Quality of Service
(QoS) requirements, various research studies have focused on different approaches, such
as architecture-based reliability modeling, empirical reliability or resilience assessment,
architecture-based performance prediction, and performance analysis in cloud-based
systems. Additionally, self-adaptive systems have been developed that use Monitor,
Analyze, Plan, Execute, and Knowledge (MAKE-K) loops and similar approaches to
realize adaptations, while autoscalers and cloud elasticity promise to maintain stable QoS
measures even when workload intensity changes.

However, a higher level of abstraction is necessary to make the reconfiguration process of
cloud-based systems automatic. This abstraction models the various available technologies
and options, which allows us to capture the domain knowledge needed to make informed
decisions when choosing optimal reconfiguration solutions. Additionally, empirical research
is crucial for supporting the scientific method and creating trust in new technologies and
approaches.

In this doctoral thesis, we have designed and performed multiple experiments to model
and understand different QoS requirements, including reliability, performance, and system
overload. We have modeled these measurements analytically and statistically, then
validated our models empirically. Through this empirical research, we have investigated
the trade-offs of different QoS metrics and studied how these requirements affect reliability
and performance in centralized or distributed systems.

After gathering empirical evidence, we have used our models for multi-criteria optimiz-
ation analyses, which give the system self-management ability. The system can assess the
situation and automatically adapt cloud resources, choosing an optimal reconfiguration
solution. To support this approach, we have focused on capturing domain knowledge in
the context of QoS requirements and abstracting available technologies to study them at
an architectural level of abstraction. We have also provided architectural analysis tools
for self-adaptive service- and cloud-based dynamic-routing systems.

Moreover, we have presented a multifaceted reconfiguration of dynamic routing and
studied scenarios where components are idle, steady, and transient, as well as the interplay
of these scenarios. This dissertation demonstrates the importance of empirical research
in creating trust in new technologies and approaches for managing complex cloud-based
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Abstract

dynamic-routing systems. By modeling and understanding different QoS requirements
and their trade-offs, we have developed a self-management system that can dynamically
adapt cloud resources to ensure stable QoS metrics, even in the face of changing workload
intensity.

Kurzfassung

Im heutigen digitalen Zeitalter sind service- und cloudbasierte Anwendungen zunehmend
dynamisch und miissen zur Laufzeit angepasst werden, um ihr komplexes Verhalten zu
steuern. Zur Erfiillung dieser Anforderungen bietet Cloud Computing eine elastische
Infrastruktur, die in der Lage ist, Ressourcen dynamisch anzupassen und Anwendungen
nach Bedarf zu skalieren. Mit zunehmender Komplexitéit der Cloud-Systeme wird die
manuelle Verwaltung dieser Systeme jedoch immer schwieriger und kostspieliger.

Um sicherzustellen, dass Cloud-Ressourcen dynamisch rekonfiguriert werden, um die
Anforderungen an die Quality of Service (QoS) zu erfiillen, haben sich verschiedene
Forschungsstudien auf unterschiedliche Ansétze konzentriert. Diese Studien umfassen
architekturbasierte Zuverlassigkeitsmodellierung, empirische Zuverlassigkeits- oder Resili-
enzbewertung, architekturbasierte Leistungsvorhersage und Leistungsanalyse in Cloud-
basierten Systemen. Dariiber hinaus wurden selbst-adaptive Systeme entwickelt, die
Monitor, Analyze, Plan, Execute und Knowledge (MAKE-K) Schleifen und &hnliche
Ansitze verwenden, um Anpassungen zu implementieren, wihrend Auto-Scaler und Cloud-
Elastizitat versprechen, stabile QoS zu gewéhrleisten, auch wenn sich die Arbeitslast
andert.

Um den Prozess der Cloud-Systemkonfiguration zu automatisieren, ist jedoch eine héhere
Abstraktionsebene erforderlich, um die verschiedenen verfiigbaren Technologien und Op-
tionen zu modellieren und das Doménenwissen zu erfassen, das fiir die Entscheidungsfind-
ung bei der Auswahl optimaler Rekonfigurationslésungen erforderlich ist. Dariiber hinaus
ist empirische Forschung unerlasslich, um die wissenschaftliche Methode zu unterstiitzen.
Sie schafft Vertrauen in neue Technologien und Ansétze.

Zu diesem Zweck haben wir mehrere Experimente entworfen und durchgefiihrt, um
verschiedene QoS-Anforderungen, einschlieflich Zuverléssigkeit, Leistung und Systemiiber-
lastung, zu modellieren und zu verstehen. Wir haben diese Messungen analytisch und
statistisch modelliert und unsere Modelle empirisch validiert. Durch diese empirische
Forschung haben wir die Kompromisse zwischen verschiedenen QoS-Anforderungen unter-
sucht. Wir haben analysiert, wie diese Anforderungen die Zuverléssigkeit und Leistung
des Systems in zentralisierten oder verteilten Systemen beeinflussen.

Nachdem wir die empirische Evidenz gesammelt hatten, haben wir Multi-Kriterien-
Optimierungsmodelle eingesetzt, um das System in die Lage zu versetzen, selbstgesteuert
zu agieren. Das System kann die Situation bewerten und Cloud-Ressourcen automatisch
anpassen, um eine optimale Rekonfigurationslosung auszuwihlen. Um diesen Ansatz zu
unterstiitzen, haben wir uns darauf konzentriert zu modellieren, wie Doménenwissen im
Kontext von QoS-Anforderungen erfasst werden kann und wie verfiigbare Technologien
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abstrahiert werden konnen, um sie auf einer architektonischen Abstraktionsebene zu
untersuchen. Dariiber hinaus haben wir architektonische Analysewerkzeuge fiir selbst-
adaptive Dienste und Cloud-basierte dynamische Routing-Systeme bereitgestellt.

Nach der Untersuchung verschiedener QoS-Modelle fiir dynamisches Routing stellen wir
eine vielseitige Rekonfiguration fiir dynamisches Routing vor. Wir untersuchen Szenarien,
in denen Komponenten inaktiv, stabil und transient sind, sowie die Interaktion zwischen
diesen Szenarien. Diese Dissertation zeigt die Bedeutung empirischer Forschung, um
Vertrauen in neue Technologien und Ansétze zu schaffen, um komplexe Cloud-basierte
dynamische Routing-Systeme zu verwalten. Durch die Modellierung und das Versténdnis
verschiedener QoS-Anforderungen und ihrer Trade-offs haben wir ein selbstverwaltendes
System entwickelt, das in der Lage ist, Cloud-Ressourcen dynamisch anzupassen, um eine
stabile QoS auch bei sich &ndernder Auslastung zu gewahrleisten.
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1. Introduction

Nowadays, the dynamic behavior of service- and cloud-based applications often requires
runtime system adaptations. Cloud computing provides an elastic infrastructure to
manage this behavior of Internet applications. However, cloud-based systems are becoming
increasingly complex and it is hard and cost-ineffective to manage them manually. The
subject of the thesis concerns the study of automatic adaptation in the context of cloud
resource management. Dynamic reconfiguration of cloud resources typically considers
Quality of Service (QoS) requirements. For example, |90, [54] 27] [24] use architecture-based
reliability modeling, and |19} 165/ [92] consider empirical reliability or resilience assessment.
[86L 181, 169L [77] study architecture-based performance prediction, and [53, [18], 57, 41]
perform a performance analysis in the context of cloud-based systems. Self-adaptive
systems typically use Monitor, Analyze, Plan, Execute, Knowledge (MAPE-K) loops [47,
16| [17] and similar approaches to realize adaptations. Similarly, autoscalers for the
cloud |20, 197] and research on cloud elasticity [42] 137] promise the stable QoS when facing
changing workload intensity.

In all this research, an architect must learn the specific framework and define the QoS
levels the framework tries to reach. For instance, consider an e-commerce shop that offers
discounted products for a specific location during a period. The application must cope
with a sudden incoming load increase which needs to be routed to the services residing
in the location. An architect can manually decide on the combination of autoscalers
and dynamic routers [45], such as an API gateway [79] or an enterprise service bus [26],
to accommodate the system demand. However, to make this process automatic so that
the system automatically decides on an optimal configuration in a given situation, a
higher level of abstraction that models these options should be introduced. Moreover,
a mechanism to model the domain knowledge is required to make an informed decision
when choosing an optimal reconfiguration solution.

1.1. Motivation

Empirical research, when used to support the scientific method, plays a fundamental role
in modern science. Even though empirical research is rather foundational, it is needed
to create trust in new technologies and approaches. Unless we understand how certain
factors affect tools and methods, the development and use of a particular technology
will essentially be a random act. Empirical research represents a key way to move
towards well-founded decisions. In our work, as an initial step, we design and perform
multiple experiments to model and understand different QoS requirements, e.g., reliability,
performance, and system overload. To do so, we analytically and statistically model these
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measurements and empirically validate our models.

We investigate our findings and study the trade-offs of these quality requirements. For
example, in software architecture, there is a trade-off between system reliability and
performance in centralized or distributed systems. In a centralized system, where decisions
are made at one central entity component, e.g., in an API gateway [79] or a message
broker [45], system reliability is higher because there are fewer points of failure. An
architect can replicate this routing scheme to ensure high system reliability [40]. However,
the centralized component harms the system’s performance since all data processing
is done by one component. A distributed architecture can increase performance by
parallelization but harms the system’s reliability by introducing points of failure.

After we have empirical evidence on the trade-offs of different QoS requirements, we
can use our models for Multi-Criteria Optimization (MCO) analyses [4], giving the
system a self-management ability. The system can automatically assess the situation
and adapt the cloud resources. For example, if the incoming load is higher, the system
automatically evaluates different options and chooses an optimal reconfiguration solution.
This approach is similar to using MAPE-K loops [47, 16} [17]. We focus on the knowledge
part and model how to capture domain knowledge in the context of QoS requirements
of cloud resource management. We abstract available technologies to study them at an
architectural level of abstraction. Moreover, we provide an architectural analysis tool
that considers a multifaceted reconfiguration of self-adaptive service- and cloud-based
systems. Additionally, we study whether our reconfiguration concepts can be applied to
other domains using machine-learning techniques.

1.2. Research Overview

This section presents our research method, questions, problems, and contributions.

1.2.1. Research Method

We design multiple scientific experiments to validate different QoS models. These models
form the basis of multiple MCO analyses to give the system the ability to automatically
evaluate different reconfiguration options and choose a final optimal solution. For this
purpose, we develop an architectural analysis tool based on design science research |95 144].
In design science research, first, a research question is posed, then the develop/evaluate
cycle is continuously repeated until a satisfactory solution for the research question has
been obtained. In the course of this process, the research question can be altered or
refined. In the first iterations, usually simplifying assumptions are made, which are
removed in a stepwise fashion during later iterations.

Design science research produces different outputs: constructs, models, methods, and
instantiations [91]. While constructs are the conceptual vocabulary of a domain, models
are a set of propositions expressing relationships among constructs. Methods are steps to
perform a task, and instantiations are operationalized models, constructs, and methods.
Design science research is comprised of five steps:



1.2. Research Overview

1. Awareness of problem: This might result from different sources like earlier
research efforts or other disciplines, resulting in a proposal.

2. Suggestion: This is “a creative step where new functionality is envisioned based
on a novel configuration of either existing or new and existing elements” [91]. This
step results in a tentative design.

3. Development: The tentative design is further developed and implemented.

4. Evaluation: The constructed artifact is evaluated according to criteria implicitly
(or sometimes explicitly) mentioned in the proposal, e.g., concerning performance.

5. Conclusion: In this step, the evaluation results are judged sufficient or insufficient.
They are also consolidated and written up. This last step might create additional
iterations in the research loop.

We aim to contribute towards a more robust, comprehensive, and evidence-based un-
derstanding of architecting self-adaptive service- and cloud-based systems. It is necessary
to collect, model, analyze, assess, and understand both the extant practices and the
theoretical underpinnings of the service- and cloud-based application domain. Specifically,
this requires us to:

1. systematically categorize the extant practices and patterns at an architectural level
of abstraction to model and analyze service- and cloud-based systems.

2. establish an automatic approach to assess different quality-of-service requirements
in the context of cloud resource management.

3. automatically calculate and provide actionable reconfiguration solutions as part of
a feedback loop.

4. provide a prototypical tool to support the architects in applying the actionable
reconfiguration solutions found by our approach.

1.2.2. Research Questions

Based on the information derived from the above process, we aim to answer the following
research questions (RQ,) on architecting self-adaptive dynamic routing systems.

RQ1 What elements are required to automatically assess the different quality-of-service
requirements in cloud resource management of service- and cloud-based dynamic routing
applications?

RQ2 How to choose the final reconfiguration option as part of a feedback loop to manage
cloud resources efficiently, and how well does this reconfiguration solution perform compared
to the case when one architecture configuration runs statically?
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RQs What is the architecture of a supporting tool that analyses the system quality-of-
service requirements and facilitates the reconfiguration of a dynamic routing application
using the optimal configuration solution?

1.2.3. Research Problems

To answer the research questions, we face the following research problems (P,) addressed
by our studies throughout this dissertation.

Py Lack of reliability models specific to service- and cloud-based dynamic routing

To answer RQ1 and RQs, we must provide a reliability model specific to dynamic routing.
This model allows us to formally assess the reliability issues of a system as a QoS metric.
When making architectural design decisions regarding system reconfigurations, we consider
this reliability model to assess the QoS requirements.

P> Lack of performance models specific to service- and cloud-based dynamic routing

There are many different performance models studied in the literature (see Section .
However, they are mostly generic and are not specific to service-and cloud-based dynamic
routing applications. This problem relates to RQ1 and R(Q)5 to assess the QoS requirements
and study their trade-offs.

Ps Lack of an approach to automatically adapt the reliability and performance trade-offs

To answer R(@)2, we must have a formal and automatic approach that performs MCO
analyses using the reliability and performance models to adapt the QoS trade-offs in a
running dynamic-routing system. This problem also relates to RQ3 to provide prototypical
tool that supports the reconfiguration of routing applications.

Py Lack of an approach to autoscale components multidimensionally to prevent overload

This problem relates to RQ2 because when reconfiguring the routing schema, we must
consider that the reconfiguration does not overload the components. Horizontal autoscal-
in and vertical autoscalin address this issue. However, considering both approaches
in one architectural decision-making step regarding dynamic routing must be provided.

Ps Lack of an approach to statefully deplete and reschedule sporadically-active components

This problem relates to RQ2 because to manage cloud resources efficiently, we must
deplete idle containers statefully and schedule active components instead. When a
depleted container becomes active again, there might be a need for container migration
to another cloud node. This process must be formalized and studied.

"https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
*https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler


https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler

1.2. Research Overview

Pg Lack of tool support for the multifaceted reconfiguration of dynamic routing applications

To answer R(Q3, we must provide the prototypical tool support to analyze the system
at runtime and facilitate this multifaceted reconfiguration. This tool focuses on the
dynamic-routing domain and investigates the interplay of the different reconfiguration
views considered in this dissertation.

1.2.4. Research Contributions

This section provides an overview of all contributions of this dissertation linked to their
corresponding research problems described in the previous section. In the course of this
study, the contributions were published in the cloud and services conferences such as
the IEEE World Congress on Service and the International Conference on Service-
Oriented Computin as well as in a prominent journal IEEE Transactions on Services
Computin To support replicability, the data, code, and evaluation logs are available
as an open-access artifact in the online appendix of this dissertatiorﬁ. Moreover, the
research papers relating to each chapter of this doctoral thesis are available in the online
appendix under the corresponding chapter. The contributions (C},) of this work are listed
below. A research-overview figure that visualizes the relations between RQ),,, P,, and C),
are presented in Figure|l.1

C1 Analytical reliability model of dynamic routing

This contribution addresses P; by modeling component crashes using Bernoulli pro-
cesses [90] and calculating the request loss in dynamic-routing applications. We empiric-
ally validate our analytical reliability model using an extensive experiment of 1200 hours
of runtime (see Chapter [2| for details). Moreover, this contribution relates to P3 since the
proposed model is used for reliability and performance trade-offs adaptation.

Reference [11] A. Amiri, U. Zdun, G. Simhandl, and A. van Hoorn. Impact of service-
and cloud-based dynamic routing architectures on system reliability. In International
Conference on Service Oriented Computing (ICSOC), 2020.
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