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Abstract
Designing approximate all-pairs distance oracles in the fully dynamic setting is one of the central
problems in dynamic graph algorithms. Despite extensive research on this topic, the first result
breaking the O(

√
n) barrier on the update time for any non-trivial approximation was introduced

only recently by Forster, Goranci and Henzinger [SODA’21] who achieved m1/ρ+o(1) amortized
update time with a O(log n)3ρ−2 factor in the approximation ratio, for any parameter ρ ≥ 1.

In this paper, we give the first constant-stretch fully dynamic distance oracle with small polynomial
update and query time. Prior work required either at least a poly-logarithmic approximation or
much larger update time. Our result gives a more fine-grained trade-off between stretch and update
time, for instance we can achieve constant stretch of O( 1

ρ2 )4/ρ in amortized update time Õ(nρ),
and query time Õ(nρ/8) for any constant parameter 0 < ρ < 1. Our algorithm is randomized and
assumes an oblivious adversary.

A core technical idea underlying our construction is to design a black-box reduction from
decremental approximate hub-labeling schemes to fully dynamic distance oracles, which may be of
independent interest. We then apply this reduction repeatedly to an existing decremental algorithm
to bootstrap our fully dynamic solution.
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1 Introduction

The All-Pairs Shortest Paths (APSP) problem is one of the cornerstone graph problems
in combinatorial optimization. It has a wide range of applications, for instance in route
planning, navigation systems, and routing in networks, and it has been extensively studied
from both practical and theoretical perspectives. In theoretical computer science, this
problem enjoys much popularity due to its historic contributions to the development of
fundamental algorithmic tools and definitions as well as being used as a subroutine for solving
other problems.

1 This work was conducted when this author was a postdoc at University of Salzburg.
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50:2 Bootstrapping Dynamic Distance Oracles

The APSP problem has also been studied extensively in dynamic settings. Here, the
underlying graph undergoes edge insertions and deletions (referred to as edge updates), and
the goal is to quickly report an approximation to the shortest paths between any source-target
vertex pair. The dynamic setting is perhaps even more realistic for some of the applications
of the APSP problem, e.g., in navigation systems, as link statistics of road networks are prone
to changes because of evolving traffic conditions. A naive (but rather expensive) solution
to handle these updates is achieved by running an exact static algorithm after each update.
However, at an intuitive level, one would expect to somehow exploit the fact that a single
update is small compared to the size of the network, and thus come up with much faster
update times.

Much of the research literature in dynamic APSP has focused on the partially dynamic
setting. In contrast to the fully dynamic counterpart, this weaker model restricts the types
of updates to edge insertions or deletions only. Some reasons for studying partially dynamic
algorithms include their application as a subroutine in speeding up static algorithms (e.g.,
flow problems [36]), or their utilization as a stepping stone for designing fully-dynamic
algorithms, something that we will also exploit in this work. The popularity of the partially
dynamic setting can also attributed to the fact that dealing with only one type of update
usually leads to better algorithmic guarantees. In fact, the fully dynamic APSP problem
admits strong conditional lower bounds in the low approximation regimes: under plausible
hardness assumptions, Abboud and Vassilevska Williams [3], and later Henzinger, Krinninger,
Nanongkai, and Saranurak [32] show that there are no dynamic APSP algorithms achieving
a (3 − ϵ) approximation with sublinear query time and the update time being a small
polynomial.

From an upper bounds perspective, there are only two works that achieve sublinear
update time for fully dynamic APSP. Abraham, Chechik, and Talwar [5] showed that there
is an algorithm that achieves constant approximation and sublinear update time. However,
their algorithm cannot break the O(

√
n) barrier on the update time. Forster, Goranci,

and Henzinger [25] gave different trade-offs between approximation and update time. In
particular, in no(1) amortized update time and polylogarithmic query time they achieve
no(1) approximation. These two works suffer from either a large approximation guarantee or
update time, leaving open the following key question:

Is there a fully dynamic APSP algorithm that achieves constant approximation with a very
small polynomial update and query time?

1.1 Our result
In this paper, we answer the question of achieving constant approximation with a very
small polynomial update time for the fully dynamic APSP in the affirmative, also known as
the fully dynamic distance oracle problem. More generally, we obtain a trade-off between
approximation, update time, and query time as follows:

▶ Theorem 1. Given a weighted undirected graph G = (V, E, w) with polynomial weights2,
and a constant parameter 0 < ρ < 1, there is a randomized fully dynamic distance oracle
with constant stretch ( 256

ρ2 )4/ρ that w.h.p. achieves Õ(nρ) amortized update time and Õ(nρ/8)
query time. These guarantees hold against an oblivious adversary.

2 In this paper, we assume for ease of notation that the edge weights are integers in the range from 1
to W , where W is polynomial in n. Using a standard approach (see e.g., [8]) this extends to rational
edge weights in some range from the minimum weight Wmin to the maximum weight Wmax, where
Wmax/Wmin is polynomial in n.
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Our distance oracle can also be extended to report the actual (approximate) shortest path
when answering queries (see the full version [26] for a sketch). In addition to the constant
stretch regime, we obtain several interesting tradeoffs, as shown in Theorem 5. For example,
our algorithm achieves O(log log n) stretch with a much faster query time of no(1) and very
small polynomial update time (see Corollary 6).

Our result brings the algorithmic guarantees on fully dynamic distance oracles closer to
the recent conditional hardness result by Abboud, Bringmann, Khoury, and Zamir [2] (and
the subsequent refinement in [1]), who showed that there is no fully dynamic algorithm that
simultaneously achieves constant approximation and no(1) update and query time. We also
remark that our results are consistent with their lower bound since if we insist on constant
approximation, the above trade-off shows that the update time cannot be made as efficient
as no(1).

On the technical side, our result follows the widespread “high-level” approach of extending
decremental algorithms to the fully dynamic setting (see e.g. [33, 38, 39, 40, 10, 30, 5, 25])
and it is inspired by recent developments on the dynamic distance oracle literature that
rely on vertex sparsification [25, 18, 27]. Specifically, we design a reduction that turns a
decremental hub-labeling scheme with some specific properties into a fully dynamic distance
oracle, which may be of independent interest. Our key observation is that an existing
state-of-the-art decremental distance oracle that works against an oblivious adversary can
serve as such hub-labeling scheme. The fully dynamic distance oracle is then obtained by
repeatedly applying the reduction whilst carefully tuning various parameters across levels in
the hierarchy.

More generally, our reduction does not make any assumptions on the adversary and
is based on properties that are quite natural. At a high-level, we consider decremental
approximate hub-labeling schemes with the following properties. (1) For every vertex v ∈ V ,
maintain a set S(v), called a hub set, that has bounded size. (2) For every vertex v ∈ V ,
maintain distance estimates δ(v, u) for each u ∈ S(v), with bounded recourse, which is defined
as the number of times such distance estimates are affected during the execution of the
algorithm. (3) Return the final estimate between a pair of vertices s, t ∈ V , by minimizing
estimates over elements in S(s) ∩ S(t).

Many known distance oracles (e.g. variants of the well-known distance oracle of [44])
have a query mechanism that satisfies the first and third properties, while efficient dynamic
distance oracles are often based on bounded recourse structures satisfying the second property.

Hence we hope that this reduction can be further utilized in the future by characterizing
deterministic decremental distance oracles or the ones with different stretch/time tradeoffs
as such hub-labeling schemes. Similar reductions have been previously proposed in [5] and
then refined in [25] in slightly different contexts. In this work, in addition to refining this
approach for obtaining a constant stretch distance oracle, we aim to keep the reduction as
modular as possible to facilitate potential future applications.

1.2 Related Work
In the following, we give an overview of existing works on fully dynamic all-pairs distance
oracles by dividing them into several categories based on their stretch guarantee. Unless
noted otherwise, all algorithms cited in the following are randomized and have amortized
update time. We report running time bounds for constant accuracy parameter ϵ and assume
that we are dealing with graphs with positive integer edge weights that are polynomial in
the number of vertices. We would also like to point out that all “combinatorial” algorithms
discussed in the following (i.e., algorithms that do not rely on “algebraic” techniques like

ESA 2023



50:4 Bootstrapping Dynamic Distance Oracles

dynamic matrix inverse) are internally employing decremental algorithms. Decremental
algorithms have also been studied on their own with various tradeoffs [40, 10, 31, 16, 35, 24],
and competitive deterministic algorithms have been devised, e.g., [30, 11, 19].

Exact. After earlier attempts on the problem [34, 23], Demetrescu and Italiano [22] presented
their seminal work on exact distance maintenance achieving Õ(n2) update time (with log-
factor improvements by Thorup [42]) and constant query time for weighted directed graphs.

Subsequently, researchers have developed algorithms with subcubic worst-case update
time and constant query time [43, 4] with some of them being deterministic [28, 17]. Note
that one can construct a simple update sequence for which any fully dynamic algorithm
maintaining the distance matrix or the shortest path matrix explicitly needs to perform
Ω(n2) changes to this matrix per update.

Algorithms breaking the n2 barrier at the cost of large query time have been obtained
in unweighted directed graphs by Roditty and Zwick [39] (update time Õ(mn2/t2) and
query time O(t) for any

√
n ≤ t ≤ n3/4), Sankowski [41] (worst-case update time O(n1.897)

and query time O(n1.265)), and van den Brand, Nanongkai, and Saranurak [15] (worst-case
update time O(n1.724) and query time O(n1.724)). The latter two approaches are algebraic
and their running time bounds depend on the matrix multiplication coefficient ω.

(1 + ϵ)-approximation. In addition to exact algorithms, combinatorial and algebraic
algorithms have also been developed for the low stretch regime of (1 + ϵ)-approximation.
In particular, Roditty and Zwick [40] obtained the following trade-off with a combinatorial
algorithm: update time Õ(mn/t) and query time O(t) for any δ > 0 and t ≤ m1/2−δ.
Subsequently, for t ≤

√
n, a deterministic variant was developed [30] and it was generalized

to weighted directed graphs [10]. Furthermore, by a standard reduction (see e.g. [12]) using
a decremental approximate single-source shortest paths algorithm [31, 11], one obtains a
combinatorial, deterministic algorithm with update time O(nm1+o(1)/t) and query time
O(t) for any t ≤ n, for the fully dynamic all-pairs problem in weighted undirected graphs.
Conditional lower bounds [37, 3, 32] suggest that the update and the query time cannot
be both small polynomials in n. For example, no algorithm can maintain a (5/3 − ϵ)-
approximation with update time O(m1/2−δ) and query time O(m1−δ) for any δ > 0, unless
the OMv conjecture fails [32].

Algebraic approaches can achieve subquadratic update time and sublinear query time,
namely worst-case update time O(n1.863) and query time O(n0.666) in weighted directed
graphs [14], or worst-case update time O(n1.788) and query time O(n0.45) in unweighted
undirected graphs [13]. As the conditional lower bound by Abboud and Vassilevska Willi-
ams [3] shows, algebraic approaches seem to be necessary in this regime: unless one is able
to multiply two n × n Boolean matrices in O(n3−δ) time for some constant δ > 0, no fully
dynamic algorithm for st reachability in directed graphs can have O(n2−δ′) update and query
time and O(n3−δ′) preprocessing time (for some constant δ′ > 0). While not explicitly stated
in the paper, the same conditional lower bound extends to fully dynamic (1 + ϵ)-approximate
st distances on undirected unweighted graphs for a small enough constant ϵ.

(2 + ϵ)-approximation. Apart from earlier work [34], the only relevant algorithm in the
(2 + ϵ)-approximation regime is by Bernstein [9] and achieves update time m1+o(1) and query
time O(log log log n) in weighted undirected graphs. It can be made deterministic using
the deterministic approximate single-source shortest path algorithm by Bernstein, Probst
Gutenberg, and Saranurak [11]. The only conditional lower bound in this regime that we are
aware of states that no algorithm can maintain a (3 − ϵ)-approximation with update time
O(n1/2−δ) and query time O(n1−δ) for any δ > 0, unless the OMv conjecture fails [32].
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Larger approximation. In the regime of stretch at least 3, the following trade-offs between
stretch and update time have been developed: Abraham, Chechik, and Talwar [5] de-
signed an algorithm for unweighted undirected graphs with stretch 2O(ρk), update time
Õ(m1/2n1/k), and query time O(k2ρ2), where k ≥ 1 is a freely chosen parameter and ρ = 1 +
⌈log n1−1/k/ log(m/n1−1/k)⌉. Forster, Goranci, and Henzinger [25] designed an algorithm for
weighted undirected graphs with stretch O(log n)3k−2, update time m1/k+o(1) · O(log n)4k−2,
and query time O(k(log n)2), where k ≥ 2 is an arbitrary integer parameter. Very recently,
Chuzhoy and Zhang [20] independently obtained a deterministic algorithm for weighted undir-
ected graphs with stretch (log log n)21/ρ3

, update time Õ(nO(ρ)), and query time Õ(2O(1/ρ))
for any choice of 2

(log n)1/200 < ρ < 1
400 . Similar to our work, they also achieve sublogarithmic

stretch but their guarantee cannot be reduced all the way to a constant. While our algorithm
has the advantage of achieving constant stretch, their algorithm is deterministic, and thus
works against an adaptive adversary. Finally, note that any algorithm whose update time
depends on the sparsity of the graph (possibly also a static one) can be run on a spanner of
the input graph maintained by a fully dynamic spanner algorithm [7]. These upper bounds
are complemented by the following conditional lower bound: for any integer constant k ≥ 2,
there is no dynamic approximate distance oracle with stretch 2k − 1, update time O(mu)
and query time O(mq) with ku + (k + 1)q < 1, unless the 3-SUM conjecture fails [1].

2 Preliminaries

We consider weighted undirected graphs G = (V, E, w) with positive integer edge weights.
We denote by n = |V | the number of vertices, by m = |E| the number of edges, and by W

the maximum weight of an edge. For every pair of vertices u, v ∈ V , the distance distG(u, v)
between u and v in G is the length of a shortest path from u to v in G. For a path P , we
denote by wG(P ) the length of P in G, by E(P ) the edges of P , and by |P | = |E(P )| the
number of edges of P . Also for a graph H, we denote by V (H) and E(H) the vertex and
the edge set of H respectively.

In dynamic graph algorithms, the graph is subject to updates and the algorithm has
to process these updates by spending as little time as possible. In this paper, we consider
updates that insert a single edge to the graph or delete a single edge from the graph. Moreover,
observe that an update that changes the weight of an edge can be simulated by two updates,
where the first update deletes the corresponding edge and the second update re-inserts the
edge with the new weight. Let G(0) be the initial graph, and G(τ) be the graph at time τ

which is the time after τ updates have been performed to the graph.
In this paper we are interested in designing fully dynamic algorithms which can process

edge insertions and edge deletions, and thus, weight changes as well. A decremental algorithm
can process only edge deletions and weight increases. We assume that the updates to the
graph are performed by an oblivious adversary who fixes the sequence of updates before the
algorithm starts. Namely, the adversary cannot adapt the updates based on the choices of the
algorithm during the execution. We say that an algorithm has amortized update time u(n, m)
if its total time spent for processing any sequence of ℓ updates is bounded by ℓ · u(n, m),
when it starts from an empty graph with n vertices and during all the updates has at most
m edges (the time needed to initialize the algorithm on the empty graph before the first
update is also included). An algorithm is path reporting if after a query can also return the
corresponding path explicitly.

In our analysis we use Õ(1) to hide factors polylogarithmic in nW . Namely, we write
Õ(1)d to represent the term O(logcd nW ), for a constant c and a parameter d.

ESA 2023



50:6 Bootstrapping Dynamic Distance Oracles

3 Fully Dynamic Distance Oracle

The technical details of our distance oracle are divided into three parts. Initially in Section
3.1, we give the definition of a hub-labeling scheme together with other useful definitions.
Afterwards, we provide a reduction for extending a decremental approximate hub-labeling
scheme with some properties to a fully dynamic distance oracle. Then in Section 3.2, we
explain how an existing decremental algorithm gives us an approximate hub-labeling scheme
that we can use in this reduction, and finally in Section 3.3 we put everything together by
applying our reduction repeatedly, in order to get a family of fully dynamic distance oracles.

3.1 From decremental hub-labeling scheme to fully dynamic distance
oracle via reduction

We start by defining approximate hub-labeling schemes, and then explain how they are used
in our reduction. Hub-labeling schemes were formally defined by [6] (and were previously
introduced under the name 2-hop cover3 in [21]). We are slightly modifying the definition
for our purpose, for instance by considering an approximate variant.

▶ Definition 2 (Approximate Hub-Labeling Scheme). Given a graph G = (V, E), a hub-labeling
scheme L of stretch α consists of
1. for every vertex v ∈ V , a hub set S(v) ⊆ V and
2. for every pair of vertices u, v ∈ V , a distance estimate δ(v, u) such that distG(v, u) ≤

δ(v, u) < ∞ if u ∈ S(v) and δ(v, u) = ∞ otherwise.
and for every pair of vertices s and t guarantees that

δL(s, t) := min
v∈S(s)∩S(t)

(δ(s, v) + δ(t, v)) ≤ α · distG(s, t) .

The distance label of a vertex v consists of the hub set S(v) and the corresponding
distance estimates δ(v, u), for all u ∈ S(v).

Note that the definition implies δL(s, t) ≥ distG(s, t) for every pair of vertices s and t.
Furthermore, a hub-labeling scheme of stretch α directly implements a distance oracle of
stretch α with query time O(maxv∈V |S(v)|) that consists of the collection of distance labels
for all vertices v ∈ V . We also remark that the entries of value ∞ in the distance estimate
δ(·, ·) do not need to be stored explicitly if the hub sets are stored explicitly and that the
distance estimate δ(·, ·) is not necessarily symmetric.

In the following we consider decremental algorithms for maintaining approximate hub-
labeling schemes, that is, decremental approximate hub-labeling schemes which process each
edge deletion in the graph by first updating their internal data structures and then outputting
the changes made to the hub sets and the distance estimates δ(·, ·). Namely for a vertex
v ∈ V , vertices may leave or join S(v), or the distance estimates of vertices belonging to S(v)
may change, since the decremental algorithm has to update this information for maintaining
correctness at query time.

Denote by S(τ)(v) the hub set of a vertex v ∈ V after τ updates have been processed by the
decremental approximate hub-labeling scheme (we may omit the superscript τ whenever time
is fixed), where τ ≥ 1 is an integer parameter. Then for a pair of vertices u, v ∈ V , the distance
estimate δ(v, u) after τ updates is defined based on Definition 2 and S(τ)(v). Namely, if u is
inside the hub set of v after τ updates (i.e., u ∈ S(τ)(v)) then distG(τ)(v, u) ≤ δ(v, u) < ∞,
otherwise δ(v, u) = ∞.

3 The concept of 2-hop cover or hub-labeling should not be confused with the (related) concept of a
hopset that we will later see in Section 3.2.
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After τ edge deletions have been processed by the decremental approximate hub-labeling
scheme, there are three possible types of changes to the distance estimates δ(v, ·) that
correspond to a vertex v ∈ V , due to the last edge deletion. (1) The distance estimate
δ(v, u) changes for a vertex u ∈ S(τ−1)(v) ∩ S(τ)(v) that remains inside the hub set of v. (2)
The distance estimate δ(v, u) becomes ∞ because a vertex u ∈ S(τ−1)(v) \ S(τ)(v) leaves
the hub set of v. (3) The distance estimate δ(v, u) receives a finite value because a vertex
u ∈ S(τ)(v)\S(τ−1)(v) enters the hub set of v. Let χ(τ)(v) be the number of all these changes
to δ(v, ·) corresponding to v at time τ . In other words, for a fixed vertex v ∈ V , the value of
χ(τ)(v) is equal to the number of vertices u whose corresponding value of δ(v, u) changes
due to the last edge deletion. Moreover, let X(v) =

∑
τ χ(τ)(v) be the total number of such

changes to δ(v, ·) corresponding to v over the course of the algorithm.
In the following lemma, we present a reduction from a decremental approximate hub-

labeling scheme to a fully dynamic distance oracle.

▶ Lemma 3. Consider a decremental hub-labeling scheme A of stretch α with total update
time TA(n, m, W ) and query time QA(n, m, W ), with the following properties:
1. ∀v ∈ V and ∀τ : |S(τ)(v)| ≤ γ. In other words, the size of the hub set of any vertex is

bounded by γ at any moment of the algorithm.
2. ∀v ∈ V : X(v) ≤ ζ. In other words, for every vertex v ∈ V the total number of changes

to δ(v, ·) is at most ζ over the course of the algorithm. Moreover the algorithm detects
and reports these changes explicitly.

Then given A and a fully dynamic distance oracle B of stretch β with amortized update time
tB(n, m, W ) and query time QB(n, m, W ), for any integer ℓ ≥ 1, there is a fully dynamic
distance oracle C of stretch αβ with amortized update time tC(n, m, W ) = TA(n, m, W )/ℓ +
tB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ) · (2 + 4µ) and query time QC(n, m, W ) = QA(n, m, W ) +
γ2 · QB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ), where µ = γ + ζ.

Proof. We organize the proof in three parts. The first part gives the reduction from A
and B to C, and the second and third part concern the correctness and the running times
respectively.

Reduction. The fully dynamic distance oracle C proceeds in phases of length ℓ. For each
phase, we denote by τ the number of updates processed by A during the phase. At the
beginning of the first phase (which is also the beginning of the algorithm), C initializes the
fully dynamic distance oracle B on the initially empty graph G consisting of 2ℓ vertices4, and
sets an update counter to 0. Whenever an update to G occurs in the first phase, the update
is directly processed by B.5 As soon as the number of updates is more than ℓ, the second
phase is started. We define several sets and the graph H that the fully dynamic distance
oracle C maintains during each subsequent phase:

Let F be the set of edges present in G at the beginning of the phase, E be the current
set of edges in G, and D be the set of edges deleted from G during the phase.
Let I = E\(F \D) be the set of edges inserted to G since the beginning of the phase without
subsequently having been deleted during the phase, and U = {v ∈ V | ∃e ∈ I : v ∈ e} be
the set of endpoints of edges in I.

4 This minor technical detail makes sure that B does not have to deal with vertex insertions.
5 The special treatment of the first ℓ updates is just a technical necessity for a rigorous amortization

argument in the running time analysis.
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50:8 Bootstrapping Dynamic Distance Oracles

Let H be the auxiliary graph that consists of all edges (u, v) ∈ I, together with their hub
sets S(τ)(u) and S(τ)(v) after τ edge deletions have been processed by A. Specifically,
V (H) = {v ∈ V | v ∈ U or (u ∈ U and v ∈ S(τ)(u))} and E(H) = {(u, v) | (u, v) ∈
I or (v ∈ U and u ∈ S(τ)(v))}. Note that at any fixed moment, the size of V (H) is at
most ℓ · (2 + 2γ) and the size of E(H) is at most ℓ · (1 + 2γ).

At the beginning of each subsequent phase, C stores the sets F, E, D, I, U , and the
auxiliary graph H, and sets an update counter to 0. Furthermore, C initializes the decremental
approximate hub-labeling scheme A on the current graph G, and the fully dynamic distance
oracle B on H which is initially an empty “sketch” graph on ℓ · (2 + 2µ) vertices. The graph
H can be thought of as responsible for maintaining estimates for paths that use inserted
edges.

Whenever an update to G occurs, C first checks via the update counter whether the
number of updates since the beginning of the phase is more than ℓ. If this is the case, then
C starts a new phase. Otherwise, after an update the fully dynamic distance oracle C does
the following. On the insertion of an edge (u, v) to G, C adds (u, v) to I, adds u and v to U ,
and adds the edge (u, v) to H, together with the edges (u, p) for every p ∈ S(τ)(u) and (v, p)
for every p ∈ S(τ)(v). Any time an edge (u, v) is added to H, its weight is set to:

wH(u, v) = min(wG(u, v), δ(u, v), δ(v, u)).

Whenever the first edge incident to some vertex v is added to H, the algorithm finds a “fresh”
vertex (of degree 0) in H and henceforth identifies it as v. This is always possible, since
by the two properties of A, the number of such vertices in a phase of length ℓ is at most
ℓ · (2 + 2µ).

On the deletion of an edge (u, v) ∈ E from G, there are two cases to consider.
1. If the edge (u, v) was not present at the beginning of the current phase, or has been

deleted and re-inserted (i.e., (u, v) ∈ I), then C removes (u, v) from I, adds (u, v) to
D, and updates the set U and the graph H accordingly. In particular, if u ∈ U and
v ∈ S(τ)(u), or v ∈ U and u ∈ S(τ)(v), C updates the weight of the edge (u, v) in H to
wH(u, v) = min(δ(u, v), δ(v, u)) (as wG(u, v) = ∞ after the deletion), otherwise C removes
(u, v) from H. Also, for all the vertices v that left U and all the edges (v, p) ∈ E(H) such
that p ∈ S(τ)(v), if p ∈ U and v ∈ S(τ)(p), then C updates the weight of (v, p) in H to
wH(v, p) = δ(p, v) (as v /∈ U after the deletion), and otherwise C removes (v, p) from H.

2. If the edge (u, v) was present at the beginning of the current phase and has not been
deleted yet (i.e., (u, v) ∈ F \ D), then C adds (u, v) to D and the deletion is processed
by A. Whenever A changes some distance estimates δ(v, ·) that correspond to a vertex
v ∈ U (i.e, v is a vertex of H and an endpoint of an edge in I) and its hub set, C updates
the graph H accordingly. In particular, there are three possible scenarios at time τ

of A.6 (1) Whenever the value of δ(v, u) changes for a vertex u ∈ S(τ−1)(v) ∩ S(τ)(v)
that remains inside the hub set of v, C updates the weight of the edge (v, u) in H to
wH(v, u) = min(wG(v, u), δ(v, u), δ(u, v)). (2) Whenever a vertex u ∈ S(τ−1)(v) \ S(τ)(v)
leaves the hub set of v, then if (v, u) ∈ I or u ∈ U and v ∈ S(τ)(u), C updates the weight
of the edge (v, u) in H to wH(v, u) = min(wG(v, u), δ(u, v)) (as δ(v, u) = ∞ after the
deletion), otherwise C removes (v, u) from H. (3) Whenever a vertex u ∈ S(τ)(v)\S(τ−1)(v)
enters the hub set of v, C adds the edge (v, u) to H (unless it exists already) and updates
its weight to wH(v, u) = min(wG(v, u), δ(v, u), δ(u, v)). Note that the number of these

6 Note that τ is the number of updates processed only by A during the phase.
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s tu1 v1 u2 v2

u1 v1

p0 . . .
p1. . .

u2 v2

p2. . . . . .. . . . . .

s t

Figure 1 Illustration of an s-t shortest path. The brown thick edges have been inserted since
the beginning of the phase. The corresponding subgraph of the auxiliary graph H is also depicted
(note that the vertices s and t are not necessarily part of H). The blue thick edges are the ones that
participate in the correctness analysis of the query. Dashed edges depict edges inside the hub sets.

changes at time τ of A is equal to χ(τ)(v) for a vertex v ∈ V . Observe also that based on
the two properties of A, the number of vertices that participate in H during a phase of
length ℓ is at most ℓ · (2 + 2µ). Thus we can always find a “fresh” vertex (of degree 0)
in H.

Finally, all the changes performed to H are processed by the fully dynamic distance oracle
B running on H, where edge weight changes are simulated by a deletion followed by a
re-insertion.

Now a query for the approximate distance between any pair of vertices s and t is answered
by returning:

δC(s, t) = min
(

min
p∈S(τ)(s)∩V (H),q∈S(τ)(t)∩V (H)

(δ(s, p) + δB(p, q) + δ(t, q)) , δA(s, t)
)

.

Whenever S(τ)(s) ∩ V (H) = ∅ or S(τ)(t) ∩ V (H) = ∅, we let the inner term min(·) to be ∞.

Correctness. To prove the correctness of this algorithm, we need to show that distG(s, t) ≤
δC(s, t) ≤ αβ · distG(s, t). The lower bound distG(s, t) ≤ δC(s, t) is immediate, since for
each approximate distance returned by C, the corresponding path uses edges from G or
distance estimates from the decremental approximate hub-labeling scheme which are never
an underestimation of the real distance. To prove the upper bound, consider a shortest
path π from s to t in G, and let GA be the graph maintained by A (i.e., the edge set
of GA is E(GA) = F \ D). If the path π contains only edges from the set F \ D, then
δC(s, t) ≤ δA(s, t) ≤ α · distGA(s, t) = α · distG(s, t), and the claim follows. Otherwise, let
(u1, v1), . . . , (uj , vj) ∈ I denote the edges of π that have been inserted since the beginning of
the current phase in order of appearance on π. Furthermore, let p0 ∈ S(τ)(s) ∩ S(τ)(u1) be
the vertex that “certifies” δA(s, u1), that is, δA(s, u1) = δ(s, p0) + δ(u1, p0). Similarly, let
pj ∈ S(τ)(vj) ∩ S(τ)(t) be the vertex that “certifies” δA(vj , t), and for every 1 ≤ i ≤ j − 1,
let pi ∈ S(τ)(vi) ∩ S(τ)(ui+1) be the vertex that “certifies” δA(vi, ui+1) (see Figure 1). These
vertices must exist by the definition of an approximate hub-labeling scheme. Furthermore,
by the construction of H, the edges (u1, p0) and (vj , pj) have been inserted to H, because
u1 ∈ U and p0 ∈ S(τ)(u1), and vj ∈ U and pj ∈ S(τ)(vj) respectively. Hence, the vertices p0
and pj belong to V (H), and the sum δ(s, p0) + δB(p0, pj) + δ(t, pj) participates in the inner
term min(·). Therefore to analyze the claimed upper-bound on the stretch, we proceed as
follows:
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δC(s, t) ≤ δ(s, p0) + δB(p0, pj) + δ(t, pj)
(stretch guarantee of B)

≤ δ(s, p0) + β · distH(p0, pj) + δ(t, pj)
(triangle inequality)

≤ δ(s, p0) + β · distH(p0, u1)
+

∑
1≤i≤j−1

β · (distH(ui, vi) + distH(vi, pi) + distH(pi, ui+1))

+ β · (distH(uj , vj) + distH(vj , pj)) + δ(t, pj)
(distH ≤ wH )

≤ δ(s, p0) + β · wH(p0, u1) +
∑

1≤i≤j−1
β · (wH(ui, vi) + wH(vi, pi) + wH(pi, ui+1))

+ β · (wH(uj , vj) + wH(vj , pj)) + δ(t, pj)

By the construction of H, the edges (ui, vi) of π and the corresponding edges (pi−1, ui) and
(vi, pi) have been inserted to H7, because (ui, vi) ∈ I, ui ∈ U and pi−1 ∈ S(τ)(ui), and
vi ∈ U and pi ∈ S(τ)(vi) respectively. Hence by the definition of wH(·), we can replace
wH(ui, vi) with wG(ui, vi), wH(pi−1, ui) with δ(ui, pi−1) and wH(vi, pi) with δ(vi, pi). As a
result, we have that (where α ≥ 1 and β ≥ 1):

δC(s, t) ≤ δ(s, p0) + β · δ(u1, p0) +
∑

1≤i≤j−1
β · (wG(ui, vi) + δ(vi, pi) + δ(ui+1, pi))

+ β · (wG(uj , vj) + δ(vj , pj)) + δ(t, pj)
(π is a shortest path)

= δ(s, p0) + β · δ(u1, p0) +
∑

1≤i≤j−1
β · (distG(ui, vi) + δ(vi, pi) + δ(ui+1, pi))

+ β · (distG(uj , vj) + δ(vj , pj)) + δ(t, pj)

≤ β · (δ(s, p0) + δ(u1, p0)) +
∑

1≤i≤j−1
β · (distG(ui, vi) + δ(vi, pi) + δ(ui+1, pi))

+ β · (distG(uj , vj) + δ(vj , pj) + δ(t, pj))
(definition of approximate hub-labeling scheme)

= β · δA(s, u1) +
∑

1≤i≤j−1
β · (distG(ui, vi) + δA(vi, ui+1))

+ β · (distG(uj , vj) + δA(vj , t))

From the stretch guarantee of A, it holds that δA(u, v) ≤ α · dGA(u, v) for any pair of vertices
u, v ∈ V . For any two vertices vi, ui+1 from the previous sum, the subpath of π from vi to
ui+1 uses edges only from the set F \ D, implying that dGA(vi, ui+1) = dG(vi, ui+1). The
same argument holds for the pairs s, u1 and vj , t, thus it follows that:

δC(s, t) ≤ αβ · distG(s, u1) +
∑

1≤i≤j−1
β · (distG(ui, vi) + α · distG(vi, ui+1))

+ β · (distG(uj , vj) + α · distG(vj , t))

7 If vi = ui+1 then pi = vi, and so wH(vi, pi) = wH(pi, ui+1) = 0.
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≤ αβ · distG(s, u1) +
∑

1≤i≤j−1
αβ · (distG(ui, vi) + distG(vi, ui+1))

+ αβ · (distG(uj , vj) + distG(vj , t)) = αβ · distG(s, t).

Update and Query time. To analyze the running times, consider a fixed phase of length
ℓ. During the first phase, the query time is QB(2ℓ, ℓ, W ) and the amortized update is
tB(2ℓ, ℓ, W ), as the initially empty graph G can have at most 2ℓ vertices and ℓ edges after ℓ

updates. For the subsequent phases we proceed as follows. By the construction of H and the
two properties of A, the graph H has at most min(ℓ(2 + 2µ), n) vertices and ℓ(1 + 2µ) edges
during the phase, and the maximum edge weight in H is nW (the maximum distance in G).8
Moreover by the first property we have that |S(τ)(s) ∩ V (H)| ≤ γ and |S(τ)(t) ∩ V (H)| ≤ γ.
Therefore the query time is equal to:

QC(n, m, W ) = QA(n, m, W ) + γ2 · QB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ).

Let us now analyze the amortized update time. Since the total update time of A is
TA(n, m, W ) and the amortized update time of B is tB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW )
during the phase, it remains to bound the total number of updates to H per phase. Whenever
an edge e = (u, v) is inserted to G, we add to H the two endpoints u and v together with
their hub sets S(τ)(u) and S(τ)(v), and at most 1 + 2γ updates can occur to H. Until (u, v)
is deleted from H, every update to H between u, v and their hub sets modifies an entry of
the distance estimate δ(u, ·) or δ(v, ·). By the definition of χ(τ)(·), the number of entries
of the distance estimates δ(u, ·) and δ(v, ·) that are modified at time τ of A is equal to
χ(τ)(u) + χ(τ)(v). Hence until (u, v) is deleted from H, the total number of updates to H

between u, v and their hub sets is equal to 2 · (
∑

τ χ(τ)(u)+
∑

τ χ(τ)(v)) = 2 · (X(u)+X(v)),9
which is at most 4ζ based on the second property of Lemma 3. Moreover, when the edge e

is deleted from G, at most 1 + 2γ updates can occur to H. Therefore, the total number of
updates to H that correspond to an inserted edge in G, is at most 2 + 4γ + 4ζ = 2 + 4µ per
phase. Since there can be at most ℓ inserted edges per phase, the total number of updates
to H during a phase is at most ℓ(2 + 4µ). This implies that the total time for processing
all updates during a phase is TA(n, m, W ) + tB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ) · ℓ(2 + 4µ),
which (when amortized over the ℓ updates of the previous phase) amounts to an amortized
update time of:

TC(n, m, W ) = TA(n, m, W )
ℓ

+ tB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ) · (2 + 4µ). ◀

3.2 Decremental approximate hub-labeling scheme
In this section, we argue that an existing decremental distance oracle from [35] also provides
an approximate hub-labeling scheme whose properties make the reduction of Lemma 3 quite
efficient. This decremental algorithm is based on the well-known static Thorup-Zwick (TZ)
distance oracle [44].

Thorup-Zwick distance oracle. Given a graph G = (V, E), the construction starts by
defining a non-increasing sequence of sets V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅, where for each
1 ≤ i < k, the set Ai is obtained by subsampling each element of Ai−1 independently with
probability n−1/k.

8 We can assume that δ(·, ·) is upper bounded by nW whenever it has a finite value, since the maximum
distance in G is at most nW . Likewise, we can use the value nW + 1 instead of ∞.

9 We multiply by 2 because edge weight changes are simulated by a deletion followed by a re-insertion.
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For every vertex v ∈ V and 1 ≤ i < k, let δ(v, Ai) = minu∈Ai distG(v, u) be the minimum
distance from v to a vertex in Ai. As Ak = ∅, we let δ(v, Ak) = ∞. Moreover, let pi(v) ∈ Ai

be a vertex in Ai closest to v, that is, distG(v, pi(v)) = δ(v, Ai). Then, the bunch B(v) ⊆ V

of each v ∈ V is defined as:

B(v) =
k−1⋃
i=0

Bi(v) , where Bi(v) = {u ∈ Ai \ Ai+1 : distG(v, u) < distG(v, Ai+1)}.

The cluster of a vertex u ∈ Ai \ Ai+1 is defined as C(u) = {v ∈ V : distG(v, u) <

distG(v, Ai+1)}. Observe that u ∈ B(v) if and only if v ∈ C(u), for any u, v ∈ V .
As noted in [44], this construction is a hub-labeling scheme of stretch 2k−1 (see Definition

2), where the hub set S(v) of a vertex v ∈ V is S(v) = B(v) ∪ (
⋃k−1

i=0 {pi(v)}). In other words,
bunches and pivots of all the k levels form a hub set for v. For obtaining the distance estimates
δ(v, ·) for all v ∈ V as in Definition 2, we need the associated distances δ(v, u) = distG(v, u)
for all u ∈ S(v). It can be shown that with a simple modification of the stretch argument
(e.g. see [29]), it is enough to only use the bunches as the hub sets, and explicit access to
pivots is not necessary. Hence for simplifying the presentation in this section we assume that
the hub sets are equivalent with the bunches. As shown in [44], the size of the bunch of any
vertex is w.h.p. bounded by Õ(n1/k). Recall that the maximum hub set size is one of the
parameters governing the efficiency of our reduction.

In the next lemma we present the decremental algorithm of [35] which has good properties
for the reduction of Lemma 3. For a more detailed explanation of the lemma see the full
version [26].

▶ Lemma 4 (Implicit in [35]). Given a weighted undirected graph G = (V, E) and k > 1, 0 <

ϵ < 1, there is a decremental hub-labeling scheme of stretch (2k − 1)(1 + ϵ) and w.h.p. the
total update time is Õ(mn1/k) · O(log nW/ϵ)2k+1. Moreover, w.h.p. we have the following
two properties:
1. ∀v ∈ V and ∀τ : |S(τ)(v)| ≤ Õ(n1/k). In other words, the size of the bunch of any vertex

is bounded by Õ(n1/k) at any moment of the algorithm.
2. ∀v ∈ V : X(v) ≤ Õ(n1/k) · O(log nW/ϵ)2k+1. In other words, for every vertex v ∈ V the

total number of changes to δ(v, ·) is at most Õ(n1/k) · O(log nW/ϵ)2k+1 over the course
of the algorithm. Moreover the algorithm detects and reports these changes explicitly.

3.3 Putting it together
In this section we explain how to obtain our final fully dynamic distance oracle by using the
decremental algorithm of Section 3.2 in our reduction of Lemma 3.

▶ Theorem 5. For any integer parameters i ≥ 0, k > 1, there is a fully dynamic distance
oracle Bi with stretch (4k)i and w.h.p. the amortized update time is tBi(n, m, W ) = Õ(1)ki ·
m3/(3i+1) · n4i/k and the query time QBi

(n, m, W ) = Õ(1)i · n2i/k.

Proof. The proof is by induction on the parameter i. For the base case i = 0, let B0 be
the trivial fully dynamic distance oracle that achieves stretch 1, amortized update time
tB0(n, m, W ) = O(n3), and query time QB0(n, m, W ) = O(1), by recomputing all-pairs
shortest paths from scratch after each update (e.g., with the Floyd–Warshall algorithm).

For the induction step, let A denote the decremental approximate hub-labeling scheme
from Lemma 4 with stretch α = 4k and w.h.p. total update time TA(n, m, W ) = Õ(1)k ·mn1/k

and query time QA(n, m, W ) = Õ(1) · n1/k, where ϵ has been replaced with any value strictly
smaller than 1

2 . By inductive hypothesis, we have that Bi (with i ≥ 0) is a fully dynamic
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distance oracle of stretch βi = (4k)i with amortized update time Õ(1)ki · m3/(3i+1) · n4i/k

and query time Õ(1)i · n2i/k. Based on Lemma 4, w.h.p. the decremental approximate
hub-labeling scheme A satisfies the properties of Lemma 3 with γ = Õ(1) · n1/k and
ζ = Õ(1)k · n1/k. By applying then Lemma 3 to A and Bi with ℓ = m(3i+1)/(3i+4), the
resulting fully dynamic distance oracle Bi+1 has stretch (4k)i+1, and amortized update time:
tBi+1(n, m, W ) = TA(n, m, W )/ℓ + tBi(n, ℓ(1 + 2µ), nW ) · (2 + 4µ). The first term is equal
to: Õ(1)k · mn1/k/ℓ = Õ(1)k · m3/(3i+4) · n1/k = Õ(1)k · m3/(3(i+1)+1) · n1/k, and the second
term is equal to (where µ = Õ(1)k · n1/k):

tBi
(n, ℓ(1 + 2µ), nW ) · (2 + 4µ) = Õ(1)ki · (ℓ · Õ(1)k · n1/k)3/(3i+1) · n4i/k · Õ(1)k · n1/k

(Replace ℓ with m
(3i+1)/(3i+4))

= Õ(1)ki · (m(3i+1)/(3i+4) · Õ(1)k · n1/k)3/(3i+1) · n4i/k · Õ(1)k · n1/k

(Replace n
3/(3i+1)k with n

3/k and Õ(1)3k/(3i+1) with Õ(1)3k)

= Õ(1)ki · m3/(3i+4) · Õ(1)3k · n3/k · n4i/k · Õ(1)k · n1/k

= Õ(1)ki+k · m3/(3i+4) · n(4i+4)/k = Õ(1)k(i+1) · m3/(3(i+1)+1) · n4(i+1)/k.

Therefore the amortized update time of Bi+1 is:

tBi+1(n, m, W ) = Õ(1)k(i+1) · m3/(3(i+1)+1) · n4(i+1)/k.

Finally the query time of Bi+1 is (where γ2 = Õ(1)2 · n2/k):

QBi+1(n, m, W ) = QA(n, m, W ) + γ2 · QBi(n, ℓ(1 + 2µ), nW )

= Õ(1) · n1/k + Õ(1)2 · n2/k · Õ(1)i · n2i/k = Õ(1)i+1 · n2(i+1)/k.

and so the distance oracle Bi+1 has the desired guarantees. ◀

Proof of Theorem 1. By Theorem 5, for any i ≥ 1, k > 1, there is a fully dynamic distance
oracle Bi of stretch (4k)i that w.h.p. achieves Õ(1)ki · m1/i · n4i/k amortized update time and
Õ(1)i · n2i/k query time. Since m ≤ n2, by setting i = 4

ρ and k = 64
ρ2 the claim follows. ◀

In Theorem 5, we can set i to be a constant and set k = O(log log n)1/i to obtain another
tradeoff, which is summarized in the following corollary.

▶ Corollary 6. Given a weighted undirected graph G = (V, E), there is a fully dynamic
distance oracle with stretch O(log log n) that w.h.p. achieves no(1) query time and Õ(nρ)
amortized update time, for an arbitrarily small constant ρ.

Finally note that we can also obtain similar tradeoffs as [25] where all three of stretch,
amortized update time and query time are no(1), by setting k = O(log log n)2 and i =
O(log log n) in Theorem 5.
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