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Simple Summary: Smart farming is a concept of agricultural innovation that combines technological,
social, economic and institutional changes. It employs novel practices of technologies and farm
management at various levels (specifically with a focus on the system perspective) and scales of
agricultural production, helping the industry meet the challenges stemming from immense food
production demands, environmental impact mitigation and reductions in the workforce. Precision
Livestock Farming (PLF) systems will help the industry meet consumer expectations for more
environmentally and welfare-friendly production. However, the overwhelming majority of these new
technologies originate from outside the farm sector. The adoption of new technologies is affected by
the development, dissemination and application of new methodologies, technologies and regulations
at the farm level, as well as quantified business models. Subsequently, the utilization of PLF in the
pig and especially the poultry sectors should be advocated (the latter due to the foreseen increase
in meat production). Therefore, more significant research efforts than those that currently exist are
mainly required in the poultry industry. The investigation of farmers’ attitudes and concerns about
the acceptance of technological solutions in the livestock sector should be integrally incorporated
into any technological development.

Abstract: More efficient livestock production systems are necessary, considering that only 41% of
global meat demand will be met by 2050. Moreover, the COVID-19 pandemic crisis has clearly
illustrated the necessity of building sustainable and stable agri-food systems. Precision Livestock
Farming (PLF) offers the continuous capacity of agriculture to contribute to overall human and
animal welfare by providing sufficient goods and services through the application of technical
innovations like digitalization. However, adopting new technologies is a challenging issue for
farmers, extension services, agri-business and policymakers. We present a review of operational
concepts and technological solutions in the pig and poultry sectors, as reflected in 41 and 16 European
projects from the last decade, respectively. The European trend of increasing broiler-meat production,
which is soon to outpace pork, stresses the need for more outstanding research efforts in the poultry
industry. We further present a review of farmers’ attitudes and obstacles to the acceptance of
technological solutions in the pig and poultry sectors using examples and lessons learned from recent
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European projects. Despite the low resonance at the research level, the investigation of farmers’
attitudes and concerns regarding the acceptance of technological solutions in the livestock sector
should be incorporated into any technological development.

Keywords: PLF; ICT; livestock; technology-adoption; farmers’ engagement; farmers’ adoption;
animal welfare; digitalization

1. Introduction

The challenge of food production in the 21st century may materialize, as the world’s
population is expected to increase to 9.4–10.1 billion people by 2050 [1], implying an increase
of at least 35%. To meet the demands for increased food production, a significant increase
in the number of livestock is expected, especially in the BRIC countries (Brazil, Russia,
India, and China) [2]. Moreover, the livestock sector plays a significant economic and social
role in the European Union (EU), which accounts for 4.1 million livestock in farms and 36%
of the total agricultural activity [3]. However, according to a Deloitte© discussion paper [4],
if global warming is to be kept within 2 ◦C above pre-industrial levels, which requires the
emissions associated with the production of meat to be decreased to 3.2 Gt by 2050, only
41% of global meat demand can be met by this date. If global warming is not restricted,
heat stress will have increasingly adverse effects on meat and milk production, particularly
in developing countries exposed to high temperatures [5,6].

Anthropologically induced environmental changes place constant pressure on animal
production due to new and re-emerging pathogens resulting from the natural evolution of
microorganisms. This could also potentially reduce the ability of farming communities to
develop new crops in already deteriorated ecosystems. Likewise, growing urbanization
reduces the labor force availability in areas typically involved in food production, increases
costs and reduces the sector’s productive capacity [7]. Moreover, the recent COVID-19
pandemic crisis has clearly illustrated the emerging necessity of building a sustainable
and stable agriculture that can sustain its resilience and secure reliable food supplies both
regionally and globally amidst a global critical situation.

Agriculture is increasingly becoming knowledge-intensive, digitalized and influenced
by technological developments at the supplier and consumer levels [8]. The overwhelming
majority of these new technologies originate from outside the farm sector. The adoption
of new technologies is affected by the development, dissemination and application of new
methodologies, technologies and regulations at the farm level, as well as quantified business
models, all of which have implications for farm capital and other inputs. Additionally, farmers’
collective knowledge derives from the knowledge of the individual farmers or stock people,
which in turn reflects their training, acquired advice and information. All of these aspects
make the adoption of technologies for sustainable farming systems a challenging and dynamic
issue for farmers, extension services, agri-business and policymakers. Considering the wide
range of objectives related to new technology adaption in the context of livestock farming, it is
necessary for farmers, scientists and companies to work together collaboratively.

Smart farming is a concept in agricultural innovation that combines technological,
social, economic and institutional changes [9]. It employs novel practices of farm manage-
ment at various levels (specifically focused on the system level) and scales of agricultural
production, helping the industry to meet the challenges stemming from the growing food
production demands and reduction in the workforce [10]. The approach of Precision Live-
stock Farming (PLF) for a sustainable farming system refers to the continuous capacity of
agriculture to contribute to overall human and animal welfare by using available informa-
tion more effectively on farms. In turn, the better utilization of information enables farmers
to provide sufficient goods and services in ways that are economically efficient and socially
and environmentally responsible [11,12].
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PLF uses smart farming technology, which includes the utilization of various types of
sensors to collect data, which is thereafter usually transferred collectively by communication
networks to servers using Information and Communications Technology (ICT). In this Internet
of Things (IoT), by generally accepted definition, large amounts of data from interconnected
devices are recorded and analyzed by management information systems, data analysis solu-
tions [13,14] and data analytics [15] domains. The use of the data provided by smart farming
potentially helps boost productivity and minimize waste by allowing the necessary actions to
be carried out at the right time and in the right place [16]. An FAO report [17] highlighted the
importance of ICT as a tool to help meet future food and feed requirements.

Digital technologies have been developed to continuously track real-time production
performance and environmental conditions in various livestock facilities [18]. In this sense,
they facilitate an improved response to humans’ and animals’ needs by (a) maximizing pro-
duction efficiency, (b) increasing product quality, (c) improving animal health and welfare,
(d) reducing human occupational health and safety risk and (e) mitigating emissions from
livestock. Policymakers can also benefit from increased information sharing, which allows
them to gather a more complete overview of the situation at the national and regional
levels. An additional major benefit connected with ICT use lies in the potential to reach all
the layers of society. Moreover, recent technological developments in areas relevant to IoT
facilitate an easier adoption of smart farming and its use by farmers [19]. As farmers and
their attending veterinarians, nutritionists and advisors become increasingly aware of the
benefits of ICT, it will hopefully motivate them to upload data to central repositories on,
for example, disease incidence, the number of live-born piglets in individual sows, feed
intake and weather variables. The collection of animal-based data is advancing rapidly,
with behavior data alerting farmers to health and productivity problems, as well as the
physiological status of animals, such as when they are in estrus. Although the fundamental
value of such data has been known for several decades (e.g., [20]), the miniaturization of
recording systems has only recently made widespread use possible. For example, early
versions of pedometers for dairy cows uploaded data to a computer attached to the cow’s
back [21]. Still, it took several decades before pedometers were small enough to be feasible
for mainstream use in dairy herds.

Processed data may collectively benefit animal production as patterns emerge or
individually as perturbations in the individual animal or group of animals are detected in
response to environmental variables. Furthermore, some of the world’s largest agricultural
producers are promoting the use of IoT in smart farming by creating incentive programs
and public policies to fund research and training [22]. Several recent reviews have been
published on IoT solutions for smart agriculture, suggesting that this research field is
constantly receiving new contributions and improvements [23]. Technologies used for
communication and data collection solutions are presented in [24], as well as several
cloud-based platforms used for IoT solutions for smart farming. An IoT architecture with
three layers (perception, network and application) was enforced to analyze the application
of sensor and actuator devices and communication technologies within several farming
domains, such as agriculture, food consumption and livestock farming [25].

On the other hand, it was suggested that European farmers lack the knowledge to
understand the benefits of ICT-based PLF [26]. The acceptance of (new) IT technologies,
such as big data, computer vision, artificial intelligence, blockchain and fuzzy logic in the
smart agriculture field were evaluated in [27]. A study of the consumer perceptions of
PLF technologies showed that consumers expect that PLF technologies will enhance the
health and welfare of farm animals while generating environmental improvements and
increasing transparency in livestock farming [28]. The researchers, however, also expressed
the fear that PLF technologies will lead to more industrialization in livestock farming,
that PLF technologies and data are vulnerable to misuse and cyber-crime and that PLF
information may be inadequately communicated to consumers. Public opposition to the
industrialization of livestock production is encouraging de-intensification by farmers, either
to meet government standards or to capture higher product prices. However, less intensive
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livestock farming utilizes more land, a commodity in short supply with a growing world
population and competition from carbon farming to offset increased emissions. Recently, a
book published by Wageningen Academic Press detailed the on-farm experiences (both
positive and negative) of 90 authors from 16 different countries: all users, developers and
academics working in the PLF field [29].

To ensure that agriculture supplies secure and nutritious food while minimizing
environmental threats, farmers need specific economic incentives, help with incorporating
innovation into their enterprise and knowledge exchange to encourage the use of advanced
and smart technologies. Coherent agricultural, environmental, trade and R&D policies
must be presented by the government. It is also vital to base policy decisions on robust, well-
established scientific criteria so that the decisions are justified and can be explained to all
stakeholders. The EU has been fostering PLF through funding and investment since the FP7
program. The EU CORDIS service (cordis.europa.eu, accessed on 31 May 2023) provides
details on 77 forefront projects dealing with animal production systems and animal health,
which have received an EU contribution of € 508 million under Horizon 2020 and Horizon
Europe programs [3,30]. In light of the ongoing significant European investments in animal
research and trends in the EU’s food chain [31], we recognize the necessity of a state-of-art
review describing the latest technological developments (last decade) in the poultry and pig
sectors, all in context and based on the actual funded and operative European projects as
published in the CORDIS service. Previous studies [12] indicated that farmers initially have
concerns about the usefulness of PLF tools and typically do not fully exploit them. However,
this can positively change when implementing extension/education processes [32]. This
literature review aims to identify how digital technologies are implemented in European
livestock farms by (i) presenting a review of the state-of-the-art adoption in (1) pig and
(2) poultry farms and (ii) reviewing farmers’ attitude toward and concerns surrounding the
acceptance of PLF technologies, based mainly on past EU projects.

2. Technologies in Livestock Farming

Generally, sensors such as thermal imagery, microphones, GPS and others are used
in PLF to collect real-time data [19]. Due to the significant amount of raw data collected,
algorithms are often applied to aid analysis. The data can either be directly processed
or immediately relayed to the farmer, or it can be transferred to the server of a service
provider company where it is analyzed, and the feedback is sent to the farmer. ICT can
promote learning, which in turn can facilitate technology adoption among farmers, and
it has the potential to revolutionize early warning systems through better quality data
and data analysis. However, the information relayed by ICT should be properly targeted
and relevant if it is to affect farmers’ production decisions. The evidence [33,34] suggests
that content quality and relevance are crucial. Building up human capacity, as well as the
infrastructure needed to facilitate better connectivity, is also critical. In this way, the use
of contact time between humans and livestock can be more productive, but it should aid
good stockpersonship rather than being a replacement.

The manner by which information is delivered is also a crucial determinant of effec-
tiveness. ICT encompasses many different technologies, from computers and the Internet
to radio and television to mobile phones. Their impact varies widely depending on which
specific technology is used but also on farmers’ level of technological literacy. A growing
body of evidence suggests that in many circumstances, mobile phones can increase access
to both information and capacity-building opportunities for rural populations in devel-
oping countries [35]. Farmers can get access to timely and high-quality information on
products and inputs, as well as on environmental and market conditions. Short message
services (SMS), voice messages, short video trainings, audio messages, social media inter-
ventions and virtual extension platforms that can improve peer networks (through online
platforms/websites) can effectively enable farmer-to-farmer and farmer-to-experts infor-
mation sharing. Audio- or voice-based question-and-answer services may overcome the
limitations of text-based platforms. SMS messages can be effective for sharing simple price
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or weather information, but to facilitate and revolutionize learning and make knowledge
widely accessible, especially in the context of adapting agriculture to climate change, other
methods and modes will be necessary.

Within the framework of the AutoPlayPig project [36], funded by the EU’s Horizon
2020 program under the Marie Skłodowska-Curie grant, a comprehensive review was pub-
lished on information technologies (ITs) developed for welfare monitoring within the pig
production chain, evaluating the ITs developmental stage and how these ITs can be related
to the Welfare Quality® (WQ) assessment protocol [37]. Of the 101 publications included in
the systematic literature analysis, 49% used camera technology, 18% used microphones and
15% animal attached sensors, including accelerometers and radio frequency identification
(RFID) tags. The sensor technology used to measure environmental biomarkers included
thermometers, an Environmental Monitoring Kit, an anemometer, an air-speed transmitter
and a weather station. Most publications investigated feature variables on individual or
pen levels of behavioral animal biomarkers. Most publications investigated ITs for welfare
monitoring in growing pigs and lactating sows, whereas almost no publications investi-
gated pigs during transport or sows in the insemination unit. Nearly all (97%) publications
investigated welfare issues in real-time; however, only 23% properly validated their results.
An analogous systematic review was published on validated PLF technologies for pig
production in the context of animal welfare [38], within the framework of the ongoing EU
project ClearFarm [39], funded by the EU’s Horizon 2020. Eighty-three technologies with a
potential link to animal-based pig welfare assessment were found, based on 10 different
types of sensors (in descending order of frequency of use): camera, load-cells (with and
without RFID), accelerometer, microphone, thermal camera, photoelectric sensors, flow
meter, RFID and non-contact body-temperature sensors. Of these technologies, 39% was
used for fattening pigs, 33% for sows and 28% for piglets and weaned piglets. Monitored
indicators included activity and posture-related behavior, feeding and drinking behavior,
physical condition, health-related traits and other behaviors.

In a review of PLF in the poultry sector [40], as part of the completed EU-funded
ERA-NET project ANIHWA [41], a similar segmentation was demonstrated. Fifty-two
percent of the 264 reviewed publications described sensor technology, 42% described the
use of cameras and only 14% described the use of microphones. Animal health and welfare
constituted the most popular field of study (64%), followed by production (51%) and, by
a large margin from third place, sustainability (only 8%). Most measurements used to
evaluate animal health and welfare were behavior-based, with 44% of publications using
locomotory behavior, followed by bird sounds (21%). Out of the 264 reviewed publications,
a mere 4% described commercially available systems.

All of the data generated by the aforementioned sources need to be exploited to
validate and further develop useful algorithms; however, this requires the availability
of advanced infrastructure [42]. As such, big data generated from technological sources
require advanced analytics for effective exploitation. Advanced infrastructure is also
needed for the timely and efficient execution of these big-data-enabled algorithms prior to
delivery to the farmer. The recently completed EU project CYBELE [43], funded under the
Horizon 2020 Programme, aimed to introduce to all stakeholders along the agri-food value
chain an ambitious and holistic large-scale High-Performance Computing (HPC) platform,
offering services in data discovery, processing, combination and visualization and solving
computationally-intensive challenges requiring very high computing power and capable of
actually generating value and extracting insights from the data [42].

The future may enable ICT to bring even greater improvements in animal welfare
and productivity. A machine learning framework to predict the next month’s daily milk
yield, milk composition and milking frequency of cows in a robotic dairy farm has been
developed [44]. The self-selection of rewards can contribute to animals’ freedom of choice
using digital technology such as touchscreen monitors, which have already pioneered for
animals in zoos [45]. The selection of foods from a variety of possible plants on offer has
evolved, and allowing animals to choose resources via smart devices may improve their



Animals 2023, 13, 2868 6 of 24

welfare. In rodents, enrichment leads to greater exploratory behavior and better coping
with stressful conditions [46]. In pigeons, free choice is preferred to forced selection [47,48],
and comparable benefits may be demonstrable in poultry and other farm animals. Primates
have been most often demonstrated benefits from mastery over their environment [49], but
reliable testing for livestock is yet to be undertaken.

3. Scientific and Commercial Review of Operational Concepts and Technological
Solutions in the Pig Sector

Various areas of research are reflected in the European studies. Among them, several
areas are prominent.

Weighing optimization–The completed European project ALL-SMART-PIGS [50],
funded by Horizon FP7, was one of the first EU projects to showcase commercialization as
a main focus. The Weight-DetectTM application (PLF Agritech, Toowoomba, Australia) is
an innovative video image analysis system that determines the group average weight of
a pen of animals by a video observation system. It enables farmers to determine growth
and any weight-based indexes without physically weighing the animals [51]. Pig weigh-
ing optimization was selected for the evaluation and technical validation of a platform
in the aforementioned CYBELE project [43]. The tool is a convolutional neural network
that takes images and captures videos above the pens of fattening pigs throughout their
weight gain and encodes these images into a latent vector representation. Together with
additional relevant information, it estimates the mean ± SD live weight of the pigs in the
pen. Body weight recording was the subject of the ClearFarm project [39]. The automated
estimation of body weight was conducted by a depth camera (iDOL65, dol-sensors a/s,
Aarhus, Denmark) [52] placed above the individual feeding station or three-partitioned
feeder, which worked in combination with an RFID system installed in the feeding stations.
The performance of the depth camera and its underlying algorithm was satisfactory at
both installations; however, a lack of frequent maintenance, changes in pens’ uniformity
and dietary shifts may compromise image sampling and body weight estimation. Similar
results were reported by [53].

Play behavior–In general, the scientific literature supports the use of play behavior as
an indicator of good animal welfare and affective states that are valanced [38,54–56]. The
AutoPlayPig project [36] aimed at taking the first steps in developing a system for automatic
detection of play behavior in young pigs as an indicator for welfare assessment. This was
accomplished by developing an algorithm to extract heart rate (in beats per minute) from
raw video data of an anesthetized and resting pig wearing an electrocardiography (ECG)
monitoring system, thus combining ethology and computer science into one field of Com-
putational Ethology (CE) [57]. Play behavior frequency over the process of weaning piglets
was investigated in the ClearFarm project [39] by analyzing the effects of two weaning
methods [conventional weaning: two litters mixed in a weaner pen of different size and
design vs. litter staying in the farrowing pen after removing the sow] and two genetic hy-
brids [DanBred Yorkshire × Landrace vs. Topigs Norsvin TN70 Yorkshire × Landrace] [58].
The results showed that weaning stress in pigs may be reduced both by using a genetic
hybrid pig breed with higher birth and weaning weights and by keeping litters intact in a
familiar environment after weaning. A first attempt at the automatic detection of locomotor
play behavior in young pigs from video by classifying locomotor play from other solitary
behaviors, including standing, walking and running, is presented in [59]. Two methods
were tested: a method utilizing the Gaussian Mixture Model (GMM) for quantification of
movement combined with standard machine learning classifiers and a method utilizing
a deep learning classifier (CNN-LSTM) on the raw segmented video. The deep learning
classifier obtained higher Recall, Precision and Specificity values.

Tail biting–In intensive piggeries, tail biting is common and is considered an indicator
of negative welfare [59]. This issue is addressed in the on-going European project Code
Re-farm [60,61] using Duroc × (Landrace × Yorkshire) piglets in free-farrowing pens.
In conclusion, the study’s proposed method detected tail-biting behavior from video
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sequences of entire pig pens, claiming its CNN-LSTM model to be superior to the CNN-
CNN model. Moreover, the study found that implementing principal component analyses
on the extracted spatial feature vectors can increase the performance compared to using all
extracted features.

Virus detection–A novel and affordable field diagnostic device, based on advanced,
proven, bio-sensing technologies to tackle six important swine diseases has recently been
developed within the Horizon 2020 SWINOSTICS project [62]. The diagnostic device allows
threat assessment at the farm level, with the analytical quality of commercial laboratories.
The SWINOSTICS mobile device can simultaneously analyze four samples to detect six of
the most important swine viral pathogens: Porcine Parvovirus (PPV), Porcine Circovirus 2
(PCV−2), Classical Swine Fever Virus (CSFV), Porcine Respiratory and Reproductive Syn-
drome (PRRSV), Swine Influenza Virus (SIV) and African Swine Fever Virus (ASFV) [63–65].
According to [63], the SWINOSTICS device can be used at the farm level to assess the health
status of newly purchased animals and to identify PPV- and PCV−2-infected animals before
the onset of clinical disease, thus supporting evidence-based disease control strategies.

Additional research areas–Two smart farming applications ready for commercializa-
tion on European pig farms were evaluated within the ALL-SMART-PIGS project [50]: a
feed intake measurement device (Feed-DetectTM, PLF Agritech, Toowoomba, Australia)
and an environmental monitoring (Enviro-DetectTM, PLF Agritech, Toowoomba, Australia)
device [18,66,67]. In addition, a sound monitoring device (originally developed within the
Catholic University of Leuven) was also evaluated to facilitate early detection of respiratory
diseases on pig farms [51]. The sensor outputs of these technologies have been combined
in FarmManager management system (schauer-agrotronic.com, accessed on 30 June 2023).
Chain feed optimization was realized by using traceability in an online digital logbook,
including a SMS-based warning system for the farmer [50]. Technical and technological
issues and their adequate implemented solutions, the technological impact of installed PLF
and the business impact of their usage were all considered. Sustainable pig production was
another demonstrator selected in the CYBELE platform [43]. It utilized data from different
barn sensors to monitor individual pigs’ feeding and drinking behavior on a continuous
basis. Based on multivariate algorithms, problems at the individual and group levels
could be detected. The tool exhibited an improvement in the average health prediction
precision and sensitivity in warning systems for pigs compared to a previous model using
the same dataset. In Table 1, we present some of the technological advancements and
scientific research involved with PLF in the pig sector. As evident from Table 1, the volume
of research in the pig industry concludes 42 projects and 79 peer-reviewed articles.

Table 1. Examples of funding programmes and agencies using PLF technologies in the pig sector
developed within the last decade in the framework of European-funded projects. Studies without
clear acknowledgment of the funding source were not included.

Pig Sector

Funding Programs and Agencies Project Name Output [Reference]

German Federal Ministry of Food,
Agriculture and Consumer Protection

(BMELV) via the Federal Office for
Agriculture and Food (BLE) in the

framework of the innovation
support program

Automatic detection; body core
temperature; infrared thermography (IRT)

measurements [68]

Marie Curie BioBusiness
FP7–PE–PLEITN–2009–2014

Automatic detection; aggressive behavior,
by: activity index; multilayer feed forward
neural network [69]; camera recording [70]

FP7–Seventh Framework Programme ANIMA–CHANGE
Decision support tool; feeding strategies;

fattening pigs; lactating sows;
climate change [71]
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Table 1. Cont.

Pig Sector

Funding Programs and Agencies Project Name Output [Reference]

German Research Community (DFG) HE 6419/1–1 IRT; thorax; lung alterations [72]

FP7–Seventh Framework Programme ALL–SMART–PIGS

Weight-detect; video image analysis; group
average weight [45]; feed sensor; weight of

feed [45]; cough monitor; microphones;
sound talks online application [45]; camera
system; activity and the distribution of pigs;

occupation-density index; activity index
[45]; air quality sensor; airborne pollutants
[45]; farm traceability system; production

data; health monitoring; transportation [45]

FP7–Seventh Framework Programme EU–PLF
Pig cough identification; health monitoring

[73]; camera recording; animal shapes;
animals’ position and movement [74]

Flemish Government Agency for
Innovation by Science and Technology

(IWT), Belgium
Project number: 080530/LBO

Automatic monitoring; pig weights; image
analysis [75]; behavioral activity; human
labeling; automated video analysis [76];

automated scream detection;
sound recordings [77]

Douglas Bomford Trust, UK Microsoft Kinect sensor; normal walking
in pigs [78]

Partly funded by Danish Meat
Research Institute Monitoring Animal Wellbeing Optical flow (OF); monitor pig herd

movement; slaughterhouse [79,80]

The French Agency for Ecological
Transition-ADEME

Feeder prototype; precision feeding; RFID
ear tag [81]

The Swedish Research Council for
Environment, Agricultural Sciences and

Spatial Planning (FORMAS)
Image analysis; proportion of pigs [82]

Provincial Government of
Niederösterreich, Austria PIGwatch

Accelerometer; detection and classification
of: nest-building behavior; sows [83]; sow’s

postures [84]; camera monitoring;
farrowing process; sows [85]

Federal Office for Agriculture and Food,
Bonn, Germany (BMEL) under the

innovation support program
(FKZ 28154T0910)

Electronic Animal Identification
Systems Based on Ultra High Radio

Frequency Identification

Light barrier sensors; predicting and
detecting; parturition onset [86]; high radio
frequency (UHF-RFID); reader; antennas;
passive transponder ear tags; monitoring

visits; growing-finishing pigs;
liquid feeding [87]

Finnish Ministry of
Agriculture and Forestry SowMonitor Detection; farrowing; sows; wireless 3D

accelerometers; activity [88]

Innovate UK Green Pigs
Image processing; detection; group lying
behavior; mounting behaviors; position

changes; pens enriched; [89–92]

ICT–AGRI ERA–net; German Federal
Office for Agriculture and Food (BLE);
Agency for Innovation by Science of

Technology (IWT Flanders)

PIGWISE
Project SB 111447

HF RFID; identification: feeding profiles
[93]; drinking behavior [94]; HF RFID [95];
feeding patterns; automated monitoring

and warning system [96]

FP7–Seventh Framework Programme PROHEALTH

Posture assessment; sows; parturition; A
tri–axial accelerometer [97]; deep learning;

early detection; respiratory disease;
growing pigs; environmental sensor data

[98]; accelerometery; lying behavior;
free-farrowing sows [99]
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Table 1. Cont.

Pig Sector

Funding Programs and Agencies Project Name Output [Reference]

FP7–Seventh Framework Programme; The
Spanish Ministry of Economy and

Competitiveness; Junta de Andalucía and
the European Regional Development

Fund (ERDF)

RAPIDIA-FIELD

Biosensors; accelerometer embedded in an
ear tag; body temperature; motion, early

detection; infectious diseases [100]; animal
activity; video infection with African swine

fever (ASF) [101]

IFIP–Institut du porc; INRA; Rf-track; The
Chambres d’agriculture de Bretagne;

French government: Ministère de
l’agriculture et de la forêt

Ear tag accelerometers; sows; activity;
improving feeding [102]

German Federal Ministry of Education and
Research (BMBF) provided through the

German Aerospace Center (DLR)
Grant 01KI1301D (MedVet-Staph 2) Real-time location; ear tag; position large

number; group-housed sows [103]

Biotechnology and Biological Sciences
Research Council (BBSRC); Innovate UK

(101906); Supported by Zoetis UK Limited,
Innovent Technology Limited; RAFT

Solutions Ltd.; Harbro Limited

Grant BB/M011364/1 Depth video camera; 3D pig positions;
measure multiple behaviors [104]

Innovate UK as part of the Agri-Tech
Catalyst; Biotechnology and Biological

Sciences Research Council (BBSRC);
Rural and Environment Science and
Analytical Services Division of the

Scottish Government

Early detection of tail biting in pigs
using 3D video to measure tail

posture (132343)

Early warning; tail biting; time-of-flight 3D
cameras; pig tail posture [105]

Deutsche Forschungsgemeinschaft DFG: KR 2024/7–1
Lameness detection; gestation sows; ear-tag
sampled acceleration data [106]; ear sensor;

color cameras; onset of farrowing [107]

Regional government Xunta de Galicia
through the “Program of consolidation and
structuring of competitive research units”

GPC2014/072

Prediction; CO2 concentrations; livestock
building; weaned piglets; WNN model
[108]; daily activity; piglets; passive IR

detector (PID) [109]

Natural Environment Research Council,
UK as part of the Sustainable Agriculture

Research and Innovation Club in
collaboration with AB Agri

Grant Reference: NE/P007945/1 Face recognition; dataset of pig faces [110]

Institute for Promotion of Innovation
through Science and Technology in
Flanders (IWT); Orffa; VDV Beton;

Boerenbond; AVEVE; INVE;
Boehringer Ingelheim

Grant number 090938
Mobile Claw Scoring Device (MCSD);

cameras with light-emitting diode
(LED) lights [111]

Danish Council for Strategic Research;
Green Development and Demonstration
Programme under the Ministry of Food,

Agriculture and Fisheries, Denmark

PigIT, Grant number 11–116191
IntactTails j.nr. 34009–13−0743
StraWell j.nr. 34009–13−0736

Pen level temperature; predicting pen level
outbreaks; diarrhea; pen fouling [112];

body weight monitoring; growing-finishing
pigs [113,114]; multivariate spatial dynamic

linear model (DLM); drinking patterns;
predict outbreaks; diarrhea; pen fouling

[115]; prediction; tail biting; drinking
behavior; temperature of the pen [116];

prediction; pen fouling; machine learning;
position of the pigs [117]

Breed4Food Program; Netherlands
Organisation for Scientific Research

(NWO); Dutch Ministry of Economic
Affairs through TKI Agri and Food Project

Smart Animal Breeding with
Advanced Machine Learning

(Grant number: 14295)

Muscularity; RGB–D computer vision;
machine learning [118]
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Table 1. Cont.

Pig Sector

Funding Programs and Agencies Project Name Output [Reference]

Federal Ministry of Food and Agriculture
(BMEL) via the Federal Office for

Agriculture and Food (BLE) under the
innovation support program

Radar sensors; monitor
animal behavior [119]

FP7–Seventh Framework Programme EFFORT
Electrostatic dust fall collectors (EDCs);

description of resistome; bacterial
microbiome; pig; farm dust [120]

Horizon 2020–Part of the ERA-Net
Cofund SusAn PigSys

Data warehouse; data storage and
processing [121]; camera system; air

characteristics and compositions; spatial
distribution; behaviors [122]; machine
vision; detect pig postures; different

farming and rearing conditions [123]; life
cycle assessment (LCA); evaluate pig

production systems [124]

Horizon 2020 SWINOSTICS

Swine diseases; field point of care (POC);
diagnostics toolbox; advanced bio-sensing;

photonics technologies; emerging and
endemic viruses; swine epidemics [63–65]

Horizon 2020 Feed–a–Gene
Autonomous localizing and tracking; RGB

cameras [125]; precision feeding;
growing-finishing pigs [126]

Biotechnology and Biological Sciences
Research Council in the UK Grant BB/N012518/1 OF algorithms; activity changes; tail-biting

[127]

Ministry of Rural Development and
Consumer Protection of

Baden-Württemberg, Germany; Project
LabelFit by funds of the Federal Ministry
of Food and Agriculture (BMEL) via the

Federal Office for Agriculture and
Food (BLE) under the innovation

support program

Lan–wirtschaft 4.0: Info–System 2D camera imaging; deep learning;
position and posture detection [128]

Spanish Ministry of Economy within the
scope of Eurostars Projects from European

Union. This project is based on
international cooperation led by

PigCHAMP Pro Europa

Wireless Livestock Tracking system
(WILT)

Activity patterns; free movement livestock;
animal located sensors; individual

accelerometer data [129]

UK Biotechnology and Biological Sciences
Research Council Grant BB/I005641/1 Computer vision image analysis; rapid

defence cascade (DC) behavior [130]

Federal Ministry of Food and Agriculture
(BMEL) via the Federal Office for

Agriculture and Food (BLE) under the
innovation support program

(FKZ 2817902615)

PID; measuring group activity;
fattening pigs [131]

Austrian COMET–K1 competence
centre FFoQSI Grant number 854182

Deep learning; tail-biting; IP camera;
infrared spotlights [132]; ear tag;

acceleration; indication; sows;
confined in crates [133]

Horizon 2020 ClearFarm

Body weight; depth camera [52]; play
behavior; weaning; video recordings [58];

locomotor play behavior; young pigs;
video [134]
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Table 1. Cont.

Pig Sector

Funding Programs and Agencies Project Name Output [Reference]

Horizon 2020 Code Re-farm

Deep learning; pen-level estimation;
slaughter pig; weight distribution [135];

video-based classification;
tail-biting behavior [61]

Horizon 2020; Green Development and
Demonstration Programme under the

Ministry of Food, Agriculture and Fisheries,
Denmark Biotechnology and Biological

Sciences Research Council, UK; Zoetis Inc.;
Harbro Nutrition Ltd.; Innovent UK Ltd.;

RAFT solutions Ltd.

HealthyLivestock
IntactTails j. nr. 34,009–13–0743

Agritech Research grant
(BB/M011364/1)

Camera-based data of: feeding behavior
[136]; postures and drinking behavior [137];

tail-biting behavior [138], deep learning
models; water and feed consumption;

weight; weaned piglets; connected feeders,
connected drinkers, automatic weighing
stations, RFID ear tags; early detection;

diarrhea [139]; behaviors of a group;
video data [140]

4. Scientific and Commercial Review of Operational Concepts and Technological
Solutions Used in the Poultry Sector

PLF development in the EU has most commonly focused on broiler farming, followed
by laying hens. Modern broiler strains in intensive production systems reach their target
weight in just 5–6 weeks or less [141]. This short life span means that it is difficult to
maintain a balance between production objectives and bird welfare. A review of the trends
in PLF in the broiler production industry, supported by the Irish Innovation Partnership
Pathway, [142] elaborated that while the use of electro-chemical sensors in precision farming
is quite common, the use of state sensors measuring physical properties such as temperature,
acceleration or location is still at a preliminary state of deployment. As the cost of wearable
sensors decreases, the option of fitting a large number of birds with these physical state
sensors seems more and more feasible. However, a recent study in Flanders, Belgium [143],
showed that the broiler chickens’ behavior was substantially interrupted after the wearable
sensors were fitted. Within the remote sensors technologies, the Near Infrared (NIR) sensors
may provide advanced data such as the thermal profiles and physical properties of the
chickens, as well as measurements of CO2. Non-point sensor datasets, mainly video and
still image datasets for continuous monitoring, have been implemented for monitoring bird
performance and estimating average bird weight [142].

The opportunity exists in the poultry sector to monitor ammonia concentrations using
multiple sensors feeding data into a central console. However, developing an adequate
ammonia sensor is still a challenge that has not been resolved in a satisfactory way. One of
the main outputs of the European project EU-PLF [144], funded by Horizon FP7, was an
embryonic blueprint for commercializing PLF type technologies. Within EU-PLF, broiler
activity was defined as a key indicator for welfare and health. The remote camera detection
of broiler behavior enabled the development of an early warning system to alert managers
to unexpected broiler behavior with 95% true positive events [145]. Relationships between
leg problems, such as Foot Pad Dermatitis, and environmental variables (i.e., temperature
humidity index, THI) were detected, which aided in developing an automated prediction
system [146,147]. An analysis of behavioral responses, avoidance distances and gait scores,
to human (farmer) presence yielded an indicator for broilers’ fear of humans. Finally, indoor
particulate matter concentrations (dust) detected by sensors showed a strong correlation
between emissions and bird activity [148].

Alerting farmers to welfare problems in real-time, especially during winter nights
when ventilation is low, allows for fast and targeted interventions, which will immediately
benefit the flock compared to traditional welfare assessments that have usually occurred
on the next morning [149]. Ammonia concentrations are often higher during the day-
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time in livestock buildings due to increased evaporation via higher temperatures, greater
movements of birds and increased airflow [150].

Research and development in poultry disease identification and control should be
prospective and incorporate new technologies and should pay special attention to zoonotic
diseases. Such a perspective was demonstrated by [151], in the framework of two completed
Horizon 2020 projects–SMARTDIAGNOS [152] and VIVALDI [153]–with the study of two
Campylobacter species–C. jejuni and C. coli–in poultry flocks. These two species account for
most human campylobacteriosis [154], and poultry and poultry products are considered
to be the main sources of disease transmission [155]. To tackle this, a simple and rapid
Loop-Mediated Isothermal Amplification (LAMP) assay was used to detect C. jejuni and
C. coli in chicken feces.

Broiler production systems must be optimized to enhance their energy/resource ef-
ficiency, minimize carbon footprint and create sustainable supply chains by developing
the necessary infrastructure across all stages of production, including breeding, hatching,
rearing, processing and distribution to consumers. Collaborative research and advanced
technologies can help tie together the different components of the system and their relation-
ships. The consequences of not supporting farmers in implementing new technologies may
result in the loss of social licence and even threaten the poultry industry’s premier position
in the global marketplace and the ability of the industry to provide safe and nutritious
poultry products to consumers worldwide [156]. The lack of collaboration between the
private and public sectors and the lack of innovative ways to articulate concerns from
producers and consumers to policymakers remain barriers to technological adoption [13].
In Table 2, we present some of the technological advancements and scientific research
involved with PLF in the poultry sector. As evident from Table 2, the volume of research in
the poultry industry is more than twofold lower than that of the pig industry, featuring
16 projects and 27 peer-reviewed articles.

Table 2. Examples of funding programs and agencies using PLF technologies in the poultry sector
developed within the last decade in the framework of European funded projects. Studies without
clear acknowledgment of the funding source were not included.

Poultry Sector

Funded Under Project Name Output [Reference]

FP7–Seventh Framework Programme EU–PLF

Real-time modeling; indoor particulate matter
concentration; broiler activity; ventilation rate
[145]; sound recording; vocalization analysis;
real-time analysis; broilers: internal pipping

stage (IP) [71]; growth rate [157]; model weight
[158]; real-time camera; activity and distribution;
broiler flocks; visual welfare scores [146]; camera;
gait score; lameness; broiler flocks [159]; volatile

organic compounds; recognition of enteric
pathologies [160]; prediction model; gait score;
broilers; flock distribution; bird activity levels;

body mass [161]

Dutch Ministry of Economic Affairs Welfare Quality® assessment protocol for broiler
chicken welfare [162]

Green Development and
Demonstration Program, established

under the Ministry of Food,
Agriculture, and Fisheries, Denmark

LED color temperature; preference; behavior;
welfare; performance [163]

FP7–Seventh Framework Programme WELFARE INDICATORS Animal-based welfare indicators (AWIN);
protocol; Turkey [164]
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Table 2. Cont.

Poultry Sector

Funded Under Project Name Output [Reference]

UK Biotechnology and Biological
Sciences Research Council (BBSRC) Grant no. BB/K001388/1

OF analysis; detection; chicken flock’s infection;
Campylobacter [165]; camera monitoring;

movements; broiler flocks; prediction; footpad
dermatitis; hockburn [166]

FP7–Seventh Framework Programme EFFORT
Electrostatic dust fall collectors (EDCs);

description of resistome; bacterial microbiome;
poultry farm dust [120]

Horizon 2020 Hennovation E–learning course; knowledge
innovation networks [167]

UK Biotechnology and Biological
Sciences Research Council (BBSRC)

Behavioral; physiological response; laying hens;
backpacks; thermography, direct

observations; weighing [168]

Horizon 2020 Feed-a-Gene

Processing methods; European soybeans; novel
ingredients; microalgae; macroalgae, duckweed,
yeast protein concentrate; bacterial protein meal;

leaf protein; insects; future chicken diet
formulations [169,170]

KU Leuven internal research grant Sound (chicken sneezing); monitoring;
poultry health [171]

Horizon 2020; GUDP - Green
Development and Demonstration

Programme, Denmark

SMARTDIAGNOS VIVALDI
ISOAMKIT No. 34009–15−1038

Rapid detection; Campylobacter spp.; broiler
production chains; optimized a loop-mediated
isothermal amplification (LAMP) assay [151]

Dutch Ministry of Economic Affairs
and the Breed4Food partners Cobb
Europe, CRV, Hendrix Genetics and

Topigs Norsvin

TKI Agri and Food project 16022 Ultra-wideband (UWB) tracking; individual
activity; group-housed broilers [172]

Swedish Farmers’ Foundation for
Agricultural Research

and SLU Ekoforsk
Project number H1343143

Welfare Quality® protocol; lameness; contact
dermatitis; cleanliness; thermal comfort; litter

quality; human–animal relationship [82]

Horizon 2020; Horizon 2020 ERA-Net;
UK Biotechnology and Biological

Sciences Research Council (BBSRC)

VetBioNet Delta-Flu ANIHWA
MICHIC project

ANR−14-ANWA−0001
Grant BB/M028208/1; Grant

BB/N023803/1

Precision-cut lung slices (PCLS);
immunologically mature conventional and
specific-pathogen free (SPF) chickens [173];
cameras; OF; flocks of chickens; behavior;

welfare; group level [174]

Biotechnology and Biological Sciences
Research Council Doctoral Training

Programme Award
Grant no BB/J014508/1

Supplementary UVA and UVB wavelengths;
performance indicators;

welfare indicators; [175,176]

Horizon 2020 HealthyLivestock
Elevated platforms; enrichment tool; weight

control; usage behavior; animal activity; early
detection; animal welfare [177]

5. Scientific Review of Farmer’s Attitudes and Obstacles in Acceptance of
Technological Solutions in the Livestock Sector

Qualitative and quantitative assessments of the attitudes and barriers to PLF technol-
ogy adoption have shown the manifold factors that influence farmers’ technology decisions
and highlighted the economic, socio-demographic, ethical, legal, technological and institu-
tional aspects that need to be considered for widespread technology acceptance [178–180].
They also showed that “innovation uncertainty” has led to a rather slow uptake of pre-
cision technologies by farmers thus far [181]. Kling-Eveillard et al. [182] mentioned that
farmers using PLF depict a stockpersonship that has not fundamentally changed but which
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involves new components such as tasks, skills and schedules. Moreover, we know that
the manner of PLF usage varies between farmers, i.e., the degree to which the farmer
delegates tasks to the equipment [183]. Noting this, specific attention should be given to
the study area, as the attitudes and barriers to technology adoption may vary depending
on the socio-economic and cultural situation of the region. Studies in countries with strong
educational institutions and high standards of living may experience different barriers
than farmers in low-income countries that lack more basic needs for technology adoption
(such as internet access, education, monetary funds, social capital, etc.). This review sec-
tion focuses primarily on European and American study sites and gives an overview of
prominent farmers’ perspectives relevant for technology adoption.

The most reported aspect in almost any region is the fear of high investment costs that
are needed to enable PLF [180,184–189]. This barrier is particularly prominent for smaller
production sites, as the expected investment returns are more limited compared to big
farms [185,188,190].

Aack of trust in the technological capabilities and robustness of the technology was
another frequently reported factor that affected technology adoption [179,180,189,191].
As trust has many different notions, there are several associated aspects that directly
or indirectly influence the confidence in specific technologies. Farmers that are in close
proximity to other farms and are part of a wider network tend to adopt novel technologies
quicker and more optimistically [180]. Trust in technology is higher if colleagues have used
the technology effectively before [192]. This networking effect was also shown by [184],
who found that 68% of farmers make adoption decisions based on information obtained
from colleagues. Trust may also be a relevant factor in the sense of security and privacy. As
modern PLF technologies are embedded in an IoT environment and are often accompanied
with decentralized data storage (e.g., cloud or edge devices), concerns about data safety
may arise. Privacy and security concerns are one of the most prominent barriers that inhibit
digital technology adoption by farmers in Wisconsin [179]. However, a study by [180]
found that the participants did not express any concerns about data privacy issues but are
optimistic about the positive influence of collective data processing.

Another important factor influencing the purchasing decision in PLF technologies
is the perceived usability of PLF products. This includes closely related factors such as
the complexity of technologies, the necessary education to install, interpret and use of the
technology as well as the external dependencies on service providers and vendors that
are associated with it [180,185,188]. Scholars [14] and farmers [189] have both highlighted
that the necessary technology integration and interoperability among PLF relevant systems
further hinder usability and therefore harden existing barriers.

Some other factors, such as technological relevance or lack of awareness have been
identified by individual studies [179,180,189]. These are believed to be of minor importance,
and in practice, most attitudes are closely linked to the already mentioned farmers’ charac-
teristics and associated barriers. This also highlights the potential of positive side-effects if
one addresses the individual fears and needs of farmers in terms of technology adoption.

Interviews and surveys constitute the main methodology through which the voices
of farmers are heard, but it is always important to consider their accuracy, especially in
relation to sensitive animal welfare concerns. In the EU-PLF project [144], farmers voiced
their hesitation to purchase PLF technologies, unless its derived benefits are clear and
unequivocal, and they also had concerns about maintenance. The issues and importance
of training on-site, providing professional on-demand and continuous support, especially
concerning animal welfare assessment [193], and establishing demonstration farms were
stressed. Almost all farmers were afraid of losing direct contact with the animal–their “care
relationship” (particularly pig farmers rather than poultry farmers). Prospected environ-
mental and welfare regulations hindered the farmers from investing due to uncertainty
about whether future market conditions will allow their investment to be repaid. Further
negative associations with PLF were its perceived complex operation and a partial ability
(at best) of the farmer to understand the information in a simple and coherent way and
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act upon it. As one farmer stated: “The data doesn’t have to be 100% accurate, but 100%
reliable” [193].

Farmers from the pig and poultry sectors in the UK and Spain interviewed in the
EU project Feed-a-Gene [194] stressed the importance of providing accurate and complete
information to farmers and the need for a detailed evaluation of novel technologies in a
commercial setting before more widespread adoption. Interviewees from the pig sector
favored the concept of precision feeding and the resultant improvement in feed conversion
efficiency and improved animal welfare; however, farmers from the poultry sector (in Spain)
were largely unenthusiastic. In the pig sector, the benefits seemed clearer for gestating sows
than for breeding pigs.

The expected high costs for investment have led to scepticism about whether gains
in feed efficiency necessary to justify the investment would be realized. This would
particularly apply if existing buildings, infrastructure and feeding systems could not be
simply adapted, as most farmers believed to be the case. Concerns were raised about the
necessary skill level of operating such precision feeding systems, as it would require skilled
labor, which is expensive and could increase labor costs. Additionally, equipment suppliers
must be able to provide a fast and reliable on-farm repair service, which requires enough
skilled staff.

One of the targets of the SusPigSys European initiative [195] (part of the ERA-Net Cofund
activity SUSAN) is to promote farmers’ wellbeing. Farmers of pig production systems in
seven EU member states (Austria, Germany, Finland, Italy, Poland, the Netherlands and the
United Kingdom) participated in national workshops with stakeholders, where the important
social implications for farmers themselves were discussed. The participants from Germany,
Finland and the UK stressed the importance of consumers’ power along the supply chain
and societal acceptance of the public image of pig production and the farming profession,
highlighting the disconnect between the industry and the consumers. Most EU pig farmers
are concerned with animal welfare and environmental impacts, as well as the economic
survival of their businesses. Farmers also would like people outside the industry to better
understand the demanding work of pig farmers in producing food sustainably. This latter
point is echoed in the completed FP7 project PROHEALTH [196], where [197] examined
the attitudes of the public in five EU countries (Finland, Germany, Poland, Spain and the
UK) toward intensive animal production systems and production diseases in the broilers,
layers and pig sectors. Most alarming is that a significant portion of the public is not familiar
with modern animal production; nonetheless, they perceive intensive production systems
negatively, which subsequently influences their consumer behavior.

To counter this and other negative associations with PLF technologies, the “Livestock-
Sense” project [198] was implemented in seven different EU countries to encourage PLF
technology adoption and increase the general understanding of these technologies. An
online quantitative survey was undertaken, and follow-up interviews, as well as focus
group discussions (FGDs), were organized to obtain qualitative results. The quantitative
questionnaire results demonstrated that the existing level of automatization on the farms,
the average age of the livestock buildings (and associated production technologies) and the
availability of internet connectivity were clear indicators of livestock producers’ “readiness
levels” to adopt PLF technologies. In the second half of the project, complex software
development was undertaken to create an integrated cloud-based ICT tool that captured
the key outcomes of this project, including the (1) user classifier, (2) the benefit calculator
and (3) advice generator software applications.

The possible advantages mentioned by interviewees included the possibility of work-
ing with large animal groups (however, this is only possible for big farms), gains in space by
removing passageways and walls, retaining young people in rural areas, as they might find
careers in pig husbandry more attractive, and a reduction in the environmental footprint of
pig farming. A Swedish farmer in the egg production sector who was interviewed as part of
the completed EU project SURE-Farm [199] advocated that new machines and robots have
helped to eliminate heavy physical work, which previously limited the opportunities for
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older farmers and farm workers to continue working [200]. The Horizon Europe Thematic
network BroilerNet [201], with 25 partners in 13 countries, is aiming to create 12 innova-
tion networks at national level and three EU level networks of broiler farmers, advisors,
supply chain integrator companies, farmers’ organisations, researchers, and veterinarians.
The project will focus on environmental sustainability, animal welfare and animal health
management. By identifying the most urgent needs of broiler farmers, the network will
collect and evaluate good practices that are able to meet these needs.

Nevertheless, it is important for future research in both sectors to focus not only on the
technological improvements of tools and sensors but also on the aspects of environmental,
economic and social sustainability of livestock production that impact both farmers and
the community and consumers [202].

6. Conclusions

PLF systems can help to increase production efficiency and meet consumer expecta-
tions of more environmentally and welfare-friendly production at a time when there is
extreme pressure on land availability for food production that deters farmers from reducing
the intensity of their operations. Several EU-funded projects have helped to identify and
develop PLF technologies that could benefit the livestock industries, particularly in the pig
and poultry sectors. The large volume of research in the pig industry is welcomed, but
attention must be paid to the global and European trends of an increase in broiler-meat
production, which is growing faster than any other meat type, including pork production.
Therefore, greater research efforts are required in the poultry industry, with particular
recommendation for the development of enhanced research infrastructures in the sectors of
laying hens, turkeys and quails, etc., on the basis of their being underrepresented in the
plethora of active research projects in Europe.

The EU continues to lead in this field, although it is expected that other regions, such as
PR China and the USA, could be important in scaling up the production of PLF technology
once its value is proven.

Considerable obstacles to widespread PLF adoption have been identified and must
be addressed. High investment costs, a lack of trust in the technology, uncertainty in
the future market for their products and the usability of the technologies have all been
identified as impediments to adoption. Fifty-eight percent of European farm managers are
55≤ years of age, and of them 33%, are over 65 years. Most of them work on small-size
farms, mainly family farms, which constituted a staggering 94.8% of EU farms in 2020.
These data illustrate the magnitude of the challenge in embedding and implementing
PLF in contemporary livestock agriculture in Europe. It can be concluded that there
is enormous importance in the integration and involvement of stakeholders from the
fields of social sciences in order to mediate the farmer–technology interface. Given the
growing frequency of crises, such as the recent COVID-19 epidemic, it is imperative to
supply farmers with adequate platforms for installation, service-oriented accompanying
and a significant financial support network that will allow them to more realistically
and competently deal with prevailing barriers in terms of investment and innovation
uncertainty. In particular, the investigation of farmers’ attitudes and obstacles to acceptance
of technological solutions in the livestock sector should be integrally coupled with any
technological development.

We perceive the increased use and uptake of PLF in the future as imperative. The
future management of issues concerning the unknown costs and benefits of PLF systems
should be the responsibility of stakeholders. This need is not only urgent for farmers but
also important for financial institutions and governments offering support and subsidies.
To eliminate distrust in technology and provide solutions that meet farmers’ needs and
are well-suited for farming conditions, developers must act. Novel devices, sensors and
technologies that have a clear and quantifiable advantages for farmers of the pig and broiler
sectors should be demonstrated, targeting environmental monitoring and the AI-driven
analysis of livestock behavior in order to maximize the economic production and the
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environmental and welfare performance of the animals. To effectively implement PLF
adoption, it is crucial that farmers are clearly informed of the minimum farm infrastructural
requirements. Additionally, to address any concerns related to using advanced technologies,
enhanced collaboration between farmers, scientists and engineers is required, coupled with
targeted education, training and information-sharing.
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