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Abstract—The microservices architectural style improves flexi-
bility and performance but might come at the cost of complexity
and cognitive effort. Understanding how architectural design
decision affects cognitive effort can support software engineers
in designing and building more maintainable systems. However,
little research exists measuring the impact of architectural styles
on developers’ cognitive processes. To the best of our knowledge,
no empirical study on navigation and comprehension strategies
compares a microservice-based and monolithic variant of a trading
system, which is widely used for empirical research on information
system evolution. To assess the cognitive processes, we conducted
an eye-tracking study (n=42) of typical maintenance tasks. We
randomly assigned participants to two groups performing a feature
location and a code change task using the trading system’s
monolithic or microservices-based implementation. Efficacy is
significantly higher in the monolith variant. We investigate the
reasons and propose a cognitively-grounded method to analyse
comprehension strategies and estimate maintenance effort. We
measure differences in comprehension strategies (top-down and
bottom-up comprehension) and conclude that 1) there is a
significant difference in visual effort and time taken to identify
a specific feature, and 2) bottom-up comprehension is more
frequently applied in microservices than in the monolith variant.
Finally, we discuss our findings and their implications for
practitioners and the research community.

Index Terms—software architecture, microservices, monolith,
eye-tracking

I. INTRODUCTION

Organisations are increasingly adopting the microservices
architectural style, which has the potential to overcome the
deficiencies of earlier approaches and design, develop and
deploy using modern paradigms, reflect the organisational
structure and improve flexibility and performance [1, 2].
Adopting a new architectural style is multi-faceted and comes
with risks and costs software engineers must consider. For
most applications that do not face thousands of concurrent
users, the foundational architectural decision is a trade-off
between the costs and benefits of a monolith or (the migration
to) microservices. In microservices, the modularity comes at
the cost of performance due to remote calls or adds new
complexities mitigating those performance losses, e. g., by
using asynchrony or request bundling. Recent studies empir-
ically evaluate the performance and scalability of monoliths
compared to microservices, e. g., providing insights into trade-
offs between monoliths or microservices [3]. Another source

of information that companies can use to decide whether to
migrate to microservices or not is provided by Auer et al. [4].
They discover that the most commonly mentioned motivation
to migrate to microservices is to improve the maintainability of
the system [4]. As software engineers spend most of their time
reading and understanding source code during maintenance, a
critical decision driver is cognitive cost1. There are many studies
on cognitive load during program comprehension, and the effect
of e. g., source code lexicon and readability on the cognitive
load is well documented [5]. Yet, there is no empirical study
on developers’ comprehension of microservices in the context
of software maintenance. Although there is vast research on
program comprehension models, i. e., how developers form a
mental model of a program, there is a gap in understanding
modern architectural styles like microservices, calling for an
update to a contemporary model of program comprehension [6].
Siegmund [6] in this regard mentions that developers perform
program-comprehension tasks that go beyond the source-code
level and include understanding overall software architecture,
understanding type structures and call hierarchies as well as the
relationship between components. This study aims to contribute
to a contemporary program comprehension model focussing
on two developers ’ main tasks, i. e., the understanding of
call hierarchies and the relationship between components and
measuring the cognitive effort involved in maintenance of
microservices in comparison to monolithic architectures.

Specifically, we focus on the following research questions:
• RQ1: How do developers comprehend call hierarchies

in the context of feature location tasks in microservices and
monolith architectural styles?

• RQ2: What is the cognitive effort to navigate and maintain
microservices compared to monoliths?

Since program comprehension as a set of cognitive processes
is performed at the speed of the eye [7], we build upon
prior work in program comprehension research and apply eye-
tracking. We report on a controlled experiment (Section IV)
assessing developers’ cognitive processes maintaining microser-
vices (treatment group) and monoliths (control group) using
extensions of a monolith and its migration to microservices
of a trading system, an example system widely used in

1https://martinfowler.com/articles/microservice-trade-offs.html



empirical software engineering (Section IV-D). We describe
the experimental design adhering to guidelines for controlled
experiments [8] using eye-tracking [9, 10]. We measure task
performance, i.e., response time and correctness, assess devel-
opers’ comprehension strategies and comprehension models
(Section IV-G), and measure developers’ cognitive effort
performing typical maintenance tasks (Section IV-E). We report
the results in Section Section V, conclude with implications
and discuss future directions to build a cognitive-grounded
decision model for architectural decisions (Section VI).

II. RELATED WORK

The architectural style is a set of profound decisions
on design elements and formal arrangements to increase
comprehensibility [11, 12]. To understand the implications
of microservices architectural style and provide guidance for
practitioners in decision-making, studies compare monolith and
microservices architectural styles. Most comparative studies
focus on performance-related attributes [3, 13]. Recent empir-
ical studies investigate architectural decisions, e.g., focusing
on migration from monoliths to microservices [14]. In another
Grounded Theory study Auer et al. [4] discovered that the
most common motivation to migrate to microservices was to
improve the system’s maintainability and reduce overall system
complexity, which is frequently associated with maintenance.
However, only a few studies measure and compare the
maintenance effort of microservices and monoliths [4].

Software maintenance tasks require developers to spend
considerable time searching and navigating source code to
understand the parts of the system relevant to the change task.
Prior studies find that developers spend much time fixing bugs
and making code more maintainable [15, 16]. In a recent
field study on 78 professional developers Xia et al. [17]
report that developers spend ∼58% of their time on program
comprehension activities, followed by navigation (∼ 24%),
others (13.40%), and only ∼5% editing.

Substantial previous research has investigated program com-
prehensibility surrounding mental representations of programs
and related cognitive models [18]. During navigating and
understanding, and then editing code, developers implicitly
build code context models that consist of the relevant code
elements and the relations between these elements. These
models are characterised by a high lexical and structural
cohesion [19]. Recent studies provide detailed views on
developers’ cognition using eye tracking, investigating drivers
for readability and reading order [20–22] and cognitive models
of a structural understanding of source code, e.g. by studying
eye movement during summarisation tasks [23, 24]. These
works tend to focus on code snippets or small programs.
Another stream of eye-tracking in program comprehension
research focuses on the understandability of software design
aspects, e. g., design patterns and class relationships recovered
from source code or inspecting UML diagrams Guéhéneuc
[25], Jeanmart et al. [26], Sharif and Maletic [27]. Wang
et al. [28] report a study on the feature location process.
Their study suggests that the feature location process can

be understood hierarchically on a set of actions a developer
performs, e. g., reading and searching source code or exploring
dependencies, the phase level, e. g., seed search, extend and
validate phases, and on a pattern level. In the crucial seed
search phase, Wang et al. [28] identified three search patterns,
namely the information-retrieval-based, execution-based and
exploration-based search patterns. Only a few works measure
developers’ cognitive strategies in larger systems [20, 29].
However, there is a lack of approaches providing details on
the impact of architectural decisions on developers’ cognitive
effort and the related cognitive strategies in building a mental
model of the program.

To the best of our knowledge, there is no study comparing
monoliths and microservices from a cognitive perspective using
eye-tracking, yet.

III. COGNITION MODELS

Cognition models in program comprehension describe the
cognitive process and temporary information structures in the
developer’s head that form a mental model of a software
system. The cognitive processes use existing knowledge to
obtain new knowledge and build a mental model of the program
under consideration [30, 31]. Von Mayrhauser and Vans [30]
provide an integrated metamodel describing how developers
create mental representations of programs. This metamodel
includes four components, the top-down comprehension, used
when the code or the programming language is familiar and
the program model, which is invoked when the system or
the code is unfamiliar. The situational model describes data-
flow abstractions in the program. These three models rely on
the fourth component, the knowledge base representing the
developers’ current knowledge and is used to store and create
new knowledge [30].

Top-down comprehension refers to the process when a devel-
oper has a hypothesis of the program and subsequently locates
source code elements to confirm this hypothesis. Developers
read more closely and apply bottom-up comprehension to form
hypotheses for the program by mentally grouping each set of
statements into higher-level abstractions. These abstractions
are aggregated further until a high-level understanding of the
program is obtained [30, 31].

Recent studies on program comprehension evaluate specific
aspects of cognition models using eye-tracking. Abid et al. [24]
compare novices’ and experts’ cognition models, concluding
both experts and novices read the methods more closely, using
the bottom-up mental model rather than bouncing around using
top-down comprehension strategies. Priorly, Rodeghero and
McMillan [23] performed a study on code summarisation
with professional developers, showing that developers read the
source code differently than natural language text, skimming
and jumping between source code elements, in contrast to more
thorough techniques, such as close and sectional reading, and
conclude that programmers not only follow specific patterns
when they read and summarise source code, but they also all
tend to use similar patterns compared to each other. The effect
of reading order is also studied by Peitek et al. [22]. They



conclude that the source code’s linearity strongly affects the
reading order, while the comprehension strategy has only a
minor effect [22]. In a recent study, Sharafi et al. [29] found
that successful developers’ navigation strategies are quantifiably
different. The frequent switching of Areas of Interests (AOI),
also called thrashing is associated with worse performance [29].

A. Comprehension process

To determine the type of mental model Abid et al. [24]
proposed to divide each method into chunks and subsequently
analyse the comprehension strategies such as bottom-up com-
prehension, which is characterised by chunking of these source
code elements. We extend this approach and take all source
code elements of a Java source code files, i. e., including
method signature and annotation, class and field declarations,
constructor declarations and import statements into account.
As developers tend to use documentation to apply different
comprehension strategies, we kept JavaDoc and Readme files
in the code repository. Instead of manually selecting these
sections, we apply an automated extraction approach. We
parse the abstract syntax tree (AST) and automatically label
logically connected source code elements. The extractor also
partitions and labels method bodies into sections containing
control or data flow, associated statements, and separate sections
containing comments or blank lines. The rationale behind this
extraction rule is that developers tend to place comments before
the code. Blank lines separate are also a visual aid to separate
different tasks [32].

To determine the comprehension strategies using scan path
analysis, Abid et al. [24] define two detection rules: If a
developer starts reading a section and the next line read
belongs to the same section, they conclude that the developer
is reading closely and performing bottom-up comprehension.
They interpret switches to a different source code section as
top-down comprehension [24]. We extend this approach beyond
code snippets to larger multi-component systems based on prior
empirical studies [23, 24, 29].

B. Regression

Regressions indicate that a participant had to revisit a
previous part, possibly due to an insufficient understanding or
following the execution flow [21, 22]. Backward movements
in the text are called regressions. Few regressions and short fix-
ations characterise good readers. Difficult texts usually induce
longer fixations, short saccades and frequent regressions [21].
Busjahn et al. [21] define two gaze-based measures for source
code reading, the regression rate (percentage of backward
saccades of any length) and line regression rate (percentage
of backward saccades within a line).

IV. EXPERIMENTAL DESIGN

To investigate the cognitive effects of architectural styles,
we designed a controlled experiment using the code base
of a trading system implemented in a monolith (control
group) and the migration of this system to microservices
(treatment group) as the stimuli. Following the guidelines of
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Figure 1. Participant’s age, experience working in the software industry and
Java programming experience (years) per treatment (microservice) and control
(monolith) group.

Jedlitschka et al. [8] for controlled experiments in software
engineering research adhering to Holmqvist et al. [10] for eye-
tracking studies, we report on the participants involved, the eye-
tracking equipment, instructions and tasks given to participants,
quantitative attributes of recorded eye-tracker signals, fixation
detection algorithms and AOI analysis. Finally, we report on
exclusion criteria and the pre- and post-recording.

A. Participants and Recruiting Process

We recruited 44 students enrolled in software engineering
courses offered at the end of their B.Sc. and the beginning of
their M.Sc. programs at the author’s institution. As the study fo-
cuses on typical interviewing or onboarding tasks, when joining
a new software team, students finishing or graduating computer
science studies as participants are valid representatives for early-
stage software professionals in empirical software engineering
experiments. All participants gained experience designing
and developing microservices, at least throughout the course.
Besides a brief announcement and information about the eye-
tracking study’s goal and procedure, participants did not get
further training or preparation. Participating students were
rewarded with extra course credits as an incentive. Two
participants didn’t complete the experiment, and the incomplete
data was removed from the analysis. Of the remaining 42
participants, ten were female, and 32 were male. The mean age
of participants in the treatment group (microservices) is similar
(24 years, ±2.43) to the control group (monoliths), where the
mean age is also 24 (±2.81).On average, participants gained
1.8 years of work experience in the software industry and have
intermediary knowledge in Java language (see Figure 1).



B. Setup and Equipment

The eye-tracking experiment took place in the laboratory
rooms of the faculty, simulating an undistracted and realistic
office environment and allowing stable conditions throughout
the whole study. We used Pupil Labs Core head-mounted
monocular eye-tracker to record eye gaze position, pupil
dilation and blink rate and duration. The eye-tracker records
gaze behaviour at 200Hz with a pupil camera. The frontal
world camera with a resolution of 1280x720 pixels is directed
towards a 27-inch monitor screen with a resolution of 2560 by
1600 pixels, representing the participant’s view on the screen.
We chose Visual Studio Code (VSCode) as the integrated
development environment (IDE) for source code reviewing
and editing tasks. VSCode supports syntax highlighting code
completion, aids in navigating source code, and is extensible
using various plugins and extensions. It is generally possible
to implement custom extensions using the VSCode API. At
the time of writing, the API didn’t offer access to the viewport
of the code editing windows, allowing to record the source
code or text visible to the user. We implemented a simple
extension tracking mouse position, scroll, and keyboard events
to determine the visible text lines. We used a screen background
with rectangular visual markers to enable gaze-to-surface
mapping. The IDE was positioned at the centre of the screen,
scaled to about 24 inches, and surrounded by eight visual
markers.

C. Procedure

We used a randomised design to assign control and treatment
groups participants. We conducted an ex-ante survey on
demographics such as age, gender, education level, and software
engineering experience in terms of years of development and
modelling expertise. We asked for the motivation to develop
software.

Following the experiment protocol, we calibrated the eye-
tracker and started recording the screen and Microsoft Windows
10 system events, VSCode extension recording mouse and
keyboard, and source code file opening and switching events.
After the experiment, we conducted a post-hoc survey on the
tasks’ self-estimated difficulty. We finished the survey with an
open question about how IDEs could be improved to support
program comprehension.

The experimental setup was pilot tested with three software
engineering researchers with industry experience recruited by
the faculty. We mainly adjusted conditions possibly influencing
the eye-tracking experiment, e. g., changing a wheeled chair
to an office chair without wheels or assuring stable light
conditions.

D. Software Systems

To compare the cognition of microservices and monolith
systems, we used open-source extensions of the Common
Component Modeling Example (CoCoME), a trading system
for supermarkets handling sales and stocking process [33].
CoCoME is a widely used platform for collaborative empirical
research on information system evolution [34]. It is recently
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Figure 2. Excerpt of a participants’ code context model during the feature
location task using the microservice extension of CoCoME.

applied, for example, to evaluate graph-based approaches to
identify microservices candidates [35].

For our study, we have applied CoCoME to a monolith2 and
decomposed it to microservices3. The monolithic variant (rep-
resenting the control group) consists of five main components:
The web application cash-desk frontend accesses the controllers
of Inventory, the BarcodeScanner and the CardReader using
the Bank service to verify debit card payments. Figure 3 shows
an excerpt of the code context model a participants builds
during comprehension tasks. The monolithic is implemented in
Java (8 KLOCs) using Spring Boot and TypeScript (Angular).
The core functionalities are located in the services package,
i.e. the verification of the debit card in class BankService and
the modification of a data protection-related method to delete
non-active users residing in the UserService class.

2https://github.com/eveline-nuta/sales-app
3https://github.com/eveline-nuta/microservice-sales-app
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The monolith is migrated to five microservices, the cash-
desk, inventory, payment, banking microservices and a service-
registry (see Figure 2) using Netflix Eureka for service
discovery, Zuul as an API gateway and Spring Cloud Config.
Compared to the monolithic variant, the code size differs
significantly, containing more than 20 KLOC of Java code,
including documentation.

E. Tasks

An essential goal of this study is to assess cognitive processes
of how developers understand relationships between compo-
nents, locate features and maintain real-world systems and
possibly contribute to a contemporary program comprehension
model.

1) Feature Location: One of the most common tasks in
programming is finding the source code in a system that
implements a specific feature. Due to the lack of support
for automatic feature location [36], feature identification and
location is still one of the most time-consuming tasks involving
high cognitive effort. The prior discussed cognition models
and their automated assessment could lay the foundation for
future feature identification and location automation. For the
Feature Location task assessing navigation and comprehension
strategies, we asked participants the following question: “What
is the primary class to check the validity of the card?”.

2) Modification: The Modification task aims to study
memory and problem-solving in software maintenance tasks
(see Section I).

267 /**

268 * Not activated users should be automatically deleted after 3 days.

269 * <p>

270 * This is scheduled to get fired everyday, at 01:00 (am).

271 */

272 @Scheduled(cron = "0 0 1 * * ?")

273 public void removeNotActivatedUsers() {

274 userRepository

275 .findAllByActivatedIsFalseAndCreatedDateBefore(Instant.now().minus(3,

ChronoUnit.DAYS))

276 .forEach(user -> {

277 log.debug("Deleting not activated user {}", user.getLogin());

278 userRepository.delete(user);

279 this.clearUserCaches(user);

280 });

281 }

Listing 1. Scheduler to remove not activated Users (identical in treatment and
control group)

This task also involves feature location and comprehension of
the implementation of the Scheduler pattern, enabling systems
to execute jobs on a periodic or recurrent basis. Participants
were asked to find and modify the removal of user-related
data and perform the following code change: “There is a
functionality to delete not activated users after a certain time.
Please, modify the code so that not activated users are deleted
automatically after 5 days.” The relevant method (see Listing 1)
is identical in both experimental groups located at the bottom
of the UserService class (starting at line 267).

F. Exclusion criteria

Eye-tracking research exposes many risks and causes in-
fluencing data quality or loss. Hence, we defined criteria
for excluding certain recordings from further processing,
particularly when the pupil position can’t be reliably calculated,
and set a confidence threshold of 0.8.

G. Analysis

In this study, we perform a scan path analysis, which is
particularly useful to identify and analyse participants’ viewing
strategies to explore stimuli and solve tasks [9]. Scan paths
are a series of fixations through saccades on different parts
of the stimulus. We use a dispersion-based fixation algorithm
detecting fixations if changes in gaze position across recorded
samples are less than 1°of visual angle and, when combined,
have a minimum duration of 100 ms.

To map these fixations to source code elements, we per-
formed three steps (see Figure 4). First, we post-processed the
screen recording of the IDE session for each participant using
an optical character recognition engine4 (OCR), locating areas
of the IDE, e.g., the navigation and the editing window. As
developers frequently scroll and resize windows, the extractor
function processes each frame containing a fixation. Relevant
source code entities are extracted using the resulting visual
locations and the source code. In the third step, we partition the

4https://tesseract-ocr.github.io
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extracted source code entities (SCE) into chunks of logically
related source code elements, spanning two and ten lines
of code. The SCEs are labelled, e. g., with identifier name,
classpath and identified by a sequential number j of the SCE
in the program source code.

To analyse the eye-gaze behaviour, we used well-known
metrics [9, 37]. The Average Duration of Relevant Fixations
(ADRF) is the sum of the total duration of the fixations for
relevant AOIs. ADRF indicates the visual effort spent on a
target area (AOI) in relation to all visited AOIs, and Time to
First Fixation on Target AOI.

For the scan path analysis, we distinguish between reading
thoroughly vs. skimming, scanning disorderly vs. sequential.We
calculate the saccadic length and the direction of the saccade,
expressed in Euclidian distance and direction, respectively, and
take scroll events into account based on the line number of code
the developer fixated. The gaze behaviour is then aggregated
into sets of fixations Fi and saccades S within an SCE and
between SCEs.

The cognitionscore = direction+jump
fixationduration indicates top-down

and bottom-up comprehension, where the direction is the Eu-
clidian distance

√∑n
i=1(xi − yi)2 indicating e. g., horizontal

or vertical gaze movements, the fixation duration > 1000ms
indicates reading thoroughly and else skimming. Jumps are
determined as |ji − ji−1| within or between SCEj , where
jump ≤ 1 indicate sequential and jump > 1 disorderly gaze
movements. The cognition score is represented in the upper
bars of the scarf plot (Figure 5). To calculate the regression,
i.e., the revisitation of SCEs, we use the algorithm from [38]
visualised in the lower bars of the scarf plot. Each SCE is
colour-coded to visualise the scan path.

V. RESULTS

1) Task performance: Table I shows the statical results,
correctness and efficiency (duration to complete the task)
of the 42 participants performing the feature location and
source code modification task. While the feature location task
is similar in accuracy, a significant difference can be found
in the modification task, revealing about 8% better results
for the monolith system. This is interesting as the target
class (UserService) is identical in both systems. The time to
complete the tasks is significantly higher for the microservices-

based variant. For the feature location task, we evaluated the
correctness on a more relaxed scale (see Figure 6).

Figure 7 shows the apparent trend (indicated by the red
line) that more time spent working with a monolith leads
to less accurate results. At the same time, subjects in the
microservices group are slightly more effective when reading
the code longer (Figure 6). While this partially answers RQ1,
the comprehensibility can be measured in detail using eye-
tracking recordings.

2) Scan path analysis: Table III shows the scan paths with
cognition and regression scores of eight participants, exem-
plifying emerging patterns of all participants unsuccessfully
completing the feature location task (top row) and participants
completing this task successfully in the bottom row.

a) Monolith group: P15 seeks for cues related to the
card validation feature in various security-related classes, e. g.,
SecurityUtils and fails to find the feature. P17 also suspects
the feature in security-related source code but soon changes
to the retrieval-based pattern, focussing on the card keyword,
finally arriving at the controller resource. P18 explores the
Maven file of the monolith, skims unit tests and security-
related files, domain class, and controller (visiting 65 SCEs
in total) before arriving at the target class. After reading the
documentation, P16 identifies the controller class applying
the bottom-up comprehension strategy and follows the call
hierarchy to the BankService.

b) Microservices group: P9 primarily reads (bottom-up)
code related to the microservice’s gateway (Zuul) and service
registry and fails to arrive at the target class. This participant
also used IDE search features, retrieving only cues in the
documentation and changing back to the exploration-based
pattern. P12 visits 28 unique SCEs in different microservices
and does not locate the feature but finds the related controller
accessing the required functionality. P14 completes the feature
location and modification tasks in a short time (four minutes
each), starting with the exploration of the file structure,
skimming source code of the inventory microservices, returning
to the file explorer, hypothesising the relevant keywords in
the UserService class and finally comprehending the target
class (BankingManager). In contrast, P10 explores 211 unique
SCEs, including the service registry and the declarative web
service client Feign, conceiving the overall architecture and
call hierarchies, finally leading to the target class.

3) Hypothesis testing: Table II goes into more detail and
represents the statistical analysis and hypothesis testing. We use
a robust non-parametric method and apply Cliff’s δ for testing
hyphotheses [39]. We hypothesise that there is no difference
in comprehension and maintenance between microservices
(treatment group) and monoliths (control group) and specify
the following null hypotheses:

H0c : There is no significant difference between the microser-
vice and the monolith variant in terms of time to first fixation
on target AOI and the Average Duration of Relevant Fixation
on target AOIs in relation to all visited AOIs.

H0m : The cognitive effort to maintain (modify) the microser-
vices and the monolith variant is not significantly different.



Figure 5. Scarf plot of P8 performing Modification task

Table I
PERFORMANCE RESULTS

Correct Incorrect Mean efficiency
System Feature Location Modification Feature Location Modification Feature Location (sec) Modification (sec)

Monolith 15 20 8 3 269.17 (∓184.54) 567.73 (± 434.14)
Microservice 13 15 6 4 342.26 (∓212.80) 679.63 (± 419.42 )

Total 28 35 14 7 302.24 (± 198.78) 618.35 (± 426.08 )

Table II
FEATURE LOCATION COMPREHENSION PATTERNS AND METRICS

Feature Location Task Modification Task
Microservices Monolith Cliff’s δ Microservices Monolith Cliff’s δ

mean [ms] mean [ms] mean [ms] mean [ms]

Sum of Dwell time 212840.7 214757.9 -0.06 379470.1 343664.6 -0.12
Time of First Fixation on Target 2834761.65 2487532.5 -0,58*** 5824928.3 4842338.5 -0.1
Average Duration of Relevant Fixation 0.3 0.1 -0.4** 0.1 0.1 0.0

Sum of Top-Down Dwell Time 18695.9 32101.8 -0.38** 45142.2 59145.1 -0.38**
Sum of Bottom-Up Dwell Time 59927.0 88321.1 -0.32* 129430.4 176262.2 -0.4**

Sum of Dwell Time in Navigation Window 134217.7 94335.0 0.2* 204897.6 108257.3 0.22*
Sum of Dwell Time for Search 28211.7 12720.0 -0.06 42948.2 30378.3 0.08
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Figure 6. Feature Location Task: Scatter plot per group of dependent variables
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Figure 7. Modification Task: Scatter plot per group of dependent variables
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Monolith Feature Location Monolith Modification Microservice Feature Location Microservice Modification

Table III
SCARF PLOTS WITH COGNITION SCORE (TOP), LOWER VALUES INDICATING BOTTOM-UP COMPREHENSION, HIGHER VALUES TOP-DOWN COMPREHENSION.
REGRESSION SCORE (BOTTOM) SHOWING REVISITATION OF SECTIONS IN CODE. RED POINTS ON THE HORIZONTAL UPPER AXIS INDICATE FIXATIONS ON

THE TARGET AREA, AND THE LOWER AXIS INDICATES THE IDE SEARCH MODE.

Corresponding to RQ1, we reject H0c as effect size, i. e.,
Cliff’s δ is large (-0.58), and there is a medium effect regarding
the ADRF (δ -0.4). We also observe a small to medium effect
size of the top-down comprehension and the bottom-up compre-
hension strategies (δ = -0.38 and -0.32 correspondingly), but no
significant differences in exploration-based (dwell time spent on
Navigation Window) or retrieval-based search patterns patterns.
Regarding RQ1, we conclude that participants working on
the monolith variant comprehend call dependencies faster
and spend less cognitive effort comprehending relationships
between components.

To answer RQ2, we also applied Cliff’s δ method and can not
reject the first part of H0m . There is no significant difference
between the microservice-based and the monolithic variant
regarding the visual effort (Time to First Fixation on Target area
δ=0.1). Again, there is a medium effect regarding the top-down
comprehension and the bottom-up comprehension strategies
(δ=-0.38 and -0.4 correspondingly), which is consistent with
the prior result (RQ1). Regarding RQ2, we conclude there is no

significant difference when applying conventional eye-tracking
metrics, but there is a medium effect regarding the compre-
hension strategy. Participants comprehending microservices
apply more often bottom-up comprehension than top-down
comprehension strategies.

VI. DISCUSSION

This study presents the first attempt to compare cognition
of architectural styles, here monoliths and microservices
using an example system widely used in empirical software
engineering research as the stimuli. There is no correlation
between software engineering experience and task performance.
Considering the relatively low difficulty level of the tasks,
the completion time is relatively high, illustrating the central
problem in software maintenance. This study confirms prior
assumptions regarding the cognitive effort in comprehending
microservices. While there is no significant difference in dwell
time (duration of fixations on AOIs), developers need more
time and cognitive effort to understand the relationship of



components and call hierarchies in microservices. Participants
apply bottom-up strategies to comprehend various microservice
patterns, e. g., API gateway or service discovery and declarative
HTTP API clients consuming REST API endpoints exposed by
microservices. This also applies to the modification task, also
indicated by a higher regression rate, leading to higher visual
efforts while exploring many source code entities. This result
can also indicate higher maintenance costs of microservices.
The popular microservice architectural style should be carefully
considered, especially for small to medium-sized applications.

The study also reveals a successful search pattern for
navigating microservices. Participants exploring the file tree in
the seed phase are subsequently more effective. The structural
cohesion of microservices helps to locate features faster
for comparatively easy-to-find locations. Independent of the
architectural style, participants using the IDE’s search function
are overwhelmed with the many results. The study’s result can
serve as a starting point for designing and developing more
cognitively grounded tools for future microservices applications.
This may include the automatic extraction of cognitive maps
and IDE extensions for cognitive-aware feature location.

1) Cognitive mapping: A visual representation of the
developer’s mental model could assist developers in spatially
mapping cognitive landmarks and relationships between com-
ponents to 1) efficiently retrieve relevant seed information
and entrance points to the system and 2) offload the working
memory, enabling them to stay focused and find guidance
when losing track of program comprehension. Research in
navigational support, e.g. NavTracks [40], could use cognition
models to identify source code entities relevant to the soft-
ware engineer. Another research direction is the automated
construction of cognitive maps using sensory inputs like gaze
behaviour.

2) Cognitive-aware feature location: Our results indicate
that the search functions of IDEs may even be counterproduc-
tive when frequently used keywords such as validate or delete
are used. Similar to the modification task where the related
code is located around line 280, developers need to forage
large chunks of source code elements, which takes considerable
time. Semantic search tools and more research are needed to
support developers in constantly growing systems [36].

VII. THREATS TO VALIDITY

Using eye-tracking comes with intrinsic limitations [9].
We mitigated these limitations by adhering to guidelines
and applying best practices. Regarding the construct valid-
ity concerning the relation between theory and observation,
participants’ motivation drives task performance in multiple
ways. A developer who is highly interested in software artefacts
can take more time to complete the task. On the other hand,
less motivated developers may seem more efficient, but at
the cost of effectivity [41]. Distraction in office environments,
e.g., phone calls, and communication with teammates, also
significantly affects attention. In our experiment, we tried
to reduce any source of distraction. Results may vary in
realistic work settings. To reduce the Hawthorne effect, we

reduced the contact with participants to a minimum. We admit
threats to external validity concern the generalizability of our
findings. The experimental stimulus used (CoCoME) case
study is not representative of all applications. Still, as it is
widely used in empirical software engineering research, we
argue that it might be indicative for many small to medium
applications that do not face thousands of concurrent users.
Due to the lack of a commonly available data set containing
the implementations of the same system in the two different
architectural styles, we decided to use the monolithic and
microservices extensions of a trading system as stimuli. Further-
more, the recruited participants are representative of developers
early in their careers. Approaching senior professionals would
increase generalizability and improve the understanding of how
architectural styles affect experienced developers with more
prior knowledge. All participants are students in the final year
of their studies. Referring to Kitchenham et al. [42] “. . . using
students as participants is not a major issue as long as you
are interested in evaluating a technique by novice or non-
expert software engineers. Students are the next generation of
software professionals so are relatively close to the population
of interest”. Finally, microservices are polyglot by definition.
Larger studies involving more participants and code written in
languages other than Java should be conducted to corroborate
or contradict our results.

VIII. CONCLUSION AND FUTURE WORK

In this study, we investigate how software engineers create
mental representations of software applications through the
lens of two different architectural styles: microservices and
monoliths. Specifically, we obtain an understanding of how
developers comprehend and maintain microservices versus
monoliths. We present the design of a controlled experiment
(n=42) using a combination of eye gaze and user interaction
data and report on the analysis using a novel scarf plot technique
combining cognition and memory models. We identify patterns
in comprehension and provide a method to inspect top-down
and bottom-up comprehension along regression visually. We
performed a statistical analysis on comprehension strategies
applied and applied a robust non-parametric method for hypoth-
esis testing. Finally, we provide implications and future research
directions, such as the cognitive-aware feature identification
and location and a cognitive mapping approach having the
potential of a paradigm shift in software architecture research
as an answer to current challenges with the growing complexity
of software systems. We measured differences in comprehen-
sion strategies (top-down and bottom-up comprehension) and
conclude that 1) there is a significant difference in terms of
visual effort and time taken to identify a specific feature, and
2) bottom-up comprehension is more frequently applied in
microservices than in the monolith variant. For our future work,
we plan to use this method to assess the developer’s cognition
of architectural designs and deployment-related artefacts and
generate cognitive maps and predictive models to support
software engineers making data-driven architectural design
decisions.
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