
Compliance Management of IaC-Based Cloud Deployments
During Runtime

Ghareeb Falazi

Lukas Harzenetter

Kálmán Képes

Frank Leymann

Institute of Architecture of Application Systems,

University of Stuttgart

Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Uwe Breitenbücher

Reutlingen University

Germany

uwe.breitenbuecher@reutlingen-university.de

Evangelos Ntentos

Uwe Zdun

Research Group Software Architecture, Faculty of

Computer Science, University of Vienna

Austria

{firstname.lastname}@univie.ac.at

Martin Becker

Elena Heldwein

IBM Deutschland

Germany

martin.becker@de.ibm.com

elena.heldwein1@ibm.com

ABSTRACT
Modern cloud applications increasingly depend on Infrastructure-

as-Code (IaC) practices for infrastructure automation to help man-

age the complexity of deploying large-scale architectures. Addition-

ally, the deployment of cloud applications is commonly subject to

compliance rules. Moreover, designing compliant IaC-based cloud

deployments is not enough since runtime changes to the infrastruc-

ture or the configuration of individual components may introduce

compliance violations. Often, the process of checking and fixing

such violations is done manually, which is time-consuming and

error-prone. Therefore, this work aims to define and implement

a method for runtime IaC compliance management that reduces

the complexity, effort, and uncertainty of checking and enforcing

compliance rules against IaC-based cloud deployments at runtime.

To this end, we follow the design-science research methodology

to design and implement (i) the Runtime IaC Compliance Manage-

ment (RICMa) method and (ii) the IaC Compliance Management

Framework (IaCMF) that supports the execution of the RICMa

method. We prototypically implement IaCMF and evaluate it using

a qualitative interview study with industry experts.

CCS CONCEPTS
• Computer systems organization → Cloud computing; • Ap-
plied computing→ IT governance; • General and reference
→ Verification.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

UCC ’23, December 04–07, 2023, Taormina (Messina), Italy
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Infrastructure-as-Code, IaC, IT Compliance, Cloud Compliance,

Compliance Management

ACM Reference Format:
Ghareeb Falazi, Lukas Harzenetter, Kálmán Képes, Frank Leymann, Uwe

Breitenbücher, Evangelos Ntentos, Uwe Zdun, Martin Becker, and Elena

Heldwein. 2023. Compliance Management of IaC-Based Cloud Deployments

During Runtime. In Proceedings of The 16th IEEE/ACM International Confer-
ence on Utility and Cloud Computing (UCC ’23). ACM, New York, NY, USA,

11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Modern cloud applications increasingly depend on microservice-

based architectures. However, the development and deployment

of microservice systems have become more complex due to the

need for frequent releases and the large number of different cloud

technologies required to host the application’s components, e.g.,

PaaS and FaaS offerings as well as container-based deployment

technologies such as Kubernetes. Additionally, cloud applications

are released to production frequently, sometimes multiple times

per day, leading to frequent changes regarding the infrastructure

components used for hosting [17]. Therefore, many organizations

adopted Infrastructure-as-Code (IaC), which are practices involving

the use of reusable scripts and deployment models, referred to as

IaC code, to manage and provision IT infrastructure. Thereby, the

term infrastructure refers to all services, components, and platforms

that are used to host an application’s components [23]. IaC aims

to keep the provisioned environment and its intended configura-

tion consistent [2, 23]. Furthermore, implementing IaC can also

improve security, and reduce errors and manual configuration ef-

fort [2]. Many IaC tools exist to support deploying and configuring

modern cloud applications and cloud-based systems, e.g., Ansible,

Terraform, and Kubernetes. However, the configuration and host

environments for such deployments are typically subject to a set of

domain-specific guidelines, regional laws, and internally enforced

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

UCC ’23, December 04–07, 2023, Taormina (Messina), Italy Falazi et al.

policies, which we collectively refer to as compliance rules. For
example, an enterprise might require all containers to follow a spe-

cific security benchmark. Thus, when using IaC for infrastructure

automation, enterprises need to ensure that the IaC code and its

resulting effects on the actual host environment adhere to such

compliance rules. We call such deployments that are provisioned

and/or managed by IaC tools IaC-based cloud deployments.
Obviously, it is important to design compliant IaC code. However,

even if compliance is ensured during design time, IaC-based cloud

deployments might still suffer from compliance violations during

runtime. For example, Figure 1 shows the conceptual architecture

of a cloud application that is deployed and managed by an IaC tool

such as OpenTOSCA [3] or Terraform. The architecture contains

several software components that host a simple three-tier applica-

tion. The backend is a Java application hosted on a Docker container.

The Docker engine is hosted on an AWS EC2 instance. In addition,

another container runs on the same engine and hosts an NGINX

server with an Angular application on top constituting the frontend.

The backend persists data in a MySQL DB hosted on an on-premise

stack. During the lifetime of this cloud application, ad-hoc changes

to its components might result in compliance violations. For exam-

ple, the system administrator might decide to introduce temporary

changes to facilitate unforeseen or repetitive tasks such as adding a

new User X to the DB to allow temporary access by a data analysis

application or changing the security configuration of the operat-

ing system to allow quicker user access by permitting empty user

passwords. Such changes introduce security vulnerabilities and

violate common compliance guidelines such as STIGs [7] and NIST

SP 800-53 [24]. Furthermore, a carefree system administrator may

introduce privately used components that consume infrastructure

resources and constitute security threats. For example, Figure 1

shows a Docker container (Container X) that is privately used, e.g.,

to mine Bitcoin using the company’s infrastructure.

Multiple studies demonstrate how to check the architectural com-

pliance of IaC-based cloud applications at design-time [19, 25, 26]
and at deployment-time [38]. However, the compliance viola-

tions presented in the previous example can neither be checked

during design time nor during deployment time, but only at run-
time. Industrial solutions, e.g., Prisma Cloud [27] and VMware Aria

Automation for Secure Hosts [34] focus on runtime compliance

violations that pertain to the configuration of individual software

components, but as shown in the previous example, runtime IaC

compliance violations can also be architectural in nature, i.e., result-

ing from the non-compliant addition or removal of software com-

ponents during runtime. Therefore, the current process of checking

and fixing such compliance violations is typically done manually

by experts who have the domain knowledge to interpret the corre-

sponding compliance rules and determine how to fix the possible

violations for different IaC tool types without affecting the integrity

of IaC-based cloud deployments. This is a repetitive task that is

complex, time-consuming, and error-prone due to the uncertainty

of how to interpret compliance rules and fix compliance violations.

Hence, the goal of this research is to define and implement a
compliance management process that reduces the complexity, effort,
and uncertainty of checking compliance rules against IaC-based cloud
deployments at runtime and fixing the possible violations. Specifically,
we tackle the following research questions:

• RQ1 How can compliance rules be modeled, checked, and

enforced against IaC-based cloud deployments at runtimewhile

minimizing the associated effort, complexity, and uncertainty?

• RQ2 How can a framework support performing these tasks?

To answer these questions, (i) we introduced the Runtime IaC Com-
pliance Management (RICMa) method that describes how to model,

check, and enforce compliance for IaC-based cloud deployments

during runtime. (ii) we designed the IaC Compliance Management
Framework (IaCMF), which supports the execution of the RICMa

method. (iii) we prototypically implemented IaCMF, and (iv) we

conducted a qualitative user interview study to evaluate the use-

fulness of the proposed concepts. A partial design for the RICMa
method was introduced in a previous work [8] without technical

details. In this work, the RICMa method is significantly extended

and equipped with technical details.

The paper is structured as follows: we discuss related work in

Section 2 and the research method in Section 3. We describe the

RICMa method in Section 4 and IaCMF in Section 5. Finally, we

present a prototypical implementation of IaCMF and a use case in

Section 6, evaluate the developed concepts qualitatively in Section 7,

discuss the threats to validity in Section 8, and conclude in Section 9.

2 RELATEDWORK
In this section, we present relevant academic and industrial works

and compare our approach with them.

2.1 Related Work on IaC Best Practices and
Design-Time IaC Compliance

With the increasing adoption of IaC practices in industry, there is a

growing body of scientific research that collects and systematizes

IaC-related patterns and practices. For example, Kumara et al. [20]

compile a catalog encompassing language-agnostic and language-

specific best and bad practices that address implementation issues,

design problems, and violations of IaC principles, while Sharma

et al. [31] propose language-specific best practices for Puppet. In

contrast to our work, these works merely introduce compliance

rules and not a comprehensive compliance management method.

Moreover, multiple studies propose tools and metrics to assess

the quality of IaC code. Dalla Palma et al. [5, 6] introduce a cat-

alog of 46 quality metrics specifically tailored to Ansible scripts,

which enable the identification of IaC-related properties and demon-

strating their application in analyzing IaC code. Kumara et al. [21]

propose a tool-based approach for detecting smells in TOSCA mod-

els. Sotiropoulos et al. [32] develop a tool-based approach that

identifies issues related to dependencies by analyzing Puppet man-

ifests and their system call trace. Van der Bent et al. [33] define

metrics that encompass best practices for assessing Puppet code

quality. In contrast to our approach, none of these tools allows for

modeling custom compliance rules and resolving architectural com-

pliance violations. Moreover, in the works [9, 19], an approach is

presented for automatically verifying the compliance of declarative

deployment models during design-time. The approach uses cus-

tom compliance rules in the form of deployment model fragments

that describe the desired design of a specific part of the deploy-

ment model. The comparison between the model fragment and

the deployment model is performed using subgraph isomorphism.

Compliance Management of IaC-Based Cloud Deployments During Runtime UCC ’23, December 04–07, 2023, Taormina (Messina), Italy

(Docker Engine)

(Ubuntu VM)
VM1

(Ubuntu VM)
VM2

(Docker Container)
Container 1

(Docker Container)
Container X

(MySQL DBMS)(Docker Container)
Container 2

(MySQL DB)

(NGINX)

(Angular App)
Frontend

(Java Runtime)

(Spring Boot App)
Backend

▪ …
▪ nullok
▪ …

/etc/pam.d/common-password

Users

UserXUser 1

(Type)
Optional Name

Legend

Software
Component

Connects-To
Relationship

Hosted-On
Relationship

(OpenStack)(AWS EC2)

Figure 1: Example IaC-based cloud deployment that has three runtime compliance violations.

However, detected compliance violations are not resolved and only

TOSCA-based deployment models are supported. We build upon

this approach by (i) including compliance enforcement, integrity

validation, and reporting, (ii) focusing on runtime compliance, and

(iii) enhancing extensibility and support for heterogeneous systems

through plugins.

2.2 Related Work on Behavioral Compliance for
Cloud Deployments

Several approaches exist for runtime behavioral compliance check-

ing. For example, Krieger et al. [18] propose an approach to check

application system conformance to common architectural patterns

of behavioral nature during runtime. Their approach depends on

complex event processing via a dedicated compliance monitoring

component. Moreover, Havelund [14] presents a rule-based run-

time verification approach to monitor the behavioral compliance of

application systems. The approach utilizes scala to define compli-

ance rules and an AI-based algorithm to check them against system

traces. However, these and similar approaches are aimed at check-

ing the behavioral compliance of application systems, i.e., how well

application systems behave in accordance with pre-defined rules.

In contrast, our approach checks the architectural compliance of

the infrastructure of IaC-based cloud deployments during runtime.

Behavioral compliance is outside the scope of this work.

2.3 Related Industrial Approaches
A set of industrial platforms deal with IT compliance management.

For example,Google Cloud Security CommandCenter (GCD SCC) [11]
is a built-in security and risk management solution for Google

Cloud. It provides continuous design-time and runtime checking of

cloud resource configuration against a predefined set of compliance

rules. Furthermore, it suggests manual fixing steps for found vulner-

abilities. Nonetheless, this solution is not able to detect structural

compliance violations and is only restricted to Google Cloud.

Azure Policy [22] is a solution that allows users of Azure cloud

to enforce organizational standards and assess compliance policies

for cloud deployments. It introduces a domain-specific language

for defining compliance policies. These policies allow to check the

configuration of cloud resources both at design-time and at runtime.

All Azure-based resources are supported. Additionally, Azure Policy

supports a predetermined set of resource types whose instances are

hosted outside of Azure, e.g., Linux Servers, Kubernetes Clusters,

etc. Furthermore, it allows to fix resource configuration violations

at runtime. However, this solution does not support checking or

enforcing structural IaC compliance rules and does not allow ex-

tending its capabilities, e.g., through plugins.

AWS Config [1] facilitates live monitoring of resources hosted on

AWS cloud. With this tool, the current configuration of individual

cloud resources can be queried using predefined and customizable

inventories, i.e., checks that collect information about a target set

of managed cloud resources. The collected information can also

include details about the architecture of the cloud deployment, e.g.,

which applications are hosted on a given EC2 instance. Compliance

checks can then be executed against the collected information by

defining corresponding compliance rules. A rule defines the desired

configuration setting of a specific type of cloud resource in addition

to the remediation action to be taken if the rule is violated. AWS

Config provides a repository of predefined compliance rules and

allows for the creation of custom rules. However, like Azure Policy,

this approach does not support extending its capabilities through

plugins. Additionally, it only supports resources hosted on AWS.

Red Hat (RH) OpenShift Container Platform [29] provides compli-

ance checking and enforcement for containers running inOpenShift.

A preset of rules is provided, which can be customized. Scans can

be executed at runtime and if remediation recommendations exist,

they can be automatically applied. A limitation of this tool is its

exclusive integration with RH OpenShift.

Palo Alto Network’s Prisma Cloud [27] is an API-based service

for cloud environments that includes compliance management. It

allows retrieving cloud resource configuration details from a variety

of cloud providers, e.g., AWS, GCP, Azure, etc. This information

can be used to check IaC configuration compliance at build-time

and runtime. Beyond provided default policies and compliance

standards, it also allows for the creation of custom policies and

standards. Issues found at runtime can be automatically remediated

using a limited number of cloud CLI commands. Although Prisma

Cloud supports a wide range of cloud providers, it is not extensible

and the aspects that can be checked and remediated are restricted

to the respective cloud API’s functionalities.

Lastly, VMware Aria Automation for Secure Hosts [34] is a com-

pliance and vulnerability management tool. It allows the checking

UCC ’23, December 04–07, 2023, Taormina (Messina), Italy Falazi et al.

Table 1: Characteristics of related industrial approaches. For
comparison, our approach is presented in the last row.

Approach
Runtime Compliance
Rule Checking Custom

Rules
Autom.
Fixing

Hetero-
geneity

Exten-
sibilityConfig. Structure

GCD SCC [11] Yes No No No No No

Azure Policy [22] Yes No Yes Yes Yes No

AWS Config [1] Yes Yes Yes Yes No No

RH OpenShift [29] Yes No Yes Yes No No

Prisma Cloud [27] Yes No Yes Yes Yes No

VMWare Aria [34] Yes No Yes Yes Yes No

RICMa/IaCMF Yes Yes Yes Yes Yes Yes

of infrastructure compliance using either default or custom com-

pliance policies. An SDK is provided for custom assessment and

remediation. However, the tool only allows integrating systems

that can be managed through VMware Aria Automation and does

not support checking or enforcing architectural compliance rules.

Table 1 summarizes the characteristics of the discussed indus-

trial approaches. The table shows whether a given approach sup-

ports checking IaC compliance rules that address the configuration

of cloud resources in addition to rules of an architectural nature.

Additionally, it indicates whether the approach supports creating

custom compliance rules and introducing automatic remediation

of compliance violations. Finally, it shows if the approach supports

heterogeneous environments and IaC tools, and if its functionality

and the spectrum of supported tools and environments can be ex-

tended, e.g., through plugins. Compared to our approach, industrial

solutions have limited scope in terms of the supported IaC tools

and cloud platforms. Additionally, they do not support extensibility

through plugins. Hence, they are limited regarding heterogeneous

environments and legacy systems, and risk vendor lock-in. Finally,

they put only little focus on compliance rules of architectural na-

ture. Nonetheless, they constitute a good reference for distilling

industry-accepted requirements for compliance management.

3 RESEARCH METHOD
In this work, we employ the design-science researchmethod [15, 36].

In software engineering research, design science creates and evalu-

ates IT artifacts intended to solve problems identified within organi-

zations [15]. We created and evaluated two IT artifacts: (i) a method

that facilitates the compliance management of IaC-based cloud de-

ployments during runtime, the RICMa method, and (ii) an extensible
framework, IaCMF, that facilitates this method. To this end, we use

the methodology proposed by Wieringa [36], in which one or more

design cycles are conducted each with three activities: (i) problem
investigation, in which the stakeholders and goals are identified

and the state-of-the-art is studied, (ii) treatment design, in which

the artifacts are designed, and (iii) treatment validation, in which

the artifacts are assessed for their capability to “treat” the problem.

Figure 2 summarizes the steps we followed and highlights how they

relate to the steps of the design cycle. After setting the goal of the

research, we conducted two design cycles. In cycle 1, we analyzed

the current state-of-the-art in the domain of IT compliance manage-

ment. Next, we created an initial design for the RICMa method and

IaCMF, and validated these initial artifacts by discussing them in a

focus group comprising six industry experts from a large technol-

ogy enterprise. The experts suggested enhancements to the RICMa

Cycle 1 Cycle 2 Evaluate Process &
Framework

Record
Video of Use

Cases

Analyze Interviews

Findings

Conduct Interviews (9)

-

P
ro

b
le

m

In
ve

st
ig

at
io

n

Design
Interview

Guide

Design &
Implement
Use Cases

Analyze State-of-
the-Art

Analyze State-of-
the-Art

Tr
ea

tm
e

n
t

D
es

ig
n

Design Initial
RICMa Method

Design Initial
IaCMF

Design Enhanced
RICMa Method

Design Enhanced
IaCMF

Tr
e

at
m

e
n

t
V

al
id

at
io

n

Focus Group
Discussion (6)

Method &
Framework

Changes

Implement
Prototype

Evaluate Process
& Framework

+

Figure 2: Our research method based on [36]: two design
cycles ending in a qualitative interview study.

method and IaCMF focusing on introducing the ability to validate

the integrity of the deployments after applying automatic fixes and

supporting a class of compliance rules relevant to large enterprises.

This triggered a second design cycle, in which we extended our

problem investigation in accordance with the new requirements

suggested by the focus group. Next, we enhanced our previous

designs for the RICMa method and IaCMF. To validate these en-

hanced artifacts, we created a prototypical implementation of the

framework, used it to handle three example compliance use cases,

and conducted a qualitative interview study with nine industry

experts from six different companies.

The initial RICMa method, designed as part of the first cycle,

was introduced in a previous work [8], in which we presented a

high-level vision without any technical details. In this work, we

conducted all the other steps discussed above, which resulted in a

significant enhancement of the approach. In Section 4 and Section 5,

we discuss the enhanced RICMa method and IaCMF respectively,

and in Section 6, we discuss the implemented prototype and one of

the three example use cases. Finally, in Section 7, we discuss the

qualitative interview study.

4 RUNTIME IAC-BASED COMPLIANCE
MANAGEMENT METHOD

In this section, we introduce the RICMa method, which allows to

model, check, and enforce compliance rules during runtime while

maintaining application instance integrity. The method is depicted

in Figure 3 and is split into the Compliance Rule Modeling Process,
and the Compliance Checking and Enforcement Process. Note that
since the same IaC code can be used to instantiate an application

multiple times, in the following, we refer to a specific deployment

thereof as an application instance.

Compliance Management of IaC-Based Cloud Deployments During Runtime UCC ’23, December 04–07, 2023, Taormina (Messina), Italy

Compliance Rule Modeling Process

IaC Tool
provision / configure / manage

Application Instance

Production Environment

retrieve info apply fixes validate

Instance Model
(EDMM)

Fixing Reports

✓

✓

✓

✓

✓

✓

✓

✓

✓!!!

Violation Reports Validation Report

Fix Violations
Validate Application

Instance Integrity
Generate Report

Reconstruct
Instance Model

Compliance Checking & Enforcement Process

Model Technical
Rules

Analyze Regulations
& Policies

Compliance Rule Expert

Compliance
Rules Repo

Regulations
& Policies

§§§

Check
Compliance

Compliance
 Rule

Compliance
 Rule

Compliance
 Rule

Technical
Compliance Rule

Modeling Tool

use

1 2 3 4 5

Figure 3: The RICMa method. Dotted tasks are optional. A high-level concept of steps 1–3 was presented in a previous work [8]
without technical details.

4.1 Compliance Rule Modeling Process
In this process, all applicable compliance requirements that stem

from enterprise-external regulations and enterprise-internal poli-

cies are turned into technical compliance rules that can be auto-

matically checked by IaCMF: A Compliance Rule Expert analyzes
the documents that describe the applicable compliance rules and

uses a suitable Technical Compliance Rule Modeling Tool to imple-

ment corresponding machine-readable technical compliance rules.

The implemented technical compliance rules are then stored in a

Compliance Rule Repository, which makes them accessible to the

Compliance Checking and Enforcement Process. Since these rules

are machine-readable and embed expert knowledge, they reduce

the uncertainty associated with interpreting the corresponding poli-

cies and guidelines. The format of the technical compliance rules

depends on how the Check Compliance step of the Compliance

Checking and Enforcement Process is implemented. Section 6.2

presents a technical example.

4.2 Compliance Checking and Enforcement
Process

The primary objective of this process is the execution of compliance

jobs. A compliance job is a user-defined entity that represents a set

of interrelated compliance rules that apply to a specific application

instance and defines the information necessary to fix possible vi-

olations and subsequently validate the application instance. The

process, which is further detailed below, is repeated for each compli-

ance job separately. The provided details include the requirements

for IaCMF, which implements this process.

4.2.1 ❶ Reconstruct Instance Model. In this step, the framework

creates a model that represents the architecture of the running appli-

cation instance under consideration, which we refer to as instance

model. We use the approach proposed by Harzenetter et al. [12, 13]:

An initial instance model is created based on information retrieved

from the IaC tool(s) thatmanage the application instance. To achieve

this, every supported IaC tool must have a corresponding instance
model creation plugin. The initial instance model contains general

information about the application instance as known to the IaC

tool(s) including the involved software components and (some of)

their relations. However, IaC tools use their own languages with

their own syntax and expressiveness to describe the IT resources

they manage. Therefore, to facilitate extensibility and universal-

ity, we decided to base our approach on the Essential Deployment
Metamodel (EDMM) [37], which is a technology-agnostic common

denominator for the features of common IaC tools obtained by

systematically analyzing them. EDMM supports the specification

of typed software components that are interconnected using typed

relations. Components and relations are further described using

properties. Thus, we require all instance model creation plugins

that extract application instance details from IaC tools to generate

corresponding instance models using EDMM.

The initial instance model may not be sufficient for the execu-

tion of most compliance jobs since certain compliance rules require

detailed information about specific software components as we

have seen in Figure 1. For example, to check that the operating

system of a given VM is securely configured, we need informa-

tion about the contents of the corresponding configuration files.

However, such detailed information is typically unknown to the

IaC tool. Furthermore, some architectural changes might be intro-

duced to the application instance at runtime. These changes are

not known to the IaC tool and, therefore, cannot be part of the

initial instance model. Hence, after the initial instance model is

created, it is refined with information directly retrieved from the

UCC ’23, December 04–07, 2023, Taormina (Messina), Italy Falazi et al.

components of the application instance by letting IaCMF sequen-

tially apply architectural refinement plugins that connect to the

corresponding software components, retrieve the necessary infor-

mation and process it, and introduce changes to the instance model

accordingly. These changes could be, e.g., the addition of newly dis-

covered software components or new properties added to existing

components. Architectural refinement plugins also consume and

generate EDMM instance models. This effectively decouples them

from each other and from instance model creation plugins, since

each plugin expects a technology-agnostic instance model as input

regardless of which and how many previous plugins operated on

it. Finally, it is important to note that the goal of this step is not to

generate a comprehensive instance model but rather only to include

the information necessary to successfully check the compliance

rules included in the job under consideration. Thus, IaCMF will

only execute the instance model refinement plugins that provide

the information required by the compliance job.

4.2.2 ❷ Check Compliance. In this step, all compliance rules in-

cluded in the compliance job are checked and violations are identi-

fied. To this end, the EDMM instance model from the previous step

is evaluated against the relevant compliance rules retrieved from

the Compliance Rule Repository. For each identified violation, a

Violation Report is generated that refers to the corresponding com-

pliance rule and to the elements of the instance model that cause

the violation. There are many approaches that check the confor-

mance of graph-based models, e.g., approaches based on subgraph-

matching [9, 19, 38], approaches based on logic programming [30],

and approaches based on evaluating predefined metrics [25, 26].

Therefore, to support extensibility, this step depends on compliance
checking plugins that utilize any compliance checking approach of

choice providing that EDMM instance models are accepted as input

and properly formatted Violation Reports are produced as output.

Note that certain compliance rules, such as rules that pertain to

legal or ethical requirements, may require human interpretation. In

such a case, the corresponding technical compliance rule is only able

to give indications that it might be violated by a certain production

system. Then, a suitable compliance checking plugin waits for

human input before deciding to produce a corresponding Violation

Report or to consider the finding as a false positive.

4.2.3 ❸ Fix Violations. The goal of this optional step is to auto-

matically fix the compliance violations reported in step ❷. Obvi-

ously, there are manyways compliance violations may be addressed,

which we categorize into three groups: (i) Compliance violations
that can be fixed automatically by executing the original IaC code.
Certain IaC tools, such as Terraform, maintain a representation of

the state of the running cloud applications they manage. If these

applications are altered in an ad-hoc manner, they deviate from the

tool-maintained representation. Therefore, such tools usually pro-

vide amechanism, e.g., the Terraform refresh command, to “refresh”

their internal representation of the managed application instances.

Providing that the IaC code is compliant, runtime compliance vi-

olations can then be fixed by requesting a redeployment of the

IaC code. Accordingly, the tool introduces changes to the running

application instance including its infrastructure and configuration

to match the original IaC code, thus enforcing compliance again.

Ensuring that a deployment model adheres to compliance rules is

outside the scope of this work and can be done using multiple ex-

isting approaches (see Section 2). (ii) Compliance violations that can
be fixed automatically by applying changes to software components.
In certain cases, the used tool, e.g., Ansible, does not maintain a

representation of the state of the managed application instances,

or the compliance violations may correspond to aspects of the ap-

plication instance that cannot be affected by the IaC tool. In these

cases, fixing compliance violations can be accomplished by directly

accessing the affected software components and applying changes

to them, e.g., assigning a specific value to a given configuration

file record in a VM. (iii) Compliance violations that require manual
intervention. Certain compliance violations are dangerous to fix

automatically. For example, a violation related to a mission-critical

DB requires human oversight to be fixed safely.

Accordingly, this process step supports framework extensibility

via violation fixing plugins suitable for different kinds of compliance

violations and different IaC tools. These plugins take the Violation

Reports and the reconstructed instance model as input and apply

changes to the application instance directly or with the help of

the IaC tool. As output, the plugins generate a Fixing Report for
every violation they attempt to fix. In case automatic fixing is not

desired, this step is skipped and the reported violations are directly

forwarded to human operators in step ❺ to handle them.

4.2.4 ❹ Validate Application Instance. In this optional step, the

application instance is validated to ensure that the automatic fixes

possibly applied in the previous step have not affected its integrity.

This can be done, for example, by executing some or all of the

integration tests that are normally part of the CI/CD pipeline. As

output, a Validation Report is generated and propagated to the next

step. Finally, to support different kinds of toolings for integration

testing, this step uses corresponding validation plugins.

4.2.5 ❺Generate Report. In this step, the compliance job execution

is reported, which is done, e.g., by sending an email to the manager

with a summary of the execution, or by sending a message to a

pub/sub topic of a connected Message-Oriented Middleware that

can be consumed by external systems to further perform operations

related to the compliance management process. Therefore, this

step provides a chance to extend the RICMa method with new

integration possibilities. Hence, IaCMF needs reporting plugins that
take the Violation Reports, the Fixing Reports, and the Validation

Report as input, and perform the intended external reporting.

5 IAC-BASED APPLICATION COMPLIANCE
MANAGEMENT FRAMEWORK

In this section, we present IaCMF, an extensible framework that

realizes the method described in Section 4. The conceptual architec-

ture of IaCMF consists of three layers and is presented in Figure 4.

At the top is the API Layer, which allows client applications to

utilize the functionality of IaCMF. In the middle, we have the Do-
main Logic Layer, which is responsible for implementing the RICMa

method and facilitating its extensibility. This layer has the follow-

ing components: (i) The Execution Orchestrator component, which

is responsible for orchestrating the execution of the Compliance

Checking and Enforcement Process (see Section 4.2) by invoking the

components that implement the different process steps and passing

Compliance Management of IaC-Based Cloud Deployments During Runtime UCC ’23, December 04–07, 2023, Taormina (Messina), Italy

API Layer

Domain Logic Layer

Domain Logic Components

Ex
e

cu
ti

o
n

O

rc
h

es
tr

at
o

r

P
lu

gi
n

 M
an

ag
er

Checking Fixing Validation Reporting
Architecture

Reconstruction

plugin … plugin … plugin … plugin … plugin …

Persistence Layer

Figure 4: The conceptual architecture of IaCMF.

data between them. It is also responsible for integrating the Compli-

ance Rule Modeling Process and importing the modeled technical

compliance rules during the execution of the corresponding com-

pliance jobs from the repo. (ii) The Execution Components are the
components that implement the different steps of the Compliance

Checking and Enforcement Process. Each of these components is

extensible with plugins that realize concrete approaches. (iii) The

Plugin Manager component allows deploying new plugins for the

Execution Components. At the bottom, we have the Persistence
Layer, which is responsible for storing all the domain entities neces-

sary to model and execute compliance jobs according to the RICMa

method. Specifically, Figure 5 depicts a simplified class diagram of

these entities. Entity properties are omitted for brevity. We explain

the domain entities in the following:

A Compliance Rule is the framework’s representation of a tech-

nical compliance rule created using the Compliance Rule Modeling

Process, and it can have Compliance Rule Parameters, which fa-

cilitate instantiating customizable compliance rules for different

scenarios. Furthermore, a Production System is a reusable entity that

allows the framework to access an existing application instance

via an IaC tool. To this end, it refers to a set of Production System
Configuration Parameters that contain the information necessary to

communicate with the IaC tool and identify the target application

instance. A Compliance Job represents a set of interrelated Compli-
ance Rules that apply to a specific Production System. It also defines

the information necessary to fix possible violations and validate

the corresponding application instance. A Compliance Rule Config-
uration connects an existing Compliance Rule to a Compliance Job,
specifies concrete values for the rule’s parameters using Compliance
Rule Parameter Assignments, and determines the Violation Type to
report if the rule is violated.

Finally, IaCMF supports multiple types of customizable plug-

ins. In order for the framework to use a specific plugin, a Plugin
Configuration entity is needed, which represents an instance of the

plugin and the set of Plugin Configuration Parameters to configure it.
Moreover, we can specify how the different steps of the Compliance

Checking and Enforcement Process will be performed as follows: A

Production System refers to a model creation plugin suitable for the

specific IaC tool at hand, e.g., Kubernetes. Furthermore, each Com-
pliance Job refers to a reusable Refinement Strategy that specifies

the sequence of architectural refinement plugins that will refine

the initial instance model. It also refers to a compliance checking

plugin, a validation plugin, a Fixing Strategy, and a Reporting Strat-
egy. A Fixing Strategy is a set of Violation Fixing Configurations
that map possible Violation Types to violation fixing plugins, and a

0..n

Compliance Rule Production
System

checking plugin

0..n

1..n

0..n

Compliance
Job

Compliance Rule
Configuration

0..n
Compliance Rule

Parameter Assignment

validation plugin

Plugin
ConfigurationRefinement

Strategy

Fixing Strategy

0..n

Violation Type

violation fixing plugin

Violation Fixing
Configuration

Reporting
Strategy

Plugin Configuration
Parameter

Compliance Rule
Parameter

0..n

Production System
Configuration Parameter

0..n

0..n

1..n

0..1

1..n

0..n
0..n

model creation plugin

0..n

0..n

0..n0..1

Figure 5: Class diagram for the IaCMF domain entities.

Reporting Strategy is set of reporting plugins triggered at the end

of the process. Refer to Section 6.2 for technical examples.

6 VALIDATION
In this section, we validate IaCMF by introducing a prototypical

implementation thereof and describing how it can be used in a

concrete compliance use case.

6.1 Prototypical Implementation
We developed a prototypical implementation of IaCMF in the form

of a Spring Boot application as a backend that exposes a REST

API, and an Angular application as a UI frontend that consumes

this API. The frontend allows the users to configure and trigger

compliance jobs, and examine the results. The backend stores user-

configured domain entities and compliance job execution results in

a MySQL DB. The implementation supports configuring multiple

compliance jobs running against different application instances

and executing these jobs in parallel. To demonstrate the extensibil-

ity and flexibility of the RICMa method, we implemented eleven

IaCMF plugins
1
, which are described in the following: We created

three instance model creation plugins: (i) The opentosca-container-

model-creation-plugin, which allows creating an instance model

for cloud applications deployed using OpenTOSCA Container [3].

(ii) The kubernetes-model-creation-plugin, which allows for the

creation of an instance model for cloud applications managed by

the Kubernetes container orchestration technology. (iii) The manual-

model-creation-plugin, which allows retrieving an existing EDMM

instance model created manually using an external tool, e.g., text

editor or Winery
2
. This plugin is helpful for creating an initial

instance model if the used IaC tool does not have an internal repre-

sentation of the state of the managed application instances.

Furthermore, we created three instance model refinement plug-
ins: (i) The docker-refinement-plugin, which updates the instance

model with information about all the Docker containers hosted on

any of the Docker engines present in the input instance model. For

example, this plugin is useful for identifying “rogue” containers that

1
The source code for IaCMF and all the plugins is available in the online dataset: https:

//doi.org/10.5281/zenodo.8252989 and on Github: https://github.com/IAC2-Project

2
https://winery.readthedocs.io/en/latest/

https://doi.org/10.5281/zenodo.8252989
https://doi.org/10.5281/zenodo.8252989
https://github.com/IAC2-Project
https://winery.readthedocs.io/en/latest/

UCC ’23, December 04–07, 2023, Taormina (Messina), Italy Falazi et al.

Identifier Checker

(Docker Container)
(Docker Container)

- structuralState:
value == “EXPECTED”

CR3: No unexpected Docker containers

Identifier Checker

(MySQL DB)

(MySQL DBMS)

- name:
value == #HostName

(MySQL DB)

- users: #AllowedUsers
 .containsAll(value)

CR1: No unauthorized DB users

Identifier Checker

(Ubuntu VM)

- nullok:
value == false

CR2: Null passwords not allowed

(Ubuntu VM)

URL: http://winery/cr1 URL: http://winery/cr2

URL: http://winery/cr3

Figure 6: Technical compliance rules that detect the viola-
tions depicted in Figure 1.

are unknown to the IaC tool. (ii) The mysql-db-model-refinement-

plugin, which updates the instance model with information about

all DB users of every MySQL DBMS present in the instance model.

(iii) The bash-refinement-plugin, which allows running a customiz-

able bash script over ssh on any Linux VM component represented

in the input instance model. The script retrieves and processes infor-

mation from the accessed component and stores the resulting value

in a customizable property in the corresponding node in the EDMM

instance model. For example, this plugin is useful for retrieving

information on the security configuration of a Linux VM.

Moreover, we created three violation fixing plugins: (i) The docker
-container-issue-fixing-plugin, which allows fixing violations

related to having unexpected Docker containers running in the ap-

plication instance. (ii) The remove-mysql-db-users-fixing-plugin,

which allows fixing violations related to having unauthorized users

for MySQL DBs. (iii) The bash-fixing-plugin, which allows run-

ning a customizable bash script over ssh on a Linux VM to fix

violations related to it.

Finally, we created an execution reporting plugin named smtp-

email-sending-plugin that sends a human-readable compliance job

execution report to a customizable email address using SMTP, and

we created a compliance checking plugin named subgraph-matching

-checking-plugin that extends the approach proposed by Krieger

et al. [19]. We provide details about this plugin in the next section.

6.2 Demonstrative Use Case
We show how to model a technical compliance rule that detects

a compliance violation introduced in Section 1, in which an un-

expected user is given access to a MySQL DB that is a part of an

IaC-based cloud deployment. We also discuss how to configure a

corresponding Compliance Job, which is accomplished using the UI

frontend of the IaCMF prototype. To model the technical compli-

ance rule, we use and extend the approach proposed by Krieger et

al. [19]. In this approach, a technical compliance rule is modeled as

a pair of EDMM graphs, an Identifier and a Checker. The Identifier is
used to find matching subgraphs in the instance model. Each of the

matches represents a set of software components that are subject

to the compliance rule. The Checker describes the conditions that

make these software components compliant according to the rule.

complianceRules:
- complianceRuleId: CR1
complianceRuleFormat: subgraph-
matching

location: http://winery/cr1
complianceRuleParams:
- parameterId: HostNameParam
name: HostName
type: String

- parameterId: AllowedUsersParam
name: AllowedUsers
type: StringList

productionSystems:
- productionSystemId: >-

MySimple3TierApp
iacToolType: OpenTOSCA
modelCreationPluginConfig:
pluginId: >-
opentosca-container-
model-creation-plugin

pluginConfigParams: []
prodSystemConfigParams:
- name: OpenToscaEngineIp
value: 192.168.1.61

- name: appInstanceId
value: 155

complianceJobs:
- complianceJobId: MySqlUserAuthChecks
complianceRuleConfigurations:
- complianceRuleId: CR1
violationType: UNAUTHORIZED_DB_USER
parameterAssignements:
- parameterId: HostNameParam
value: financeDB

- parameterId: AllowedUsersParam
value: financeSysUser

productionSystemId: MySimple3TierApp
refinementStrategyId: refinementStrategy1
checkingPluginConfug:
pluginId: >-
subgraph-matching-checking-plugin

pluginConfigParams: []
fixingStrategyId: fixingStrategy1

Listing 1: Snippet from a Compliance Job configured to use
the compliance rule CR1.

Figure 6 depicts three technical compliance rules designed to

detect the compliance violations shown in Figure 1. We focus on

rule CR1, which requires that every MySQL DB we find when

matching the EDMM instance model with the Identifier must only

have users that are within the list of expected users. Specifically,

the Identifier is modeled as a MySQL DB node hosted on a MySQL

DBMS node that has a customizable hostname (#HostName).When

applied to the EDMM instance model, this will match with any

MySQL DB that is hosted on a MySQL DBMS with this specific

hostname. Furthermore, the Checker is modeled as a single MySQL

DB node that poses a requirement on the set of users allowed to

have access to it via the #AllowedUsers parameter.

The approach, which is implemented by the subgraph-matching

-checking-plugin, uses the VF2 algorithm for subgraph isomor-

phism [4]. During matching, two software components are con-

sidered to be equal if their types match according to a predefined

type hierarchy and their property values match. We enhance the

original approach [19] by allowing the use of Boolean expressions,

e.g., value == #HostName, as property values in the Identifier and

Checker, thus facilitating more expressive matching with instance

models. The expressions use the Spring Expression Language [35]
and may have parameters, e.g., #HostName, that get a concrete value

when the rule is used in a Compliance Job. We extended Winery,

a TOSCA and EDMM modeling tool, to support modeling such

compliance rules and accessing them via a REST API.

As discussed in Section 5, in order to check and enforce technical

compliance rules against a given application instance, a framework

user needs to use the frontend UI to configure a set of entities

that tell the framework how to run the Compliance Checking and

Enforcement Process. In Listing 1, we see a YAML snippet of the

configuration needed to check and enforce the technical compliance

rule CR1 discussed above. Specifically, the user starts with config-

uring a reusable Compliance Rule entity that represents CR1. The

entity indicates that the technical compliance rule can be retrieved

from Eclipse Winery using the URL “http://winery/cr1” and that

Compliance Management of IaC-Based Cloud Deployments During Runtime UCC ’23, December 04–07, 2023, Taormina (Messina), Italy

the rule’s format is “subgraph-matching”, which corresponds to the

format presented in Figure 6. Furthermore, the entity declares two

customizable parameters: “HostName” and “AllowedUsers”. Next,

the user configures a reusable Production System entity specifying

OpenTOSCA Container as the IaC tool used to manage the appli-

cation instance under consideration, named “MySimple3TierApp”,

and provides information on how to communicate with it using the

opentosca-container-model-creation-plugin.

Finally, the user creates a Compliance Job entity that points to

the Compliance Rule and Production System previously created. Ad-

ditionally, it specifies concrete values for the parameters of CR1

stating that the hostname of the considered DBMS is “financeDB”

and the only user allowed to access the DB is “financeSysUser”.

Furthermore, it specifies that if CR1 is found to be violated, a Viola-

tion Type named “UNAUTHORIZED_DB_USER” will be reported.

Lastly, the job specifies that the plugin used to parse the included

technical compliance rule and execute the compliance checking

step is subgraph-matching-checking-plugin, which corresponds to

the subgraph isomorphism-based approach discussed earlier. For

brevity, we skip describing the configuration of the other steps

of the Compliance Checking and Enforcement Process (see Sec-

tion 4.2). To demonstrate the usage of the framework and to assist

reproducibility, we recorded a video
3
showing how to use IaCMF

to configure and execute the Compliance Jobs that correspond to

all the compliance rules shown in Figure 6.

7 EVALUATION
In Section 3, we discussed the research method used in this work,

which follows the design-science methodology [36]. In this section,

we give further details about how we evaluated the resulting IT

artifacts, namely, the RICMa method and IaCMF, which is depicted

as the last step in Figure 2. Specifically, we conducted a qualitative

interview study. We started by designing the compliance use cases

we presented in Section 1. Furthermore, we designed an interview
guide, which comprises the questions to be asked during interviews

and their order, the criteria used for selecting candidate participants,

and a fundamentals document containing background information

about the RICMa method and IaCMF. Next, we recorded a video

showing the implementation of two of the three compliance use

cases using the framework. Then we invited potential participants

and requested them to watch the video and read the fundamentals

document before conducting the interviews. We held online individ-

ual interviews with the participants that lasted 40–60 minutes. We

recorded the interviews, transcribed them using theWhisper speech

recognition tool [28], manually refined the transcripts, anonymized

them, and analyzed them by finding common and interesting opin-

ions among the participants. A dataset containing the interview

guide and all transcripts is available online
4
.

The interview included 24 questions, which focused on demo-

graphic information (summarized in Table 2) and on the following

expected attributes associated with using the RICMa method and

IaCMF: (i) the reduction of effort, (ii) the reduction of complexity,
(iii) the reduction of uncertainty, and (iv) novelty.

3
Available at: https://clipchamp.com/watch/Geqe70aPkjh

4
Available at: https://doi.org/10.5281/zenodo.8252989

Table 2: Demographic information for interviewparticipants.

Participant Role Years of IaC
Experience Company Domain Employees

P1
Senior

Software

Developer

11

C1 Technology <50

P2 Software

Developer

4

P3 CTO 10

P4 System

Manager

8

C2 Technology >100k

P5 System

Admin

6

P6 Researcher 3 C3 Automotive >100k

P7 Software

Architect

12 C4 Telecom. 50k .. 100k

P8 Software

Architect

9 C5 Technology >100k

P9 Network

Admin

6 C6

IT

Management

250 .. 2k

Five participants have reported that they define lists of free-text

compliance rules to be followed in their current practices. For ex-

ample P1 stated, “We have a kind of semi-comprehensive sheet that

lists common security issues when it comes to running software in

the cloud or over the internet.” Furthermore, six participants have

reported that checking compliance rules against running applica-

tion instances is done manually. For example, P2 disclosed, “On the

infrastructure levels of Kubernetes, we don’t have automatic check-

ings: so, this is done by us by manual checking and looking.” Hence,

it is evident that defining compliance rules currently is not a com-

plex task, but checking them is. Therefore, all participants agreed

that using the framework to define compliance rules takes more

effort and is more complex than their current practices, but when

the rules exist, checking them becomes very simple and effortless. For
example, P2 argued, “I think once you have your rule, really asking

(the framework) to (perform) checking, is no effort (...) you shift the

complexity to defining your rules. But when you define them, there

is no complexity during checking, because you have your rules

defined as machine-readable instructions.” Moreover, seven partici-

pants agreed that using well-defined, machine-readable models for

compliance rules reduces the uncertainty associated with interpret-
ing them. For example, P6 emphasized, “Maybe it’s (manageable)

for smaller systems, but if you reach a certain level of complexity,

I think you need some language or model you can rely on. For

large distributed systems. It’s difficult to do things without mod-

els.” Nonetheless, P7 argued that uncertainty may still arise since

the quality of modeled rules is not ensured: “How do I check the

compliance rules for quality? (...) I (should be able to) inspect and

improve the rules.”

Violation fixing is a step in the RICMamethod. Some participants

said that they already applied semi-automatic fixes to address com-

pliance violations. This is done by manually changing the IaC code

and automatically redeploying it using an existing CI/CD pipeline.

For example, P4 stated, “Once we know which (of the infrastructure

resources) is affected, then we need to define an action plan: Can

we reinstall it? Can we test it? How will this affect all other applica-

tions? (The changes) will be tested in the staging environment, and

then rolled out to production.” Participants P1, P2, P3, and P5 use a
similar practice. Nonetheless, fixing compliance violations related

https://clipchamp.com/watch/Geqe70aPkjh
https://doi.org/10.5281/zenodo.8252989

UCC ’23, December 04–07, 2023, Taormina (Messina), Italy Falazi et al.

Degree of Agreement

Fr
eq

ue
nc

y

0

2

4

6

1 2 3 4 5

(a) Using IaCMF reduces the ef-
fort associated with defining and
checking compliance rules.

Degree of Agreement

Fr
eq

ue
nc

y

0

2

4

6

1 2 3 4 5

(b) Using IaCMF reduces the com-
plexity associated with defining
and checking compliance rules.

Degree of Agreement

Fr
eq

ue
nc

y

0

2

4

6

1 2 3 4 5

(c) Using well-defined models for
compliance rules reduces the un-
certainty associated with inter-
preting them.

Degree of Agreement

Fr
eq

ue
nc

y

0

2

4

6

1 2 3 4 5

(d) Using IaCMF reduces the ef-
fort associated with fixing com-
pliance violations (2 participants
did not give concrete answers).

Degree of Agreement

Fr
eq

ue
nc

y

0

2

4

6

1 2 3 4 5

(e) Having well-defined models for compliance jobs reduces the un-
certainty associated with handling detected violations (1 participant
did not give a concrete answer).

Figure 7: Responses to Likert-style interview questions (1
represents “totally disagree” and 5 represents “totally agree”).

to the parts of the infrastructure not (yet) incorporated into the

CI/CD pipeline is done manually. For example, P1 acknowledged,
“For stuff like managed services, we apply manual configurations.”

The other participants stated they currently only employ manual

violation fixing. All participants agreed that using the framework

would reduce the effort associated with fixing compliance violations
to some degree, but only if a suitable plugin exists. For example,

P6 argued, “If you do have the plugins suitable for your use case,

(then) the effort is like almost no effort.” Furthermore, most partic-

ipants agreed that using well-defined compliance jobs reduces the
uncertainty associated with handling detected compliance violations.
For example, P7 stated, “A compliance job provides structure be-

cause it provides a set of interrelated compliance rules in the same

application. One has some feeling of the application.”

Moreover, all participants agreed that the RICMamethod is novel
in that it combines all compliance management tasks in one process.

For example, P2 claimed, “At least for me it was something new. So

you detect it and you fix it all at once.” Furthermore, P7 highlighted

that being domain-specific for compliance checks gives IaCMF an

advantage over using CI tools for compliance management: “(Using

CI for compliance management) is the most possible general frame-

work and I have to have the mental mapping from the CI checks

to the compliance rules, and IaCMF does that for me, and then I

can also have more coding-far-out people, e.g., security experts,

using this framework.” Finally, Figure 7 summarizes the responses

to five Likert-style questions that asked how much each participant

agreed to the corresponding statements.

8 THREATS TO VALIDITY
In this section, we discuss aspects that might threaten the validity

of our approach and the qualitative interview study.

External Validity: This type of validity pertains to the gener-

alizability of the results. Starting with the approach, one threat to

external validity is handling legacy systems that do not utilize IaC

tools. Of course, if there are individual legacy systems that cannot

be recognized with the common instance model creation plugins

we use for modern applications and for which the effort would

be too high to write dedicated plugins, we recommend creating

instance models manually, e.g., using the manual-model-creation-

plugin introduced in Section 6.1. Note that checking the compliance

of these systems works similarly to other systems due to the usage

of a technology-agnostic language to represent instance models,

i.e., EDMM (see Section 4.2.1). Another potential threat to exter-

nal validity is the performance of IaCMF. If the execution of the

Compliance Checking and Enforcement Process lacks sufficient

performance, usability will be greatly affected. However, the per-

formance of IaCMF is mainly driven by the used plugins rather

than the framework itself. For example, if human intervention is

needed for certain plugins, performance will inevitably be affected.

Lastly, if the accuracy of compliance checking is low, usability will

also be affected. Nonetheless, this is predominantly decided by the

accuracy of the modeled compliance rules and not IaCMF itself.

A potential threat to the external validity of the interview study

pertains to the non-random selection of interviewees, as we specifi-

cally reached out to certain experts. This affects the extent to which

our findings can be applied to practitioners in different companies.

To address this threat, we made sure to select participants with

different roles that work for companies with varying sizes and

domains. Additionally, the number of interviews conducted with

practitioners is insufficient for statistical generalization.

Internal Validity: The main concern here is how we select

the interview participants and the potential bias that may arise.

To mitigate this threat, specific decisions were made. For exam-

ple, to ensure that the evaluation was conducted by individuals

with relevant expertise, all selected participants were practition-

ers with extensive experience in software engineering and a solid

understanding of IaC technologies stemming from an industrial

background rather than a pure academic background.

Construct Validity: During individual interviews, practitioners
were given the opportunity to freely express their opinions without

any interruption from the researchers. To ensure this environment,

we adhered to established guidelines, such as those outlined in a

reputable source like [16] for conducting interviews with practition-

ers. These guidelines served as a reference to maintain a respectful

and open atmosphere that encouraged practitioners to share their

thoughts and perspectives without any interference.

9 CONCLUSION AND FUTUREWORK
In this work, we have tackled the problem of defining a method

to check compliance rules against IaC-based cloud deployments at

Compliance Management of IaC-Based Cloud Deployments During Runtime UCC ’23, December 04–07, 2023, Taormina (Messina), Italy

runtime and fix the possible violationswhile reducing the associated

complexity, effort, and uncertainty. To this end, we followed the

design-science methodology to design and develop (i) the RICMa

method, which is capable of solving the aforementioned research

problem, and (ii) IaCMF, an extensible framework that supports

executing the RICMa method.

We evaluated the usefulness of the RICMa method and IaCMF

by conducting nine interviews with industry experts. One interest-

ing outcome is that a careful cost-benefit analysis is needed before

adopting IaCMF since using it entails significant effort for defin-

ing technical compliance rules and specialized plugins for specific

use cases. This makes the framework more beneficial for compa-

nies managing a large number of IaC-based cloud deployments.

Furthermore, adoption can be facilitated by providing large, pub-

licly accessible repositories of customizable plugins and technical

compliance rules for well-known catalogs, e.g., DISA STIGs [7].

A possible direction for future research is answering the ques-

tion of how to integrate the RICMa method with standard DevOps

pipelines, which was explicitly asked by most interview partici-

pants. Another question to be answered in future research is how

we can enhance the method to ensure the quality of the authored

technical compliance rules, e.g., by detecting conflicting rules when

applied to the same production system, and howwe can incorporate

the Common Vulnerability Scoring System (CVSS) [10], which is

commonly used in industry.

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) - Project number 314720630, and

FWF (Austrian Science Fund) project IAC
2
: I 4731-N.

REFERENCES
[1] Amazon Web Services. 2023. AWS Config Documentation. https://docs.aws.

amazon.com/config/

[2] Matej Artac, Tadej Borovssak, Elisabetta Di Nitto, Michele Guerriero, and

Damian Andrew Tamburri. 2017. DevOps: Introducing Infrastructure-as-Code.

In IEEE/ACM ICSE-C’17. 497–498.
[3] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,

Alexander Nowak, and Sebastian Wagner. 2013. OpenTOSCA – A Runtime for

TOSCA-based Cloud Applications. In ICSOC’13, Vol. 8274. Springer, 692–695.
[4] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)

Graph Isomorphism Algorithm for Matching Large Graphs. IEEE Trans. Pattern
Anal. Mach. Intell. 26, 10 (2004), 1367–1372.

[5] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian Andrew Tam-

burri. 2020. Toward a catalog of software quality metrics for infrastructure code.

Journal of Systems and Software 170 (2020), 110726.
[6] Stefano Dalla Palma, Dario Di Nucci, and Damian A. Tamburri. 2020. Ansible-

Metrics: A Python library for measuring Infrastructure-as-Code blueprints in

Ansible. SoftwareX 12 (2020), 100633.

[7] Defense Information Systems Agency. 2023. Security Technical Implementation

Guides (STIGs). https://public.cyber.mil/stigs/

[8] Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann, Miles Stötzner, Evangelos

Ntentos, Uwe Zdun, Martin Becker, and Elena Heldwein. 2022. On Unifying

the Compliance Management of Applications Based on IaC Automation. In IEEE
ICSA-C’22. IEEE, 226–229.

[9] Markus Fischer, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann. 2017.

Towards an Approach for Automatically Checking Compliance Rules in Deploy-

ment Models. In SECURWARE’17. Xpert Publishing Services (XPS), 150–153.
[10] Forum of Incident Response and Security Teams, Inc. 2019. CommonVulnerability

Scoring System version 3.1: User Guide. https://www.first.org/cvss/user-guide

[11] Google Cloud. 2023. Security Command Center. https://cloud.google.com/

security-command-center

[12] Lukas Harzenetter, Tobias Binz, Uwe Breitenbücher, Frank Leymann, and Michael

Wurster. 2021. Automated Generation of Management Workflows for Run-

ning Applications by Deriving and Enriching Instance Models. In CLOSER’21.

SciTePress, 99–110.

[13] Lukas Harzenetter, Uwe Breitenbücher, Tobias Binz, and Frank Leymann. 2023.

An Integrated Management System for Composed Applications Deployed by

Different Deployment Automation Technologies. SN Computer Science 4, 370
(2023), 1–16.

[14] Klaus Havelund. 2014. Rule-based runtime verification revisited. International
Journal on Software Tools for Technology Transfer 17, 2 (April 2014), 143–170.

[15] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. Design

Science in Information Systems Research. MIS Quarterly 28, 1 (2004), 75–105.

[16] S.E. Hove and B. Anda. 2005. Experiences from conducting semi-structured

interviews in empirical software engineering research. In METRICS’05. 10–23.
[17] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Addison-Wesley Professional.

[18] Christoph Krieger, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann,

Vladimir Yussupov, and Uwe Zdun. 2020. Monitoring Behavioral Compliance

with Architectural Patterns Based on Complex Event Processing. In Proceedings
of the 8th European Conference on Service-Oriented and Cloud Computing (ESOCC
2020). Springer International Publishing, 125–140.

[19] Christoph Krieger, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann. 2018.

An Approach to Automatically Check the Compliance of Declarative Deployment

Models. In SummerSoC’18. IBM Research Division, 76–89.

[20] Indika Kumara, Martín Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio

Palomba, Damian Andrew Tamburri, and Willem-Jan van den Heuvel. 2021.

The do’s and don’ts of infrastructure code: A systematic gray literature review.

Information and Software Technology 137 (2021), 106593.

[21] Indika Kumara, Zoe Vasileiou, Georgios Meditskos, Damian A. Tamburri, Willem-

Jan Van Den Heuvel, Anastasios Karakostas, Stefanos Vrochidis, and Ioannis

Kompatsiaris. 2020. Towards Semantic Detection of Smells in Cloud Infrastructure

Code. In WIMS’20 (Biarritz, France). ACM, 63–67.

[22] Microsoft. 2023. Azure Policy Documentation. https://learn.microsoft.com/en-

us/azure/governance/policy/

[23] Kief Morris. 2020. Infrastructure as Code: Dynamic Systems for the Cloud. Vol. 2.
O’Reilly.

[24] National Institute of Standards and Technology. 2020. Security and Privacy
Controls for Information Systems and Organizations. Technical Report. https:

//doi.org/10.6028/nist.sp.800-53r5

[25] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Meixner, and

Sebastian Geiger. 2020. Assessing Architecture Conformance to Coupling-Related

Patterns and Practices in Microservices. In ECSA’20.
[26] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Meixner, and

Sebastian Geiger. 2020. Metrics for Assessing Architecture Conformance to

Microservice Architecture Patterns and Practices. In ICSOC’20.
[27] Palo Alto Networks, Inc. 2023. Prisma™ Cloud Administrator’s Guide. https:

//docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin

[28] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey,

and Ilya Sutskever. 2022. Robust Speech Recognition via Large-Scale Weak

Supervision. arXiv:2212.04356

[29] Red Hat OpenShift Documentation Team. 2023. Security and Compliance

OpenShift Container Platform. https://access.redhat.com/documentation/en-

us/openshift_container_platform/4.13/html/security_and_compliance/

[30] Karoline Saatkamp, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2019.

An approach to automatically detect problems in restructured deployment models

based on formalizing architecture and design patterns. SICS Software-Intensive
Cyber-Physical Systems (Feb. 2019), 1–13.

[31] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your

Configuration Code Smell?. In MSR’16 (Austin, Texas). ACM, 189–200.

[32] Thodoris Sotiropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. 2020. Prac-

tical Fault Detection in Puppet Programs. In ICSE’20. ACM, 26–37.

[33] Eduard van der Bent, Jurriaan Hage, Joost Visser, and Georgios Gousios. 2018.

How good is your puppet? An empirically defined and validated quality model

for puppet. In IEEE SANER’17. 164–174.
[34] VMware Aria Automation SaaS. 2023. Using Automation for Secure

Hosts. https://docs.vmware.com/en/VMware-Aria-Automation/SaaS/using-

automation-secure-hosts.pdf

[35] VMWare, Inc. 2023. Spring Expression Language. https://docs.spring.io/spring-

framework/reference/core/expressions.html

[36] Roel J. Wieringa. 2014. Design Science Methodology for Information Systems and
Software Engineering. Springer. https://doi.org/10.1007/978-3-662-43839-8

[37] Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, Christoph Krieger,

Frank Leymann, Karoline Saatkamp, and Jacopo Soldani. 2019. The Essential

Deployment Metamodel: A Systematic Review of Deployment Automation Tech-

nologies. SICS 35 (2019), 63–75.
[38] Michael Zimmermann, Uwe Breitenbücher, Christoph Krieger, and Frank Ley-

mann. 2018. Deployment Enforcement Rules for TOSCA-based Applications. In

SECURWARE’18. XPS, 114–121.

https://docs.aws.amazon.com/config/
https://docs.aws.amazon.com/config/
https://public.cyber.mil/stigs/
https://www.first.org/cvss/user-guide
https://cloud.google.com/security-command-center
https://cloud.google.com/security-command-center
https://learn.microsoft.com/en-us/azure/governance/policy/
https://learn.microsoft.com/en-us/azure/governance/policy/
https://doi.org/10.6028/nist.sp.800-53r5
https://doi.org/10.6028/nist.sp.800-53r5
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin
https://arxiv.org/abs/2212.04356
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/security_and_compliance/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/security_and_compliance/
https://docs.vmware.com/en/VMware-Aria-Automation/SaaS/using-automation-secure-hosts.pdf
https://docs.vmware.com/en/VMware-Aria-Automation/SaaS/using-automation-secure-hosts.pdf
https://docs.spring.io/spring-framework/reference/core/expressions.html
https://docs.spring.io/spring-framework/reference/core/expressions.html
https://doi.org/10.1007/978-3-662-43839-8

	Abstract
	1 Introduction
	2 Related Work
	2.1 Related Work on IaC Best Practices and Design-Time IaC Compliance
	2.2 Related Work on Behavioral Compliance for Cloud Deployments
	2.3 Related Industrial Approaches

	3 Research Method
	4 Runtime IaC-Based Compliance Management Method
	4.1 Compliance Rule Modeling Process
	4.2 Compliance Checking and Enforcement Process
	4.2.1 ❶ Reconstruct Instance Model
	4.2.2 ❷ Check Compliance
	4.2.3 ❸ Fix Violations
	4.2.4 ❹ Validate Application Instance
	4.2.5 ❺ Generate Report

	5 IaC-Based Application Compliance Management Framework
	6 Validation
	6.1 Prototypical Implementation
	6.2 Demonstrative Use Case

	7 Evaluation
	8 Threats to Validity
	9 Conclusion and Future Work
	Acknowledgments
	References

