
Simple, Scalable and Effective Clustering via One-Dimensional
Projections

Moses Charikar1, Monika Henzinger2, Lunjia Hu3, Maximilian Vötsch4, and Erik
Waingarten5

1,3Stanford University
2Institute of Science and Technology Austria (ISTA)

4Faculty of Computer Science, Doctoral School of Computer Science DoCS Vienna,
University of Vienna

5Department of Computer and Information Sciences, University of Pennsylvania

October 26, 2023

Abstract

Clustering is a fundamental problem in unsupervised machine learning with many applications
in data analysis. Popular clustering algorithms such as Lloyd’s algorithm and k-means++ can
take Ω(ndk) time when clustering n points in a d-dimensional space (represented by an n× d
matrix X) into k clusters. In applications with moderate to large k, the multiplicative k factor
can become very expensive. We introduce a simple randomized clustering algorithm that provably
runs in expected time O(nnz(X) + n log n) for arbitrary k. Here nnz(X) is the total number of
non-zero entries in the input dataset X, which is upper bounded by nd and can be significantly
smaller for sparse datasets. We prove that our algorithm achieves approximation ratio Õ(k4)
on any input dataset for the k-means objective. We also believe that our theoretical analysis
is of independent interest, as we show that the approximation ratio of a k-means algorithm
is approximately preserved under a class of projections and that k-means++ seeding can be
implemented in expected O(n log n) time in one dimension. Finally, we show experimentally that
our clustering algorithm gives a new tradeoff between running time and cluster quality compared
to previous state-of-the-art methods for these tasks.

1 Introduction

Clustering is an essential and powerful tool for data analysis with broad applications in computer
vision and computational biology, and it is one of the fundamental problems in unsupervised machine
learning. In large-scale applications, datasets often contain billions of high-dimensional points.
Grouping similar data points into clusters is crucial for understanding and organizing datasets.
Because of its practical importance, the problem of designing efficient and effective clustering
algorithms has attracted the attention of numerous researchers for many decades.

One of the most popular algorithms for the k-means clustering problem is Lloyd’s algorithm [Llo82],
which seeks to locate k centers in the space that minimize the sum of squared distances from the
points of the dataset to their closest center (we call this the “k-means cost”). While finding the

1

ar
X

iv
:2

31
0.

16
75

2v
1

 [
cs

.L
G

]
 2

5
O

ct
 2

02
3

centers minimizing the objective is NP-hard [ADHP09], in practice we can find high-quality sets
of centers using Lloyd’s iterative algorithm. Lloyd’s algorithm maintains a set of k centers. It
iteratively updates them by assigning points to one of k clusters (according to their closest center),
then redefining the center as the points’ center of mass. It needs a good initial set of centers
to obtain a high-quality clustering and fast convergence. In practice, the k-means++ algorithm
[AV07], a randomized seeding procedure, is used to choose the initial k centers. k-means++ achieves
an O(log k)-approximation ratio in expectation, upon which each iteration of Lloyd’s algorithm
improves.1 Beyond their effectiveness, these algorithms are simple to describe and implement,
contributing to their popularity.

The downside of these algorithms is that they do not scale well to massive datasets. A standard
implementation of an iteration of Lloyd’s algorithm needs to calculate the distance to each center for
each point in the dataset, leading to a Θ(ndk) running time. Similarly, the standard implementation
of the k-means++ seeding procedure produces k samples from the so-called D2 distribution (see
Section 3 for details). Maintaining the distribution requires making a pass over the entire dataset
after choosing each sample. Generating k centers leads to a Θ(ndk) running time. Even for moderate
values of k, making k passes over the entire dataset can be prohibitively expensive.

One particularly relevant application of large-scale k-means clustering is in approximate nearest
neighbor search [SWA+22] (for example, in product quantization [JDS10] and building inverted file
indices [Bri]). There, k-means clustering is used to compress entire datasets by mapping vectors
to their nearest centers, leading to billion-scale clustering problems with large k (on the order of
hundreds or thousands). Other applications on large datasets requiring a large number of centers
may be spam filtering [QPH+10, SSM+16], near-duplicate detection [HCLM09], and compression or
reconciliation tasks [RSPR18]. New algorithmic ideas are needed for these massive scales, and this
motivates the following challenge:

Can we design a simple, practical algorithm for k-means that runs in time roughly O(nd),
independent of k, and produces high-quality clusters?

Given its importance in theory and practice, a significant amount of effort has been devoted to
algorithms for fast k-means clustering. We summarize a few of the approaches below with the pros
and cons of each so that we may highlight our work’s position within the literature:

A. Standard k-means++: This is our standard benchmark. Plus: Guaranteed to be an
O(log k)-approximation [AV07]; outputs centers, as well as the assignments of dataset points
to centers. Minus: The running time is O(ndk), which is prohibitively expensive in large-scale
applications.

B. Using Approximate Nearest Neighbor Search: One may implement k-means++ faster
using techniques from approximate nearest neighbor search (instead of a brute force search
each iteration). Plus: The algorithms with provable guarantees, like [CALNF+20], obtain an
Oε(log k)-approximation. Minus: The running time is Õ(nd+ (n log(∆))1+ε), depending on
a dataset dependent parameter ∆, the ratio between the maximum and minimum distances
between input points. The techniques are algorithmically sophisticated and incur extra poly-
logarithmic factors (hidden in Õ(·)), making the implementation significantly more complicated.

1Approximation is with respect to the k-means cost. A c-approximation has k-means cost, which is at most c times
larger than the optimal k-means cost.

2

C. Approximating the D2-Distribution: Algorithms that speed up the seeding procedure for
Lloyd’s algorithm or generate fast coresets (we expand on this below) have been proposed in
[BLHK16b, BLHK16a, BLK18]. Plus: These algorithms are fast, making only one pass over
the dataset in time O(nd). (For [BLHK16b, BLHK16a], there is an additional additive O(k2d)
term in the running time). Minus: The approximation guarantees are qualitatively weaker
than the approximation of k-means clustering. They incur an additional additive approximation
error that grows with the entire dataset’s variance (which can lead to an arbitrarily large error;
see Section 7). These algorithms output a set of k centers but not the cluster assignments.
Naively producing the assignments would take time O(ndk).2

Coresets. At a high level, coresets are a dataset-reduction mechanism. A large dataset X of n
points in Rd is distilled into a significantly smaller (weighted) dataset Y of m points in Rd, called
a “coreset” which serves as a good proxy for X, i.e., the clustering cost of any k centers on Y is
approximately the cost of the same centers on X. We point the reader to [BLK17, Fel20] for a recent
survey on coresets. Importantly, coreset constructions (with provable multiplicative-approximation
guarantees) require an initial approximate clustering of the original dataset X. Therefore, any fast
algorithm for k-means clustering automatically speeds up any algorithmic pipeline that uses coresets
for clustering — looking forward, we will show how our algorithm can significantly speed up coreset
constructions without sacrificing approximation.

Beyond those mentioned above, many works seek to speed up k-means++ or Lloyd iterations
by maintaining some nearest neighbor search data structures [PM99, Moo00, KMN+00, KMN+02,
Elk03, PCI+07, Ham10, Phi10, WWK+12, Dra13, DZS+15, BBK16, NF16, Cur17, CPL18], or by
running some first-order methods [Scu10]. These techniques do not give provable guarantees on the
quality of the k-means clustering or on the running time of their algorithms.

Theoretical Results. We give a simple randomized clustering algorithm with provable guarantees
on its running time and approximation ratio without making any assumptions about the data. It has
the benefit of being fast (like the algorithms in Category C above) while achieving a multiplicative
error guarantee without additional additive error (like the algorithms in Category B above).

• The algorithm runs in time O(nd+ n log n) irrespective of k. It passes over the dataset once
to perform data reduction, which gives the nd factor plus an additive O(n log n) term to solve
k-means on the reduced data, producing k centers and cluster assignments. On sparse input
datasets, the nd term becomes nnz(X), where nnz(X) is the number of non-zero entries in the
dataset. Thus, our algorithm runs in O(nnz(X) + n log n) time on sparse matrices.

• The algorithm is as simple as the k-means++ algorithm while significantly more efficient.
The approximation ratio we prove is poly(k), which is worse than the O(log k)-approximation
achieved by k-means++ but multiplicative (see the remark below on improving this to O(log k)).
It does not incur the additional additive errors from the fast algorithms in [BLHK16b, BLHK16a,
BLK18].

Our algorithm projects the input points to a random one-dimensional space and runs an efficient
k-means++ seeding after the projection. For the approximation guarantee, we analyze how the

2One may use approximate nearest neighbor search techniques to improve on the O(ndk) running time. However,
as discussed above, approximate nearest neighbor search adds a significant layer of complexity (and approximation).

3

approximation ratio achieved after the projection can be transferred to the original points (Lemma 2.5).
We bound the running time of our algorithm by efficiently implementing the k-means++ seeding in
one dimension and analyzing the running time via a potential function argument (Lemma 2.4). Our
algorithm applies beyond k-means to other clustering objectives that sum up the z-th power of the
distances for general z ≥ 1, and our guarantees on its running time and approximation ratio extend
smoothly to these settings.

Improving the Approximation from poly(k) to O(log k). The approximation ratio of poly(k)
may seem significantly worse than the O(log k) approximations achievable with k-means++. However,
we can improve this to O(log k) with an additional, additive O(poly(kd) · log n) term in the running
time. Using previous results discussed in Section 3.2 (specifically Theorem 3.6), a multiplicative
poly(k)-approximation suffices to construct a coreset of size poly(kd) and run k-means++ on the
coreset. Constructing the coreset is simple and takes time poly(kd) · log n (by sampling from
an appropriate distribution); running k-means++ on the coreset takes poly(kd) time (with no
dependence on n). Combining our algorithm with coresets, we get a O(log k)-approximation in
O(nnz(X)) +O(n log n) + poly(kd) · log n time. Notably, these guarantees cannot be achieved with
the additive approximations of [BLHK16b, BLHK16a, BLK18].

Experimental Results. We implemented our algorithm, as well as the lightweight coreset
of [BLK18] and k-means++ with sensitivity sampling [BFL16]. We ran two types of experiments,
highlighting various aspects of our algorithm. Our code is published on GitHub3. The two types of
experiments are:

• Coreset Construction Comparison: First, we evaluate the performance of our clustering
algorithm when we use it to construct coresets. We compare the performance of our algorithm
to k-means++ with sensitivity sampling [BLK17] and lightweight coresets [BLK18]. In real-
world, high-dimensional data, the cost of the resulting clusters from the three algorithms is
roughly the same. However, ours and the lightweight coresets can be significantly faster (ours
is up to 190x faster than k-means++, see Figure 4 and Table 1). The lightweight coresets can
be faster than our algorithm (between 3-5x); however, our algorithm is “robust” (achieving
multiplicative approximation guarantees).4 Additionally, we show that the clustering from
lightweight coresets can have an arbitrarily high cost for a synthetic dataset. On the other
hand, our algorithm achieves provable (multiplicative) approximation guarantees irrespective
of the dataset (this is demonstrated in the right-most column of Figure 4).

• Direct k-means++ comparison: Second, we compare the speed and cost of our algorithm
to k-means++[AV07] as a stand-alone clustering algorithm (we also compare two other natural
variants of our algorithm). Our algorithm can be up to 800x faster than k-means++ for
k = 5000 and our slowest variant up to 100x faster (Table 1). The cost of the cluster
assignments can be significantly worse than that of k-means++ (see Figure 5). Such a
result is expected since our theoretical results show a poly(k)-approximation. The other
(similarly) fast algorithms (based on approximating the D2-distribution) which run in time
O(nd) [BLHK16b, BLHK16a] do not produce the cluster assignments (they only output k

3PRONE GitHub repository: https://github.com/boredoms/prone
4Recall that the lightweight coresets incur an additional additive error which can be arbitrarily large.

4

https://github.com/boredoms/prone

centers). These algorithms would take O(ndk) time to find the cluster assignments — this is
precisely the computational cost our algorithm avoids.

We do not compare our algorithm with [CALNF+20] nor implement approximate nearest neigh-
bor search to speed up k-means++ for the following reasons. The algorithm in [CALNF+20] is
significantly more complicated, and there is no publicly available implementation. In addition,
both [CALNF+20] and approximate nearest neighbor search incur additional poly-logarithmic (or
even no(1)-factors for nearest neighbor search over ℓ2 [AIR18]) which add significant layers of com-
plexity to the implementation and make a thorough evaluation of the algorithm significantly more
complicated. Instead, our current implementation demonstrates that a simple, one-dimensional
projection and k-means++ on the line enables dramatic speedups to coreset constructions without
sacrificing approximation quality.

Related Work. Efficient algorithms for clustering problems with provable approximation guaran-
tees have been studied extensively, with a few approaches in the literature. There are polynomial-
time (constant) approximation algorithms (an exponential dependence on k is not allowed) (see
[LS13, BPR+15, ANFSW17, GOR+22] for some of the most recent and strongest results), nearly
linear time (1 ± ε)-approximations with running time exponential in k which proceed via core-
sets (see [HPM04, Che09, FL11, FSS20, BFL16, BLK17, CASS21, CALSS22] and references therein,
as well as the surveys [AHPV+05, Fel20]), and nearly-linear time (1± ε)-approximations in fixed /
low-dimensional spaces [ARR98, KR99, Tal04, FRS16, CAKM16, CA18, CAFS21]. Our O(n log n)-
expected-time implementation of k-means++ seeding achieves an O(log k) expected approximation
ratio for k-median and k-means in one dimension. We are unaware of previous work on clustering
algorithms running in time O(n log n).

Another line of research has been on dimensionality reduction techniques for k-means clustering.
Dimensionality reduction can be achieved via PCA based methods [DFK+04, FSS20, CEM+15,
SW18], or random projection [CEM+15, BBCA+19, MMR19]. For random projection methods, it
has been shown that the k-means objective is preserved up to small multiplicative factors when
projecting onto Oε(log(k)) dimensional space. Additional work has shown that dimensionality
reduction can be performed in O(nnz(A)) time [LST17]. To the best of our knowledge, we are the
first to show that clustering objectives such as k-median and k-means are preserved up to a poly(k)
factor by one-dimensional projections.

Some works show that the O(log k) expected approximation ratio for k-means++ can be improved
by adding local search steps after the seeding procedure [LS19, CGPR20]. In particular, Choo et al.
[CGPR20] showed that adding εk local search steps achieves an O(1/ε3) approximation ratio with
high probability.

Several other algorithmic approaches exist for fast clustering of points in metric spaces. These
include density-based methods like DBSCAN [EKSX96] and DBSCAN++ [JJ19] and the line of
heuristics based on the Partitioning Around Medoids (PAM) approach, such as FastPAM [SR19],
Clarans [NH02], and BanditPAM [TZM+20]. While these algorithms can produce high-quality clus-
tering, their running time is at least linear in the number of clusters (DBSCAN++ and BanditPAM)
or superlinear in the number of points (DBSCAN, FastPAM, Clarans).

5

2 Overview of Our Algorithm and Proof Techniques

Our algorithm, which we call PRONE (PRojected ONE-dimensional clustering), takes a random
projection onto a one-dimensional space, sorts the projected (scalar) numbers, and runs the k-
means++ seeding strategy on the projected numbers. By virtue of its simplicity, the algorithm
is scalable and effective at clustering massive datasets. More formally, PRONE receives as input a
dataset of n points in Rd, a parameter k ∈ N (the number of desired clusters), and proceeds as
follows:

1. Sample a random vector v ∈ Rd from the standard Gaussian distribution and project the data
points to one dimension along the direction of v. That is, we compute x′i = ⟨xi, v⟩ ∈ R in
time O(nnz(X)) by making a single pass over the data, effectively reducing our dataset to the
collection of one-dimensional points x′1, . . . , x

′
n ∈ R.

2. Run k-means++ seeding on x′1, . . . , x
′
n to obtain k indices j1, . . . , jk ∈ [n] indicating the chosen

centers x′j1 , . . . , x
′
jk

and an assignment σ : [n]→ [k] assigning point x′i to center x′jσ(i)
. Even

though k-means++ seeding generally takes O(nk) time in one dimension, we give an efficient
implementation, leveraging the fact that points are one-dimensional, which runs in O(n log n)
expected time, independent of k. A detailed algorithm description is in section 5.

3. The one-dimensional k-means++ algorithm produces a collection of k centers xj1 , . . . , xjk , as
well as the assignment σ mapping each point xi to the center xjσ(i)

. For each ℓ ∈ [k], we update
the cluster center for cluster ℓ to be the center of mass of all points assigned to xjℓ .

While the algorithm is straightforward, the main technical difficulty lies in the analysis. In particular,
our analysis (1) bounds the approximation loss incurred from the one-dimensional projection in
Step 1 and (2) shows that we can implement Step 2 in O(n log n) expected time, as opposed to
O(nk) time. We summarize the theoretical contributions in the following theorems.

Theorem 2.1. The algorithm PRONE has expected running time O(nnz(X) + n log n) on any dataset
X = {x1, . . . , xn} ⊂ Rd. Moreover, for any δ ∈ (0, 1/2) and any dataset X, with probability at least
1− δ, the algorithm runs in time O(nnz(X) + n log(n/δ)).

Theorem 2.2. The algorithm PRONE achieves an Õ(k4) approximation ratio for the k-means objective
with probability at least 0.9.

To our knowledge, PRONE is the first algorithm for k-means running in time O(nd+ n log n) for
arbitrary k. As mentioned in the paragraph on improving the competitive ratio, we obtain the
following corollary of Theorems 2.1 and 2.2 using a two-stage approach with a coreset:

Corollary 2.3. By using PRONE as the α-approximation algorithm in Theorem 3.6 and running
k-means++ on the resulting coreset, we obtain an algorithm with an approximation ratio of O(log k)
that runs in time O(nnz(X) + n log n+ poly(kd) log n), with constant success probability.

The proofs of Theorems 2.1 and 2.2 can be found in Sections 4 and 5, where we also generalize
them beyond k-means to clustering objectives that sum up the z-th power of Euclidean distances
for general z ≥ 1. The following subsections give a high-level overview of the main techniques we
develop to prove our main theorems above.

6

2.1 Efficient Seeding in One Dimension

The k-means++ seeding procedure has k iterations, where a new center is sampled in each iteration.
Since a new center may need to update Ω(n) distances to maintain the D2 distribution, which
samples each point with probability proportional to its distance to its closest center, a naive analysis
leads to a running time of O(nk). A key ingredient in the proof of Theorem 2.1 is showing that, for
one-dimensional datasets, k-means++ only needs to make O(n log n) updates, irrespective of k.

Lemma 2.4. The k-means++ seeding procedure can be implemented in expected time O(n log n) in
one dimension. Moreover, for any δ ∈ (0, 1/2), with probability at least 1− δ, the implementation
runs in time O(n log(n/δ)).

The intuition of the proof is as follows: Since points are one-dimensional, we always maintain
them in sorted order. In addition, each data point xi will maintain its center assignment and distance
pi to the closest center. By building a binary tree over the sorted points (where internal nodes
maintain sums of p2i ’s), it is easy to sample a new center from the D2 distribution in O(log n) time.
The difficulty is that adding a new center may result in changes to pi’s of multiple points xi, so the
challenge is to bound the number of times these values are updated (see Figure 1 below).

Figure 1: From the top to the bottom, a new center (black circle) is chosen. Every point has an
arrow pointing to its closest center. The points in the dashed box are the ones that require updates.

To bound the total running time, we leverage the one-dimensional structure. Observe that, for a
new center, the updated points lie in a contiguous interval around the newly chosen center. Once a
center is chosen, the algorithm scans the points (to the left and the right) until we reach a point
that does not need to be updated. This point identifies that points to the other side of it need not
be updated, so we can get away without necessarily checking all n points (see Figure 1). Somewhat
surprisingly, when sampling centers from the D2-distribution, the expected number of times that
each point will be updated is only O(log n), which implies a bound of O(n log n) on the total number
of updates in expectation. The analysis of the fact that each point is updated O(log n) times is
non-trivial and uses a carefully designed potential function (Lemma 5.5).

2.2 Approximation Guarantees from One-Dimensional Projections

Our proof of Theorem 2.2 builds on a line of work studying randomized dimension reduction for
clustering problems [BZMD14, CEM+15, BBCA+19, MMR19]. Prior work studied randomized
dimension reduction for accurate (1± ε)-approximations. Our perspective is slightly different; we
restrict ourselves to one-dimensional projections and give an upper bound on the distortion.

For any dataset x1, . . . , xn ∈ Rd, a projection to a random lower-dimensional space affects the
pairwise distance between the projected points in a predictable manner — the Johnson-Lindenstrauss

7

lemma which projects to O(log n) dimensions being a prime example of this fact. When projecting
to just one dimension, however, pairwise distances will be significantly affected (by up to poly(n)-
factors). Thus, a naive analysis will give a poly(n)-approximation for k-means. To improve a
c-approximation to a O(log k)-approximation, one needs a coreset of size roughly poly(c/ log k). This
bound becomes vacuous when c is polynomial in n since there are at most n dataset points.

However, although many pairwise distances are significantly distorted, we show that the k-means
cost is only affected by a poly(k)-factor. At a high level, this occurs because the k-means cost
optimizes a sum of pairwise distances (according to a chosen clustering). The individual summands,
given by pairwise distances, will change significantly, but the overall sum does not. Our proof
follows the approach of [CEM+15], which showed that (roughly speaking) pairwise distortion of the
k optimal centers suffices to argue about the k-means cost. The k optimal centers will incur maximal
pairwise distortion poly(k) when projected to one dimension (because there are only O(k2) pairwise
distances among the k centers). This allows us to lift an r-approximate solution after the projection
to an O(k4r)-approximate solution for the original points.

Lemma 2.5 (Informal). For any set X of points in Rd, the following occurs with probability at least
0.9 over the choice of a standard Gaussian vector v ∈ Rd. Letting X ′ ⊂ R be the one-dimensional
projection of X onto v, any r-approximate k-means clustering of X ′ gives an O(k4r)-approximate
clustering of X with the same clustering partition.

3 Preliminaries

In this work, we always consider datasets X = {x1, . . . , xn} ⊂ Rd of high-dimensional vectors, and
we will measure their distance using the Euclidean (ℓ2) distance. Below, we define (k, z)-clustering.
This problem introduces a parameter z ≥ 1, which measures the sensivity to outliers (as z grows, the
clusterings become more sensitive to points furthest from the cluster center). The case of k-means
corresponds to z = 2, but other values of z capture other well-known clustering objectives, like
k-median (the case of z = 1).

Definition 3.1 ((k, z)-Clustering). Consider a dataset X = {x1, . . . , xn} ⊂ Rd, a desired number of
clusters k ∈ N, and a parameter z ≥ 1. For a set of k centers C = {c1, . . . , ck} ⊂ Rd, let costz(X,C)
denote the cost of using the center set C to cluster X, i.e.,

costz(X,C) =

n∑
i=1

min
j∈[k]
∥xi − cj∥z2.

We let optk,z(X) denote the optimal cost over all choices of C = {c1, . . . , ck} ⊂ Rd:

optk,z(X) = inf
C⊂Rd

|C|≤k

costz(X,C).

A (k, z)-clustering algorithm has the following specifications. The algorithm receives as input
a dataset X = {x1, . . . , xn} ⊂ Rd, as well as two parameters k ∈ N and z ≥ 1. After it executes,
the algorithm should output a set of k centers C = {c1, . . . , ck} ⊂ Rd as well as an assignment
σ : [n]→ [k] mapping each point xi to a center cσ(i).

8

We measure the quality of the solution (C, σ) using the ratio between its (k, z)-clustering cost
costz(X,C, σ) and the optimal cost optk,z(X), where

costz(X,C, σ) :=
n∑

i=1

∥xi − cσ(xi)∥z2. (1)

For any D > 1, an algorithm that produces a D-approximation to (k, z)-clustering should guarantee
that costz(X,C, σ) is at most D · optk,z(X). For a randomized algorithm, the guarantee should hold
with large probability (referred to as the success probability) for any input dataset.

3.1 k-Means++ Seeding

The k-means++ seeding algorithm is a well-studied algorithm introduced in [AV07], and it is an
important component of our algorithm. Below, we describe it for general z ≥ 1, not necessarily
z = 2.

Definition 3.2 (k-means++ seeding, for arbitrary z ≥ 1). Given n data points x1, . . . , xn ∈ Rd, the
k-means++ seeding algorithm produces a set of k centers, xℓ1 , . . . , xℓk with the following procedure:

1. Choose ℓ1 uniformly at random from [n].

2. For t = 2, . . . , k, sample ℓt as follows. For every i ∈ [n], let pi denote the Euclidean distance
from xi to its closest point among xℓ1 , . . . , xℓt−1. Sample ℓt from [n] so that the probability
Pr[ℓt = i] is proportional to pzi for every i ∈ [n]. That is,

Pr[ℓt = i] =
pzi∑

i′∈[n] p
z
i

.

In the context of k-means (i.e., when z = 2), the distribution is known as the D2 distribution.

3. Output xℓ1 , . . . , xℓk .

In the above description, Step 2 of k-means++ needs to maintain, for each dataset point xi, the
Euclidean distance pi to its closest center among the centers selected before the current iteration.
This step is implemented by making an entire pass over the dataset for each of the k − 1 iterations
of Step 2, leading to an O(ndk) running time.

Theorem 3.3 ([AV07], Theorem 3 in [Wai]). For x1, . . . , xn ∈ Rd, let X = {x1, . . . , xn} be the
input to the k-means++ seeding algorithm. For the output xℓ1 , . . . , xℓk of the k-means++ seeding
algorithm, define C = {xℓ1 , . . . , xℓk}. Then

E[costz(X,C)] = O(22z log k) · optk,z(X).

3.2 Coresets via Sensitivity Sampling

One of our algorithm’s applications is constructing coresets for (k, z)-clustering. We give a formal
definition and describe the primary technique for building coresets.

9

Definition 3.4. Given a dataset X = {x1, . . . , xn} ⊂ Rd, as well as parameters k ∈ N, z ≥ 1 and
ε > 0, a (strong) ε-coreset for (k, z)-clustering is specified by a set of points Y ⊂ Rd and a weight
function w : Y → R≥0, such that, for every set C = {c1, . . . , ck} ⊂ Rd,

(1− ε) · costz(X,C) ≤
∑
y∈Y

w(y) · min
j∈[k]
∥y − cj∥z2 ≤ (1 + ε) · costz(X,C).

Coresets are constructed via “sensitivity sampling,” a technique that, given an approximate
clustering of a dataset X, produces a probability distribution such that sampling enough points from
this distribution results in a coreset.

Definition 3.5 (Sensitivity Sampling). Consider a dataset X = {x1, . . . , xn} ⊂ Rd, as well as
parameters k ∈ N, z ≥ 1. For a centet set C = {c1, . . . , ck} ⊂ Rd and assignment σ : [n]→ [k], let
Xj = {xi : σ(i) = j}. We let D be a distribution supported on X where

Pr
x∼D

[x = xi] ∝
∥xi − cσ(i)∥z2∑n
j=1 ∥xj − cσ(j)∥z2

+
1

|Xσ(i)|
.

The main theorem that we will use is given below, which shows that given a center set and an
assignment that gives an α-approximation to (k, z)-clustering, one may sample from the distribution
D defined about in order to generate a coreset with high probability.

Theorem 3.6 ([BFL16]). For any dataset X = {x1, . . . , xn} ⊂ Rd and any parameters k ∈ N and
z ≥ 1, suppose that C = {c1, . . . , ck} ⊂ Rd and σ : [n]→ [k] is a α-approximation to (k, z)-clustering,
i.e.,

n∑
i=1

∥xi − cσ(i)∥z2 ≤ α optk,z(X).

Letting D denote the distribution specified in Definition 3.5, the following occurs with high probability.

• We let y1, . . . ,ys denote independent samples from D, and w(yi) be the inverse of the probability
that yi is sampled according to D. We set s ≥ poly(kd · α · 2z/ε).

• The set Y = {y1, . . . , ys} with weights w is an ε-coreset for (k, z)-clustering.

3.3 A Simple Lemma

We will repeatedly use the following simple lemma.

Lemma 3.7. Let a, b ∈ R≥0 be any two numbers and z ≥ 1. Then, (a+ b)z ≤ 2z−1az + 2z−1bz.

Proof. The function ϕ(t) = tz is convex for z ≥ 1, so Jensen’s inequality implies ϕ((a + b)/2) ≤
(1/2)ϕ(a) + (1/2)ϕ(b).

4 Approximation Guarantees from One-Dimensional Projections

In this section, we prove Theorem 2.2 (rather, the generalization of Theorem 2.2 to any z ≥ 1)
by analyzing the random one-dimensional projection step in our algorithm. In order to introduce

10

some notation, let X = {x1, . . . , xn} ⊂ Rd be a set of points, and for a partition of X into k sets,
(Y1, . . . , Yk), we let the (k, z)-clustering cost of X with the partition (Y1, . . . , Yk) be

costz(Y1, . . . , Yk) =
k∑

i=1

min
c∈Rd

∑
x∈Yi

∥x− c∥z2 (2)

and call the k points c selected as minima a set of centers realizing the (k, z)-clustering cost
of (Y1, . . . , Yk). We note that (2) is a cost function for (k, z)-clustering, but it is different from
Definition 3.1. In Definition 3.1, the emphasis is on the set of k centers C = {c1, . . . , ck}, and the
induced set of clustering of X, i.e., the partition (Y1, . . . , Yk) given by assigning points to the closest
center, is only implicitly specified by the set of centers. On the other hand, (2) emphasizes the
clustering (Y1, . . . , Yk), and the set of k centers implicitly specified by (Y1, . . . , Yk). The optimal
set of centers and the optimal clustering will achieve the same cost; however, our proof will
mostly consider the clustering (Y1, . . . , Yk) as the object to optimize. Shortly, we will sample a
(random) dimensionality reduction map Π : Rd → R

t and seek bounds for t = 1. We will write
costz(Π(Y1), . . . ,Π(Yk)) for the cost of clustering the points after applying the dimensionality
reduction map Π to the partition Y1, . . . , Yk. Namely, we write

costz(Π(Y1), . . . ,Π(Yk)) =
k∑

i=1

min
c∈Rt

∑
x∈Yi

∥Π(x)− c∥z2.

Definition 4.1. For a set of points X = {x1, . . . , xn} ⊂ Rd, we use X∗
1 , . . . , X

∗
k of X to denote the

partition of X with minimum (k, z)-clustering cost and we use C∗ = {c∗1, . . . , c∗k} ⊂ Rd to denote a
set of k centers which realizes the (k, z)-clustering cost of X∗

1 , . . . , X
∗
k , i.e., the set of centers which

satisfies

costz(X
∗
1 , . . . , X

∗
k) =

k∑
i=1

∑
x∈X∗

i

∥x− c∗i ∥z2.

By slight abuse of notation, we also let c∗ : X → C∗ be the map which sends every point of X to its
corresponding center (i.e., if x ∈ X∗

i , then c∗(x) is the point c∗i).

We prove the following lemma, which generalizes Lemma 2.5 from k-means to (k, z)-clustering
(recall that k-means corresponds to the case of z = 2).

Lemma 4.2 (Effect of One-Dimensional Projection on (k, z)-Clustering). For n, d, k ∈ N and
z ≥ 1, let X = {x1, . . . , xn} ⊂ Rd be an arbitrary dataset. We consider the (random) linear map
Π : Rd → R given by sampling g ∼ N (0, Id) and setting

Π(x) = ⟨x, g⟩.

With probability at least 0.9 over g, the following occurs:

• We consider the projected dataset X′ = {x′
1, . . . ,x

′
n} ⊂ R be given by x′

i = Π(xi), and

• For any r ≥ 1, we let (Y1, . . . Yk) denote any partition of X satisfying

costz(Π(Y1), . . . ,Π(Yk)) ≤ r · min
c1,...,ck∈R

n∑
i=1

min
j∈[k]
|x′

i − cj |z.

11

Then,
costz(Y1, . . . , Yk) ≤ 2O(z) · k2z · r · optk,z(X).

By setting z = 2, we obtain the desired bound from Lemma 2.5. We can immediately see that,
from Lemma 4.2, and the approximation guarantees of k-means++ (or rather, its generalization
to z ≥ 1) in Theorem 3.3, we obtain our desired approximation guarantees. Below, we state the
generalization of Theorem 2.2 to all z ≥ 1 and, assuming Lemma 4.2, its proof.

Theorem 4.3 (Generalization of Theorem 2.2 to z ≥ 1). For n, d, k ∈ N and z ≥ 1, let X =
{x1, . . . , xn} ⊂ Rd be an arbitrary dataset. We consider the following generalization of our algorithm
PRONE:

1. Sample a random Gaussian vector g ∼ N (0, Id) and consider the projection X′ = {x′
1, . . . ,x

′
n}

given by x′
i = Π(xi), for Π(x) = ⟨x, g⟩ ∈ R.

2. Execute the (generalization of the) k-means++ seeding strategy for z ≥ 1 of Definition 3.2 with
the dataset X′ ⊂ R, and let x′

j1
, . . . ,x′

jk
∈ R denote the centers and (Y1, . . . ,Yk) denote the

partition of X specifying the k clusters found.

3. Output the clustering (Y1, . . . ,Yk), and the set of centers c1, . . . , ck ∈ Rd where

cℓ = E
x∼Yℓ

[x] ∈ Rd.

Then, with probability at least 0.8 over the execution of the algorithm,

costz(Y1, . . . ,Yk) ≤
k∑

ℓ=1

∑
x∈Yℓ

∥x− cℓ∥z2 ≤ 2O(z) · k2z · log k · optk,z(X).

Proof of Theorem 4.3 assuming Lemma 4.2. We consider the case (over the randomness in the exe-
cution of the algorithm) that:

1. The conclusions of Lemma 4.2 hold for the projected dataset X′ (which happens with probability
at least 0.9) by Lemma 4.2.

2. The execution of the generalization k-means++ seeding strategy on X′ (from Definition 3.2)
produces a set of centers {x′

j1
, . . . ,x′

jk
} ⊂ R which cluster X′ with cost at most O(22z log k) ·

optk,z(X
′) (which also happens with probability 0.9 by Markov’s inequality).

By a union bound, both hold with probability at least 0.8. We now use Lemma 4.2 to upper bound
the cost of the clustering (Y1, . . . ,Yk). The first inequality is trivial; suppose we let ĉ∗1, . . . , ĉ

∗
ℓ ∈ Rd

be the centers which minimize for each ℓ ∈ [k]

min
ĉℓ∈Rd

∑
x∈Yℓ

∥x− ĉℓ∥z2 =
∑
x∈Yℓ

∥x− ĉ∗ℓ∥z2.

Then, we trivially have

costz(Y1, . . . ,Yk) =
k∑

ℓ=1

∑
x∈Yℓ

∥x− ĉ∗ℓ∥z2 ≤
k∑

ℓ=1

∑
x∈Yℓ

∥x− cℓ∥z2.

12

Furthermore, we can also show a corresponding upper bound. For each ℓ ∈ [k], recall that cℓ ∈ Rd

is the center of mass of Yk, so we can apply the triangle inequality and Lemma 3.7∑
x∈Yℓ

∥x− cℓ∥z2 ≤ 2z−1
∑
x∈Yℓ

∥x− ĉ∗ℓ∥z2 + 2z−1|Yℓ| · ∥ĉ∗ℓ − E
x∼Yℓ

[x]∥z2

≤ 2z−1
∑
x∈Yℓ

∥x− ĉ∗ℓ∥z2 + 2z−1|Yℓ| · E
x∼Yℓ

[∥x− ĉ∗ℓ∥z2] ,

where the second inequality is Jensen’s inequality, since ϕ(x) = ∥ĉ∗ℓ − x∥z2 is convex for z ≥ 1. Thus,
we have upper-bounded ∑

x∈Yℓ

∥x− cℓ∥z2 ≤ 2z
∑
x∈Yℓ

∥x− ĉ∗ℓ∥z2,

and therefore
k∑

ℓ=1

∑
x∈Yℓ

∥x− cℓ∥z2 ≤ 2z · costz(Y1, . . . ,Yk). (3)

The final step involves relating costz(Y1, . . . ,Yk) using the conclusions of Lemma 4.2. Notice that
our algorithm produces the clustering (Y1, . . . ,Yk) of X′ which is specified by letting

Yℓ =
{
xi ∈ X : ∀j′ ∈ [k], |x′

i − x′
jℓ
| ≤ |x′

i − xj′ |z
}
,

and by the event (2), we have costz(Π(Y1), . . . ,Π(Yk)) ≤ O(22z log k) · optk,z(X′). By event (1),
Lemma 4.2 implies that costz(Y1, . . . ,Yk) ≤ 2O(z) · k2z · O(22z log k) · optk,z(X). Combined with
(3), we obtain our desired bound.

4.1 Proof of Lemma 4.2

We now turn to the proof of Lemma 4.2, where our analysis will proceed in two steps. First, we
assume a fixed dimensionality reduction map Π: Rd → R

t, which satisfies two geometrical conditions
on Π. Under these conditions, we show how to “lift” an approximate clustering of the mapped
points in Rt to an approximate clustering of the original dataset in Rd at the cost of weakening
the approximation ratio. Then, we show that a simple one-dimensional projection Π : Rd → R

given by Π(x) = ⟨x, g⟩, for g being sampled from a d-dimensional standard Gaussian, satisfies the
geometrical conditions of our lemma.

Lemma 4.4. Let X = {x1, . . . , xn} ⊂ Rd and Π: Rd → R
t be a linear map. Let C = {c∗1, . . . , c∗k} ⊂

R
d denote the set of centers minimizing costz(X,C), and (X∗

1 , . . . , X
∗
k) denote the optimal (k, z)-

clustering, and suppose that for the parameters D1,D2,D3 ≥ 1, the following conditions hold:

• Centers Don’t Contract: Every i, j ∈ [k] satisfies

∥c∗i − c∗j∥2 ≤ D1 · ∥Π(c∗i)−Π(c∗j)∥2.

• Cost of (X∗
1 , . . . , X

∗
k) does not Increase: We have that

k∑
i=1

∑
x∈X∗

i

∥Π(x)−Π(c∗i)∥z2 ≤ D2 · costz(X∗
1 , . . . , X

∗
k).

13

• Approximately Optimal (Π(Y1), . . . ,Π(Yk)): The partition (Y1, . . . , Yk) of X is D3 -
approximately optimal for Π(X), i.e.,

costz(Π(Y1), . . . ,Π(Yk)) ≤ D3 · min
c1,...,ck∈Rt

∑
x∈X

min
j∈[k]
∥Π(x)− cj∥z2.

Then,
costz(Y1, . . . , Yk) ≤

(
2z−1 + 23z−2Dz

1D2(1 + D3)
)
· costz(X∗

1 , . . . , X
∗
k).

Before starting the proof of Lemma 4.4, we show that projecting points onto a random Gaussian
vector gives the first two desired guarantees of the above lemma with D1 := (k2/δ) and D2 := 2O(z)/δ
with probability at least 1− δ. The first lemma that we state below shows that the first condition of
Lemma 4.4 is satisfied with high probability, and the second lemma that the second condition of
Lemma 4.4 is satisfied with high probability.

Lemma 4.5 (Centers Don’t Contract). Let C = {c1, . . . , ck} ⊂ Rd denote any collection of k points
and let Π : Rd → R be a random map given by

Π(x) = ⟨x, g⟩

for a randomly chosen vector g ∼ N (0, Id). Then, with probability at least 1 − δ over g, every
i, j ∈ [k] satisfies (

δ

k2

)
· ∥ci − cj∥2 ≤ ∥Π(ci)−Π(cj)∥2.

Lemma 4.6 (Cost of (X∗
1 , . . . , X

∗
k) does not Increase). Let X = {x1, . . . , xn} ⊂ R

d and let
X∗

1 , . . . , X
∗
k be the partition of X, and c∗1, . . . , c

∗
k ∈ Rd be the centers which minimize the (k, z)-

clustering cost of X. Then, with probability a least 1− δ,

k∑
i=1

∑
x∈X∗

i

∥Π(x)−Π(c∗i)∥z2 ≤
(
2O(z)/δ

) k∑
i=1

∑
x∈X∗

i

∥x− c∗i ∥z2.

Proof of Lemma 4.2 assuming Lemma 4.4, Lemma 4.5 and Lemma 4.6. We will apply Lemma 4.4
by letting δ be a small enough constant (say, δ = 0.01) to take a union bound. Lemma 4.5 implies
the first condition with D1 = O(k2) and Lemma 4.6 implies the second condition with D2 = 2O(z).
Finally, the second assumption of Lemma 4.2 sets r = D3, from which we derive the conclusion.

We now prove Lemma 4.5, Lemma 4.6. Lemma 4.4 is proved in Subsection 4.2.

Proof of Lemma 4.5. The proof relies on the 2-stability property of the Gaussian distribution.
Namely, if we let z ∈ Rd be an arbitrary vector and we sample a standard Gaussian vector
g ∼ N (0, Id), the (scalar) random variable ⟨z, g⟩ is distributed like ∥z∥2 · g′, where g ∼ N (0, 1).
Using the 2-stability of the Gaussian distribution for every i, j ∈ [k], we have that ∥Π(ci)−Π(cj)∥22 is
distributed as (g′)2∥ci− cj∥22, where g′ is distributed as a (one-dimensional) Gaussian N (0, 1). Thus,
by a union bound, the probability that there exists a pair i, j ∈ [k], which satisfies ∥Π(ci)−Π(cj)∥22 <
α2 · ∥ci − cj∥22 is at most k2 times the probability that a Gaussian random variable lies in [−α, α],
and this probability is easily seen to be less than α. Setting α = δ/k2 gives the desired lemma.

14

Proof of Lemma 4.6. Similarly to the proof of Lemma 4.5, we have that ∥Π(x) −Π(c∗i)∥z2 is dis-
tributed as |g′|z · ∥x − c∗i ∥z2, where g′ is distributed as a (one-dimensional) Gaussian N (0, 1). By
linearity of expectation,

E
Π∼Jd

 k∑
i=1

∑
x∈X∗

i

∥Π(x)−Π(c∗i)∥z2

 =
k∑

i=1

∑
x∈X∗

i

E
g′∼N (0,1)

[
|g′

i|z
]
· ∥x− c∗i ∥z2.

To conclude, note that for z ≥ 1, there is some α > 1 such that αz is an even integer and α ≤ 2.
Thus, by Jensen’s inequality and the fact that f(x) = x1/α is concave we can write

E
g′∼N (0,1)

[
|g′|z

]
≤
(
E
[
(g′)αz

])1/α
Now note that all odd moments of the Gaussian distribution are zero by symmetry. Thus, for

the moment generating function E[eg
′
] it holds that

E[eg
′
] =

∞∑
k=0

1

(2k)!
·E[(g′)2k].

As E[eg
′
] ≤ e1/2 it follows that(

E[(g′)αz]
)1/α ≤ ((αz)!E[eg

′
]
)1/α

≤
(
(αz)!e1/2

)1/α
≤ 2O(z).

Applying Markov’s inequality now completes the proof.

4.2 Proof of Lemma 4.4

Let {ĉi}i∈[k] be an optimal set of centers for the partition (Y1, . . . , Yk) for the (k, z)-clustering problem
on Π(X), where ĉi ∈ Yi. Specifically, the points ĉ1, . . . , ĉk ∈ Rt are those which minimize

cost(Π(Y1), . . . ,Π(Yk))
def
=

k∑
i=1

∑
x∈Yi

∥Π(x)− ĉi∥z2.

To quantize the cost difference between the centers c∗ and the centers ĉ we analyze the following
value. We assume we mapped every point of X to Πc∗(X), and we then compute the cost of the
partition Y1, . . . , Yk on this set. Formally, we let

val(Π, c∗, Y1, . . . , Yk) =

k∑
i=1

k∑
j=1

|Yi ∩X∗
j | · ∥Π(c∗j)− ĉi∥z2.

First, we prove the following simple claim.

Claim 4.7. There exists a set of centers c′1, . . . , c
′
k (with possible repetitions) which are chosen

among the points {c∗1, . . . , c∗k} such that

k∑
i=1

k∑
j=1

|Yi ∩X∗
j | · ∥Π(c∗j)−Π(c′i)∥z2 ≤ 2z · val(Π, c∗, Y1, . . . , Yk).

15

Proof. We will prove the claim using the probabilistic method. For every i ∈ [k], consider the
distribution over center {c∗1, . . . , c∗k} which samples a center c′i as

Pr
c′i

[
c′i = c∗j

]
=

|Yi ∩X∗
j |∑d

ℓ=1 |Yi ∩X∗
j |
.

Then, we upper bound the expected cost of using the centers c′i. Using Lemma 3.7,

E

 k∑
i=1

k∑
j=1

|Yi ∩X∗
j | · ∥Π(c∗j)−Π(c′i)∥z2


≤

k∑
i=1

k∑
j=1

|Yi ∩X∗
j | ·E

[(
∥Π(c∗j)− ĉi∥2 + ∥Π(c′i)− ĉi∥2

)z]

≤ 2z−1
k∑

i=1

k∑
j=1

|Yi ∩X∗
j | · ∥Π(c∗j)− ĉi∥z2 + 2z−1

k∑
i=1

 k∑
j=1

|Yi ∩X∗
j |

E
[
∥Π(c′i)− ĉi∥z2

]

= 2z−1 · val(Π, c∗, Y1, . . . , Yk) + 2z−1
k∑

i=1

 k∑
j=1

|Yi ∩X∗
j |

 k∑
ℓ=1

|Yi ∩X∗
ℓ |∑k

j=1 |Yi ∩X∗
j |
· ∥Π(c∗ℓ)− ĉi∥z2

= 2z · val(Π, c∗, Y1, . . . , Yk).

We now upper bound costz(Y1, . . . , Yk) in terms of costz(X
∗
1 , . . . , X

∗
k). We do this by going

through the centers chosen according to Claim 4.7. This will allow us to upper bound the cost of
clustering with (Y1, . . . , Yk) in terms of the costz(X

∗
1 , . . . , X

∗
k) as well as clustering cost involving

only pairwise distances from {c∗1, . . . , c∗k}. Then, we relate to distances after applying the map Π.
Specifically, first notice that if we consider the set of centers c′1, . . . , c

′
k chosen from Claim 4.7

costz(Y1, . . . , Yn) ≤
k∑

i=1

∑
x∈Yi

∥x− c′i∥z2

≤
k∑

i=1

k∑
j=1

∑
x∈Yi∩X∗

j

(
∥x− c∗j∥2 + ∥c∗j − c′i∥2

)z
≤ 2z−1 · costz(X∗

1 , . . . , X
∗
k) + 2z−1

k∑
i=1

k∑
j=1

|Yi ∩X∗
j | · ∥c∗j − c′i∥z2, (4)

where the third inequality uses Lemma 3.7 once more. Note that the right-most summation of (4)
involves distances which are only among c∗1, . . . , c

∗
k, so by the first assumption of the map Π and

Claim 4.7, we may upper bound

k∑
i=1

k∑
j=1

|Yi ∩X∗
j | · ∥c∗j − c′i∥z2 ≤ Dz

1

k∑
i=1

k∑
j=1

|Yi ∩X∗
j | · ∥Π(c∗j)−Π(c′i)∥z2

≤ Dz
1 · 2z · val(Π, c∗, Y1, . . . , Yk). (5)

16

Combining (4) and (5), we may upper bound

costz(Y1, . . . , Yn) ≤ 2z−1 · costz(X∗
1 , . . . , X

∗
k) + Dz

1 · 22z−1 · val(Π, c∗, Y1, . . . , Yk)

= 2z−1 · costz(X∗
1 , . . . , X

∗
k) + Dz

1 · 22z−1
k∑

i=1

k∑
j=1

|Yi ∩X∗
j | · ∥Π(c∗j)− ĉi∥z2. (6)

We continue upper bounding the right-most expression in (6) by applying the triangle inequality:

k∑
i=1

k∑
j=1

|Yi ∩X∗
j | · ∥Π(c∗j)− ĉi∥z2

≤ 2z−1
k∑

i=1

k∑
j=1

∑
x∈Yi∩X∗

j

∥Π(x)−Π(c∗j)∥z2 + 2z−1
k∑

i=1

k∑
j=1

∑
x∈Yi∩X∗

j

∥Π(x)− ĉi∥z2

≤ 2z−1D2 · costz(X∗
1 , . . . , X

∗
k) + 2z−1 · costz(Π(Y1), . . . ,Π(Yk)). (7)

By the third assumption of the lemma, we note that

costz(Π(Y1), . . . ,Π(Yk)) ≤ D3 · min
c1,...,ck∈Rt

∑
x∈X

min
j∈[k]
∥Π(x)− cj∥z2

≤ D3 ·
k∑

j=1

∑
x∈Xj

∥Π(x)−Π(c∗j)∥z2 ≤ D3D2 · costz(X∗
1 , . . . , X

∗
k). (8)

Summarizing by plugging (7) and (8) into (6), we can upper bound

costz(Y1, . . . , Yn) ≤
(
2z−1 + 23z−2 · Dz

1D2(1 + D3)
)
· costz(X∗

1 , . . . , X
∗
k).

5 Efficient Seeding in One Dimension

In this section, we prove Theorem 2.1, which shows an upper bound for the running time of our
algorithm PRONE. As in Theorem 4.3, we consider a generalized version of PRONE where we run
k-means++ seeding for general z ≥ 1 (Definition 3.2) in Step 2. We prove the following generalized
version of Theorem 2.1:

Theorem 5.1 (Theorem 2.1 for general z ≥ 1). Let X = {x1, . . . , xn} ⊂ Rd be a dataset consisting
of n points in d dimensions. Assume that d ≤ nnz(X), which can be ensured after removing redundant
dimensions j ∈ [d] where the j-th coordinate of every xi is zero. For any z ≥ 1, the algorithm PRONE
(for general z as in Theorem 4.3) has expected running time O(nnz(X) + 2z/2n log n) on X. For any
δ ∈ (0, 1/2), with probability at least 1− δ, the algorithm runs in time O(nnz(X) + 2z/2n log(n/δ)).
Moreover, the algorithm always runs in time O(nnz(X) + n log n+ nk).

To prove Theorem 2.1, we show an efficient implementation (Algorithm 1) of the k-means++
seeding procedure that runs in expected time O(2z/2n log n) for one-dimensional points (Lemma 5.3).
A naive implementation of the seeding procedure would take Θ(nk) time in one dimension because
we need Θ(n) time to update pi and sample from the D2 distribution to add each of the k centers.
To obtain an improved and provable running time, we use a basic binary tree data structure to

17

sample from the D2 distribution more efficiently, and we use a potential argument to bound the
number of updates to pi.

The data structure S we use in Algorithm 1 can be implemented as a basic binary tree, as
described in more detail in Section 6. The data structure S keeps track of n nonnegative numbers
s1, . . . , sn corresponding to pz1, . . . , p

z
n and it supports the following operations:

1. Initialize(a). Given an array a = (a1, . . . , an) ∈ Rn
≥0, the operation Initialize(a) creates

a data structure S that keeps track of the numbers s1, . . . , sn initialized so that (s1, . . . , sn) =
(a1, . . . , an). This operation runs in O(n) time.

2. Sum(S). The operation Sum(S) returns the sum s1+ · · ·+ sn. This operation runs in O(1) time,
as the value will be maintained as the data structure is updated.

3. Find(S, r). Given a number r ∈ [0,
∑n

i=1 si), the operation Find(S, r) returns the unique index
ℓ ∈ {1, . . . , n} such that

ℓ−1∑
i=1

si ≤ r <

ℓ∑
i=1

si.

This operation runs in O(log n) time.

4. Update(S, a, i1, i2). Given an array a = (a1, . . . , an) ∈ Rn
≥0 and indices i1, i2 satisfying

1 ≤ i1 ≤ i2 ≤ n, the operation Update(S, a, i1, i2) performs the updates si ← ai for every
i = i1, i1 + 1, . . . , i2. This operation runs in O((i2 − i1 + 1) + log n) time.

The following claim shows that Algorithm 1 correctly implements the k-means++ seeding
procedure in one dimension.

Claim 5.2. Consider the values of t, a1, . . . , an and the data structure S at the beginning of each
iteration of the for-loop (i.e., right before Line 6). Let s1, . . . , sn be the numbers the data structure S
keeps track of. For every i = 1, . . . , n, define pi := mint′=1,...,t−1 |xi − xℓt′ |. Then si = ai = pzi for
every i = 1, . . . , n. Consequently, the distribution of ℓt at Line 7 conditioned on the execution history
so far satisfies Pr[ℓt = i] = pzi /

∑n
i′=1 p

z
i′ for every i = 1, . . . , n.

The claim follows immediately by induction over the iterations of the for-loop based on the
description of the data structure S and its operations above. The following lemma bounds the
running time of Algorithm 1:

Lemma 5.3 (Lemma 2.4 for general z ≥ 1). The expected running time of Algorithm 1 is
O(2z/2n log n). For any δ ∈ (0, 1/2), with probability at least 1 − δ, Algorithm 1 runs in time
O(2z/2n log(n/δ)). Moreover, Algorithm 1 always runs in time O(n log n+ nk).

Before proving Lemma 5.3, we first use it to prove Theorem 5.1.

Proof of Theorem 5.1. Lemma 5.3 bounds the running time of Step 2 of our algorithm PRONE defined
in Section 2. Now we show that Step 1 (random one-dimensional projection) can be performed in
time O(nnz(X) + n). Indeed, x′i can be computed as x′i =

∑
j xijvj where the sum is over all the

non-zero coordinates xij of xi, and each vj is drawn independently from the one-dimensional standard
Gaussian (the value of vj should be shared for all i). The time needed to compute x′1, . . . , x

′
n in this

way is O(nnz(X) + n). In Step 3 of PRONE, we compute the center of mass for every cluster. This
can be done in time O(nnz(X) + n) by summing up the points in each cluster and dividing each
sum by the number of points in that cluster.

18

Algorithm 1: Efficient k-means++ seeding in one dimension
Input: Points x1, . . . , xn ∈ R; k ∈ Z satisfying 1 ≤ k ≤ n; real number z ≥ 1.
Output: Centers xℓ1 , . . . , xℓk ∈ R; assignment σ : [n]→ [k].

1 Sort and re-order the points so that x1 ≤ · · · ≤ xn;
2 Choose ℓ1 uniformly at random from {1, . . . , n};
3 Initialize a = (a1, . . . , an) by setting ai ← |xi − xℓ1 |z for every i = 1, . . . , n;
4 S ← Initialize(a);
5 for t = 2, . . . , k do
6 Choose r uniformly at random from [0, Sum(S));
7 ℓt ← Find(S, r); aℓt ← 0; i← ℓt − 1; j ← ℓt + 1;
8 while i ≥ 0 and |xi − xℓt |z < ai do
9 ai ← |xi − xℓt |z;

10 i← i− 1;
11 end
12 while j ≤ n and |xj − xℓt |z < aj do
13 aj ← |xj − xℓt |z;
14 j ← j + 1;
15 end
16 Update (S, a, i+ 1, j − 1);
17 end
18 Sort and re-order ℓ1, . . . , ℓk so that ℓ1 ≤ · · · ≤ ℓk ;
19 i← 1; j ← 1;
20 while i ≤ n do /* Assign xi to the closest center xℓσ(i)

among xℓ1 , . . . , xℓk . */
21 if j < k and |xi − xℓj | ≥ |xi − xℓj+1

| then
22 j ← j + 1;
23 else
24 σ(i)← j;
25 i← i+ 1;
26 end
27 end
28 return xℓ1 , . . . , xℓk and σ (converted to the old ordering of x1, . . . , xn before Line 1);

19

The key step towards proving Lemma 5.3 is to bound the number of updates to a at Lines 9
and 13. As the algorithm starts by sorting the n input points, which can be done in time O(n log n),
we can assume that the points are sorted such that x1 ≤ · · · ≤ xn. For i = 1, . . . , n and t = 2, . . . , k,
we define ξ(i, t) = 1 if ai is updated at Line 9 in iteration t and define ξ(i, t) = 0 otherwise. Here,
we denote each iteration of the for-loop beginning at Line 5 by the value of the iterate t. We define
ui :=

∑k
t=2 ξ(i, t) to be the number of times ai gets updated at Line 9. The following lemma gives

upper bounds on ui both in expectation and with high probability:

Lemma 5.4. For every i = 1, . . . , n, it holds that

E[ui] ≤ O(2z/2 log n).

Moreover, for some absolute constant B > 0 and for every δ ∈ (0, 1/2), it holds that

Pr[ui ≤ B2z/2 log(n/δ)] ≥ 1− δ.

Before proving Lemma 5.4, we first use it to prove Lemma 5.3.

Proof of Lemma 5.3. Recall that for i = 1, . . . , n and t = 2, . . . , k, we define ξ(i, t) = 1 if ai is
updated at Line 9 in iteration t and define ξ(i, t) = 0 otherwise. Similarly, for j = 1, . . . , n and
t = 2, . . . , k, we define ξ′(j, t) = 1 if aj is updated at Line 13 in iteration t and define ξ′(j, t) = 0
otherwise.

The computation at Lines 1-4 takes O(n log n) time. The computation at Lines 18-28 takes
O(k log k + n) = O(n log n) time. For t = 2, . . . , k, iteration t of the for-loop takes time O(log n+∑n

i=1 ξ(i, t) +
∑n

i=1 ξ
′(i, t)). Summing them up, the total running time of Algorithm 1 is

O

(
n log n+

n∑
i=1

k∑
t=2

ξ(i, t) +
n∑

i=1

k∑
t=2

ξ′(i, t)

)
. (9)

By Lemma 5.4,

E

[
n∑

i=1

k∑
t=2

ξ(i, t)

]
= E

[
n∑

i=1

ui

]
= O(2z/2n log n). (10)

Also, for any δ′ ∈ (0, 1/2), setting δ = δ′/n in Lemma 5.4, by the union bound we have

Pr

[
n∑

i=1

k∑
t=2

ξ(i, t) ≤ 2B2z/2n log(n/δ′)

]
≥ Pr

[
n∑

i=1

k∑
t=2

ξ(i, t) ≤ B2z/2n log(n/δ)

]
≥ 1− nδ

= 1− δ′. (11)

Similarly to (10) and (11) we have

E

[
n∑

i=1

k∑
t=2

ξ′(i, t)

]
= O(2z/2n log n), and (12)

Pr

[
n∑

i=1

k∑
t=2

ξ′(i, t) ≤ 2B2z/2n log(n/δ′)

]
≥ 1− δ′. (13)

20

Plugging (10) and (11) into (9) proves that the expected running time of Algorithm 1 is O(2z/2n log n).
Choosing δ′ = δ/2 for the δ in Lemma 5.3 and plugging (11) and (13) into (9), we can use the union
bound to conclude that with probability at least 1− δ Algorithm 1 runs in time O(2z/2n log(n/δ)).
Finally, plugging ξ(i, t) ≤ 1 and ξ′(i, t) ≤ 1 into (9), we get that Algorithm 1 always runs in time
O(n log n+ nk).

To prove Lemma 5.4, for i = 0, . . . , n and u = 0, . . . , ui, we define t(i, u) to be the smallest
t ∈ {1, . . . , k} such that

∑t
t′=2 ξ(i, t

′) = u. That is, ai gets updated at Line 9 for the u-th time in
iteration t(i, u). Our definition implies that t(i, 0) = 1 and t(i, u) ∈ {2, . . . , k} for u = 1, . . . , ui. We
define a nonnegative potential function η(i, u) as follows and show that it decreases exponentially in
expectation as u increases (Lemma 5.5).

Potential Function η(i, u). For t = 2, . . . , k, we consider the value of ℓt after Line 7 in iteration
t. For u = 1, . . . , ui, we define η(i, u) to be ℓt(i,u) − i, which is guaranteed to be a positive integer
by the definition of t(i, u). Indeed, in the while-loop containing Line 9, i starts from ℓt − 1 and
keeps decreasing, so whenever Line 9 is executed, i is smaller than ℓt. In particular, ai is updated
at Line 9 in iteration t(i, u) of the for-loop, so we have i < ℓt(i,u). We define η(i, 0) = n, and for
u = ui + 1, ui + 2, . . . , we define η(i, u) = 0. See Figure 2 for an example illustrating the definition
of η(i, u).

<latexit sha1_base64="Nd87ecUk5UDu5O3pB4r6oHFKazc=">AAADYXicbZLNbtNAEMe3MR9t+ErLsZcVERJCURSnpE1vVZOKHoooIWkrxVG0Xo/TVb1ra3dNCSs/Ald4HV6DMy/COg5VcDqSpdH/N+P52PGTiCndav3eqDgPHj56vLlVffL02fMXte2dCxWnksKIxlEsr3yiIGICRprpCK4SCYT7EVz6N72cX34BqVgshnqewISTmWAho0Rb6fPXqTut1VvN1sLwuuMunTpa2vl0u3LqBTFNOQhNI6LU2G0lemKI1IxGkFW9VEFC6A2Zwdi6gnBQE7PoNcOvrRLgMJb2Exov1NUMQ7hSc+7bSE70tSqzXLyPjVMddieGiSTVIGhRKEwjrGOcD44DJoHqaG4dQiWzvWJ6TSSh2q6nWi6TN6fsKH2wI0r4YMt9TEASHcu3xjvJjJd34Pv4xAYJuKUx50QExqP9zBSQkgj3szI+W8Vna7i3intl7A/+YVt5sJY8XE0elnEs4C47xK7FVS+A0B7O4hEMn0sIMjN4f5yZtnvY6Bw29rpZOSZJZWIfuQhzu/uNzl6j7R7kP7t/V5wJxtk3WK5MheZOyeztueVLW3cu2k13v9n59K5+JH8VV7iJdtEr9Aa56AAdoVN0jkaIohn6jn6gn5U/zpZTc3aK0MrG8nJfov/M2f0L2bUbhw==</latexit>x1
<latexit sha1_base64="Sn55F9GHvUXA70USI88Hw8kf8XQ=">AAADZHicbZLdahNBFMeniR81Vu0HXgkyGASREHZT06Z3xaTYi4o1JGkhG8rs7Nl27M7MMjNbicO+g7f6NL6GL+BzOJvEEjc9sHD4/87Z8zEnTBOmjef9XqtU791/8HD9Ue3xxpOnzza3tkdaZorCkMpEqvOQaEiYgKFhJoHzVAHhYQJn4XW34Gc3oDSTYmCmKUw4uRQsZpQYJ40CGkmjLzbrXtObGV51/IVTRws7vdiqHAeRpBkHYWhCtB77XmomlijDaAJ5Lcg0pIRek0sYO1cQDnpiZ+3m+LVTIhxL5T5h8ExdzrCEaz3loYvkxFzpMivEu9g4M3FnYplIMwOCzgvFWYKNxMXsOGIKqEmmziFUMdcrpldEEWrchmrlMkVz2o3SAzeigo+u3KcUFDFSvbXBUW6DooMwxEcuSMBXKjknIrIB7eV2DilJcC8v45NlfLKCu8u4W8Zh/x92lfsryYPl5EEZSwG32TH2Ha4FEcTudmaPYPlUQZTb/of3uW35B432QWO3k5dj0kyl7pHnYX5nr9HebbT8/eJnd++KM8E4+waLlenY3iq5uz2/fGmrzqjV9Pea7c/v6ofq1/wK19EL9Aq9QT7aR4foGJ2iIaLoC/qOfqCflT/VjepO9fk8tLK2uNwd9J9VX/4FnXUdFg==</latexit>· · · <latexit sha1_base64="kUTEpeaaWBnaJS+ECEaXsAysNfQ=">AAADYXicbZLNbtNAEMe3MR9t+ErLsZcVERJCURSnpE1vVZOKHoooIWkrxVG0Xo/TVb1ra3dNCSs/Ald4HV6DMy/COg5VcDqSpdH/N+P52PGTiCndav3eqDgPHj56vLlVffL02fMXte2dCxWnksKIxlEsr3yiIGICRprpCK4SCYT7EVz6N72cX34BqVgshnqewISTmWAho0Rb6fPXKZvW6q1ma2F43XGXTh0t7Xy6XTn1gpimHISmEVFq7LYSPTFEakYjyKpeqiAh9IbMYGxdQTioiVn0muHXVglwGEv7CY0X6mqGIVypOfdtJCf6WpVZLt7HxqkOuxPDRJJqELQoFKYR1jHOB8cBk0B1NLcOoZLZXjG9JpJQbddTLZfJm1N2lD7YESV8sOU+JiCJjuVb451kxss78H18YoME3NKYcyIC49F+ZgpISYT7WRmfreKzNdxbxb0y9gf/sK08WEseriYPyzgWcJcdYtfiqhdAaA9n8QiGzyUEmRm8P85M2z1sdA4be92sHJOkMrGPXIS53f1GZ6/Rdg/yn92/K84E4+wbLFemQnOnZPb23PKlrTsX7aa73+x8elc/kr+KK9xEu+gVeoNcdICO0Ck6RyNE0Qx9Rz/Qz8ofZ8upOTtFaGVjebkv0X/m7P4FgKwbvw==</latexit>xi

<latexit sha1_base64="Cmwr5AJ3gXjAq+6ZSyy6p2Lp588=">AAADZXicbZLdbtMwFMe9ho9RGNsAccMFFhUSgqpKOrp1dxPtxC6GGFW7TmqqynFONquxE9kOUKw8BLfwMrwGT8Br4LRlKumOFOno/zsn58MnSGOmtOv+3qg4t27fubt5r3r/wdbD7Z3dR+cqySSFAU3iRF4EREHMBAw00zFcpBIID2IYBtNOwYefQSqWiL6epTDm5FKwiFGirTT8OjHsjZdPdmpuw50bXne8pVNDSzub7FZO/DChGQehaUyUGnluqseGSM1oDHnVzxSkhE7JJYysKwgHNTbzfnP80iohjhJpP6HxXF3NMIQrNeOBjeREX6kyK8Sb2CjTUXtsmEgzDYIuCkVZjHWCi+FxyCRQHc+sQ6hktldMr4gkVNsVVctliuaUHaULdkQJH2y5jylIohP52vjHufGLDoIAH9sgAV9owjkRofFpNzcLSEmMu3kZn67i0zXcWcWdMg56/7Ct3FtL7q8m98s4EXCdHWHP4qofQmSPZ/4Ihs8khLnpvX+Xm6Z3WG8d1vfaeTkmzWRqH3kR5rX36629etM7KH528644E4yzb7BcmYrMtVLcnle+tHXnvNnw9hutT29rR/LX4go30TP0Ar1CHjpAR+gEnaEBomiKvqMf6Gflj7PlPHGeLkIrG8vLfYz+M+f5XxblHTs=</latexit>xi+1
<latexit sha1_base64="80qv4u8ULc1y1yAGDxgl/0AoH/U=">AAADZXicbZLdbtMwFMe9ho9RGGyAuOECiwoJQVUl3bp1dxPtxC6GGFW7TmqqynFONquxE9kOUKw8BLfwMrwGT8Br4LRlKumOFOno/zsn58MnSGOmtOv+3qg4t27fubt5r3r/wdbDR9s7j89VkkkKA5rEibwIiIKYCRhopmO4SCUQHsQwDKadgg8/g1QsEX09S2HMyaVgEaNEW2n4dWLY2718sl1zG+7c8LrjLZ0aWtrZZKdy4ocJzTgITWOi1MhzUz02RGpGY8irfqYgJXRKLmFkXUE4qLGZ95vjV1YJcZRI+wmN5+pqhiFcqRkPbCQn+kqVWSHexEaZjtpjw0SaaRB0USjKYqwTXAyPQyaB6nhmHUIls71iekUkodquqFouUzSn7ChdsCNK+GDLfUxBEp3IN8Y/zo1fdBAE+NgGCfhCE86JCI1Pu7lZQEpi3M3L+HQVn67hzirulHHQ+4dt5d5acn81uV/GiYDr7Ah7Flf9ECJ7PPNHMHwmIcxN7/273DS9w3rrsL7bzssxaSZT+8iLMK+9X2/t1pveQfGzm3fFmWCcfYPlylRkrpXi9rzypa07582Gt99ofdqrHclfiyvcRM/RS/QaeegAHaETdIYGiKIp+o5+oJ+VP86W89R5tgitbCwv9wn6z5wXfwEf2R0+</latexit>xi+4

<latexit sha1_base64="IxWx5bKu5KeSTzDZ29gRa6oWxOc=">AAADYXicbZLNbtNAEMe3MR9t+ErLsZcVERJCURSnpE1vVZOKHoooIWkrxVG0Xo/TVb1ra3dNCSs/Ald4HV6DMy/COg5VcDqSpdH/N+P52PGTiCndav3eqDgPHj56vLlVffL02fMXte2dCxWnksKIxlEsr3yiIGICRprpCK4SCYT7EVz6N72cX34BqVgshnqewISTmWAho0Rb6fPXqZjW6q1ma2F43XGXTh0t7Xy6XTn1gpimHISmEVFq7LYSPTFEakYjyKpeqiAh9IbMYGxdQTioiVn0muHXVglwGEv7CY0X6mqGIVypOfdtJCf6WpVZLt7HxqkOuxPDRJJqELQoFKYR1jHOB8cBk0B1NLcOoZLZXjG9JpJQbddTLZfJm1N2lD7YESV8sOU+JiCJjuVb451kxss78H18YoME3NKYcyIC49F+ZgpISYT7WRmfreKzNdxbxb0y9gf/sK08WEseriYPyzgWcJcdYtfiqhdAaA9n8QiGzyUEmRm8P85M2z1sdA4be92sHJOkMrGPXIS53f1GZ6/Rdg/yn92/K84E4+wbLFemQnOnZPb23PKlrTsX7aa73+x8elc/kr+KK9xEu+gVeoNcdICO0Ck6RyNE0Qx9Rz/Qz8ofZ8upOTtFaGVjebkv0X/m7P4Fj5MbxA==</latexit>xn
<latexit sha1_base64="Sn55F9GHvUXA70USI88Hw8kf8XQ=">AAADZHicbZLdahNBFMeniR81Vu0HXgkyGASREHZT06Z3xaTYi4o1JGkhG8rs7Nl27M7MMjNbicO+g7f6NL6GL+BzOJvEEjc9sHD4/87Z8zEnTBOmjef9XqtU791/8HD9Ue3xxpOnzza3tkdaZorCkMpEqvOQaEiYgKFhJoHzVAHhYQJn4XW34Gc3oDSTYmCmKUw4uRQsZpQYJ40CGkmjLzbrXtObGV51/IVTRws7vdiqHAeRpBkHYWhCtB77XmomlijDaAJ5Lcg0pIRek0sYO1cQDnpiZ+3m+LVTIhxL5T5h8ExdzrCEaz3loYvkxFzpMivEu9g4M3FnYplIMwOCzgvFWYKNxMXsOGIKqEmmziFUMdcrpldEEWrchmrlMkVz2o3SAzeigo+u3KcUFDFSvbXBUW6DooMwxEcuSMBXKjknIrIB7eV2DilJcC8v45NlfLKCu8u4W8Zh/x92lfsryYPl5EEZSwG32TH2Ha4FEcTudmaPYPlUQZTb/of3uW35B432QWO3k5dj0kyl7pHnYX5nr9HebbT8/eJnd++KM8E4+waLlenY3iq5uz2/fGmrzqjV9Pea7c/v6ofq1/wK19EL9Aq9QT7aR4foGJ2iIaLoC/qOfqCflT/VjepO9fk8tLK2uNwd9J9VX/4FnXUdFg==</latexit>· · ·

<latexit sha1_base64="gXTLr/esBkPw/glPHHZNjwJmxnI=">AAADdXicbZLbbhMxEIbdhEMJpxTEFUKyCKBSopBNmza9QKpIKnpRRInSg5SNIq93trVqe1e2FxSsfRhu4SV4DZ6EW7xJqMKmI1ka/d+MZzyeIOFMm2bz90qpfOPmrdurdyp3791/8LC69uhEx6micExjHquzgGjgTMKxYYbDWaKAiIDDaXDZzfnpF1CaxXJgJgmMBDmXLGKUGCeNq0984HxszTqre68z/A4z/AZvjau1ZqM5NbzseHOnhuZ2NF4rHfhhTFMB0lBOtB56zcSMLFGGUQ5ZxU81JIReknMYOlcSAXpkp/1n+KVTQhzFyh1p8FRdzLBEaD0RgYsUxFzoIsvF69gwNVFnZJlMUgOSzgpFKccmxvkwcMgUUMMnziFUMdcrphdEEWrcyCrFMnlz2j2lB+6JCj66cp8SUMTEasP6+5n18w6CAO+7IAlfaSwEkaH1aS+zM0gJx72siA8X8eES7i7ibhEH/X/YVe4vJQ8WkwdFHEu4yo6w53DFDyFyyzT9BCsmCsLM9j+8z2zL2623d+ubnawYk6QqcZ88C/M62/X2Zr3l7eSXXT8rwSQT7BvMR6Yje6Vkbve84qYtOyethrfdaH/equ2pX7MtXEVP0XO0jjy0g/bQATpCx4gii76jH+hn6U/5WflF+dUstLQy39zH6D8rv/0LSNYhZA==</latexit>

`t(i,1) = i + 4
<latexit sha1_base64="xJH8rSgpTdt7q5T42ggGaH1tH4g=">AAADa3icbZLdbtMwFMe9lo9RvjZ2B1xYVJMGiqqmW7fuAmmindjFEKNqt0lNNDnOyWYtdoLtgIqV5+AW3oTX4CF4B5ymTCXdkSwd/X/n+BwfnyCNmdLt9u+VWv3O3Xv3Vx80Hj56/OTp2vqzU5VkksKYJnEizwOiIGYCxprpGM5TCYQHMZwF1/2Cn30BqVgiRnqags/JpWARo0RbyfdAky3muK/xW7xzsdZst9ozw8uOO3eaaG4nF+u1Iy9MaMZBaBoTpSZuO9W+IVIzGkPe8DIFKaHX5BIm1hWEg/LNrOscb1olxFEi7REaz9TFDEO4UlMe2EhO9JWqskK8jU0yHfV8w0SaaRC0LBRlMdYJLkaAQyaB6nhqHUIls71iekUkodoOqlEtUzSn7FMGYJ8o4YMt9zEFSXQi3xjvMDde0UEQ4EMbJOArTTgnIjQeHeSmhJTEeJBX8fEiPl7C/UXcr+Jg+A/bysOl5NFi8qiKEwE32RF2LW54IUR2hWafYPhUQpib4ft3uem4+05339nu5dWYNJOp/eQyzO3tOt1tp+PuFZfdPivOBOPsG8xHpiJzo+R299zqpi07p52Wu9vqftppHshf5RauohfoFdpCLtpDB+gInaAxougz+o5+oJ+1P/WN+vP6yzK0tjLf3A30n9U3/wJnoR5B</latexit>

⌘(i, 1) = 4

<latexit sha1_base64="Cy0TYueCbSzfEOPe/ewms/Uro14=">AAADdXicbZLNbhMxEMfdhI8SvlIQJ4RkEUAFopBNSZsekCqSih6KKFHSVspGkdc721q1vSvbCwrWPgxXeAlegyfhijcJVdh0JEuj/2/GMx5PkHCmTbP5e61Uvnb9xs31W5Xbd+7eu1/deHCs41RRGNKYx+o0IBo4kzA0zHA4TRQQEXA4CS66OT/5AkqzWA7MNIGxIGeSRYwS46RJ9ZEPnE+s2WT11ssMv8MMv8bepFprNpozw6uOt3BqaGFHk43SgR/GNBUgDeVE65HXTMzYEmUY5ZBV/FRDQugFOYORcyURoMd21n+GnzslxFGs3JEGz9TlDEuE1lMRuEhBzLkusly8io1SE3XGlskkNSDpvFCUcmxinA8Dh0wBNXzqHEIVc71iek4UocaNrFIskzen3VN64J6o4KMr9ykBRUysXll/P7N+3kEQ4H0XJOErjYUgMrQ+7WV2DinhuJcV8eEyPlzB3WXcLeKg/w+7yv2V5MFy8qCIYwmX2RH2HK74IURumWafYMVUQZjZ/of3mW15u/X2bn2rkxVjklQl7pPnYV5nu97eqre8nfyyq2clmGSCfYPFyHRkL5XM7Z5X3LRV57jV8LYb7c9va3vq13wL19Fj9BRtIg/toD10gI7QEFFk0Xf0A/0s/Sk/KT8rv5iHltYWm/sQ/WflN38BQuohYg==</latexit>

`t(i,2) = i + 1
<latexit sha1_base64="3+4NMIlDm6J0o5XdUJF/w08zf2k=">AAADa3icbZLdbtMwFMe9lo9RPraxO+DCopo0UFQ1Hd26C6SJdmIXQ4yq3SY10eQ4J5u12Am2AypWnoNbeBNeg4fgHXCaMpV0R7J09P+d43N8fII0Zkq3279XavU7d+/dX33QePjo8ZO19Y2npyrJJIUxTeJEngdEQcwEjDXTMZynEggPYjgLrvsFP/sCUrFEjPQ0BZ+TS8EiRom2ku+BJtvM6bzCb7F7sd5st9ozw8uOO3eaaG4nFxu1Iy9MaMZBaBoTpSZuO9W+IVIzGkPe8DIFKaHX5BIm1hWEg/LNrOscb1klxFEi7REaz9TFDEO4UlMe2EhO9JWqskK8jU0yHfV8w0SaaRC0LBRlMdYJLkaAQyaB6nhqHUIls71iekUkodoOqlEtUzSn7FMGYJ8o4YMt9zEFSXQiXxvvMDde0UEQ4EMbJOArTTgnIjQeHeSmhJTEeJBX8fEiPl7C/UXcr+Jg+A/bysOl5NFi8qiKEwE32RF2LW54IUR2hWafYPhUQpib4ft3uem4+05339np5dWYNJOp/eQyzO3tOt0dp+PuFZfdPivOBOPsG8xHpiJzo+R299zqpi07p52Wu9vqfnrTPJC/yi1cRc/RS7SNXLSHDtAROkFjRNFn9B39QD9rf+qb9Wf1F2VobWW+uZvoP6tv/QVhsB4/</latexit>

⌘(i, 2) = 1

Figure 2: An example illustrating the definition of the potential function η. Here, ai is updated at
Line 9 for the first time in iteration t(i, 1) when ℓt(i,1) = i+ 4. Then ai gets updated at Line 9 for
the second time in iteration t(i, 2) when ℓt(i,2) = i+1. We always have ℓt > i whenever ai is updated
at Line 9, and η is the difference between ℓt and i. Thus in this example η(i, 1) = 4 and η(i, 2) = 1.
If ai is never updated at Line 9 after iteration t(i, 2), we define η(i, u) = 0 for u = 3, 4,

Lemma 5.5 (Potential function decrease). For any i ∈ {1, . . . , n} and u ∈ Z≥0,

E[η(i, u+ 1)|η(i, 0), . . . , η(i, u)] ≤ max

{
0,

2z/2

2z/2 + 1
η(i, u)− 1

2

}
.

Before proving Lemma 5.5, we first use it to prove Lemma 5.4. Intuitively, Lemma 5.5 says
that η(i, u) decreases exponentially (in expectation) as a function of u. Since η(i, u) is always a
nonnegative integer, we should expect η(i, u) to become zero as soon as u exceeds a small threshold.
Moreover, our definition ensures η(i, ui) > 0, so ui must be smaller than the threshold. This allows
us to show upper bounds for ui and prove Lemma 5.4.

Proof of Lemma 5.4. Our definition of η ensures η(i, ui) ≥ 1. By Lemma 5.5 and Lemma 5.7,

E[ui + 1] ≤ lnn

ln 2z/2+1
2z/2

+
1

1− 2z/2

2z/2+1

= O(2z/2 lnn) + 2z/2 + 1.

21

This implies E[ui] = O(2z/2 log n). Moreover, by Lemma 5.5,

E[η(i, u)] ≤ η(i, 0)

(
2z/2

2z/2 + 1

)u

= n

(
2z/2

2z/2 + 1

)u

,

and thus, by Markov’s inequality,

Pr[ui ≥ u] = Pr[η(i, u) ≥ 1] ≤ n

(
2z/2

2z/2 + 1

)u

.

For any δ ∈ (0, 1/2), choosing u = ln(n/δ)/ ln(2
z/2+1
2z/2

) = O(2z/2 log(n/δ)) in the inequality above
gives Pr[ui ≥ u] ≤ δ.

We need the following helper lemma to prove Lemma 5.5.

Lemma 5.6. The following holds at the beginning of each iteration of the for-loop in Algorithm 1,
i.e., right before Line 6 is executed. Choose an arbitrary i = 1, . . . , n and define

L := {i} ∪ {ℓ ∈ Z : i < ℓ ≤ n, |xi − xℓ|z < ai}. (14)

Then for ℓ, ℓ′ ∈ L satisfying ℓ < ℓ′, it holds that aℓ′ ≤ 2zaℓ.

Proof. For t = 2, . . . , k, at the beginning of iteration t, the values ℓ1, . . . , ℓt−1 have been determined.
For every x ∈ R, let ρ(x) denote the value among xℓ1 , . . . , xℓt−1 closest to x. By Claim 5.2,
ai = |xi − ρ(xi)|z for every i ∈ [n]. Now for a fixed i ∈ [n], define L as in (14) and consider
ℓ, ℓ′ ∈ L satisfying ℓ < ℓ′. It is easy to see that xi ≤ ρ(xℓ) ≤ xℓ′ cannot hold because otherwise ai ≤
|xi− ρ(xℓ)|z ≤ |xi−xℓ′ |z < ai, a contradiction. For the same reason, the inequality xi ≤ ρ(xℓ′) ≤ xℓ′

cannot hold. Thus there are only three possible orderings of xi, xℓ, xℓ′ , ρ(xℓ), ρ(xℓ′):

1. ρ(xℓ) = ρ(xℓ′) < xi ≤ xℓ ≤ xℓ′ ;

2. ρ(xℓ) < xi ≤ xℓ ≤ xℓ′ < ρ(xℓ′);

3. xi ≤ xℓ ≤ xℓ′ < ρ(xℓ) = ρ(xℓ′).

In scenario 3, it is clear that aℓ′ = |xℓ′ − ρ(xℓ′)|z ≤ |xℓ − ρ(xℓ)|z = aℓ. In the first two scenarios, for
any t′ = 0, . . . , t− 1,

|xi − xℓt′ | ≥ |xℓ − xℓt′ | − |xℓ − xi| ≥ |xℓ − ρ(xℓ)| − |xℓ − xi| = |xi − ρ(xℓ)|.

This implies that ρ(xℓ) is the closest point to xi among xℓ1 , . . . , xℓt−1 . Therefore, ai = |xi − ρ(xℓ)|z.
Jensen’s inequality ensures ((g + h)/2)z ≤ (gz + hz)/2 for any g, h ≥ 0, which implies (g + h)z ≤
2z−1gz + 2z−1hz. Therefore,

aℓ′ ≤ |xℓ′ − ρ(xℓ)|z ≤ 2z−1|xℓ′ − xi|z + 2z−1|xi − ρ(xℓ)|z < 2zai,

whereas
aℓ = |xℓ − ρ(xℓ)|z ≥ |xi − ρ(xℓ)|z = ai.

Thus, we have aℓ′ ≤ 2zaℓ in all three scenarios.

22

Proof of Lemma 5.5. Throughout the proof, we fix i ∈ {1, . . . , n} and u ∈ Z≥0 so that they are
deterministic numbers. Algorithm 1 is a randomized algorithm, and when we run it, exactly one of
the following four events happens, and we define a random variable t∗ accordingly:

1. Event E1: ui < u. That is, ai gets updated at Line 9 for less than u times. In this case we
have η(i, u+ 1) = 0 by our definition of η, and we define t∗ = +∞.

2. Event E2: ui = u and i is never chosen as ℓt at Line 7. In this case we also have η(i, u+1) = 0,
and we also define t∗ = +∞.

3. Event E3: ui = u and there exists t ∈ {2, 3, . . . , k} such that i is chosen as ℓt at Line 7 in
iteration t. This t must satisfy t > t(i, u), as all updates to ai in Line 9 must happen before xi
is chosen as a center. We define t∗ = t in this case. Again, we have η(i, u+ 1) = 0 in this case.

4. Event E4: ui > u. We define t∗ := t(i, u+ 1) > t(i, u) in this case.

Define E∗ := E3 ∪ E4. Since η(i, u+ 1) = 0 under E1 and E2, it suffices to prove that5

E[η(i, u+ 1)|η(i, 0), . . . , η(i, u), E∗] ≤ 2z/2

2z/2 + 1
η(i, u)− 1

2
. (15)

By our definition, the random variable t∗ takes its value in {2, 3, . . . , k}∪{+∞}. Moreover, t∗ = +∞
if and only if E∗ does not happen. Therefore, to prove (15), it suffices to prove the following for
every t0 = 2, 3, . . . , k:

E[η(i, u+ 1)|η(i, 0), . . . , η(i, u), t∗ = t0] ≤
2z/2

2z/2 + 1
η(i, u)− 1

2
. (16)

Consider a fixed t0 ∈ {2, 3, . . . , k}. For t∗ = t0 to happen, the following must hold during the
execution of Algorithm 1 before iteration t0: ai has been updated at Line 9 for exactly u times, and i
has not been chosen as ℓt at Line 7. Thus, the rest of the proof assumes that the execution history H of
Algorithm 1 before iteration t0 satisfies this property. Now we know that the values η(i, 0), . . . , η(i, u)
are determined by the execution history H. Lines 6-7 guarantee that the distribution of ℓt0 satisfies

Pr[ℓt0 = ℓ|H] =
aℓ∑n
j=1 aj

for every ℓ = 1, . . . , n,

where we use the values a1, . . . , an right before iteration t0 is executed. Moreover, conditioned on H,
we have t∗ = t0 if and only if ℓt0 ∈ L, where

L = {i} ∪ {ℓ ∈ Z : i < ℓ ≤ n, |xℓ − xi|z < ai}.

Therefore, if we further condition on t∗ = t0, we have ℓt0 ∈ L and

Pr[ℓt0 = ℓ|H, t∗ = t0] =
aℓ∑
j∈L aj

for every ℓ ∈ L. (17)

When t∗ = t0, we have η(i, u+ 1) = ℓt0 − i. Therefore, to prove (16), it suffices to show that

E[ℓt0 − i|H, t∗ = t0] ≤
2z/2

2z/2 + 1
η(i, u)− 1

2
. (18)

5We have η(i, u+ 1) = 0 also for E3, so one can also simply choose E∗ = E4. Choosing E∗ = E3 ∪ E4 helps us get
improved constants in our bound.

23

It is clear that we can write L as L = {i, i+1, . . . , ℓ∗} for some integer ℓ∗ ≥ i. If u > 0, Claim 5.2
implies ai ≤ |xi − xℓt(i,u) |z, and thus ℓ∗ < ℓt(i,u) and ℓ∗ − i ≤ ℓt(i,u) − i = η(i, u). If u = 0, we have
η(i, u) = n, so it also holds that ℓ∗ − i ≤ η(i, u). By (17) and Lemma 5.6, we can set γ = 2z in
Lemma 5.8 to get

E[ℓt0 − i|H, t∗ = t0] ≤
2z/2

2z/2 + 1
(ℓ∗ − i)− 1

2
≤ 2z/2

2z/2 + 1
η(i, u)− 1

2
.

This proves (18) and thus proves the lemma.

5.1 Helper Lemmas

Lemma 5.7. Let M ≥ 1 and λ ∈ (0, 1) be parameters. Let α0, α1, . . . ∈ [0,+∞) be random variables
satisfying α0 = M and E[αi+1|α1, . . . , αi] ≤ λαi for every i = 0, 1, Let t ≥ 0 be the smallest
integer satisfying αt < 1. Then

E[t] ≤ lnM

ln(1/λ)
+

1

1− λ
.

Proof. For every j = 0, 1, . . ., we define a random variable tj := min{t, j}. By the monotone
convergence theorem, it suffices to show that

E[tj] ≤
lnM

ln(1/λ)
+

1

1− λ
for every j = 0, 1, (19)

We prove (19) by induction on j. When j = 0, we have tj = 0, and the inequality above holds
trivially. We assume that (19) holds for an arbitrary j ∈ Z≥0 and show that it also holds with j
replaced by j + 1. We have

E[tj+1] = 1 +E[tj+1 − 1] = 1 +E[E[(tj+1 − 1)|α1]]. (20)

By our definition of tj+1, we have tj+1 − 1 = min{t− 1, j}. Applying our induction hypothesis on
the sequence α1, α2, . . ., we have

E[(tj+1 − 1)|α1] = E[min{t− 1, j}|α1] ≤ f(α1), (21)

where

f(α) =

{
α

1−λ , if α ∈ [0, 1);
lnα

ln(1/λ) +
1

1−λ , if α ≥ 1.

It is easy to check that f is an increasing concave function of α ∈ [0,+∞) and 1 + f(λα) ≤ f(α)
holds for every α ≥ 1. Plugging (21) into (20), we have

E[tj+1] ≤ 1 +E[f(α1)] ≤ 1 + f(E[α1]) ≤ 1 + f(λM) ≤ f(M) =
lnM

ln(1/λ)
+

1

1− λ
.

Lemma 5.8. Let γ ≥ 1 be a real number. Let β0, . . . , βm−1 be non-negative real numbers such that
for every i, j ∈ {0, . . . ,m− 1} satisfying i ≤ j, it holds that βj ≤ γβi. Then,

m−1∑
i=0

iβi ≤
(√

γ ·m
√
γ + 1

− 1

2

)m−1∑
i=0

βi.

24

Proof. The lemma holds trivially if β0 = 0 because in this case βj ≤ γβ0 = 0 for every j = 0, . . . ,m−1.
We thus assume w.l.o.g. that β0 > 0. Define τ to be the unique real number satisfying

τ

m−1∑
i=0

βi −
m−1∑
i=0

iβi = 0.

It is clear that τ ∈ [0,m− 1]. Our goal is to prove that

τ ≤
√
γ ·m
√
γ + 1

− 1

2
. (22)

Define β∗ := min0≤i≤τ βi. For every i = 0, . . . ,m − 1, we have βi ≥ β∗ if i ≤ τ , and βi ≤ γβ∗ if
i > τ . Therefore, defining s := ⌊τ⌋, we have

0 = τ
m−1∑
i=0

βi −
m−1∑
i=0

iβi

=

m−1∑
i=0

(τ − i)βi

≥
∑
i≤τ

(τ − i)β∗ +
∑
i>τ

(τ − i)γβ∗ (23)

=
(s+ 1)(2τ − s)

2
· β∗ +

(m− s− 1)(2τ −m− s)

2
· γβ∗. (24)

Now, we show that β∗ > 0. For the sake of contradiction, assume β∗ = 0. We already assumed that
β0 > 0, so β∗ ≠ β0. By the definition of β∗, this means that τ > 0 and inequality (23) is strict,
leading to the false claim of

0 >
∑
i≤τ

(τ − i)β∗ +
∑
i>τ

(τ − i)γβ∗ = 0.

Therefore, β∗ > 0 must hold. Now we know that (24) implies

(s+ 1)(2τ − s) + (m− s− 1)(2τ −m− s)γ ≤ 0.

Treating s as a real-valued variable, the left-hand side is minimized when s = τ − 1/2, giving us

(τ + 1/2)2 − (m− τ − 1/2)2γ ≤ 0.

The inequality above implies
(τ + 1/2)2 ≤ (m− τ − 1/2)2γ.

Taking square root for both sides and solving for τ gives (22).

6 Data Structure for Fast Sampling in Seeding

In Section 5, our Algorithm 1 uses a binary tree data structure S that keeps track of n nonnegative
numbers s1, . . . , sn and supports several operations. Here, we describe the implementation of this

25

data structure. We assume that n = 2q for some nonnegative integer q. This is without loss of
generality because we can choose n′ to be the number that satisfy n ≤ n′ < 2n and n′ = 2q for some
q ∈ Z≥0 and consider s1, . . . , sn, sn+1, . . . , sn′ with sn+1 = · · · = sn′ = 0. Under this assumption,
the data structure S is a complete binary tree with q + 1 layers indexed by 0, . . . , q. In each layer
ζ = 0, . . . , q there are 2ζ nodes each corresponding to a set of indices from {1, . . . , n}. The root,
denoted by v

(0)
1 , is the unique node in layer 0 and it corresponds to the entire set V

(0)
1 := {1, . . . , n}.

For ζ = 0, . . . , q − 1, each node v
(ζ)
j in the ζ-th layer has two children v

(ζ+1)
2j−1 , v

(ζ+1)
2j in the (ζ + 1)-th

layer corresponding to the sets V
(ζ+1)
2j−1 , V

(ζ+1)
2j , respectively, where V

(ζ+1)
2j−1 is the smaller half of V (ζ)

j

and V
(ζ+1)
2j is the larger half. Thus,

V
(ζ)
j = {i ∈ Z : (j − 1)2q−ζ < i ≤ j2q−ζ}.

Each node v
(ζ)
j in the tree stores a sum s

(ζ)
j :=

∑
i∈V (ζ)

j

si.

<latexit sha1_base64="mq+R8eBUuwDx1Y7X5MZ6XiQcPms=">AAADaXicbZLbbhMxEIbdhEMJpwZuENxYpEgFRdFuqrTpXUVS0YsiSpQepGwaeb2zrdW1vbK9RcHax+AWnotn4CXwJqEKm45kafR/M57xeMI0Ydp43u+1SvXe/QcP1x/VHj95+uz5Rv3FqZaZonBCZSLVeUg0JEzAiWEmgfNUAeFhAmfhda/gZzegNJNiaKYpjDm5FCxmlBgnjTZvLuyW9z6f+JuTjYbX8maGVx1/4TTQwo4n9cphEEmacRCGJkTrke+lZmyJMowmkNeCTENK6DW5hJFzBeGgx3bWc47fOSXCsVTuCINn6nKGJVzrKQ9dJCfmSpdZId7FRpmJu2PLRJoZEHReKM4SbCQuBoAjpoCaZOocQhVzvWJ6RRShxo2pVi5TNKfdU/rgnqjgsyv3JQVFjFQfbHCQ26DoIAzxgQsS8I1KzomIbED7uZ1DShLcz8v4aBkfreDeMu6VcTj4h13lwUrycDl5WMZSwG12jH2Ha0EEsVug2SdYPlUQ5Xbw6WNu2/5es7PX3O7m5Zg0U6n75HmY391pdrabbX+3uOzuWXEmGGffYTEyHdtbJXe755c3bdU5bbf8nVbna7uxP1xs4Tp6g96iLeSjXbSPDtExOkEUSfQD/US/Kn+q9eqr6ut5aGVtkfMS/WfVxl8mnB0U</latexit>

v
(0)
1

<latexit sha1_base64="kw9W/PiHZaVaCn1aeBfkMHAaYrY=">AAADaXicbZLNbhMxEMfdhI8Svhq4ILhYpEgFRVE2IW16q0gqeiiiRElbKRsir3e2tbq2V7a3KFj7GFzhuXgGXgJvEqqw6UiWRv/fjGc8niCJmTbN5u+NUvnO3Xv3Nx9UHj56/OTpVvXZqZapojCiMpbqPCAaYiZgZJiJ4TxRQHgQw1lw1cv52TUozaQYmlkCE04uBIsYJcZJ4+3rr3an/Tabvt+ebtWajebc8LrjLZ0aWtrJtFo68kNJUw7C0JhoPfaaiZlYogyjMWQVP9WQEHpFLmDsXEE46Imd95zhN04JcSSVO8LgubqaYQnXesYDF8mJudRFlou3sXFqou7EMpGkBgRdFIrSGBuJ8wHgkCmgJp45h1DFXK+YXhJFqHFjqhTL5M1p95Q+uCcq+OTKfU5AESPVO+sfZtbPOwgCfOiCBHyjknMiQuvTfmYXkJIY97MiPl7Fx2u4t4p7RRwM/mFXebCWPFxNHhaxFHCTHWHP4YofQuQWaP4Jls8UhJkdfPyQ2Za3X+/s19vdrBiTpCpxn7wI87q79U673vL28stunxVngnH2HZYj05G9UTK3e15x09ad01bD2210vrRqB8PlFm6iV+g12kEe2kMH6AidoBGiSKIf6Cf6VfpTrpZflF8uQksby5zn6D8r1/4COJAdGg==</latexit>

v
(3)
4

<latexit sha1_base64="xCh8BuXaxYl3m4PYTvhQsvPfcIA=">AAADZ3icbZLdatswFMfVeB9d9tF2hTHYjbZ0MEYIdkra9K4sKetFxrqQtB1xKLJ83IpaspHkjkz4KXa7PdgeYW8xOfFK5vSA4fD/nePzoROkMVPadX+v1Zx79x88XH9Uf/zk6bONza3npyrJJIUxTeJEngdEQcwEjDXTMZynEggPYjgLrnsFP7sBqVgiRnqWwpSTS8EiRom20tcBmYHEO+7OxWbDbblzw6uOVzoNVNrJxVbt2A8TmnEQmsZEqYnnpnpqiNSMxpDX/UxBSug1uYSJdQXhoKZm3nGO31olxFEi7Sc0nqvLGYZwpWY8sJGc6CtVZYV4F5tkOupODRNppkHQRaEoi7FOcDE+DpkEquOZdQiVzPaK6RWRhGq7pHq1TNGcsqP0wY4o4ZMt9zkFSXQi3xv/KDd+0UEQ4CMbJOAbTTgnIjQ+7edmASmJcT+v4sEyHqzg3jLuVXEw/Idt5eFK8mg5eVTFiYDb7Ah7Ftf9ECJ7PvNHMHwmIczN8OOH3LS9g2bnoLnbzasxaSZT+8iLMK+71+zsNtvefvGzu3fFmWCcfYdyZSoyt0pub8+rXtqqc9pueXutzpd243BUXuE6eoXeoHfIQ/voEB2jEzRGFHH0A/1Ev2p/nA3nhfNyEVpbK3O20X/mvP4LKCcccA==</latexit>

Layer 0

<latexit sha1_base64="DeBcokIe9YO39PBTFsts1tgBU/s=">AAADZ3icbZLdatswFMfVeB9d9tF2hTHYjbZ0MEYIdkra9K4sKetFxrqQtB1xKLJ83IpaspHkjkz4KXa7PdgeYW8xOfFK5vSA4fD/nePzoROkMVPadX+v1Zx79x88XH9Uf/zk6bONza3npyrJJIUxTeJEngdEQcwEjDXTMZynEggPYjgLrnsFP7sBqVgiRnqWwpSTS8EiRom20tcBmYHEO97OxWbDbblzw6uOVzoNVNrJxVbt2A8TmnEQmsZEqYnnpnpqiNSMxpDX/UxBSug1uYSJdQXhoKZm3nGO31olxFEi7Sc0nqvLGYZwpWY8sJGc6CtVZYV4F5tkOupODRNppkHQRaEoi7FOcDE+DpkEquOZdQiVzPaK6RWRhGq7pHq1TNGcsqP0wY4o4ZMt9zkFSXQi3xv/KDd+0UEQ4CMbJOAbTTgnIjQ+7edmASmJcT+v4sEyHqzg3jLuVXEw/Idt5eFK8mg5eVTFiYDb7Ah7Ftf9ECJ7PvNHMHwmIczN8OOH3LS9g2bnoLnbzasxaSZT+8iLMK+71+zsNtvefvGzu3fFmWCcfYdyZSoyt0pub8+rXtqqc9pueXutzpd243BUXuE6eoXeoHfIQ/voEB2jEzRGFHH0A/1Ev2p/nA3nhfNyEVpbK3O20X/mvP4LKyMccQ==</latexit>

Layer 1

<latexit sha1_base64="0hSY0XDSmDNsfOutIKngGSNXc5s=">AAADZ3icbZLdatswFMfVZB9d9tF2hTHYjbZ0MEYItkva9K4sKetFxrqQtB1xKLJ83IpaspHkDk/4KXa7PdgeYW8xOclK5vSA4fD/nePzoROkMVPacX6v1er37j94uP6o8fjJ02cbm1vPT1WSSQpjmsSJPA+IgpgJGGumYzhPJRAexHAWXPdKfnYDUrFEjHSewpSTS8EiRom20tcByUHiHW/nYrPptJ2Z4VXHXThNtLCTi63asR8mNOMgNI2JUhPXSfXUEKkZjaFo+JmClNBrcgkT6wrCQU3NrOMCv7VKiKNE2k9oPFOXMwzhSuU8sJGc6CtVZaV4F5tkOupODRNppkHQeaEoi7FOcDk+DpkEquPcOoRKZnvF9IpIQrVdUqNapmxO2VH6YEeU8MmW+5yCJDqR741/VBi/7CAI8JENEvCNJpwTERqf9gszh5TEuF9U8WAZD1Zwbxn3qjgY/sO28nAlebScPKriRMBtdoRdixt+CJE9n9kjGJ5LCAsz/PihMJ570OoctHa7RTUmzWRqH3ke5nb3Wp3dlufulz+7e1ecCcbZd1isTEXmVins7bnVS1t1Tr22u9fufPGah6PFFa6jV+gNeodctI8O0TE6QWNEEUc/0E/0q/anvlF/UX85D62tLXK20X9Wf/0XLh8ccg==</latexit>

Layer 2

<latexit sha1_base64="MW2wnVktQEnGLPPVVAnJ/g59c/U=">AAADZ3icbZLdbtMwFMe9ho9RPraBhJC4MXRICFVV0qpbdzfRTuyiiFG121BTTY5zslmLnch2QMXKU3ALD8Yj8BY4bZhKuiNFOvr/zsn58AnSmCntur83as6du/fubz6oP3z0+MnW9s7TU5VkksKEJnEizwOiIGYCJprpGM5TCYQHMZwF1/2Cn30FqVgixnqewoyTS8EiRom20pchmYPEu53di+2G23IXhtcdr3QaqLSTi53asR8mNOMgNI2JUlPPTfXMEKkZjSGv+5mClNBrcglT6wrCQc3MouMcv7FKiKNE2k9ovFBXMwzhSs15YCM50VeqygrxNjbNdNSbGSbSTIOgy0JRFmOd4GJ8HDIJVMdz6xAqme0V0ysiCdV2SfVqmaI5ZUcZgB1Rwkdb7lMKkuhEvjP+UW78ooMgwEc2SMA3mnBORGh8OsjNElIS40FexcNVPFzD/VXcr+Jg9A/byqO15PFq8riKEwE32RH2LK77IUT2fBaPYPhcQpib0Yf3uWl7B83uQbPTy6sxaSZT+8jLMK+31+x2mm1vv/jZ7bviTDDOvkO5MhWZGyW3t+dVL23dOW23vL1W93O7cTgur3ATvUSv0VvkoX10iI7RCZogijj6gX6iX7U/zpbz3HmxDK1tlDnP0H/mvPoLMRsccw==</latexit>

Layer 3

<latexit sha1_base64="zxmokqgs82NehR5gWhK71OnDO/I=">AAADY3icbZLdatswFMfVeB9duo+2290YiKWDMUKw06VN78qSsl50rAtJW4hDkOXjVtSSjSS3ZMLPsNvt0fYAe4/JiVcypwcMh//vHJ8PnSCNmdKu+3ut5jx4+Ojx+pP6xtNnz19sbm2fqSSTFEY0iRN5ERAFMRMw0kzHcJFKIDyI4Ty47hX8/AakYokY6lkKE04uBYsYJdpKox01/bgz3Wy4LXdueNXxSqeBSjudbtWO/TChGQehaUyUGntuqieGSM1oDHndzxSkhF6TSxhbVxAOamLm3eb4nVVCHCXSfkLjubqcYQhXasYDG8mJvlJVVoj3sXGmo+7EMJFmGgRdFIqyGOsEF6PjkEmgOp5Zh1DJbK+YXhFJqLYLqlfLFM0pO0of7IgSvthyX1OQRCfyg/GPcuMXHQQBPrJBAm5pwjkRofFpPzcLSEmM+3kVnyzjkxXcW8a9Kg4G/7CtPFhJHi4nD6s4EXCXHWHP4rofQmRPZ/4Ihs8khLkZfP6Um7Z30OwcNHe7eTUmzWRqH3kR5nX3mp3dZtvbL352/644E4yz71CuTEXmTsnt7XnVS1t1ztotb6/V+dZuHA7LK1xHr9Fb9B55aB8domN0ikaIIoZ+oJ/oV+2Ps+FsO68WobW1Mucl+s+cN38BtgwbAQ==</latexit>s4

<latexit sha1_base64="/Zq+99LCTpWFseH+k2FdmrW5uRw=">AAADaXicbZLNThsxEMdN0g+afpH2gtqL1VCJVlEUBwXCDTVB5UBVGiWAlA2R1zsLFmvvyvaCUmsfo9f2ufoMfYl6kxSlG0ayNPr/Zjzj8fhJxLVpNn+vlcoPHj56vP6k8vTZ8xcvN6qvTnWcKgZDFkexOvephohLGBpuIjhPFFDhR3DmX3dzfnYDSvNYDsw0gbGgl5KHnFHjpNHWzYXdJh+yCdmabNSajebM8KpDFk4NLexkUi0deUHMUgHSsIhqPSLNxIwtVYazCLKKl2pIKLumlzByrqQC9NjOes7we6cEOIyVO9LgmbqcYanQeip8FymoudJFlov3sVFqws7YcpmkBiSbFwrTCJsY5wPAAVfATDR1DmWKu14xu6KKMuPGVCmWyZvT7ik9cE9U8MWV+5qAoiZWH613mFkv78D38aELknDLYiGoDKzHepmdQ0Yj3MuK+HgZH6/g7jLuFrHf/4dd5f5K8mA5eVDEsYS77BAThyteAKFboNknWDFVEGS2//lTZltkv97er+90smJMkqrEffI8jHR26+2deovs5ZfdPyvBJRf8OyxGpkN7p2Ru90hx01ad01aD7Dba31q1g8FiC9fRW/QObSOC9tABOkInaIgYitEP9BP9Kv0pV8ub5Tfz0NLaIuc1+s/Ktb8pnB0V</latexit>

v
(1)
1

<latexit sha1_base64="a0nyQYU5nv9/tmdObEF/D5TeisY=">AAADaXicbZLNThsxEMdN0g+afpH2gtqL1VCJVlGUDQqEG2qCyoGqNEoAKRsir3cWLNb2yvaCUmsfo9f2ufoMfYl6kxSlG0ayNPr/Zjzj8QRJzLRpNn+vlcoPHj56vP6k8vTZ8xcvN6qvTrVMFYUhlbFU5wHREDMBQ8NMDOeJAsKDGM6C627Oz25AaSbFwEwTGHNyKVjEKDFOGm3dXNht70M2aW1NNmrNRnNmeNXxFk4NLexkUi0d+aGkKQdhaEy0HnnNxIwtUYbRGLKKn2pICL0mlzByriAc9NjOes7we6eEOJLKHWHwTF3OsIRrPeWBi+TEXOkiy8X72Cg1UWdsmUhSA4LOC0VpjI3E+QBwyBRQE0+dQ6hirldMr4gi1LgxVYpl8ua0e0oP3BMVfHHlviagiJHqo/UPM+vnHQQBPnRBAm6p5JyI0Pq0l9k5pCTGvayIj5fx8QruLuNuEQf9f9hV7q8kD5aTB0UsBdxlR9hzuOKHELkFmn2C5VMFYWb7nz9ltuXt19v79Z1OVoxJUpW4T56HeZ3denun3vL28svunxVngnH2HRYj05G9UzK3e15x01ad01bD2220v7VqB4PFFq6jt+gd2kYe2kMH6AidoCGiSKIf6Cf6VfpTrpY3y2/moaW1Rc5r9J+Va38BLJgdFg==</latexit>

v
(1)
2

<latexit sha1_base64="eLup744ht4iTjzSJMaICC4I1+6Y=">AAADaXicbZLNThsxEMdN0g+afpH2gtqL1VCJVlGUDQqEG2qCyoGqNEoAKRsir3cWLNb2yvaCUmsfo9f2ufoMfYl6kxSlG0ayNPr/Zjzj8QRJzLRpNn+vlcoPHj56vP6k8vTZ8xcvN6qvTrVMFYUhlbFU5wHREDMBQ8NMDOeJAsKDGM6C627Oz25AaSbFwEwTGHNyKVjEKDFOGm3dXNjt1ods4m1NNmrNRnNmeNXxFk4NLexkUi0d+aGkKQdhaEy0HnnNxIwtUYbRGLKKn2pICL0mlzByriAc9NjOes7we6eEOJLKHWHwTF3OsIRrPeWBi+TEXOkiy8X72Cg1UWdsmUhSA4LOC0VpjI3E+QBwyBRQE0+dQ6hirldMr4gi1LgxVYpl8ua0e0oP3BMVfHHlviagiJHqo/UPM+vnHQQBPnRBAm6p5JyI0Pq0l9k5pCTGvayIj5fx8QruLuNuEQf9f9hV7q8kD5aTB0UsBdxlR9hzuOKHELkFmn2C5VMFYWb7nz9ltuXt19v79Z1OVoxJUpW4T56HeZ3denun3vL28svunxVngnH2HRYj05G9UzK3e15x01ad01bD2220v7VqB4PFFq6jt+gd2kYe2kMH6AidoCGiSKIf6Cf6VfpTrpY3y2/moaW1Rc5r9J+Va38BLJwdFg==</latexit>

v
(2)
1

<latexit sha1_base64="RAyWsQakucimeOfC/Gj8uN75fqk=">AAADaXicbZLbbhMxEIbdhEMJpwZuENxYpEgFRVF2q7TpXUVS0YsiSpQepGwaeb2zrdW1vbK9RcHax+AWnotn4CXwJqEKm45kafR/M57xeMI0Ydq027/XKtV79x88XH9Ue/zk6bPnG/UXp1pmisIJlYlU5yHRkDABJ4aZBM5TBYSHCZyF172Cn92A0kyKoZmmMObkUrCYUWKcNNq8ubBb/vt84m9ONhrtVntmeNXxFk4DLex4Uq8cBpGkGQdhaEK0Hnnt1IwtUYbRBPJakGlICb0mlzByriAc9NjOes7xO6dEOJbKHWHwTF3OsIRrPeWhi+TEXOkyK8S72CgzcXdsmUgzA4LOC8VZgo3ExQBwxBRQk0ydQ6hirldMr4gi1Lgx1cpliua0e0of3BMVfHblvqSgiJHqgw0OchsUHYQhPnBBAr5RyTkRkQ1oP7dzSEmC+3kZHy3joxXcW8a9Mg4H/7CrPFhJHi4nD8tYCrjNjrHncC2IIHYLNPsEy6cKotwOPn3Mre/tNTt7ze1uXo5JM5W6T56Hed2dZme76Xu7xWV3z4ozwTj7DouR6djeKrnbPa+8aavOqd/ydlqdr35jf7jYwnX0Br1FW8hDu2gfHaJjdIIokugH+ol+Vf5U69VX1dfz0MraIucl+s+qjb8vmB0X</latexit>

v
(2)
2

<latexit sha1_base64="5rpaNkv97dm3q6qhePJDox4brGA=">AAADaXicbZLNbhMxEMfdhI8Svhq4ILhYpEgFRVE2Udr0VpFU9FBEiZK2UjaNvN7Z1uraXtneomDtY3CF5+IZeAm8SajCpiNZGv1/M57xeIIkZto0m783SuV79x883HxUefzk6bPnW9UXp1qmisKIyliq84BoiJmAkWEmhvNEAeFBDGfBdS/nZzegNJNiaGYJTDi5FCxilBgnjbdvLuxO6302bW9Pt2rNRnNueN3xlk4NLe1kWi0d+aGkKQdhaEy0HnvNxEwsUYbRGLKKn2pICL0mlzB2riAc9MTOe87wO6eEOJLKHWHwXF3NsIRrPeOBi+TEXOkiy8W72Dg1UXdimUhSA4IuCkVpjI3E+QBwyBRQE8+cQ6hirldMr4gi1LgxVYpl8ua0e0of3BMVfHblviSgiJHqg/UPM+vnHQQBPnRBAr5RyTkRofVpP7MLSEmM+1kRH6/i4zXcW8W9Ig4G/7CrPFhLHq4mD4tYCrjNjrDncMUPIXILNP8Ey2cKwswOPn3MbMvbr3f26+1uVoxJUpW4T16Eed3deqddb3l7+WV3z4ozwTj7DsuR6cjeKpnbPa+4aevOaavh7TY6X1u1g+FyCzfRG/QW7SAP7aEDdIRO0AhRJNEP9BP9Kv0pV8uvyq8XoaWNZc5L9J+Va38BMpQdGA==</latexit>

v
(2)
3

<latexit sha1_base64="wS2S/xSYz8op9J/gatDdkpXZhBo=">AAADaXicbZLNbhMxEMfdhI8Svpr2guBikSIVFEXZlLTprSKp6KGIEiVtpWyIvN7Z1uraXtneomDtY3CF5+IZeAm8SajCpiNZGv1/M57xeIIkZto0m7/XSuV79x88XH9Uefzk6bPnG9XNMy1TRWFIZSzVRUA0xEzA0DATw0WigPAghvPgupvz8xtQmkkxMNMExpxcChYxSoyTRts3X+1O6202eb892ag1G82Z4VXHWzg1tLDTSbV07IeSphyEoTHReuQ1EzO2RBlGY8gqfqohIfSaXMLIuYJw0GM76znDb5wS4kgqd4TBM3U5wxKu9ZQHLpITc6WLLBfvYqPURJ2xZSJJDQg6LxSlMTYS5wPAIVNATTx1DqGKuV4xvSKKUOPGVCmWyZvT7ik9cE9U8MmV+5yAIkaqd9Y/yqyfdxAE+MgFCfhGJedEhNanvczOISUx7mVFfLKMT1Zwdxl3izjo/8Oucn8lebCcPChiKeA2O8KewxU/hMgt0OwTLJ8qCDPb//ghsy3voN4+qO92smJMkqrEffI8zOvs1du79Za3n19296w4E4yz77AYmY7srZK53fOKm7bqnLUa3l6j/aVVOxwstnAdvUKv0Q7y0D46RMfoFA0RRRL9QD/Rr9KfcrX8ovxyHlpaW+Rsof+sXPsLNZAdGQ==</latexit>

v
(2)
4

<latexit sha1_base64="k9M8ReP7KTIWIrvCPsWqgXst1DI=">AAADaXicbZLNbhMxEMfdhI8Svhq4ILhYpEgFRVE2Udr0VpFU9FBEiZK2UjaNvN7Z1uraXtneomDtY3CF5+IZeAm8SajCpiNZGv1/M57xeIIkZto0m783SuV79x883HxUefzk6bPnW9UXp1qmisKIyliq84BoiJmAkWEmhvNEAeFBDGfBdS/nZzegNJNiaGYJTDi5FCxilBgnjbdvLuxO+3029banW7Vmozk3vO54S6eGlnYyrZaO/FDSlIMwNCZaj71mYiaWKMNoDFnFTzUkhF6TSxg7VxAOemLnPWf4nVNCHEnljjB4rq5mWMK1nvHARXJirnSR5eJdbJyaqDuxTCSpAUEXhaI0xkbifAA4ZAqoiWfOIVQx1yumV0QRatyYKsUyeXPaPaUP7okKPrtyXxJQxEj1wfqHmfXzDoIAH7ogAd+o5JyI0Pq0n9kFpCTG/ayIj1fx8RrureJeEQeDf9hVHqwlD1eTh0UsBdxmR9hzuOKHELkFmn+C5TMFYWYHnz5mtuXt1zv79XY3K8YkqUrcJy/CvO5uvdOut7y9/LK7Z8WZYJx9h+XIdGRvlcztnlfctHXntNXwdhudr63awXC5hZvoDXqLdpCH9tABOkInaIQokugH+ol+lf6Uq+VX5deL0NLGMucl+s/Ktb8vnB0X</latexit>

v
(3)
1

<latexit sha1_base64="jgPfVEZ5SbN9Ow2hcisyyptlThw=">AAADaXicbZLNbhMxEMfdhI8Svhq4ILhYpEgFRVE2Udr0VpFU9FBEiZK2UjaNvN7Z1uraXtneomDtY3CF5+IZeAm8SajCpiNZGv1/M57xeIIkZto0m783SuV79x883HxUefzk6bPnW9UXp1qmisKIyliq84BoiJmAkWEmhvNEAeFBDGfBdS/nZzegNJNiaGYJTDi5FCxilBgnjbdvLuxO+302bW1Pt2rNRnNueN3xlk4NLe1kWi0d+aGkKQdhaEy0HnvNxEwsUYbRGLKKn2pICL0mlzB2riAc9MTOe87wO6eEOJLKHWHwXF3NsIRrPeOBi+TEXOkiy8W72Dg1UXdimUhSA4IuCkVpjI3E+QBwyBRQE8+cQ6hirldMr4gi1LgxVYpl8ua0e0of3BMVfHblviSgiJHqg/UPM+vnHQQBPnRBAr5RyTkRofVpP7MLSEmM+1kRH6/i4zXcW8W9Ig4G/7CrPFhLHq4mD4tYCrjNjrDncMUPIXILNP8Ey2cKwswOPn3MbMvbr3f26+1uVoxJUpW4T16Eed3deqddb3l7+WV3z4ozwTj7DsuR6cjeKpnbPa+4aevOaavh7TY6X1u1g+FyCzfRG/QW7SAP7aEDdIRO0AhRJNEP9BP9Kv0pV8uvyq8XoaWNZc5L9J+Va38BMpgdGA==</latexit>

v
(3)
2

<latexit sha1_base64="GjTFEGmxOkB+I2VUex03LpKvAig=">AAADaXicbZLNbhMxEMfdhI8Svhq4ILhYpEgFRVE2Udr0VpFU9FBEiZK2UjaNvN7Z1uraXtneomDtY3CF5+IZeAm8SajCpiNZGv1/M57xeIIkZto0m783SuV79x883HxUefzk6bPnW9UXp1qmisKIyliq84BoiJmAkWEmhvNEAeFBDGfBdS/nZzegNJNiaGYJTDi5FCxilBgnjbdvLuxO+302bW9Pt2rNRnNueN3xlk4NLe1kWi0d+aGkKQdhaEy0HnvNxEwsUYbRGLKKn2pICL0mlzB2riAc9MTOe87wO6eEOJLKHWHwXF3NsIRrPeOBi+TEXOkiy8W72Dg1UXdimUhSA4IuCkVpjI3E+QBwyBRQE8+cQ6hirldMr4gi1LgxVYpl8ua0e0of3BMVfHblviSgiJHqg/UPM+vnHQQBPnRBAr5RyTkRofVpP7MLSEmM+1kRH6/i4zXcW8W9Ig4G/7CrPFhLHq4mD4tYCrjNjrDncMUPIXILNP8Ey2cKwswOPn3MbMvbr3f26+1uVoxJUpW4T16Eed3deqddb3l7+WV3z4ozwTj7DsuR6cjeKpnbPa+4aevOaavh7TY6X1u1g+FyCzfRG/QW7SAP7aEDdIRO0AhRJNEP9BP9Kv0pV8uvyq8XoaWNZc5L9J+Va38BNZQdGQ==</latexit>

v
(3)
3

<latexit sha1_base64="eYGqumLbpNOpM9HxNDZ19SfH8ZM=">AAADaXicbZLNbhMxEMfdhI8Svhq4ILhYpEgFRVE2Udr0VpFU9FBEiZK2UjaNvN7Z1uraXtneomDtY3CF5+IZeAm8SajCpiNZGv1/M57xeIIkZto0m783SuV79x883HxUefzk6bPnW9UXp1qmisKIyliq84BoiJmAkWEmhvNEAeFBDGfBdS/nZzegNJNiaGYJTDi5FCxilBgnjbdvLuxO+3027WxPt2rNRnNueN3xlk4NLe1kWi0d+aGkKQdhaEy0HnvNxEwsUYbRGLKKn2pICL0mlzB2riAc9MTOe87wO6eEOJLKHWHwXF3NsIRrPeOBi+TEXOkiy8W72Dg1UXdimUhSA4IuCkVpjI3E+QBwyBRQE8+cQ6hirldMr4gi1LgxVYpl8ua0e0of3BMVfHblviSgiJHqg/UPM+vnHQQBPnRBAr5RyTkRofVpP7MLSEmM+1kRH6/i4zXcW8W9Ig4G/7CrPFhLHq4mD4tYCrjNjrDncMUPIXILNP8Ey2cKwswOPn3MbMvbr3f26+1uVoxJUpW4T16Eed3deqddb3l7+WV3z4ozwTj7DsuR6cjeKpnbPa+4aevOaavh7TY6X1u1g+FyCzfRG/QW7SAP7aEDdIRO0AhRJNEP9BP9Kv0pV8uvyq8XoaWNZc5L9J+Va38BO4wdGw==</latexit>

v
(3)
5

<latexit sha1_base64="Gsw3gNvjd2ZSo3AsYSCKtQm+vNo=">AAADaXicbZLbbhMxEIbdhEMJpwZuENxYpEgFRVE2UdL0riKp6EURJUoPUjaNvN7Z1uraXtneomDtY3ALz8Uz8BJ4k1CFTUeyNPq/Gc94PEESM22azd8bpfK9+w8ebj6qPH7y9NnzreqLUy1TReGEyliq84BoiJmAE8NMDOeJAsKDGM6C637Oz25AaSbFyMwSmHByKVjEKDFOGm/fXNid9vts2t2ebtWajebc8LrjLZ0aWtrxtFo69ENJUw7C0JhoPfaaiZlYogyjMWQVP9WQEHpNLmHsXEE46Imd95zhd04JcSSVO8LgubqaYQnXesYDF8mJudJFlot3sXFqot7EMpGkBgRdFIrSGBuJ8wHgkCmgJp45h1DFXK+YXhFFqHFjqhTL5M1p95QBuCcq+OzKfUlAESPVB+sfZNbPOwgCfOCCBHyjknMiQuvTQWYXkJIYD7IiPlrFR2u4v4r7RRwM/2FXebiWPFpNHhWxFHCbHWHP4YofQuQWaP4Jls8UhJkdfvqY2Za3V+/s1du9rBiTpCpxn7wI83rdeqddb3m7+WV3z4ozwTj7DsuR6cjeKpnbPa+4aevOaavhdRudr63a/mi5hZvoDXqLdpCHdtE+OkTH6ARRJNEP9BP9Kv0pV8uvyq8XoaWNZc5L9J+Va38BPogdHA==</latexit>

v
(3)
6

<latexit sha1_base64="miegucVzZNXhz992UVuXxgMOYzo=">AAADaXicbZLbbhMxEIbdhEMJpwZuENxYpEgFRVE2UZr0riKp6EURJUoPUjaNvN7Z1uraXtneomDtY3ALz8Uz8BJ4k1CFTUeyNPq/Gc94PEESM22azd8bpfK9+w8ebj6qPH7y9NnzreqLUy1TReGEyliq84BoiJmAE8NMDOeJAsKDGM6C637Oz25AaSbFyMwSmHByKVjEKDFOGm/fXNid9vts2t2ebtWajebc8LrjLZ0aWtrxtFo69ENJUw7C0JhoPfaaiZlYogyjMWQVP9WQEHpNLmHsXEE46Imd95zhd04JcSSVO8LgubqaYQnXesYDF8mJudJFlot3sXFqot7EMpGkBgRdFIrSGBuJ8wHgkCmgJp45h1DFXK+YXhFFqHFjqhTL5M1p95QBuCcq+OzKfUlAESPVB+sfZNbPOwgCfOCCBHyjknMiQuvTQWYXkJIYD7IiPlrFR2u4v4r7RRwM/2FXebiWPFpNHhWxFHCbHWHP4YofQuQWaP4Jls8UhJkdfvqY2Za3V+/s1du9rBiTpCpxn7wI83q79U673vK6+WV3z4ozwTj7DsuR6cjeKpnbPa+4aevOaavh7TY6X1u1/dFyCzfRG/QW7SAPddE+OkTH6ARRJNEP9BP9Kv0pV8uvyq8XoaWNZc5L9J+Va38BQYQdHQ==</latexit>

v
(3)
7

<latexit sha1_base64="Ydihop3WM2ZS3VFzFoghvQ26wNY=">AAADaXicbZLNbhMxEMfdhI8Svhq4ILhYpEgFRVE2Udr0VpFU9FBEiZK2UjaNvN7Z1uraXtneomDtY3CF5+IZeAm8SajCpiNZGv1/M57xeIIkZto0m783SuV79x883HxUefzk6bPnW9UXp1qmisKIyliq84BoiJmAkWEmhvNEAeFBDGfBdS/nZzegNJNiaGYJTDi5FCxilBgnjbdvLuxO+3027W5Pt2rNRnNueN3xlk4NLe1kWi0d+aGkKQdhaEy0HnvNxEwsUYbRGLKKn2pICL0mlzB2riAc9MTOe87wO6eEOJLKHWHwXF3NsIRrPeOBi+TEXOkiy8W72Dg1UXdimUhSA4IuCkVpjI3E+QBwyBRQE8+cQ6hirldMr4gi1LgxVYpl8ua0e0of3BMVfHblviSgiJHqg/UPM+vnHQQBPnRBAr5RyTkRofVpP7MLSEmM+1kRH6/i4zXcW8W9Ig4G/7CrPFhLHq4mD4tYCrjNjrDncMUPIXILNP8Ey2cKwswOPn3MbMvbr3f26+1uVoxJUpW4T16Eed3deqddb3l7+WV3z4ozwTj7DsuR6cjeKpnbPa+4aevOaavh7TY6X1u1g+FyCzfRG/QW7SAP7aEDdIRO0AhRJNEP9BP9Kv0pV8uvyq8XoaWNZc5L9J+Va38BRIAdHg==</latexit>

v
(3)
8

<latexit sha1_base64="9IumYLoUNV1yeAwzp3U3STjPuZ4=">AAADY3icbZLdatswFMfVeB9duq1fuxsDsXQwRgh2Str0riwp60XHupC0hTgEWT5uRS3ZSPJKJvwMu90ebQ+w95iceCVzesBw+P/O8fnQCdKYKe26v9dqzqPHT56uP6tvPH/xcnNre+dCJZmkMKJJnMirgCiImYCRZjqGq1QC4UEMl8Ftr+CX30AqloihnqUw4eRasIhRoq002lNTb2+61XBb7tzwquOVTgOVdj7drp36YUIzDkLTmCg19txUTwyRmtEY8rqfKUgJvSXXMLauIBzUxMy7zfE7q4Q4SqT9hMZzdTnDEK7UjAc2khN9o6qsEB9i40xH3YlhIs00CLooFGUx1gkuRschk0B1PLMOoZLZXjG9IZJQbRdUr5YpmlN2lD7YESV8tuW+pCCJTuQH45/kxi86CAJ8YoME3NGEcyJC49N+bhaQkhj38yo+W8ZnK7i3jHtVHAz+YVt5sJI8XE4eVnEi4D47wp7FdT+EyJ7O/BEMn0kIczP49DE3be+o2Tlq7nfzakyaydQ+8iLM6x40O/vNtndY/OzhXXEmGGffoVyZisy9ktvb86qXtupctFveQavztd04HpZXuI5eo7foPfLQITpGp+gcjRBFDP1AP9Gv2h9nw9lxXi1Ca2tlzi76z5w3fwGtGBr+</latexit>s1
<latexit sha1_base64="hOdAHcmzR0xinOMN8rrRYYKE9CU=">AAADY3icbZLdatswFMfVeB9duq1fuxsDsXQwRgi2S9r0riwp60XHupC0hTgEWT5uRS3ZSPJKJvwMu90ebQ+w95icZCVzesBw+P/O8fnQCbOEKe26v9dqzqPHT56uP6tvPH/xcnNre+dCpbmkMKRpksqrkChImIChZjqBq0wC4WECl+Ftt+SX30AqloqBnmYw5uRasJhRoq003FMTf2+y1XBb7szwquMtnAZa2Plku3YaRCnNOQhNE6LUyHMzPTZEakYTKOpBriAj9JZcw8i6gnBQYzPrtsDvrBLhOJX2ExrP1OUMQ7hSUx7aSE70jaqyUnyIjXIdd8aGiSzXIOi8UJwnWKe4HB1HTALVydQ6hEpme8X0hkhCtV1QvVqmbE7ZUXpgR5Tw2Zb7koEkOpUfTHBSmKDsIAzxiQ0ScEdTzomITEB7hZlDShLcK6r4bBmfreDuMu5Wcdj/h23l/kryYDl5UMWpgPvsGHsW14MIYns6s0cwfCohKkz/08fC+N5Rs33U3O8U1Zgsl5l95HmY1zlotvebvndY/uzhXXEmGGffYbEyFZt7pbC351UvbdW58FveQav91W8cDxZXuI5eo7foPfLQITpGp+gcDRFFDP1AP9Gv2h9nw9lxXs1Da2uLnF30nzlv/gKwFBr/</latexit>s2

<latexit sha1_base64="3NklEIXO6cEmqGDUPe55BjRWxQM=">AAADY3icbZLdatswFMfVeB9duq0f290YiKWDMUKwE9Kmd2VJWS861oWkLcQhyPJxK2rJRpI3MuFn2O32aHuAvcfkxCuZ0wOGw/93js+HTpDGTGnX/b1Rcx48fPR480l96+mz59s7u3sXKskkhTFN4kReBURBzASMNdMxXKUSCA9iuAxu+wW//ApSsUSM9DyFKSfXgkWMEm2l8b6adfZnOw235S4Mrzte6TRQaeez3dqpHyY04yA0jYlSE89N9dQQqRmNIa/7mYKU0FtyDRPrCsJBTc2i2xy/tUqIo0TaT2i8UFczDOFKzXlgIznRN6rKCvE+Nsl01JsaJtJMg6DLQlEWY53gYnQcMglUx3PrECqZ7RXTGyIJ1XZB9WqZojllRxmAHVHCJ1vucwqS6ES+N/5JbvyigyDAJzZIwDeacE5EaHw6yM0SUhLjQV7FZ6v4bA33V3G/ioPhP2wrD9eSR6vJoypOBNxlR9izuO6HENnTWTyC4XMJYW6GHz/kpu0dNbtHzU4vr8akmUztIy/DvN5Bs9tptr3D4mf374ozwTj7DuXKVGTulNzenle9tHXnot3yDlrdL+3G8ai8wk30Cr1B75CHDtExOkXnaIwoYugH+ol+1f44W86e83IZWtsoc16g/8x5/RezEBsA</latexit>s3
<latexit sha1_base64="qBiZgAuwZVGokbhu/b6vMyPzAaE=">AAADY3icbZLdatswFMfVeB9duq1fuxsDsXQwRgh2Str0riwp60XHupC0hTgEWT5uRS3ZSPJKJvwMu90ebQ+w95iceCVzesBw+P/O8fnQCdKYKe26v9dqzqPHT56uP6tvPH/xcnNre+dCJZmkMKJJnMirgCiImYCRZjqGq1QC4UEMl8Ftr+CX30AqloihnqUw4eRasIhRoq002lPTzt50q+G23LnhVccrnQYq7Xy6XTv1w4RmHISmMVFq7LmpnhgiNaMx5HU/U5ASekuuYWxdQTioiZl3m+N3VglxlEj7CY3n6nKGIVypGQ9sJCf6RlVZIT7ExpmOuhPDRJppEHRRKMpirBNcjI5DJoHqeGYdQiWzvWJ6QySh2i6oXi1TNKfsKH2wI0r4bMt9SUESncgPxj/JjV90EAT4xAYJuKMJ50SExqf93CwgJTHu51V8tozPVnBvGfeqOBj8w7byYCV5uJw8rOJEwH12hD2L634IkT2d+SMYPpMQ5mbw6WNu2t5Rs3PU3O/m1Zg0k6l95EWY1z1odvabbe+w+NnDu+JMMM6+Q7kyFZl7Jbe351UvbdW5aLe8g1bna7txPCyvcB29Rm/Re+ShQ3SMTtE5GiGKGPqBfqJftT/OhrPjvFqE1tbKnF30nzlv/gK5CBsC</latexit>s5

<latexit sha1_base64="oCVeDlkcRiT3EYdb735Yfdh0iX8=">AAADY3icbZLdatswFMfVeB9duq0f290YiKWDMUKwU5Kmd2VJWS861oWkLcQhyPJxK2rJRpI3MuFn2O32aHuAvcfkxCuZ0wOGw/93js+HTpDGTGnX/b1Rcx48fPR480l96+mz59s7u3sXKskkhTFN4kReBURBzASMNdMxXKUSCA9iuAxu+wW//ApSsUSM9DyFKSfXgkWMEm2l8b6adfdnOw235S4Mrzte6TRQaeez3dqpHyY04yA0jYlSE89N9dQQqRmNIa/7mYKU0FtyDRPrCsJBTc2i2xy/tUqIo0TaT2i8UFczDOFKzXlgIznRN6rKCvE+Nsl01JsaJtJMg6DLQlEWY53gYnQcMglUx3PrECqZ7RXTGyIJ1XZB9WqZojllRxmAHVHCJ1vucwqS6ES+N/5JbvyigyDAJzZIwDeacE5EaHw6yM0SUhLjQV7FZ6v4bA33V3G/ioPhP2wrD9eSR6vJoypOBNxlR9izuO6HENnTWTyC4XMJYW6GHz/kpu0dNTtHzYNeXo1JM5naR16Geb1us3PQbHuHxc/u3xVngnH2HcqVqcjcKbm9Pa96aevORbvldVudL+3G8ai8wk30Cr1B75CHDtExOkXnaIwoYugH+ol+1f44W86e83IZWtsoc16g/8x5/Re8BBsD</latexit>s6
<latexit sha1_base64="WNnp84iE3b7uAVmrd5Z+/pKUbyc=">AAADY3icbZLdatswFMfVeB9duq0f290YiKWDMUKwU9Kkd2VJWS861oWkLcQhyPJxK2rJRpI3MuFn2O32aHuAvcfkxCuZ0wOGw/93js+HTpDGTGnX/b1Rcx48fPR480l96+mz59s7u3sXKskkhTFN4kReBURBzASMNdMxXKUSCA9iuAxu+wW//ApSsUSM9DyFKSfXgkWMEm2l8b6adfdnOw235S4Mrzte6TRQaeez3dqpHyY04yA0jYlSE89N9dQQqRmNIa/7mYKU0FtyDRPrCsJBTc2i2xy/tUqIo0TaT2i8UFczDOFKzXlgIznRN6rKCvE+Nsl01JsaJtJMg6DLQlEWY53gYnQcMglUx3PrECqZ7RXTGyIJ1XZB9WqZojllRxmAHVHCJ1vucwqS6ES+N/5JbvyigyDAJzZIwDeacE5EaHw6yM0SUhLjQV7FZ6v4bA33V3G/ioPhP2wrD9eSR6vJoypOBNxlR9izuO6HENnTWTyC4XMJYW6GHz/kpu0dNTtHzYNeXo1JM5naR16Geb3DZueg2fa6xc/u3xVngnH2HcqVqcjcKbm9Pa96aevORbvlHbY6X9qN41F5hZvoFXqD3iEPddExOkXnaIwoYugH+ol+1f44W86e83IZWtsoc16g/8x5/Re/ABsE</latexit>s7

<latexit sha1_base64="Z03TAc2E4ZbbJMZhmn7H6yZ5JXo=">AAADY3icbZLdatswFMfVeB9duq1fuxsDsXQwRgh2Str0riwp60XHupC0hTgEWT5uRS3ZSPJKJvwMu90ebQ+w95iceCVzesBw+P/O8fnQCdKYKe26v9dqzqPHT56uP6tvPH/xcnNre+dCJZmkMKJJnMirgCiImYCRZjqGq1QC4UEMl8Ftr+CX30AqloihnqUw4eRasIhRoq002lPT7t50q+G23LnhVccrnQYq7Xy6XTv1w4RmHISmMVFq7LmpnhgiNaMx5HU/U5ASekuuYWxdQTioiZl3m+N3VglxlEj7CY3n6nKGIVypGQ9sJCf6RlVZIT7ExpmOuhPDRJppEHRRKMpirBNcjI5DJoHqeGYdQiWzvWJ6QySh2i6oXi1TNKfsKH2wI0r4bMt9SUESncgPxj/JjV90EAT4xAYJuKMJ50SExqf93CwgJTHu51V8tozPVnBvGfeqOBj8w7byYCV5uJw8rOJEwH12hD2L634IkT2d+SMYPpMQ5mbw6WNu2t5Rs3PU3O/m1Zg0k6l95EWY1z1odvabbe+w+NnDu+JMMM6+Q7kyFZl7Jbe351UvbdW5aLe8g1bna7txPCyvcB29Rm/Re+ShQ3SMTtE5GiGKGPqBfqJftT/OhrPjvFqE1tbKnF30nzlv/gLB/BsF</latexit>s8

Figure 3: An example of a basic binary tree data structure with q = 3.

The data structure supports the four types of operations needed in Section 5 as follows:

1. Initialize(a). Recursively run Initialize on the first half (a1, . . . , an/2) and the second
half (an/2+1, . . . , an) to obtain the two subtrees rooted at v

(1)
1 and v

(1)
2 . Then add a root v

(0)
1

that stores s
(0)
1 ← s

(1)
1 + s

(1)
2 .

2. Sum(S). Simply output s
(0)
1 .

3. Find(S, r). If r < s
(1)
1 , recursively call Find on the left subtree rooted at v

(1)
1 . Otherwise,

recursively call Find on the right subtree rooted at v
(1)
2 with r replaced by r − s

(1)
1 . Once we

reach a leaf v(q)ℓ , return ℓ.

4. Update(S, a, i1, i2). If i2 ≤ n/2, recursively call Update on the left subtree rooted at v
(1)
1 . If

i1 > n/2, recursively call Update on the right subtree rooted at v
(1)
2 . Otherwise, we have

i1 ≤ n/2 < i2 and we call Update on the left subtree with indices i1, n/2 and call Update on
the right subtree with indices n/2 + 1, i2. In all cases, we update s

(0)
1 ← s

(1)
1 + s

(1)
2 as the final

step. The running time is proportional to the number of nodes we update. We need to update
s
(ζ)
j stored at v

(ζ)
j only if V (ζ)

j ∩ {i1, . . . , i2} ≠ ∅. For each ζ, the number of such j is at most

26

(i2 − i1 + 1)/2q−ζ + 2. Summing up over ζ = 0, . . . , q, the total number of nodes we need to
update is O((i2 − i1 + 1) + q) = O((i2 − i1 + 1) + log n).

7 Experimental Results

In this section, we outline the experimental evaluation of our algorithm. The experiments evaluate
the algorithms in two different ways. For each, we measure the running time and the k-means cost
of the resulting solution (the sum of squares of point-to-center-assigned distances). (1) First, we
evaluate our algorithm as part of a pipeline incorporating a coreset construction – the expected use
case for our algorithm. (2) Second, we evaluate our algorithm by itself for approximate k-means
clustering and compare it to k-means++ [AV07]. As per Theorems 2.1 and 2.2, we expect our
algorithm to be much faster but output an assignment of higher cost. Our goal is to quantify these
differences empirically.

All experiments were run on Linux using a notebook with a 3.9 GHz 12th generation Intel Core
i7 six-core processor and 32 GiB of RAM. All algorithms were implemented in C++, using the blaze
library for matrix and vector operations performed on the dataset unless specified differently below.
The code is publicly available on GitHub6.

For our experiments, we use the following four datasets:

1. KDD [KC04]: Training data for the 2004 KDD challenge on protein homology. The dataset
consists of 145751 observations with 77 real-valued features.

2. Song [BMEWL11]: Timbre information for 515345 songs with 90 features each, used for year
prediction.

3. Census [DG17]: 1990 US census data with 2458285 observations, each with 68 categorical
features.

4. Gaussian: A synthetic dataset consisting of 240005 points of dimension 4. The points are
generated by placing a standard normal distribution at a large positive distance from the origin
on each axis and sampling 30000 points. The points are then mirrored so the center of mass
remains at the origin. Finally, 5 points are placed on the origin. This is an adversarial example
for lightweight coresets [BLK18], which are unlikely to sample points close to the mean of the
dataset.

7.1 Coreset Construction Comparison

Experimental Setup. Coreset constructions (with multiplicative approximation guarantees)
always proceed by first finding an approximate clustering, which constitutes the bulk of the work.
The approximate clustering defines a “sensitivity sampling distribution” (we expand on this in
section 3, see also [BLK17]), and a coreset is constructed by repeatedly sampling from the sensitivity
sampling distribution. In our first experiment, we evaluate the choice of initial approximation
algorithm used to define the sensitivity sampling distribution. We compare the use of k-means++
and PRONE. In addition, we also compare the lightweight coresets of [BLK18], which uses the distance
to the center of mass as an approximation of the sensitivity sampling distribution.

6PRONE GitHub repository: https://github.com/boredoms/prone

27

https://github.com/boredoms/prone

For the remainder of this section, we refer to sensitivity sampling using k-means++ as Sensitivity
and lightweight coresets as Lightweight. All three algorithms produce a coreset, and the experiment
will measure the running time of the three algorithms (Table 1) and the quality of the resulting
coresets (Figure 4).

Once a coreset is constructed for each of the algorithms, we evaluate the quality of the coreset by
computing the cost of the centers found when clustering the coreset (see Definition 3.1). We run a state-
of-the-art implementation of Lloyd’s k-means algorithm from the scikit-learn library [PVG+11]
with the default configuration (repeating 15 times and reporting the mean cost to reduce the variance).
The resulting quality of the coresets is compared to a (computationally expensive) baseline, which
runs k-means++ from the scikit-learn library, followed by Lloyd’s algorithm with the default
configuration on the entire dataset (repeated 5 times to reduce variance).

We evaluate various choices of k ({10, 100, 1000}) as well as coresets at various relative sizes,
{0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1} times the size of the dataset. We use as performance
metrics (1) a relative cost, which measures the average cost of the k-means solutions returned by
Lloyd’s algorithm on each coreset divided by the baseline, and (2) the running time of the coreset
construction algorithm.

Results on Coreset Constructions. Relative cost. Figure 4 shows the coreset size (x-axis)
versus the relative cost (y-axis). Each “row” of Figure 4 corresponds to a different value for
k ∈ {10, 100, 1000}, and each “column” corresponds to a different dataset. Recall that the first three
datasets (i.e., the first three columns) are real-world datasets, and the fourth column is the synthetic
Gaussian dataset. We note our observations below:

• As expected, on all real-world data sets and all settings of k, the relative cost decreases as the
coreset size increases.

• In real-world datasets, the specific relative cost of each coreset construction (Senstivity,
Lightweight, and ours) depends on the dataset7, but roughly speaking, all three share a similar
trend. Ours and Sensitivity are very close and never more than twice the baseline (usually
much better).

• The big difference, distinguishing ours and Sensitivity from Lightweight, is the fourth column,
the synthetic Gaussian dataset. For all settings of k, as the coreset size increases, Lightweight
exhibits a minimal cost decrease and is a factor of 2.7-17x times worse than ours and Sensitivity
(as well as the baseline). This is expected, as we constructed the synthetic Gaussian dataset to
have arbitrarily high cost with Lightweight. Due to its multiplicative approximation guarantee,
our algorithm does not suffer this degradation. In that sense, our algorithm is more “robust,”
and achieves worst-case multiplicative approximation guarantees for all datasets.

Running time. In (the first table in) Table 1, we show the running time of the coreset construction
algorithms as k increases. Notice that as k increases, the relative speedup of our algorithm and
Lightweight increases in comparison to Sensitivity. This is because our algorithm and Lightweight
have running time which does not grow with k. In contrast, the running time of Sensitivity grows
linearly in k. In summary, our coreset construction is between 33-192x faster than Sensitivity for
large k. In addition, our algorithm runs about 3-5x slower than Lightweight, depending on the

7The spike in relative cost for algorithm Sensitivity on the KDD data set for relative size 5 · 10−3 is due to outliers.

28

10 3 10 2 10 1

1.0

1.2

1.4

1.6

Re
la

tiv
e

Co
st

Dataset = KDD

10 3 10 2 10 1

1.000

1.025

1.050

1.075

1.100

1.125

Dataset = Song

10 3 10 2 10 1

1.00

1.01

1.02

1.03

1.04

1.05

1.06
Dataset = Census

10 3 10 2 10 1

1.0

1.5

2.0

2.5

3.0

k = 10

Dataset = Gaussian

10 3 10 2 10 1

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

Co
st

10 3 10 2 10 1

1.0

1.1

1.2

1.3

10 3 10 2 10 1

1.00

1.02

1.04

1.06

1.08

1.10

1.12

10 3 10 2 10 1

1

2

3

4

5

6

7

k = 100

10 2 10 1

Relative Size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

Co
st

10 2 10 1

Relative Size

1.0

1.1

1.2

1.3

1.4

10 3 10 2 10 1

Relative Size

1.0

1.1

1.2

1.3

1.4

1.5

1.6

10 2 10 1

Relative Size

5

10

15

k = 1000
Algorithm

k-means++ + Sensitivity
Lightweight
PRONE + Sensitivity
Baseline

Figure 4: Plot of relative cost versus coreset size on our four datasets. The shaded region indicates
standard error. There is no data for relative size values where the coreset size is less than k.

dataset. Our analysis also shows this; both algorithms make an initial pass over the dataset, using
O(nd) time, but ours uses an additional O(n log n) time to process.

7.2 Direct k-Means++ Comparison

Experimental Setup. This experiment compares our algorithm and k-means++ as a stand-alone
clustering algorithm, as opposed to as part of a coreset pipeline. We implemented three variants of
our algorithm. Each differs in how we sample the random one-dimensional projection. The first is a
one-dimensional projection onto a standard Gaussian vector (zero mean and identity covariance).
This approach risks collapsing an “important” feature, i.e. a feature with high variance. To mitigate
this, we implemented two data-dependent variants that use the variance, resp. covariance of the data.
Specifically, in the “variance” variant, we use a diagonal covariance matrix, where each entry in
the diagonal is set to the empirical variance of the dataset along the corresponding feature. In the
“covariance” variant, we use the empirical covariance matrix of the dataset. These variants aim to
project along vectors that capture more of the variance of the data than when sampling a vector
uniformly at random. Intuitively, the vectors sampled by the biased variants are more correlated
with the first principal component of the dataset. For each of our algorithms, we evaluate the
k-means cost of the output set C of centers when assigning points to the closest center (cost2(X,C)
in Definition 3.1) and when using our algorithm’s assignment (cost2(X,C, σ) defined in (1)).

We evaluated the algorithms for every k in {10, 25, 50, 100, 250, 500, 1000, 2500, 5000} and z = 2,
for solving k-means with the ℓ2-metric. When evaluating the assignment cost, we ran each of our
algorithms 100 times for each k and five times when computing the nearest neighbor assignment,
and we report the average cost of the solutions and the average running time. Due to lower variance

29

101 102 103

k

1012

1013
co

st

Dataset = KDD

101 102 103

k

2 × 1012

3 × 1012

4 × 1012
Dataset = Song

101 102 103

k

108

109
Dataset = Census

101 102 103

k

105

106

Dataset = Gaussian

Algorithm
PRONE
PRONE (variance)
PRONE (covariance)
k-means++

101 102 103

k

1012

1013

1014

co
st

Dataset = KDD

101 102 103

k

2 × 1012

3 × 1012
4 × 1012

6 × 1012

Dataset = Song

101 102 103

k

108

109

Dataset = Census

101 102 103

k

106

108

1010
Dataset = Gaussian

Algorithm
PRONE
PRONE (variance)
PRONE (covariance)
k-means++

Figure 5: Clustering cost of all our variants compared to k-means++. The top row shows the
k-means cost, and the bottom row shows the cost of the assignment produced by our algorithm.

and much higher runtime, k-means++ was run five times.

k 10 100 1000
Dataset Algorithm

Census Lightweight 7.3 69.4 670.2
PRONE coreset 1.5 14.1 136.3
Sensitivity 1.0 1.0 1.0

Song Lightweight 8.9 87.2 875.3
PRONE coreset 2.1 19.9 187.9
Sensitivity 1.0 1.0 1.0

KDD Lightweight 6.4 63.0 642.8
PRONE coreset 2.1 19.6 192.6
Sensitivity 1.0 1.0 1.0

Gaussian Lightweight 2.4 17.6 174.8
PRONE coreset 0.5 3.8 33.7
Sensitivity 1.0 1.0 1.0

k 50 500 5000
Dataset Algorithm

Census PRONE 7.5 73.2 662.5
PRONE (variance) 2.2 22.2 214.7
PRONE (covariance) 1.1 10.7 117.4
k-means++ 1.0 1.0 1.0

Song PRONE 9.7 95.5 837.5
PRONE (variance) 2.3 23.1 217.2
PRONE (covariance) 0.8 8.2 82.4
k-means++ 1.0 1.0 1.0

KDD PRONE 6.9 68.3 727.5
PRONE (variance) 3.1 32.0 312.4
PRONE (covariance) 1.3 12.9 128.4
k-means++ 1.0 1.0 1.0

Gaussian PRONE 1.9 18.3 165.9
PRONE (variance) 2.0 17.7 162.9
PRONE (covariance) 1.7 16.1 152.6
k-means++ 1.0 1.0 1.0

Table 1: Average speedup over sensitivity sampling across all relative sizes for constructing coresets
(in the first table) and average speedup over k-means++ as a stand-alone clustering algorithm (in
the second table). The tables with the full range of parameters can be found in the appendix.

Results on Direct k-Means++ Comparison. Cost. Figure 5 (on top) shows the cost of
the centers found by our algorithm compared to those found by the k-means++ algorithm after
computing the optimal assignment of points to the centers (computing this takes time O(ndk)).
That is, we compare the values of cost2(X,C) in Definition 3.1. In summary, the k-means cost of all
three variants of our algorithm are roughly the same and closely match that of k-means++. On the
Gaussian data set, one run of the biased algorithm failed to pick a center from the cluster at the
origin, leading to a high “outlier” cost and a corresponding spike in the plot.

30

We also compared the k-means cost for the assignment computed by our algorithm (so that our
algorithm only takes time O(nd+ n log n) and not O(ndk)) with the cost of k-means++ (bottom
row of Figure 5). That is, we compare the values of cost2(X,C, σ) defined in (1). The clustering
cost of our algorithms is higher than that of k-means++. This is the predicted outcome from our
theoretical results; recall Theorem 2.2 gives a poly(k)-approximation, as opposed to O(log k) from
k-means++.

On the real-world data sets, it is between one order of magnitude (for k = 10) and two orders of
magnitude (for k = 5000) worse than k-means++ for our unbiased variant and between a factor 2
(for k = 10) and one order of magnitude (for k = 5000) worse than k-means++ for our biased and
covariance variants.

Running time. Table 1 shows the relative running time of our algorithm compared to k-means++,
assuming that no nearest-center assignment is computed. Our algorithms are designed to have a
running time independent of k, so we can see, from the second table in Figure 1, all of our variants
offer significant speedups.

• The running time of our algorithm stays almost constant as k increases while the running time
of k-means++ scales linearly with k. Specifically for k = 25, even our slowest variants have
about the same running time as k-means++, while for k = 5000, it is at least 82x faster, and
our fastest version is up to 837x faster over k-means++.

• The two variants can affect the quality of the chosen centers by up to an order of magnitude,
but they are also significantly slower. The “variance” and “covariance” variants are slower
(between 2-4x slower and up to 10x slower, respectively) than the standard variant, and they
also become slower as the dimensionality d increases. We believe these methods could be
further sped up, as the blaze library’s variance computation routine appears inefficient for
our use case.

7.3 Improved Approximation Ratio

Experimental Setup. This experiment aims to compare the algorithmic approach outlined
in Theorem 2.3 to the direct use of PRONE as a clustering algorithm as was done in Section 7.2.
For this, we use PRONE as the approximation algorithm for sensitivity sampling and then cluster
the coreset using a weighted variant of the k-means++ algorithm. This approach is termed PRONE
(boosted) in the rest of this section. This pipeline requires as parameters the number of centers k
and a hyperparameter α indicating the size of the coreset produced by sensitivity sampling. We
aim to compare the clustering cost (see Definition 3.1) and running time of our approach to that of
k-means++.

We run both algorithms on the datasets described in Section 7 and choose k ∈ {10, 25, 50, 100, 250,
500, 1000, 2500, 5000} and α ∈ {0.001, 0.01, 0.1}. Each algorithm is run 5 times.

Results on Improved Approximation Ratio Costs. Figure 6 shows the costs of centers
produced by this algorithm relative to the cost of centers produced by k-means++. It also contains
the (k, 2)-clustering costs of PRONE relative to k-means++. We can see that on all real datasets,
PRONE (boosted) produces solutions of the same or better quality than k-means++, as long as
αn ≪ k. This shows that although PRONE by itself produces centers of worse quality, the PRONE
(boosted) variant produces centers of the same quality as vanilla k-means++. When αn ≈ k, we

31

101 102 103

k

1.0

1.5

2.0

2.5

3.0

co
st

Dataset = KDD

101 102 103

k

1.00

1.05

1.10

1.15

1.20

Dataset = Song

101 102 103

k

1.00

1.25

1.50

1.75

2.00

Dataset = Census

101 102 103

k

2

4

6

8

10
Dataset = Gaussian

Algorithm
PRONE (boosted, = 0.001)
PRONE (boosted, = 0.01)
PRONE (boosted, = 0.1)
k-means++
PRONE, no pipeline

Figure 6: Clustering cost of the boosted variants compared to k-means++. Lines in the plot show
the cost of centers produced by the boosted algorithm relative to k-means++ for centers ranging
from 10 to 5000. Dark blue indicates the non-boosted version.

observe an uptick in cost before the end of the lines corresponding to α ∈ {0.1, 0.01} in the plots for
KDD, Song, and Gaussian. The boosted approach outperforms PRONE, which is usually worse by a
constant factor compared to the other algorithms, and it helps to reduce significantly the amount of
variance in the quality of solutions. On the Gaussian dataset, we observed a failure to sample a point
from the central cluster, which explains the spike at k = 2500 for the line corresponding to α = 0.1.

Running time. Table 2 shows the speedup of the boosted approach versus using plain k-means++,
for the time taken to compute the centers. The running time of our algorithms now scales with k,
but at a slower rate compared to k-means++, as we have to run it on a much smaller dataset. Once
again, we observe significant speedups, especially as k grows.

• As expected, the speedup depends on the choice of the hyperparameter α. We observe
diminishing returns for larger α as k scales, with the speedup remaining mostly constant for
k ≥ 100 across datasets, except for Gaussian. This is because the algorithm’s running time
is dominated by the time it takes to execute k-means++ on the coreset, which has O(ndk)
asymptotic running time. The speedups we can achieve using this method are significant, up
to 118x faster than k-means++. We expect that on massive datasets, even greater speedups
can be achieved.

• Interestingly, the speedup can come very close to or even out scale α, as observed on the KDD
and Song datasets. The final stage of the boosted approach executes k-means++ on a coreset
of size αn, so the running time of this step should be O(αndk). The observed additional
speedup may be due to better cache and memory utilization in the k-means++ step of the
algorithm.

8 Conclusion and Limitations

To summarize, we present a simple algorithm that provides a new tradeoff between running time
and approximation ratio. Our algorithm runs in expected time O(nnz(X) + n log n) to produce
a poly(k)-approximation; with additional poly(kd) · log n time, we improve the approximation to
O(log k). This latter bound matches that of k-means++ but offers a significant speedup.

Within a pipeline for constructing coresets, our experiments show that the quality of the coreset
produced (when using our algorithm as the initial approximation) outperforms the sensitivity
sampling algorithm. It is slower than the lightweight coreset algorithm, but it is more “robust” as it
is independent of the diameter of the data set. It does not suffer from the drawback of having an

32

Centers 10 25 50 100 250 500 1000 2500 5000
Dataset Algorithm

Census PRONE (boosted, α = 0.001) 1.6 4.0 7.9 15.6 36.8 69.5 118.5 - -
PRONE (boosted, α = 0.01) 1.5 3.7 6.7 11.7 20.8 28.5 30.1 36.2 41.9
PRONE (boosted, α = 0.1) 1.0 1.8 2.3 2.7 3.0 3.2 3.0 3.0 3.2
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Song PRONE (boosted, α = 0.001) 2.1 5.3 10.7 21.3 51.7 97.5 - - -
PRONE (boosted, α = 0.01) 2.1 5.0 9.8 18.5 38.0 59.1 81.5 108.3 117.0
PRONE (boosted, α = 0.1) 1.3 2.2 2.8 3.4 3.8 4.0 4.0 4.0 3.9
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

KDD PRONE (boosted, α = 0.001) 1.8 5.0 9.6 20.6 - - - - -
PRONE (boosted, α = 0.01) 1.9 4.8 9.0 17.5 37.1 59.2 92.5 - -
PRONE (boosted, α = 0.1) 1.4 2.7 3.6 4.9 5.7 6.2 7.1 6.6 6.4
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Gaussian PRONE (boosted, α = 0.001) 0.5 0.9 1.9 3.6 - - - - -
PRONE (boosted, α = 0.01) 0.5 1.0 2.0 3.4 8.2 14.8 25.6 - -
PRONE (boosted, α = 0.1) 0.4 0.8 1.4 2.2 4.0 5.0 6.1 6.8 7.2
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2: Average speedup when computing a clustering and assignment for different datasets relative
to k-means++. In other words, each cell contains Tk-means++/TPRONE. Missing entries denote the
case of αn > k.

additive error linear in the diameter of the dataset, which can arbitrarily increase the cost of the
lightweight coreset algorithm. When computing an optimal assignment for the centers returned by
our algorithm, its cost roughly matches the cost for k-means++. When directly using the assignment
produced by one variant of our algorithm, its cost is between a factor 2 and 10 worse while being up
to 300 times faster.

Our experiments and running time analysis show that our algorithm is very efficient. However,
the clustering quality achieved by our algorithm is sometimes not as good as other, slower algorithms.
We show that this limitation is insignificant when we use our algorithm to construct coresets. It
remains an interesting open problem to understand the best clustering quality (e.g., in terms of
approximation ratio) an algorithm can achieve while being as efficient as ours, i.e., running in time
O(nd+ n log n). Another interesting problem is whether other means of projecting the dataset into
a O(1) dimensional space exist, which lead to algorithms with improved approximation guarantees
and running time faster than O(ndk).

Acknowledgements

Moses Charikar was supported by a Simons Investigator award. Lunjia Hu was supported by
Moses Charikar’s and Omer Reingold’s Simons Investigators awards, Omer Reingold’s NSF Award
IIS-1908774, and the Simons Foundation Collaboration on the Theory of Algorithmic Fairness. Part
of this work was done while Erik Waingarten was a postdoc at Stanford University, supported by an
NSF postdoctoral fellowship and by Moses Charikar’s Simons Investigator Award.

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 101019564 “The Design of Modern Fully Dynamic Data

33

Structures (MoDynStruct)” and the Austrian Science Fund (FWF) project Z 422-N, project “Static
and Dynamic Hierarchical Graph Decompositions”, I 5982-N, and project “Fast Algorithms for a
Reactive Network Layer (ReactNet)”, P 33775-N, with additional funding from the netidee SCIENCE
Stiftung, 2020–2024.

References

[ADHP09] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of
Euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009. 2

[AHPV+05] Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric
approximation via coresets. Combinatorial and computational geometry, 52(1):1–30,
2005. 5

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor
search in high dimensions. In Proceedings of the International Congress of Mathemati-
cians: Rio de Janeiro 2018, pages 3287–3318. World Scientific, 2018. 5

[ANFSW17] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better
guarantees for k-means and Euclidean k-median by primal-dual algorithms. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
61–72, 2017. 5

[ARR98] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for
Euclidean k-medians and related problems. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, page 106–113, New York, NY,
USA, 1998. Association for Computing Machinery. 5

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1027–1035. ACM, New York, 2007. 2, 4, 9, 27

[BBCA+19] Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris
Schwiegelshohn. Oblivious dimension reduction for k-means: Beyond subspaces and
the johnson-lindenstrauss lemma. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, page 1039–1050, New York, NY,
USA, 2019. Association for Computing Machinery. 5, 7

[BBK16] Thomas Bottesch, Thomas Bühler, and Markus Kächele. Speeding up k-means by
approximating Euclidean distances via block vectors. In Maria Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages
2578–2586, New York, New York, USA, 20–22 Jun 2016. PMLR. 3

[BFL16] Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and
streaming coreset constructions. CoRR, abs/1612.00889, 2016. 4, 5, 10

34

[BLHK16a] Olivier Bachem, Mario Lucic, Hamed Hassani, and Andreas Krause. Fast and provably
good seedings for k-means. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. 3, 4

[BLHK16b] Olivier Bachem, Mario Lucic, S. Hamed Hassani, and Andreas Krause. Approximate
k-means++ in sublinear time. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1), Feb. 2016. 3, 4

[BLK17] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for
machine learning. arXiv preprint arXiv:1703.06476, 2017. 3, 4, 5, 27

[BLK18] Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k -means clustering
via lightweight coresets. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, page 1119–1127, New
York, NY, USA, 2018. Association for Computing Machinery. 3, 4, 27

[BMEWL11] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The
million song dataset. In Proceedings of the 12th International Conference on Music
Information Retrieval (ISMIR 2011), 2011. 27

[BPR+15] Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa
Trinh. An improved approximation for k-median, and positive correlation in budgeted
optimization. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’15, page 737–756, USA, 2015. Society for Industrial and
Applied Mathematics. 5

[Bri] James Briggs. Faiss: The missing manual. https://www.pinecone.io/learn/faiss/.
2

[BZMD14] Christos Boutsidis, Anastasios Zouzias, Michael W Mahoney, and Petros Drineas.
Randomized dimensionality reduction for k-means clustering. IEEE Transactions on
Information Theory, 61(2):1045–1062, 2014. 7

[CA18] Vincent Cohen-Addad. A fast approximation scheme for low-dimensional k-means.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’18, page 430–440, USA, 2018. Society for Industrial and Applied
Mathematics. 5

[CAFS21] Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. Near-linear time
approximation schemes for clustering in doubling metrics. J. ACM, 68(6), oct 2021. 5

[CAKM16] Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields
approximation schemes for k-means and k-median in Euclidean and minor-free metrics.
In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 353–364, 2016. 5

[CALNF+20] Vincent Cohen-Addad, Silvio Lattanzi, Ashkan Norouzi-Fard, Christian Sohler, and
Ola Svensson. Fast and accurate k-means++ via rejection sampling. In H. Larochelle,

35

https://www.pinecone.io/learn/faiss/

M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 16235–16245. Curran Associates,
Inc., 2020. 2, 5

[CALSS22] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn.
Towards optimal lower bounds for k-median and k-means coresets. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1038–1051,
2022. 5

[CASS21] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset
framework for clustering. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 169–182, 2021. 5

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing,
STOC ’15, page 163–172, New York, NY, USA, 2015. Association for Computing
Machinery. 5, 7, 8

[CGPR20] Davin Choo, Christoph Grunau, Julian Portmann, and Vaclav Rozhon. k-means++:
few more steps yield constant approximation. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 1909–1917. PMLR, 13–18 Jul
2020. 5

[Che09] Ke Chen. On coresets for k-median and k-means clustering in metric and Euclidean
spaces and their applications. SIAM Journal on Computing, 39(3):923–947, 2009. 5

[CPL18] Marco Capó, Aritz Pérez, and Jose A Lozano. An efficient k-means clustering algorithm
for massive data. arXiv preprint arXiv:1801.02949, 2018. 3

[Cur17] Ryan R Curtin. A dual-tree algorithm for fast k-means clustering with large k.
In Proceedings of the 2017 SIAM International Conference on Data Mining, pages
300–308. SIAM, 2017. 3

[DFK+04] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and Vishwanathan
Vinay. Clustering large graphs via the singular value decomposition. Machine learning,
56:9–33, 2004. 5

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. 27

[Dra13] Jonathan Drake. Faster k-means clustering. PhD thesis, Baylor University, 2013. 3

[DZS+15] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkowicz.
Yinyang k-means: A drop-in replacement of the classic k-means with consistent
speedup. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 579–587, Lille, France, 07–09 Jul 2015. PMLR. 3

36

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, page 226–231. AAAI Press, 1996. 5

[Elk03] Charles Elkan. Using the triangle inequality to accelerate k-means. In Proceedings
of the Twentieth International Conference on International Conference on Machine
Learning, ICML’03, page 147–153. AAAI Press, 2003. 3

[Fel20] Dan Feldman. Introduction to core-sets: an updated survey. arXiv preprint
arXiv:2011.09384, 2020. 3, 5

[FL11] Dan Feldman and Michael Langberg. A unified framework for approximating and
clustering data. In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 569–578, 2011. 5

[FRS16] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search
yields a ptas for k-means in doubling metrics. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 365–374, 2016. 5

[FSS20] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, pca, and projective clustering. SIAM Journal on
Computing, 49(3):601–657, 2020. 5

[GOR+22] Fabrizio Grandoni, Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Rakesh
Venkat. A refined approximation for Euclidean k-means. Inf. Process. Lett., 176(C),
jun 2022. 5

[Ham10] Greg Hamerly. Making k-means even faster. In Proceedings of the 2010 SIAM
international conference on data mining, pages 130–140. SIAM, 2010. 3

[HCLM09] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J. Miller. Framework
for evaluating clustering algorithms in duplicate detection. Proc. VLDB Endow.,
2(1):1282–1293, aug 2009. 2

[HPM04] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory
of Computing, STOC ’04, page 291–300, New York, NY, USA, 2004. Association for
Computing Machinery. 5

[JDS10] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE transactions on pattern analysis and machine intelligence,
33(1):117–128, 2010. 2

[JJ19] Jennifer Jang and Heinrich Jiang. Dbscan++: Towards fast and scalable density
clustering. In International conference on machine learning, pages 3019–3029. PMLR,
2019. 5

[KC04] 2004 KDD Cup. Protein homology dataset. available at
https://osmot.cs.cornell.edu/kddcup/datasets.html, 2004. 27

37

[KMN+00] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine Piatko, Ruth
Silverman, and Angela Y. Wu. The analysis of a simple k-means clustering algorithm.
In Proceedings of the Sixteenth Annual Symposium on Computational Geometry, SCG
’00, page 100–109, New York, NY, USA, 2000. Association for Computing Machinery.
3

[KMN+02] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y.
Wu. An efficient k-means clustering algorithm: analysis and implementation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002. 3

[KR99] Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme
for the Euclidean k-median problem. In Jaroslav Nešetřil, editor, Algorithms - ESA’
99, pages 378–389, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. 5

[Llo82] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory, 28(2):129–137, 1982. 1

[LS13] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
STOC ’13, page 901–910, New York, NY, USA, 2013. Association for Computing
Machinery. 5

[LS19] Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 3662–3671. PMLR, 09–15 Jun 2019. 5

[LST17] Weiwei Liu, Xiaobo Shen, and Ivor Tsang. Sparse embedded k-means clustering.
Advances in neural information processing systems, 30, 2017. 5

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of
johnson-lindenstrauss transform for k-means and k-medians clustering. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
page 1027–1038, New York, NY, USA, 2019. Association for Computing Machinery. 5,
7

[Moo00] Andrew W. Moore. The anchors hierarchy: Using the triangle inequality to survive
high dimensional data. In Proceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence, UAI’00, page 397–405, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc. 3

[NF16] James Newling and Francois Fleuret. Fast k-means with accurate bounds. In Maria Flo-
rina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 936–944, New York, New York, USA, 20–22 Jun 2016. PMLR. 3

[NH02] Raymond T. Ng and Jiawei Han. Clarans: A method for clustering objects for spatial
data mining. IEEE transactions on knowledge and data engineering, 14(5):1003–1016,
2002. 5

38

[PCI+07] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
Object retrieval with large vocabularies and fast spatial matching. In 2007 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8, 2007. 3

[Phi10] James Philbin. Scalable object retrieval in very large image collections. PhD thesis,
Oxford University, 2010. 3

[PM99] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with geometric
reasoning. In Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’99, page 277–281, New York, NY, USA,
1999. Association for Computing Machinery. 3

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. 28

[QPH+10] Feng Qian, Abhinav Pathak, Yu Charlie Hu, Zhuoqing Morley Mao, and Yinglian Xie.
A case for unsupervised-learning-based spam filtering. SIGMETRICS Perform. Eval.
Rev., 38(1):367–368, jun 2010. 2

[RSPR18] M Ali Rostami, Alieh Saeedi, Eric Peukert, and Erhard Rahm. Interactive visualization
of large similarity graphs and entity resolution clusters. In EDBT, pages 690–693,
2018. 2

[Scu10] D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, page 1177–1178, New York, NY, USA,
2010. Association for Computing Machinery. 3

[SR19] Erich Schubert and Peter J Rousseeuw. Faster k-medoids clustering: improving the
pam, clara, and clarans algorithms. In Similarity Search and Applications: 12th Inter-
national Conference, SISAP 2019, Newark, NJ, USA, October 2–4, 2019, Proceedings
12, pages 171–187. Springer, 2019. 5

[SSM+16] Mina Sheikhalishahi, Andrea Saracino, Mohamed Mejri, Nadia Tawbi, and Fabio
Martinelli. Fast and effective clustering of spam emails based on structural similarity.
In Joaquin Garcia-Alfaro, Evangelos Kranakis, and Guillaume Bonfante, editors, Foun-
dations and Practice of Security, pages 195–211, Cham, 2016. Springer International
Publishing. 2

[SW18] Christian Sohler and David P Woodruff. Strong coresets for k-median and subspace
approximation: Goodbye dimension. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 802–813. IEEE, 2018. 5

[SWA+22] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem
Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamny,
Gopal Srinivasa, et al. Results of the neurips’21 challenge on billion-scale approximate
nearest neighbor search. In NeurIPS 2021 Competitions and Demonstrations Track,
pages 177–189. PMLR, 2022. 2

39

[Tal04] Kunal Talwar. Bypassing the embedding: Algorithms for low dimensional metrics. In
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing,
STOC ’04, page 281–290, New York, NY, USA, 2004. Association for Computing
Machinery. 5

[TZM+20] Mo Tiwari, Martin J Zhang, James Mayclin, Sebastian Thrun, Chris Piech, and Ilan
Shomorony. Banditpam: Almost linear time k-medoids clustering via multi-armed
bandits. Advances in Neural Information Processing Systems, 33:10211–10222, 2020. 5

[Wai] Erik Waingarten. Notes for algorithms for big data: Clustering. https://drive.
google.com/file/d/1T5YYGrA3kdi4_QGvF3c_foOZvXMDaRPw/view. 9

[WWK+12] Jing Wang, Jingdong Wang, Qifa Ke, Gang Zeng, and Shipeng Li. Fast approximate
k-means via cluster closures. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3037–3044, 2012. 3

40

https://drive.google.com/file/d/1T5YYGrA3kdi4_QGvF3c_foOZvXMDaRPw/view
https://drive.google.com/file/d/1T5YYGrA3kdi4_QGvF3c_foOZvXMDaRPw/view

A Additional Data

In this section, we provide the running time data for the full range of parameters for the experiments
performed in Section 7.2. Table 3 shows the speedups over k-means++, analogous to the right-hand-
side table in Table 1. Additionally, Table 4 provides absolute running times in milliseconds.

Centers 10 25 50 100 250 500 1000 2500 5000
Dataset Algorithm

Census PRONE 1.5 3.8 7.5 15.1 36.2 73.2 142.2 351.9 662.5
PRONE (variance) 0.5 1.1 2.2 4.6 11.0 22.2 43.7 109.5 214.7
PRONE (covariance) 0.2 0.5 1.1 2.2 5.2 10.7 21.0 54.7 117.4
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Song PRONE 2.0 5.0 9.7 19.1 46.1 95.5 188.2 443.0 837.5
PRONE (variance) 0.5 1.1 2.3 4.5 11.4 23.1 44.2 110.9 217.2
PRONE (covariance) 0.2 0.4 0.8 1.5 4.0 8.2 15.5 40.0 82.4
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

KDD PRONE 1.5 3.7 6.9 16.3 39.5 68.3 158.5 414.7 727.5
PRONE (variance) 0.7 1.7 3.1 6.3 16.1 32.0 63.4 159.6 312.4
PRONE (covariance) 0.3 0.7 1.3 2.6 6.8 12.9 25.8 58.5 128.4
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Gaussian PRONE 0.5 1.0 1.9 3.8 9.2 18.3 35.7 85.3 165.9
PRONE (variance) 0.5 1.0 2.0 3.8 9.1 17.7 34.5 83.6 162.9
PRONE (covariance) 0.4 1.0 1.7 3.6 8.2 16.1 31.8 79.9 152.6
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3: Average speedup when computing a clustering and assignment for different datasets relative
to k-means++. In other words, each cell contains Tk-means++/TPRONE.

Centers 10 25 50 100 250 500 1000 2500 5000
Dataset Algorithm

Census PRONE 525.1 ± 15.3 534.3 ± 23.4 534.6 ± 20.8 530.1 ± 15.4 538.9 ± 15.2 533.9 ± 11.7 547.4 ± 23.8 548.2 ± 13.5 563.7 ± 8.7
PRONE (variance) 1750.6 ± 71.7 1778.9 ± 38.1 1780.3 ± 23.9 1752.7 ± 56.9 1768.6 ± 28.2 1757.6 ± 37.8 1778.9 ± 27.5 1761.0 ± 73.3 1739.6 ± 10.9
PRONE (covariance) 3769.0 ± 152.2 3882.5 ± 167.8 3743.9 ± 316.7 3714.2 ± 378.3 3766.4 ± 220.2 3662.9 ± 122.6 3708.7 ± 372.4 3525.6 ± 609.9 3182.2 ± 288.7
k-means++ 812.5 ± 20.9 2040.6 ± 25.6 3994.3 ± 25.3 7992.9 ± 91.5 19519.0 ± 161.5 39058.4 ± 337.8 77823.6 ± 527.5 192913.1 ± 3657.0 373488.2 ± 221.9

Song PRONE 104.4 ± 5.5 101.8 ± 5.2 106.5 ± 4.1 109.9 ± 6.8 113.7 ± 8.8 109.0 ± 6.4 108.7 ± 3.9 117.2 ± 6.3 120.8 ± 12.9
PRONE (variance) 443.3 ± 5.0 448.3 ± 8.0 450.1 ± 9.9 468.0 ± 31.6 458.8 ± 15.1 450.7 ± 10.0 462.6 ± 11.6 468.3 ± 14.0 465.7 ± 14.9
PRONE (covariance) 1164.4 ± 162.1 1266.5 ± 136.6 1332.4 ± 116.3 1381.8 ± 108.4 1322.2 ± 173.4 1263.0 ± 175.6 1324.2 ± 108.4 1296.8 ± 177.8 1228.0 ± 175.2
k-means++ 207.4 ± 4.0 513.7 ± 9.8 1036.6 ± 17.0 2103.9 ± 44.2 5245.9 ± 143.6 10412.5 ± 119.3 20464.1 ± 196.9 51917.4 ± 554.3 101149.0 ± 1962.7

KDD PRONE 31.2 ± 5.2 32.2 ± 7.4 34.1 ± 1.8 28.9 ± 4.9 29.2 ± 9.1 34.6 ± 6.3 30.8 ± 8.6 28.8 ± 5.2 33.4 ± 6.6
PRONE (variance) 72.0 ± 1.4 71.8 ± 1.4 76.5 ± 7.2 75.1 ± 7.1 71.8 ± 1.2 73.9 ± 2.1 77.0 ± 4.6 74.7 ± 3.2 77.7 ± 5.9
PRONE (covariance) 169.3 ± 2.9 173.5 ± 5.5 180.3 ± 13.1 184.1 ± 21.2 170.8 ± 8.9 182.6 ± 19.0 188.7 ± 16.9 204.1 ± 40.3 189.1 ± 11.6
k-means++ 48.0 ± 0.3 119.3 ± 3.7 233.9 ± 3.2 470.4 ± 11.6 1153.5 ± 2.1 2363.3 ± 108.6 4878.1 ± 171.1 11928.9 ± 234.3 24285.9 ± 243.8

Gaussian PRONE 30.0 ± 2.3 29.1 ± 2.2 30.6 ± 3.3 29.1 ± 1.4 29.1 ± 1.0 28.7 ± 0.2 29.3 ± 0.4 30.2 ± 0.6 31.5 ± 0.6
PRONE (variance) 29.8 ± 3.0 28.9 ± 0.3 29.5 ± 1.0 29.6 ± 0.6 29.6 ± 0.3 29.6 ± 0.4 30.2 ± 0.3 30.8 ± 0.2 32.1 ± 0.6
PRONE (covariance) 31.8 ± 2.2 31.5 ± 2.1 34.6 ± 6.6 30.8 ± 0.3 32.7 ± 2.8 32.6 ± 2.4 32.8 ± 2.3 32.2 ± 0.5 34.3 ± 0.4
k-means++ 13.7 ± 2.2 30.0 ± 0.4 59.5 ± 2.2 111.5 ± 2.8 268.6 ± 1.5 525.3 ± 1.9 1043.3 ± 1.4 2575.3 ± 5.0 5229.6 ± 135.0

Table 4: Average running time and standard deviation in milliseconds when computing a clustering
and assignment for different datasets relative to k-means++.

41

	Introduction
	Overview of Our Algorithm and Proof Techniques
	Efficient Seeding in One Dimension
	Approximation Guarantees from One-Dimensional Projections

	Preliminaries
	k-Means++ Seeding
	Coresets via Sensitivity Sampling
	A Simple Lemma

	Approximation Guarantees from One-Dimensional Projections
	Proof of Lemma 4.2
	Proof of Lemma 4.4

	Efficient Seeding in One Dimension
	Helper Lemmas

	Data Structure for Fast Sampling in Seeding
	Experimental Results
	Coreset Construction Comparison
	Direct k-Means++ Comparison
	Improved Approximation Ratio

	Conclusion and Limitations
	Additional Data

