
Compact Distance Oracles with Large
Sensitivity and Low Stretch

Davide Bilò1, Keerti Choudhary2, Sarel Cohen3, Tobias Friedrich4,
Simon Krogmann4, and Martin Schirneck5

1 Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Italy davide.bilo@univaq.it
2 Department of Computer Science and Engineering,

Indian Institute of Technology Delhi, India keerti@iitd.ac.in
3 School of Computer Science, The Academic College of Tel Aviv-Yaffo, Israel

sarelco@mta.ac.il
4 Hasso Plattner Institute, University of Potsdam, Germany

firstname.lastname@hpi.de
5 Faculty of Computer Science, University of Vienna, Austria

martin.schirneck@univie.ac.at

Abstract. An f-edge fault-tolerant distance sensitive oracle (f -DSO)
with stretch σ ⩾ 1 is a data structure that preprocesses an input graph
G. When queried with the triple (s, t, F), where s, t ∈ V and F ⊆ E

contains at most f edges of G, the oracle returns an estimate d̂G−F (s, t)
of the distance dG−F (s, t) between s and t in the graph G − F such that
dG−F (s, t) ⩽ d̂G−F (s, t) ⩽ σ · dG−F (s, t).
For any positive integer k ⩾ 2 and any 0 < α < 1, we present an
f -DSO with sensitivity f = o(log n/ log log n), stretch 2k − 1, space
O(n1+ 1

k
+α+o(1)), and an Õ(n1+ 1

k
− α

k(f+1)) query time.
Prior to our work, there were only three known f -DSOs with subquadratic
space. The first one by Chechik et al. [Algorithmica 2012] has a stretch of
(8k − 2)(f + 1), depending on f . Another approach is storing an f-edge
fault-tolerant (2k−1)-spanner of G. The bottleneck is the large query
time due to the size of any such spanner, which is Ω(n1+1/k) under the
Erdős girth conjecture. Bilò et al. [STOC 2023] gave a solution with
stretch 3 + ε, query time O(nα) but space O(n2− α

f+1), approaching the
quadratic barrier for large sensitivity.
In the realm of subquadratic space, our f -DSOs are the first ones that
guarantee, at the same time, large sensitivity, low stretch, and non-trivial
query time. To obtain our results, we use the approximate distance ora-
cles of Thorup and Zwick [JACM 2005], and the derandomization of the
f -DSO of Weimann and Yuster [TALG 2013] that was recently given by
Karthik and Parter [SODA 2021].

Keywords: Approximate shortest paths · Distance sensitivity oracle
· Fault-tolerant data structure · Spanner · Subquadratic space.

2 D. Bilò et al.

1 Introduction

There are applications, like routing on edge devices, where we want to quickly
find out the distances between pairs of vertices, but we cannot store the entire
graph topology due to memory restrictions. This problem is solved by a class
of data structures called distance oracles (DO). Typically, not a single structure
serves every use case and constructions need to provide reasonable trade-offs
between the space requirement, query time, and stretch, that is, the quality of
the estimated distance. We are interested in the fault-tolerant setting. Here, the
data structure must additionally be able to tolerate multiple edge failures in the
underlying graph. An f -edge fault-tolerant distance sensitivity oracles (f -DSO)
for a graph G = (V, E) is able to report, for any two s, t ∈ V and set F ⊆ E

of at most f failing edges, an estimate d̂G−F (s, t) of the replacement distance
dG−F (s, t) in the graph G − F . The parameter f is the sensitivity of the oracle.
We say the stretch of the data structure is σ if dG−F (s, t) ⩽ d̂G−F (s, t) ⩽
σ · dG−F (s, t), for any admissible query (s, t, F).

Several f -DSOs with different space-stretch-time trade-offs have been de-
signed in the last decades, most of which can only handle a very small number
f ⩽ 2 of failures [3,4,5,8,14,18,19,20,23,24,31]. We highlight those with sensitiv-
ity f ⩾ 3. The f -DSO of Duan and Ren [21] requires O(fn4) space,1 returns
exact distances in fO(f) query time, but the preprocessing algorithm that builds
it requires exponential-in-f time nΩ(f). The data structure by Chechik, Cohen,
Fiat, and Kaplan [15] is more compact, requiring O(n2+o(1) log W) space, and
can be preprocessed in time2 Õ(n5+o(1) log W), where W is the weight of the
heaviest edge of G. The oracle has stretch 1 + ε, for any constant ε > 0, with
an O(f5 log n log log W) query time, and handles up to f = o(log n/ log log n)
failures. Finally, the f -DSO of Chechik, Langberg, Peleg, and Roditty [17] re-
quires a subquadratic space of O(fkn1+1/k log(nW)), where k ⩾ 1 is an integer
parameter, and has a fast query time of Õ(f log log dG−F (s, t)), but guarantees
only a stretch of (8k − 2)(f + 1) that depends on the number f of failures.

Another common way to provide approximate replacement distances in the
presence of transient edge failures are fault-tolerant spanners [29]. An f -edge
fault-tolerant spanner with stretch σ (fault-tolerant σ-spanner) is a subgraph H
of G such that dH−F (s, t) ⩽ σ ·dG−F (s, t), for every suitable triple (s, t, F), with
|F | ⩽ f . For any positive integer k, Chechik, Langberg, Peleg, and Roditty [16]
gave an algorithm computing a fault-tolerant (2k−1)-spanner with O(fn1+1/k)
edges. This was recently improved by Bodwin, Dinitz, and Robelle by reducing
the size to O(f1−1/kn1+1/k) [9] and eventually to f1/2n1+1/k · poly(k) for any
even k and f1/2−1/(2k)n1+1/k ·poly(k) for odd k [10]. The authors of the last work
also show almost matching lower bounds of Ω(f1/2−1/(2k)n1+1/k+fn) for general
k > 2, and Ω(f1/2n3/2) for k = 2 assuming the Erdős girth conjecture [22].

The main problem with the spanner approach is the high query time. In
fact, to retrieve the approximate distance between a given pair of vertices, one
1 The space is measured in the number of machine words on O(log n) bits.
2 For a non-negative function g(n), we use Õ(g) to denote O(g · polylog(n)).

Compact Distance Oracles with Large Sensitivity and Low Stretch 3

has to compute the single-source distance from one of them, say with Dijkstra’s
algorithm, in time that is at least linear in the size of the spanner. Therefore, an
important problem in the field of fault-tolerant data structures to design f -DSOs
with subquadratic space, that simultaneously guarantee a non-trivial o(n1+1/k)
query time, a low stretch of 2k − 1, and a large sensitivity f .3

Very recently, Bilò, Chechik, Choudhary, Cohen, Friedrich, Krogmann, and
Schirneck [6] addressed the same problem. They presented, for all ε > 0, and con-
stants 1/2 > α > 0, and f , a (3+ε)-approximate f -DSO for unweighted graphs
taking space Õε(n2− α

f+1 (log n)f+1) and has a query time of Õε(nα). While their
query time is sub-linear, their space converges to quadratic for large sensitivity.

In contrast, we design a deterministic oracle for weighted graphs that can
handle up to f = o(log n/ log log n) edge failures and provides a trade-off be-
tween stretch, space, and query time. Namely, for any positive integer k ⩾ 2
and constant 1 − 1

k > α > 0, our data structure has stretch 2k − 1, requires
kn1+α+ 1

k +o(1) space, and can be queried in time Õ(n1+ 1
k − α

k(f+1)). The query
time improves to poly(D, f, log n) for graphs in which the pair-wise hop dis-
tances are bounded by D. If, for example, D is polylogarithmic, the query time
is as well. We note that the query time of our f -DSO for general graphs is Ω(n)
for all choices of α.

Both [6] and this work approach the problem by handling hop-short and
hop-long paths separately, as is common in the area [23,35], and use the dis-
tance oracle of Thorup and Zwick [34] on the lowest level. Apart from that, the
techniques are different. We highlight ours below.

Our techniques. Our f -DSO for bounded hop diameter is the result of combin-
ing the approximate distance oracles of Thorup and Zwick [34] with randomized
replacement path covering (RPC), a collection of certain subgraphs of G, intro-
duced by Weimann and Yuster [35]. Such coverings are very large, even larger
than the underlying graph itself. They are thus unusable when emphasizing sub-
quadratic space, barring additional processing. The main issue when compressing
an RPC is retaining the information which subgraph is relevant for which query.
We provide two different ways to solve this. One is based on the idea of using
sparse spanners as proxies for the subgraphs in the covering, and the other one
uses the recent derandomization technique of Karthik and Parter [26]. To lift this
to an arbitrary hop diameter, we borrow from fault-tolerant spanners. There, a
single graph is constructed up front to handle all queries. To achieve a compact
oracle with a query time better than any spanner, we instead turn this process
around and use the hop-short f -DSO to combine only the subgraphs we need.

Other related work. Demetrescu and Thorup [18] designed the first exact
1-DSO for directed edge-weighted graphs with O(n2 log n) space and O(log n)
query time. Demetrescu, Thorup, Chowdhury, and Ramachandran [19] improved
the query time to O(1) and generalized the oracle to handle also a single vertex
failure. Later, in two consecutive papers, Bernstein and Karger improved the
3 Subquadratic space f -DSOs with stretch 2k − 1 can only exist for k ⩾ 2. There is

an Ω(n2)-bit lower bound for exact f -DSOs, regardless of the query time [34].

4 D. Bilò et al.

preprocessing time from Õ(mn2) to Õ(mn) [4,5]. Khanna and Baswana [27]
designed 1-DSO for unweighted graphs having size O(k5n1+1/k log3 n

ε4), a stretch
of (2k − 1)(1 + ε), and O(k) query time. The problem of 1-DSO was also studied
with a special focus on the preprocessing time [14,23,24,31,35].

For the case of multiple failures, other than the results we explicitly men-
tioned in the introduction [15,17,21], it is worth mentioning the 2-DSO of Duan
and Pettie [20] with O(n2 log3 n) size and O(log n) query time and the work by
van den Brand and Saranurak [11].

Outline. Section 2 provides an overview of our approach and presents our re-
sults. The preliminaries and notation needed to follow the technical part are
given in Section 3. In Section 4, we first describe the randomized subquadratic-
space f -DSO for short hop distances and then derandomize it, not only to
obtain a deterministic construction but also to accelerate the query time to
poly(D, f, log n). Section 5 then describes how to use this to develop a determin-
istic subquadratic-space f -DSO also for hop-long replacement paths.

Some of the proofs are deferred to ?? due to space reasons.

2 Overview

Our first goal is to develop an f -DSO whose space is subquadratic in n, provided
that the hop diameter4 D and the sensitivity f are not too large. One of the first
DSOs was given by Weimann and Yuster [35]. It reports exact distances but, on
graphs with a large hop diameter, it is too large and too slow. We first give an
overview of their techniques and then describe the steps we take to reduce the
space as well as the query time using approximation.

Given the graph G = (V, E) as well as positive integers L and f , the DSO
in [35] samples a family G of Õ(fLf) random spanning subgraphs of G, that is,
all the subgraphs have the same vertex set V . Each graph Gi ∈ G is generated
by removing each edge of G with probability 1/L. With high probability,5 for
all vertices s, t ∈ V and sets F ⊆ E of at most f edge failures, if there is a
replacement path from s to t that has at most L edges and none of them is in
F , then there exists a subgraph Gi ∈ G that does not contain any edge of F but
such an replacement path. Let GF ⊆ G be the subfamily of all the Gi in which at
least all of F was removed. In other words, if s and t have a hop-short shortest
path in G−F , at least one of their replacement paths survives in a graph in GF .

To handle hop-short replacement paths, it is enough to go over the sub-
graphs and report the minimum distance dGi(s, t) over all Gi ∈ GF . For the
hop-long replacement paths on more than L edges, a random subset B ⊆ V

4 The hop diameter of a weighted graph is the minimum integer D such that all
shortest paths between pairs of vertices have at most D edges.

5 An event occurs with high probability (w.h.p.) if it has success probability at least
1 − n−c for some constant c > 0. In fact, c can always be made arbitrarily large
without affecting the asymptotics.

Compact Distance Oracles with Large Sensitivity and Low Stretch 5

of Õ(fn/L) of pivots is sampled. This way any hop-long replacement path de-
composes into short subpaths such that both endpoints are in B. To answer
a hop-long query (s, t, F), a dense weighted graph HF is created on the ver-
tex set V (HF) = B ∪ {s, t} such that for any two u, v ∈ V (HF) the edge {u, v}
has weight minGi∈GF

dGi
(u, v). Those edges represent the subpaths. The oracle’s

eventual answer to the query is the distance dHF (s, t) in HF .
The replacement distances reported by the DSO are exact w.h.p. However,

this approach has several drawbacks. The most important one for us is that each
of the graphs Gi has Ω(m) edges, raising the space to store them all to Ω(fLf m),
which is super-quadratic in n for dense graphs G. Also, the query time is rather
high, the bottleneck is computing the weight of the O(|B|2) = Õ(f2n2/L2) edges
of HF for the hop-long paths.

The key observation for improving this result in graphs with a small hop
diameter is that there all replacement paths are hop-short. Afek, Bremler-Barr,
Kaplan, Cohen, and Merritt [1] showed that for undirected, weights graphs G and
failure sets F ⊆ E with |F | ⩽ f , every shortest path in G−F is a concatenation
of at most f + 1 shortest paths in G interleaved with at most f edges. So
if D is a bound on the hop diameter of G, the hop diameter of G − F is at
most L = (f+1)D + f . With this definition of L, we can safely ignore hop-long
replacement paths. Note that the assumption of G being undirected is essential
here: The Afek et al. [1] result fails in directed graphs. Moreover, there is no
hope for a subquadratic DSO in that case. Thorup and Zwick [34] showed that
every data structure reporting pairwise distances in a directed graph must take
Ω(n2) space. This holds even if the data structure does not support a single edge
failure and only provides an arbitrary finite approximation of the distance.

Nevertheless, we can use approximation in order to reduce the space of the
DSO for undirected graphs. Instead of storing the subgraphs Gi, we replace
them by the distance oracle (DO) of Thorup and Zwick [34]. For any positive
integer k and Gi, we get a DO of size O(kn1+1/k) that, when queried with two
vertices s, t, reports the distance dGi(s, t) but with a stretch of 2k − 1. That
means, the returned value d̂(s, t) satisfies dGi

(s, t) ⩽ d̂(s, t) ⩽ (2k−1) · dGi
(s, t).

While the use of more efficient data structures reduces the space of our DSO
to Õ(fLf n1+1/k), discarding the actual subgraphs Gi makes it impossible to
recover the information which edges have been removed in which graph, that is,
to compute the subfamily GF . We provide two different ways to solve this. The
first one is to use spanners. The DO in [34] is accompanied by a spanner of the
same size and we show that if the spanner associated with Gi does not contain
an edge of F then it is safe to rely on Gi for the replacement distances, even if
the graph itself has some failing edges from F .

Interestingly, the other solution comes from derandomization. Karthik and
Parter [26] showed how to make the subgraph creation deterministic, albeit now
with O((cfL log m)f+1) such graphs for some constant c > 0. This makes the
resulting DSO less compact and also increases the preprocessing time. However,
they presented a way to compute the now deterministic family GF using error-
correcting codes. This allows us to significantly improve the query time if the

6 D. Bilò et al.

diameter is small. For this, we show how to implement the encoding procedure
without using additional storage space.

We present our results in the following setting. We consider graphs with poly-
nomial edge weights, meaning that they are edge-weighted by positive reals from
a range of size poly(n), where n is the number of vertices. While the weights them-
selves may have arbitrary precision, the number of values that can be written
as sums of at most n weights is again polynomial. Therefore, we can encode any
graph distance in a constant number of O(log n)-bit machine words. The restric-
tion on the range is justified as follows. Let W = maxe∈E w(e)/ mine∈E w(e)
be the ratio between the maximum and minimum weight. Chechik et al. [15,
Lemma 4.1] gave a reduction from approximate DSOs for general weighted
graphs to approximate DSOs for graphs with polynomial weights that increases
the space and preprocessing time only by a factor O(log W

log n), the query time by
a factor O(log log W), and the stretch by a factor 1 + 1

n .
In the statements below, k controls the stretch vs. space trade-off is an ar-

bitrary positive integer, possibly even depending on the number of vertices n.
However, there are only space improvements to be had for values k = O(log n).

Theorem 1. Let G = (V, E) be an undirected graph with polynomial edge weights,
and hop diameter D. For all positive integers k and f = o(log n/ log log n), there
is an f -DSO for G that has stretch 2k − 1 and satisfies the following properties.

1. (Randomized.) The DSO takes space Df kn1+ 1
k +o(1), has a preprocessing time

of Df kmn
1
k +o(1), and answers queries correctly w.h.p. in time Df no(1).

2. (Deterministic.) The DSO takes space Df+1kn1+ 1
k +o(1), has preprocessing

time of Df+1kmn
1
k +o(1), and query time O(f3D log n log log n

log D).

Corollary 1. If G has a polylogarithmic hop diameter, then there is an f -DSO
for G with stretch 2k − 1 that takes kn1+ 1

k +o(1) space, has a preprocessing time
of kmn

1
k +o(1), and Õ(1) query time.

We also devise a solution for graphs with an arbitrarily large hop diameter.
To do so, we have to compute the correct distances for hop-long replacement
paths. In [35], this was the role of the dense subgraph HF on the pivots in
B. Imagine we would sparsify it using the spanner construction above. This
would significantly reduce the number of edges we need and stretch the distance
dHF (s, t) to at most 2k−1 times the correct replacement distance. But computing
first the graph and then the distance would still take a lot of time. Instead, the
idea of our solution is to prepare a spanner on vertex set B for each subgraph
and to combine only those we need for the result. This way, we achieve both low
memory and o(n1+1/k) query time, as stated in the following theorem.

We remark again that Bilò et al. [6, Theorem 1.1] gave an oracle for un-
weighted graphs whose query time is sublinear, at the expense of the space
being only marginally subquadratic.

Theorem 2. Let G = (V, E) be an undirected graph polynomial edge weights.
For all positive integers k and f = o(log n/ log log n), and every 0 < α < 1, there

Compact Distance Oracles with Large Sensitivity and Low Stretch 7

is an f -DSO for G with stretch 2k − 1, space kn1+α+ 1
k +o(1), preprocessing time

kmn1+α+ 1
k +o(1), and query time Õ(n1+ 1

k − α
k(f+1)).

3 Preliminaries

Shortest paths and hop diameter. We let G = (V, E) denote the undirected
base graph with n vertices and m edges, edge-weighted by a function w : E → W,
where the set of admissible weights W ⊆ R+ is of size |W| = poly(n). We tacitly
assume m = Ω(n). For any undirected graph H (that may differ from the input
G) we denote by V (H) and E(H) the set of its vertices and edges, respectively.
Let P be a path in H from a vertex s ∈ V (H) to t ∈ V (H), we say that P is
an s-t-path in H. We denote by |P | =

∑
e∈E(P) w(e) the length of P , that is,

its total weight. For vertices u, v ∈ V (P), we let P [u..v] denote the subpath of
P from u to v. For two paths P, Q in H that share an endpoint, we use P ◦ Q
for their concatenation. For s, t ∈ V (H), the distance dH(s, t) is the minimum
length of any s-t-path in H; if s and t are disconnected, we set dH(s, t) = +∞.
When talking about the base graph G, we drop the subscripts if this does not
create any ambiguities. The hop diameter of H is the maximum number of edges
of any shortest path between pairs of vertices in V (H).

Spanners and distance sensitivity oracles. A spanner of stretch σ ⩾ 1, or
σ-spanner, for H is a subgraph S ⊆ H such that for any two vertices s, t ∈
V (S) = V (H), the inequality dH(s, t) ⩽ dS(s, t) ⩽ σ · dH(s, t) holds. For a set
F ⊆ E of edges, let G−F be the graph obtained from G by removing all edges
in F . For any two s, t ∈ V , a replacement path P (s, t, F) is a shortest path from
s to t in G−F . Its length d(s, t, F) = dG−F (s, t) is the replacement distance. For
a positive integer f , an f -distance sensitivity oracle (DSO) reports, upon query
(s, t, F) with |F | ⩽ f , the replacement distance d(s, t, F). It has stretch σ ⩾ 1, or
is σ-approximate, if the reported value d̂(s, t, F) satisfies d(s, t, F) ⩽ d̂(s, t, F) ⩽
σ ·d(s, t, F) for any admissible query. We measure the space complexity of a data
structure in the number of O(log n)-bit machine words. The size of the input G
does not count against the space unless it is stored explicitly.

Error-correcting codes. For a positive integer h, we set [h] = {0, 1, . . . , h−1}.
For positive integers q, p, and ℓ with p ⩽ ℓ, a code with alphabet size q, message
length p, and block length ℓ is a set C ⊆ [q]ℓ such that |C| ⩾ qp. An encoding for
C is a computable injective mapping [q]p → C. Two codewords x, y ∈ C have
(relative) distance ∆(x, y) = |{j ∈ [ℓ] | xj ̸= yj}|/ℓ. For a positive real δ > 0,
code C is error-correcting with (relative) distance δ, if for any two x, y ∈ C,
∆(x, y) ⩾ δ. In this case, we say C is a [p, ℓ, δ]q-code. It will be sufficient to
focus on Reed-Solomon codes, which are [p, q, 1 − p−1

q]q-codes for any p ⩽ q.
When choosing q (and therefore ℓ = q) as a power of 2 and p < q, there is an
encoding algorithm for Reed-Solomon codes that takes O(ℓ log p) time and O(ℓ)
space using fast Fourier transform [30].

8 D. Bilò et al.

4 Small Hop Diameter

We first describe the simpler randomized version of our distance sensitivity oracle
for graphs with small hop diameter. Afterwards, we derandomize it using more
involved techniques like error-correcting codes. Throughout, we assume that the
base graph G has edge weights from a polynomial-sized range.

4.1 Preprocessing

In the setting of Theorem 1, all shortest paths have at most D edges. Let f =
o(log n/ log log n) be the sensitivity of the oracle and L ⩾ max(f, 2) be an integer
parameter which will be fixed later (depending on D). An (L, f)-replacement
path covering (RPC) [26] is a family G of spanning subgraphs of G such that for
any set F ⊆ E, |F | ⩽ f , and pair of vertices s, t ∈ V such that s and t have a
shortest path in G − F on at most L edges, there exists a subgraph Gi ∈ G that
does not contain any edge of F but an s-t-path of length d(s, t, F). That means,
some replacement path P (s, t, F) from G − F also exists in Gi. Let GF ⊆ G be
the subfamily of all graphs that do not contain an edge of F . The definition of
an RPC implies that if s and t have a replacement path w.r.t. F on at most L
edges, then minGi∈GF

dGi(s, t) = d(s, t, F).
To build the DSO, we first construct an (L, f)-RPC. This can be done by

generating |G| = cfLf ln n random subgraphs for a sufficiently large constant
c > 0. Each graph Gi is obtained from G by deleting any edge with probability
1/L independently of all other choices. As shown in [35], the family G = {Gi}i is
an (L, f)-RPC with high probability It is also easy to see using Chernoff bounds6

that for any failure set F , |GF | = O(|G|/L|F |) = Õ(fLf−|F |).
We do not allow ourselves the space to store all subgraphs. We therefore

replace each Gi by a distance oracle Di, a data structure that reports, for any two
s, t ∈ V , (an approximation of) the distance dGi(s, t). For any positive integer
k, Thorup and Zwick [34] devised a DO that is computable in time Õ(kmn1/k),
has size O(kn1+1/k), query time O(k), and a stretch of 2k − 1. Roddity, Thorup,
and Zwick [32] derandomized the oracle, and Chechik [12,13] reduced the query
time to O(1) and the space to O(n1+1/k). Additionally, we store, for each Gi,
a spanner Si. The same work [34] contains a spanner construction with stretch
2k − 1 that is compatible with the oracle, meaning that the oracle Di reports
exactly the value dSi

(s, t). The spanner is computable in time Õ(kmn1/k) and
has O(kn1+1/k) edges. We store it as a set of edges. There are static dictionary
data structures known that achieve this in O(kn1+1/k) space such that we can
check in O(1) worst-case time whether an edge is present or retrieve an edge.
They can be constructed in time Õ(kn1+1/k) [25]. The total preprocessing time
of the distance sensitivity oracle is Õ(|G|m + |G|kmn1/k) = Õ(fLf kmn1/k) and
it takes Õ(fLf kn1+1/k) space.

6 There is a slight omission in [35, Lemma 3.1] for |GF | is only calculated for |F | = f .

Compact Distance Oracles with Large Sensitivity and Low Stretch 9

4.2 Query Algorithm

Assume for now that the only allowed queries to the DSO are triples (s, t, F) of
vertices s, t ∈ V and a set F ⊆ E of at most f edges such that any shortest path
from s to t in G − F has at most L edges. We will justify this assumption later
with the right choice of L. The oracle has to report the replacement distance
d(s, t, F). Recall that GF is the family of all graphs in G that have at least all
edges of F removed. Since G is an (L, f)-RPC, all we have to do is compute (a
superset of) GF and retrieve (an approximation of) minGi∈GF

dGi
(s, t). The issue

is that we do not have access to the graphs Gi directly.
The idea is to use the spanners Si as proxies. This is justified by the next

lemma that follows from a connection between the spanners and oracles pre-
sented in [34]. Let Di(s, t) denote the answer of the distance oracles Di.

Lemma 1. Let Gi ∈ G be a subgraph, Si its associated spanner, and Di its
(2k−1)-approximate distance oracle. For any two vertices s, t ∈ V and set F ⊆ E
with |F | ⩽ f , if F ∩ E(Si) = ∅, then d(s, t, F) ⩽ Di(s, t) ⩽ (2k−1) dGi

(s, t).

Let GS = {Si}i∈[r] be the collection of spanners for all Gi ∈ G, and GS
F ⊆ GS

those that do not contain an edge of F . Below, we hardly distinguish between a
set of spanners (or subgraphs) and their indices, thus e.g. Si ∈ GS

F is abbreviated
as i ∈ GS

F . Since E(Si) ⊆ E(Gi) and using the convention, we get GS
F ⊇ GF .7

To compute GS
F , we cycle through all of GS and probe each dictionary with the

edges in F , this takes O(f |G|) = Õ(f2Lf) time and dominates the query time. If
i ∈ GS

F , then we query the distance oracle Di with the pair (s, t) in constant time.
As answer to the query (s, t, F), we return mini∈GS

F
Di(s, t). By Lemma 1, the

answer is at least as large as the sought replacement distance and, since there is
a graph Gi ∈ GF ⊆ GS

F with dGi
(s, t) = d(s, t, F), it is at most (2k−1) d(s, t, F).

Let D be an upper bound on the hop diameter of G. As mentioned above,
Afek et al. [1, Theorem 2] showed that the maximum hop diameter of all graphs
G − F for |F | ⩽ f is bounded by (f+1)D + f . Using this value for L implies
that indeed all queries admit a replacement path on at most L edges. For the
DSO, it implies a preprocessing time of Õ(fLf kmn1/k) = Õ(ff+1Df kmn1/k),
which for f = o(log n/ log log n) is Df kmn1/k+o(1). The space requirement is
Õ(fLf kn1+1/k) = Õ(ff+1Df kn1+1/k) = Df kn1+1/k+o(1), and the query time
Õ(f2Lf) = Õ(ff+2Df) = Df no(1). This proves the first part of Theorem 1.

4.3 Derandomization

We now make the DSO deterministic via a technique by Karthik and Parter [26].
The derandomization will allow us to find the relevant subgraphs faster, so we do
not need the spanners anymore. Recall that the distance oracles Di were already
7 We do mean here that GS

F is a superset of GF . Since the spanner contain fewer edges
than the graphs, F may be missing from E(Si) even though F ∩ E(Gi) ̸= ∅. This is
fine as long as we take the minimum distance over all spanners from GS

F

10 D. Bilò et al.

derandomized in [32]. The only randomness left is the generation of the sub-
graphs Gi. Getting a deterministic construction offers an alternative approach
to dealing with the issue that discarding the subgraphs for space reasons deprives
us of the information which edges have been removed. Intuitively, we can now
reiterate this process at query time to find the family GF . Below we implement
this idea in a space-efficient manner.

We identify the edge set E = {e0, e1, . . . , em−1} with [m]. Let q be a positive
integer. Assume that p = logq m is integral, otherwise one can replace logq m
with ⌈logq m⌉ without any changes. We interpret any edge ei ∈ E as a base-q
number (c0, c1, . . . , cp−1) ∈ [q]p by requiring i =

∑p−1
j=0 cjqj . Consider an error-

correcting [p, ℓ, δ]-code with distance δ > 1 − 1
fL and (slightly abusing notation)

let C be the (m×ℓ)-matrix with entries in [q] whose i-th row is the codeword
encoding the message ei = (c0, c1, . . . , cp−1). The key contribution of the work
by Karthik and Parter [26] is the observation that the columns of C form a
family of hash functions {hj : E → [q]}j∈[ℓ] such that for any pair of disjoint
sets P, F ⊆ E with |P | ⩽ L and |F | ⩽ f there exists an index j ∈ [ℓ] with
∀x ∈ P, y ∈ F : hj(x) ̸= hj(y).

An (L, f)-replacement path covering can be constructed from this as fol-
lows. Choose q as the smallest power of 2 greater8 than fL logL m. Note that
q ⩽ 2fL log2 m

log2 L ⩽ 4fL log2 n
log2 L . A Reed-Solomon code with alphabet size q, message

length p = logq m, and block length ℓ = q has distance greater than 1 − 1
fL [26,

Corollary 18]. The resulting covering G consists of |G| = O(ℓ ·qf) = O(qf+1) sub-
graphs, each one indexed by a pair (j, S) where j ∈ [ℓ] and S ⊆ [q] is a set with
|S| ⩽ f . In the subgraph G(j,S), an edge ei is removed if and only if hj(ei) ∈ S.
It is verified in [26] that the family G = {G(j,S)}j,S is indeed an (L, f)-RPC.
Moreover, for a fixed set F = {ei1 , . . . , ei|F |} of edge failures, define GF ⊆ G to
be the subfamily consisting of the graphs indexed by (j, {hj(ei1), . . . , hj(ei|F |)})
for each j ∈ [ℓ]. Then, the construction ensures that no graph in GF contains
any edge of F and, for each pair of vertices s, t ∈ V with an replacement path
(w.r.t. F) on at most L edges, there is graph in GF in which s and t are joined
by a path of length d(s, t, F). The ℓ graphs in GF contain all the information
we need for the short replacement distances with respect to the failure set F .
The number of subgraphs in the covering is O((4fL logL n)f+1), this is a factor
O((4f logL n)f L) larger than what we had for the randomized variant.

In turn, we can make use of the extreme locality of the indexing scheme
for G. Since we chose q as a power of 2, we get the letters of the message ei =
(c0, c1, . . . , cp−1) by reading off blocks of log2 q bits of the binary representation of
i. The codeword of C corresponding to ei is computable in time O(p + ℓ log p) =
O(fL(logL n) log log n) and space O(p + ℓ) = O(fL logL n) with the encoding
algorithm of Lin, Al-Naffouri, Han, and Chung [30]. The whole matrix C and
from it the family G can be generated in time O(fLm(logL n) log log n+ |G|m) =

8 The original construction in [26] sets q as a prime number. We use a power of 2
instead to utilize the encoding algorithm in [30]. All statements hold verbatim for
both cases.

Compact Distance Oracles with Large Sensitivity and Low Stretch 11

O((4fL logL n)f+1 m). Note that the codeword of ei is (h1(ei), h2(ei), . . . , hℓ(ei)).
So even after discarding C and the subgraphs, we can find the indices of graphs
in GF by encoding the edges of F in time O(|F |ℓ log p) = O(f2L(logL n) log log n)
and rearranging the values into the ℓ sets {hj(ei1), . . . , hj(ei|F |)}. In particular,
using the algorithm in [30], we do not need to store the generator matrix of the
code C.

The remaining preprocessing is similar as in Section 4.1, but we need neither
the spanners nor the dictionaries anymore. We set L = O(fD) again and, for
each subgraph G(j,S), we only build the distance oracle D(j,S). This dominates
the preprocessing time Õ(|G|kmn1/k) = Õ(4f+1f2f+2Df+1(logD n)f+1kmn1/k)
= Df+1kmn1/k+o(1). The total size is now Õ(|G|kn1+1/k) = Df+1kn1+1/k+o(1).
However, due to the derandomization, the query time is now much faster than
before, in particular, polynomial in f , D and log n. We do not have to cycle
through all spanners anymore and instead compute GF and query the DO only
for those ℓ graphs. As a result, the time to report the replacement distance is
O(f2L(logL n) log log n + ℓ) = O(f3D (logD n) log log n), completing Theorem 1.

5 Large Hop Diameter

We also devise a distance sensitivity oracle for graphs with an arbitrary hop
diameter while maintaining a small memory footprint. For this, we have to handle
hop-long replacement paths, that is, those that have more than L edges. We
obtain a subquadratic-space distance sensitivity oracle with the same stretch of
2k − 1 but an o(n1+1/k) query time. This is faster than computing the distance
in any possible spanner.

5.1 Deterministic Pivot Selection

We say a query with vertices s, t ∈ V and set F ⊆ E, |F | ⩽ f has long replace-
ment paths if every P (s, t, F) has at least L edges. Those need to be handled
in general DSOs. This is usually done by drawing a random subset B ⊂ V of
Õ(fn/L) pivots, as in [35], or essentially equivalent sampling every vertex in-
dependently with probability Õ(f/L) [23,33]. With high probability, B hits one
path for every query with long replacement paths.

There are different approaches known to derandomize this depending on the
setting [2,5,7,8,28]. In our case, we can simply resort to the replacement path
covering to obtain P since we have to preprocess it anyway. We prove the fol-
lowing lemma for the more general class of arbitrary positive weights. Note that
the key properties of an (L, f)-RPC remain in place as all definitions are with
respect to the number of edges on the replacement paths. We make it so that
B hits the slightly shorter paths with L/2 edges (instead of L). We are going to
use this stronger requirement in Lemma 4.

Lemma 2. Let G = (V, E) be an undirected graph with positive edge weights.
Let Q be the set of all queries (s, t, F), with s, t ∈ V and F ⊆ E, |F | ⩽ f ,

12 D. Bilò et al.

for which every s-t-replacement path w.r.t. F has at least L/2 edges. Given an
(L, f)-replacement path covering G for G, there is a deterministic algorithm that
computes in time Õ(|G|(mn+Ln2/f)) a set B ⊆ V of size Õ(fn/L) such that, for
all (s, t, F) ∈ Q, there is a replacement path P = P (s, t, F) with B ∩ V (P) ̸= ∅.
At the same time, one can build a data structure of size O(|G||B|2) that reports,
for every Gi ∈ G and x, y ∈ B, the distance dGi

(x, y) in constant time.

5.2 Preprocessing

Our solution for large hop diameter builds on the deterministic DSO in Sec-
tion 4.3. As for the case of a small hop diameter, we construct an (L, f)-replace-
ment path covering G and, for each G(i,S) ∈ G, the distance oracle D(i,S). Recall
that this part takes time Õ(|G|kmn1/k) and O(|G|kn1+1/k) space.

We invoke Lemma 2 to obtain the set B. Additionally, for each subgraph, we
build a complete weighted graph H(i,S) on the vertex set B where the weight
of edge {x, y} is dG(i,S)(x, y), which we retrieve from the data structure men-
tioned in Lemma 2. We then compute a (2k−1)-spanner T(i,S) for H(i,S) with
O(k|B|1+1/k) edges via the same deterministic algorithm by Roditty, Thorup,
and Zwick [32]. We store the new spanners for our DSO. The time to compute
them is Õ(|G|k|B|2+1/k) and, since |B| = Õ(fn/L), the preprocessing time is

Õ(|G|(kmn1/k + |B|m + k|B|2+1/k)) = Õ(|G|(mn + k|B|2+1/k)) ⩽
Lf+1mn1+o(1) + Lf−1−1/kkn2+1/k+o(1) ⩽ Lf+1kmn1+1/k+o(1).

To obtain the bounds of Theorem 2, we set L = n
α

f+1 . Parameter 0 < α < 1
allows us to balance the space and query time. With this, we get a preprocessing
time of kmn1+α+1/k+o(1). and a space of O(|G|(kn1+1/k + n + k|B|1+1/k) =
Õ(|G|kn1+1/k) = Lf+1kn1+1/k+o(1) = kn1+α+1/k+o(1).

5.3 Updated Query Algorithm

The algorithm to answer a query (s, t, F) starts similarly as before. We use the
error-correcting codes to compute the subfamily GF and the estimate d̂1(s, t, F) =
min(i,S)∈GF

D(i,S)(s, t) is retrieved. However, this is no longer guaranteed to be
an (2k−1)-approximation if the query is hop-long, i.e., if every shortest s-t-path
in G − F has at least L edges. It could be that no replacement paths survive
and, in the extreme case, s and t are disconnected in each G(i,S) ∈ GF , while
they still have a finite distance in G − F . To account for long queries, we join
all the spanners Ti for i ∈ GF . In more detail, we build a multigraph9 HF on
the vertex set V (HF) = B ∪ {s, t} whose edge set (restricted to pairs of piv-
ots) is the disjoint union of all the sets {E(Ti)}i∈GF

and, for each subgraph
(i, S) ∈ GF and pivot x ∈ B contains the edges {s, x} and {x, t} with respective
weights D(i,S)(s, x) and D(i,S)(x, t), where D(i,S) is the corresponding DO. The
9 The multigraph is only used to ease notation.

Compact Distance Oracles with Large Sensitivity and Low Stretch 13

oracle then computes the second estimate d̂2(s, t, F) = dHF (s, t) and returns
d̂(s, t, F) = min{d̂1(s, t, F), d̂2(s, t, F)}.

Lemma 3. The distance sensitivity oracle has stretch 2k−1 and the query takes
time Õ(n1+1/k

L1/k) = Õ(n1+ 1
k − α

k(f+1)).

Proving this lemma is enough to complete Theorem 2. In order to do so, we
first establish the fact that dHF (s, t) is a (2k−1)-approximation for d(s, t, F) in
case of a long query.

Lemma 4. Let s, t ∈ V be two vertices and F ⊆ E a set of edges with |F | ⩽ f . It
holds that d(s, t, F) ⩽ dHF (s, t). If additionally every shortest s-t-path in G − F
has more than L edges, then we have dHF (s, t) ⩽ (2k−1) d(s, t, F).

Acknowledgements. The authors thank Merav Parter for raising the question
of designing distance sensitivity oracles that require only subquadratic space.

This project received funding from the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (Grant
agreement No. 101019564 “The Design of Modern
Fully Dynamic Data Structures (MoDynStruct)”).

References
1. Afek, Y., Bremler-Barr, A., Kaplan, H., Cohen, E., Merritt, M.: Restoration by

Path Concatenation: Fast Recovery of MPLS Paths. Distributed Computing 15,
273–283 (2002). https://doi.org/10.1007/s00446-002-0080-6

2. Alon, N., Chechik, S., Cohen, S.: Deterministic Combinatorial Replacement Paths
and Distance Sensitivity Oracles. In: Proceedings of the 46th International Col-
loquium on Automata, Languages, and Programming, (ICALP). pp. 12:1–12:14
(2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.12

3. Baswana, S., Khanna, N.: Approximate Shortest Paths Avoiding a Failed Vertex:
Near Optimal Data Structures for Undirected Unweighted Graphs. Algorithmica
66, 18–50 (2013). https://doi.org/10.1007/s00453-012-9621-y

4. Bernstein, A., Karger, D.R.: Improved Distance Sensitivity Oracles via Random
Sampling. In: Proceedings of the 19th Symposium on Discrete Algorithms (SODA).
pp. 34–43 (2008), https://dl.acm.org/doi/abs/10.5555/1347082.1347087

5. Bernstein, A., Karger, D.R.: A Nearly Optimal Oracle for Avoiding Failed Ver-
tices and Edges. In: Proceedings of the 41st Symposium on Theory of Computing
(STOC). pp. 101–110 (2009). https://doi.org/10.1145/1536414.1536431

6. Bilò, D., Chechik, S., Choudhary, K., Cohen, S., Friedrich, T., Krogmann, S.,
Schirneck, M.: Approximate Distance Sensitivity Oracles in Subquadratic Space.
In: Proceedings of the 55th Symposium on Theory of Computing (STOC) (2023).
https://doi.org/10.1145/3564246.3585251, to appear.

7. Bilò, D., Choudhary, K., Cohen, S., Friedrich, T., Schirneck, M.: Determinis-
tic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances. In:
Proceedings of the 49th International Colloquium on Automata, Languages, and
Programming (ICALP). pp. 22:1–22:19 (2022). https://doi.org/10.4230/LIPIcs.
ICALP.2022.22

https://doi.org/10.1007/s00446-002-0080-6
https://doi.org/10.1007/s00446-002-0080-6
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.1007/s00453-012-9621-y
https://doi.org/10.1007/s00453-012-9621-y
https://dl.acm.org/doi/abs/10.5555/1347082.1347087
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.1145/3564246.3585251
https://doi.org/10.1145/3564246.3585251
https://doi.org/10.4230/LIPIcs.ICALP.2022.22
https://doi.org/10.4230/LIPIcs.ICALP.2022.22
https://doi.org/10.4230/LIPIcs.ICALP.2022.22
https://doi.org/10.4230/LIPIcs.ICALP.2022.22

14 D. Bilò et al.

8. Bilò, D., Cohen, S., Friedrich, T., Schirneck, M.: Near-Optimal Deterministic
Single-Source Distance Sensitivity Oracles. In: Proceedings of the 29th European
Symposium on Algorithms (ESA). pp. 18:1–18:17 (2021). https://doi.org/10.4230/
LIPIcs.ESA.2021.18

9. Bodwin, G., Dinitz, M., Robelle, C.: Optimal Vertex Fault-Tolerant Spanners in
Polynomial Time. In: Proceedings of the 32nd Symposium on Discrete Algorithms
(SODA). pp. 2924–2938 (2021). https://doi.org/10.1137/1.9781611976465.174

10. Bodwin, G., Dinitz, M., Robelle, C.: Partially Optimal Edge Fault-Tolerant Span-
ners. In: Proceedings of the 33rd Symposium on Discrete Algorithms (SODA). pp.
3272–3286 (2022). https://doi.org/10.1137/1.9781611977073.129

11. Brand, J.v.d., Saranurak, T.: Sensitive Distance and Reachability Oracles for Large
Batch Updates. In: Proceedings of the 60th Symposium on Foundations of Com-
puter Science (FOCS). pp. 424–435 (2019). https://doi.org/10.1109/FOCS.2019.
00034

12. Chechik, S.: Approximate Distance Oracles with Constant Query Time. In: Pro-
ceedings of the 46th Symposium on Theory of Computing (STOC). pp. 654–663
(2014). https://doi.org/10.1145/2591796.2591801

13. Chechik, S.: Approximate Distance Oracles with Improved Bounds. In: Proceedings
of the 47th Symposium on Theory of Computing (STOC). pp. 1–10 (2015). https:
//doi.org/10.1145/2746539.2746562

14. Chechik, S., Cohen, S.: Distance Sensitivity Oracles with Subcubic Preprocessing
Time and Fast Query Time. In: Proccedings of the 52nd Symposium on Theory
of Computing (STOC). pp. 1375–1388 (2020). https://doi.org/10.1145/3357713.
3384253

15. Chechik, S., Cohen, S., Fiat, A., Kaplan, H.: (1+ε)-Approximate f -Sensitive Dis-
tance Oracles. In: Proceedings of the 28th Symposium on Discrete Algorithms
(SODA). pp. 1479–1496 (2017). https://doi.org/10.1137/1.9781611974782.96

16. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault Tolerant Spanners for
General Graphs. SIAM Journal on Computing 39, 3403–3423 (2010). https://doi.
org/10.1137/090758039

17. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f -Sensitivity Distance Oracles
and Routing Schemes. Algorithmica 63, 861–882 (2012). https://doi.org/10.1007/
s00453-011-9543-0

18. Demetrescu, C., Thorup, M.: Oracles for Distances Avoiding a Link-Failure. In:
Proceedings of the 13th Symposium on Discrete Algorithms (SODA). pp. 838–843
(2002), https://dl.acm.org/doi/10.5555/545381.545490

19. Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for
Distances Avoiding a Failed Node or Link. SIAM Journal on Computing 37, 1299–
1318 (2008). https://doi.org/10.1137/S0097539705429847

20. Duan, R., Pettie, S.: Dual-Failure Distance and Connectivity Oracles. In: Proceed-
ings of the 20th Symposium on Discrete Algorithms (SODA). pp. 506–515 (2009),
https://dl.acm.org/doi/10.5555/545381.545490

21. Duan, R., Ren, H.: Maintaining Exact Distances under Multiple Edge Failures.
In: Proceedings of the 54th Symposium on Theory of Computing (STOC). pp.
1093–1101 (2022). https://doi.org/10.1145/3519935.3520002

22. Erdős, P.: Extremal Problems in Graph Theory. Theory of Graphs and its Appli-
cations pp. 29–36 (1964)

23. Grandoni, F., Vassilevska Williams, V.: Faster Replacement Paths and Distance
Sensitivity Oracles. ACM Transaction on Algorithms 16, 15:1–15:25 (2020). https:
//doi.org/10.1145/3365835

https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1137/1.9781611977073.129
https://doi.org/10.1137/1.9781611977073.129
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1145/2591796.2591801
https://doi.org/10.1145/2591796.2591801
https://doi.org/10.1145/2746539.2746562
https://doi.org/10.1145/2746539.2746562
https://doi.org/10.1145/2746539.2746562
https://doi.org/10.1145/2746539.2746562
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1137/090758039
https://doi.org/10.1137/090758039
https://doi.org/10.1137/090758039
https://doi.org/10.1137/090758039
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1007/s00453-011-9543-0
https://dl.acm.org/doi/10.5555/545381.545490
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1137/S0097539705429847
https://dl.acm.org/doi/10.5555/545381.545490
https://doi.org/10.1145/3519935.3520002
https://doi.org/10.1145/3519935.3520002
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835

Compact Distance Oracles with Large Sensitivity and Low Stretch 15

24. Gu, Y., Ren, H.: Constructing a Distance Sensitivity Oracle in O(n2.5794M) Time.
In: Proceedings of the 48th International Colloquium on Automata, Languages, and
Programming (ICALP). pp. 76:1–76:20 (2021). https://doi.org/10.4230/LIPIcs.
ICALP.2021.76

25. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic Dictionaries. Journal of Al-
gorithms 41, 69–85 (2001). https://doi.org/10.1006/jagm.2001.1171

26. Karthik C.S., Parter, M.: Deterministic Replacement Path Covering. In: Proceed-
ings of the 32nd Symposium on Discrete Algorithms (SODA). pp. 704–723 (2021).
https://doi.org/10.1137/1.9781611976465.44

27. Khanna, N., Baswana, S.: Approximate Shortest Paths Avoiding a Failed Vertex:
Optimal Size Data Structures for Unweighted Graphs. In: Proceedings of the 27th
Symposium on Theoretical Aspects of Computer Science (STACS). pp. 513–524
(2010). https://doi.org/10.4230/LIPIcs.STACS.2010.2481

28. King, V.: Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs. In: Proceedings of the 40th Symposium on Foun-
dations of Computer Science (FOCS). pp. 81–91 (1999). https://doi.org/10.1109/
SFFCS.1999.814580

29. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Efficient Algorithms for Con-
structing Fault-Tolerant Geometric Spanners. In: Proceedings of the 30th Sympo-
sium on Theory of Computing (STOC). pp. 186–195 (1998). https://doi.org/10.
1145/276698.276734

30. Lin, S., Al-Naffouri, T.Y., Han, Y.S., Chung, W.: Novel Polynomial Basis with Fast
Fourier Transform and Its Application to Reed-Solomon Erasure Codes. IEEE
Transactions on Information Theory 62, 6284–6299 (2016). https://doi.org/10.
1109/TIT.2016.2608892

31. Ren, H.: Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time.
Journal of Computer and System Sciences 123, 159–170 (2022). https://doi.org/
10.1016/j.jcss.2021.08.005

32. Roditty, L., Thorup, M., Zwick, U.: Deterministic Constructions of Approximate
Distance Oracles and Spanners. In: Proceedings of the 32nd International Collo-
quium on Automata, Languages and Programming (ICALP). pp. 261–272 (2005).
https://doi.org/10.1007/11523468_22

33. Roditty, L., Zwick, U.: Replacement Paths and k Simple Shortest Paths in Un-
weighted Directed Graphs. ACM Transaction on Algorithms 8, 33:1–33:11 (2012).
https://doi.org/10.1145/2344422.2344423

34. Thorup, M., Zwick, U.: Approximate Distance Oracles. Journal of the ACM 52,
1–24 (2005). https://doi.org/10.1145/1044731.1044732

35. Weimann, O., Yuster, R.: Replacement Paths and Distance Sensitivity Oracles
via Fast Matrix Multiplication. ACM Transactions on Algorithms 9, 14:1–14:13
(2013). https://doi.org/10.1145/2438645.2438646

https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.1006/jagm.2001.1171
https://doi.org/10.1006/jagm.2001.1171
https://doi.org/10.1137/1.9781611976465.44
https://doi.org/10.1137/1.9781611976465.44
https://doi.org/10.4230/LIPIcs.STACS.2010.2481
https://doi.org/10.4230/LIPIcs.STACS.2010.2481
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1145/276698.276734
https://doi.org/10.1145/276698.276734
https://doi.org/10.1145/276698.276734
https://doi.org/10.1145/276698.276734
https://doi.org/10.1109/TIT.2016.2608892
https://doi.org/10.1109/TIT.2016.2608892
https://doi.org/10.1109/TIT.2016.2608892
https://doi.org/10.1109/TIT.2016.2608892
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1007/11523468_22
https://doi.org/10.1007/11523468_22
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2438645.2438646

	Compact Distance Oracles with Large Sensitivity and Low Stretch

