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Abstract The Cloud-Edge continuum has lately exponentially grown, thanks to the
increase in the availability of computational power in Edge Devices, and the better
capabilities of communication networks. In this paper, two use cases, in eHealth and
environmental domain, are presented in order to provide an application context to
exemplify the approaches driving the analysis and selection of Cloud-Edge archi-
tectural solutions and patterns, the structural design, the allocation and deployment
of distributed applications targeted to the Cloud Continuum. The main focus of this
paper is the comparison of the architectural choices made for the two use cases,
and how they have been driven by typical non-functional requirements, guiding the
adoption of a Cloud Continuum solution.

1 Introduction

The Cloud-Edge continuum has lately exponentially grown, thanks to the increase in
the availability of computational power in Edge Devices and the better capabilities
of communication networks that, as of today, can support massive exchanges of data
with high reliability.
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There are still drawbacks to this approach, regarding the necessity to optimally
manage the available computational resources, and to avoid traffic congestion that
can always happen, even with modern networks. The main drive behind the use of
the Cloud-Edge continuum paradigm resides in the necessity to keep data elabora-
tion close to data sources, to avoid privacy and security issues, and to better organize
resource management. However, this requires a clear decomposition of the applica-
tions’ components that need to be re-thought in a completely distributed manner and
having in mind that Edge Devices do not possess infinite computational power. The
use of the Cloud-Edge continuum, which exploits centralized Cloud resources to sat-
isfy the computational needs of the application, can resolve several resource scarcity
problems but still requires to be accurately designed. Patterns to define Cloud-Edge
architectures and to identify the optimal data workflows in such applications are
currently being identified, studied, and applied, but there is still a strong need for
standardization and general acceptance from programmers’ communities.

Edge computing was originally proposed to satisfy four non-functional require-
ments, namely high responsiveness, scalability, privacy enforcement, and fault tol-
erance [1]. However, more recent, innovative applications of Cloud-Edge call for
further requirements, including low network accessibility, deployment of personal-
ized software configurations, computational offloading, and energy management.

In this paper, two use cases, in the eHealth and environmental domain, are pre-
sented in order to provide an application context to exemplify the approaches driv-
ing the analysis and selection of Cloud-Edge architectural solutions and patterns,
the structural design, the allocation and deployment of distributed applications tar-
geted to the Cloud Continuum. The main focus of the paper is the comparison of the
architectural choices made for the two use cases and how they have been driven by
the abovementioned non-functional requirements, guiding the adoption of a Cloud
Continuum solution. Moreover, we discuss how these requirements entail unique
hardware designs for the two use cases.

2 Reference Architectures for the Cloud-Edge continuum

2.1 Multi-Layer Architecture

The Cloud-Edge paradigm is still in full development, especially as regards compu-
tational, energetic and privacy requirements expressed by distributed applications.
Therefore, there is the need to develop techniques for the efficient definition of ar-
chitectures, deployment and management methodologies for algorithms, to be run
on distributed devices, and schedule the computation offload.

Several architectural solutions are being developed to support the efficient develop-
ment of Cloud-Edge platforms, with a particular interest in Mobile scenarios [2].
Patterns have been proposed for Cloud-Edge, also by private, commercial organiza-
tions that apply them in their everyday activities.
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Cloud-Edge Patterns can be divided into four main categories:

Architectural Cloud-Edge Patterns that support the creation of Cloud-Edge Ar-
chitectures, and that are strongly influenced by multi-layered approaches already in
use in several distributed paradigms. Computational capabilities of the Edge Nodes
are the main drive behind the selection of a specific Architectural Pattern.
Cloud-Edge Patterns for Data are less focused on architectural design, and more
interested in discussing how data should be transferred among distributed compo-
nents.

Deployment Cloud-Edge Patterns define how the deployment of distributed com-
ponents should be handled in a distributed environment, especially when different
versions of the same application may be running on the Edge Nodes.

Among the Architectural Patterns, one of the most complex is represented by the
Multi-tier Architecture Pattern with Edge Orchestrator[3] shown in Figure la.
Such a Pattern describes a common situation in which the Cloud computational
capabilities are separated from the Edge network, and they are both managed sep-
arately. The Edge layer is indeed organised through a Metropolitan Area Network
(MAN), where and Edge Orchestrator specifically manages the computational of-
fload among the Edge nodes.

Cloud-Edge Patterns for Data greatly differ according to the specific problem they
focus on [4]. Common proposed solutions regard Synchronous and Asynchronous
accesses to data produced by Edge Devices, or describe the exact workflow of the
data streaming through the Edge framework. Figure 1b shows the Subsequent Data
Retrieval Pattern, where the organization of the data flow is clearly presented.

Cloud

1.Page request at Ve

edge A
I

\ J/
6. Content read
from Datastore

Y

i

2.Page request at i

DC - Service A }

— i
i

! "
=} 3. 3
} = SeNI ce A pan’;gsgeerrv:ze H
| Service B
\ ] \ | | 5.Page onload )
/ \ I \ 1
Servlce C |
e .
>80 @ 08 \ b S
(a) Two-tier Architecture Pattern with ] S
Edge Orchestrator (b) Subsequent Data Retrieval Pattern [4]

Fig. 1: Cloud Edge Patterns examples



4 A. Aral, A. Esposito, A. Nagiyev, S. Benkner, B. Di Martino, and M.A. Bochicchio

Patterns for Data management in complex Cloud-Edge systems are necessary,
in order to describe the correct workflow of information within such systems and
to optimize the energy consumption and computational loads for all the collaborat-
ing devices. To stress a privacy-by-design development of distributed algorithms,
Federated Learning techniques have arisen [5, 6, 7], which guarantee the absence
of personal or identifiable data in the parameters exchanged over networks to train
Machine and Deep learning algorithms. Federated Learning (FL) approaches are
extremely useful for the efficient exploitation of computational nodes in distributed
environments, and most importantly for the positive impact they have on privacy.
Since several FL-oriented approaches are possible, being guided by architectural
and computational patterns becomes fundamental to reduce risks. Indeed, FL Pat-
terns and reference architectures have already been defined [8, 9]. Applications of
such patterns are available [10], but are still quite limited. Also, support for the
application of such Patterns and the development of FL algorithms is still missing.

2.2 Event-Driven Architecture

Another highly connected complex of approaches and patterns for distributed ap-
plications is based on the event-driven architecture (EDA) [11]. The methods and
techniques for using EDA are constantly changing and improving by adding new
viewpoints and interaction mechanisms. Nevertheless, the immutable cornerstone
of the architecture is the concept of the event, as an entity carrying a certain state
throughout the system.

Considering the application of EDA for the Cloud-Edge paradigm, it operates
with a sequence of events with a certain topic, forming a stream that transmits infor-
mation from the edge devices as producers of the data, to clients consuming these
events by a subscription of this topic. At the same instant, amongst the most fun-
damental capabilities of EDA is the availability of the data, which is achieved by
the usage of mechanisms inside the brokers, acting as middleware nodes between
producers and consumers. Brokers are combined into an event-driven cluster and
are used as physical nodes, providing the mechanisms of replication, retention, par-
titioning and availability of data streams. Event-driven patterns can implement the
approaches for the logical management under streams, organizing complex event
processing and providing flexible procedures for the transmission of data from edge
devices.

EDA has been implemented in commercial tools, e.g. [12], which are used in
various organizations and activity areas, providing flexible loose coupling between
different parts of systems, and supporting near-real-time interaction. Examples of
the implementation of EDA to varying degrees might be such tools as Kafka or
RabbitMQ. The application of the event-driven paradigm to FL and other Cloud-
Edge application scenarios allows ample room for research and further improve-
ments [13].
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3 Applications to the Use Cases

3.1 E-health Application

E-health applications have surely flourished thanks to the availability of advanced
computational power, raw data to be analysed and, above all, distributed devices that
can tackle part of the required computations locally.

The E-health use case that will be used here as an example regards the monitoring
of maternal and fetal health status during pregnancy. In particular, we consider a
monitoring system that includes wearable devices and series of sensors connected
to it, that detect vital parameters (temperature, heart rate, blood oxygenation level,
and blood pressure variances) of the mother and fetus and report any detected abnor-
malities to a central system. Considering that there were more than 4 million births
in Europe in 2020 (about 140M worldwide) and that about one third of these are as-
sociated with health problems for the mother or the fetus, the potential user segment
for such a device translates to more than one million mothers/year in Europe, and
35M mothers/years worldwide. These figures triple when considering that during
the COVID-19 pandemic, remote monitoring proved essential to limit the risk of in-
fection for pregnant women. Several companies in Europe and the U.S. are working
towards the same goal, but none has yet developed clear leadership, in part because
of the technical difficulties inherent in solving the problem. A first important chal-
lenge faced by this kind of Use Cases, indeed, is about the non-invasive monitoring
of fetal health through sensors placed on the maternal abdomen. This requires the
development and fine-tuning of sophisticated de-noising techniques and subsequent
separation of signals originating from the maternal body (heartbeat, uterine contrac-
tions, muscle activity) from those originating from the fetus (mainly cardiac signal).
To solve this problem, the most advanced and performing solutions make extensive
use of machine learning techniques [14] that require a significant computational
load and an energy expenditure that exceed the computational capacity and energy
autonomy of processors currently used in wearable devices.

Figure 2a reports the envisioned target architecture for the implementation of the
Use Case. Such an architecture follows the Two Tiers Pattern shown in Figure 1a,
by dividing the overall framework into two main layers: the Edge tier and the Cloud
Tier. In particular, the Edge Tier comprehends:

* The Data Ingestion Layer represents the input section of the architecture, that
is responsible for the acquisition of data. In particular, this architecture foresees
the use of a generic Detector component, which represents the sensors acquiring
the data. For the Use Case, the Detector represents the tools used to detect the
signals from the mother and the fetus during the monitoring activities.

* The Application Logic Layer is in charge of elaborating the incoming data to
obtain the expected results. Such a layer contains three sub-components, repre-
sented by: the Operator, that is the actual computational node; the MessageCom-
pressor, acting on exchanged messages; the SecureAggregator that focuses on
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security aspects. The Operator represents here the computational capabilities of
the wearable devices used to monitor the Mother and Fetus vitals.

The Cloud Tier comprehends, instead:

* The Resource Management Layer is in charge of the critical aspect of man-
aging computational and data resources within the envisioned framework. Load
balancing, scaling and traffic management are the main responsibilities of such
a layer. This layer acts as the Edge Orchestrator, as reported in the Architectural
Pattern in Figure 1a.

* The Application Logic Layer is in charge of elaborating the incoming data, to
obtain the expected results. Such a layer contains five sub-components, repre-
sented by: the Processor, that is the computational node/cluster of nodes within
the Cloud. A MessageCompressor and a SecureAggregator as in the Edge tier;
a ClientRegistry and a ClientSelector that are in charge of deciding the target
Cloud platform, when multiple ones are available.
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Fig. 2: Cloud Edge Patterns examples

Figure 2b shows how the Architecture can be componentised and stresses the fact
that communications between the layers only happen through the Resource manage-
ment component.

The communication path followed by the application is better described through
the Sequence Diagram in Figure 3. All the information follow a linear flow through
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Fig. 3: Communications among components in the E-health Use Case

the components of the application, with Detector and Operator communicating the
data directly. The Processor retrieves the data from a common data structure (a
generic Queue in the Architecture of Figure 2a), and it operates in a loop, retrieving
the data and elaborating them locally. Different Processors can participate into the
elaboration of the data.

Theoretically speaking, the minimum sampling frequency for an optimal ECG
recorder is equal to 50 Hz, but in order to obtain precise measurements a typical
ECG recorder samples data with a frequency of more than 500 Hz [15]. In some sit-
uations even higher frequencies are required: this means that the Detector needs to
feed a continuous stream of data to the local Operator, which in turn has to rapidly
analyse the data and provide immediate feedback, in order to detect anomalies (put-
Data method in the Sequence Diagram in Figure 3).

On the opposite side, the Operator will not send the data (registration method) and
the updated local model (putParameters method) frequently. Indeed, the updates can
be scheduled on a regular basis, and their rate can vary a lot, according to the over-
all settings of the system. It is evident that dividing the system between the Edge
Tier, with Detector and Operator working at strict contact, and a remote Cloud Tier,
where the Processor can analyse the data without haste, and the update of the global
model must be coordinated among several Operators, seems a feasible and suitable
solution.

After extracting the fetal heart rate (FHR) from the maternal abdominal signal, this
information can also be used to trigger alarms when its level is outside the stan-
dard range for the specific gestational age and context (e.g., walking, sleeping, etc.).
Similar alarms can be associated with the other monitored vital signs (e.g., SPO2,
body temperature, blood pressure, blood glucose level) based on the specific risks
associated with the patient. This scheme of customized triggers and alarms fits very
well with the EDA approach mentioned above.
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3.2 Environmental Monitoring Application

Environmental monitoring and real-time decision-making are essential to environ-
mental protection. Various applications towards pollution monitoring (air, water,
soil, etc.) and disaster early warning (seismic activity, avalanches, etc.) already ben-
efit from Cloud-Edge deployment [16]. In water quality monitoring, there exist mon-
itoring systems for marine regions and freshwater bodies (both ground and surface
water). SWAIN project (https://swain-project.eu/) focuses on surface waters, partic-
ularly rivers. The project aims to detect and locate pollutant sources (e.g., industrial
leaks or failed wastewater treatment plants) through an unprecedented implementa-
tion of Edge Computing and IoT for the real-time analysis of water contamination
data. Timely decision-making is crucial in this use case as the river water polluted
upstream might be used downstream for irrigation or for municipal water intake.
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Fig. 4: Component Diagram for the Environmental Monitoring Use Case.

Data analytics components of this application are deployed on the Cloud-Edge
continuum in order to benefit from its responsiveness and network access advan-
tages. Figure 4 visualizes these components and their interfaces. Since watersheds
are located in remote areas, it is not always possible (due to the lack of reliable
networks) to transmit sensor readings to the cloud, where complex river models
can be executed. The edge subsystem, therefore, acts as intermediate data storage
and pre-processing locations, which mitigates delayed decisions or data loss. As
demonstrated in Figure 4, the transport model of pollutants is decomposed into lo-
cal and global components. Local components are less complex since they estimate
the pollutant distribution only in their local geographical area. They transmit trained
model parameters to the Cloud subsystem, where a global model incorporates the
local updates. Based on the critical data readings selected by the Edge subsystem
and the pollutant distribution estimated by the pollutant transport model, the source
detection model is able to identify the source of the pollution.
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Fig. 5: Sequence Diagram for the Environmental Monitoring Use Case.

Figure 5 illustrates the event communication between IoT, edge, and cloud com-
ponents as a sequence diagram. The loop fragment demonstrates the synchronous
data transmission between IoT sensors and the Edge component. The rest of the
messaging is event-driven, as illustrated by the optional fragments. Model parame-
ters are sent to the cloud only when a model drift is observed during local training,
whereas pollution source detection at the cloud is only triggered when anomalous
data is detected at the edge.

4 Conclusions

As exemplified by the two application use cases described in the paper, Multi-Layer
and Event-Driven architectural solutions can be used effectively to capture various
nonfunctional requirements that characterize numerous industrially and socially rel-
evant application domains For instance, the low network access requirement of river
monitoring entails the two-tier architecture and local training at the edge layer. Lo-
cal training results in substantial data reduction compared to transmitting raw sensor
data to the cloud. Similarly, EDA is motivated by the energy constraints of edge re-
sources since processing is only triggered by rare events resulting in low power
consumption.

In general, EDA is a powerful approach for building IoT-based environmental mon-
itoring systems due to their particular non-functional requirements, such as (i) loose
coupling between the tiers (intermittent network connectivity), (ii) real-time pro-
cessing (delays might result in irreversible environmental impact), (iii) low energy
consumption (no access to the electricity grid in remote areas) and (iv) reduced
bandwidth utilization (the transfer is based only on changes in data).
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