
Cost-Aware Neural Network Splitting and Dynamic Rescheduling
for Edge Intelligence

Daniel Luger
University of Vienna

Vienna, Austria
d.luger@univie.ac.at

Atakan Aral
University of Vienna, Austria
Umeå University, Sweden

atakan.aral@umu.se

Ivona Brandic
Vienna University of Technology

Vienna, Austria
ivona.brandic@tuwien.ac.at

ABSTRACT
With the rise of IoT devices and the necessity of intelligent ap-
plications, inference tasks are often offloaded to the cloud due to
the computation limitation of the end devices. Yet, requests to the
cloud are costly in terms of latency, and therefore a shift of the
computation from the cloud to the network’s edge is unavoidable.
This shift is called edge intelligence and promises lower latency,
among other advantages. However, some algorithms, like deep neu-
ral networks, are computationally intensive, even for local edge
servers (ES). To keep latency low, such DNNs can be split into two
parts and distributed between the ES and the cloud. We present a
dynamic scheduling algorithm that takes real-time parameters like
the clock speed of the ES, bandwidth, and latency into account and
predicts the optimal splitting point regarding latency. Furthermore,
we estimate the overall costs for the ES and cloud during run-time
and integrate them into our prediction and decision models. We
present a cost-aware prediction of the splitting point, which can be
tuned with a parameter toward faster response or lower costs.

CCS CONCEPTS
• Computer systems organization→ Distributed architectures; •
Computing methodologies→ Distributed artificial intelligence.

KEYWORDS
Edge Intelligence, Edge Computing, DNN Splitting, Cost-Awareness

ACM Reference Format:
Daniel Luger, Atakan Aral, and Ivona Brandic. 2023. Cost-Aware Neural
Network Splitting and Dynamic Rescheduling for Edge Intelligence. In 6th
International Workshop on Edge Systems, Analytics and Networking (EdgeSys
’23), May 8, 2023, Rome, Italy. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3578354.3592871

1 INTRODUCTION
In the past several years, the number of IoT devices has increased
enormously. According to Cisco, 50% of the worldwide network
devices will be IoT devices by 2023, reaching 14.7 billion devices
[5]. At the same time, more and more IoT devices require AI/ML
to complete their tasks [9]. Deep learning (DL) is a subcategory of
ML and consists of multiple different connected layers [11].

EdgeSys ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0082-8/23/05.
https://doi.org/10.1145/3578354.3592871

Deep learning uses deep neural networks (DNN) to solve prob-
lems similar to the neurons in our brains [4]. The major advantage
of DNN is that some problems are of such complexity that it would
be impossible to describe them entirely in mathematical notation.
DNNs use a strategy to iterate to a solution without knowing a
complete function. Such networks run primarily in cloud data cen-
ters with nearly unlimited computational resources. Therefore, IoT
devices offload their tasks to data centers for inference, and the
outcome is returned to the IoT device. This is feasible only for
non-time-sensitive applications because sending a task to the cloud
and back costs substantial time. However, many applications have
stringent time requirements, such as autonomous driving, distance
surgery, and game streaming. Therefore, the task is shifted to a
server in the user’s proximity, called an edge server (ES). This shift
of AI into an ES is called edge intelligence (EI) [7, 15], which can
reduce latency [13] and improve privacy [1] significantly.

However, the edge might not provide sufficient computation
resources, so large DNNs could not be computed at an acceptable
time at the edge, rendering the shift ineffective. There exist different
methods, such as model pruning or quantization, that target the
deployment of DNNs on edge resources. Pruning is a compression
technique that removes less important weights or filters, whereas
quantization deals with mapping the model parameters and acti-
vations into low-precision quantized levels to avoid costly FLOPs.
However, those two approaches can suffer from accuracy loss [14].
Another possible solution, which preserves accuracy, is to split the
DNN into two parts, the first running at the edge and the second in
the cloud shown in Figure 1. By doing this, the edge has to compute
less, and only a small amount of inter-layer data is sent to the cloud
compared to the raw input data. However, environments change
over time, and therefore, the best point of the DNN is not always
the same [10]. Therefore, the splitting point might have to change
during runtime, especially for long-standing DNNs (e.g., for days).

Previous proposals, such as Neurosurgeon [10], focus on finding
the optimal splitting point. By building prediction models to reduce
energy consumption and latency with layer-specific parameters,

Figure 1: Splitting of a DNN over Edge and Cloud Servers.

42

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3578354.3592871
https://doi.org/10.1145/3578354.3592871
https://doi.org/10.1145/3578354.3592871
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578354.3592871&domain=pdf&date_stamp=2023-05-08

EdgeSys ’23, May 8, 2023, Rome, Italy Daniel Luger, Atakan Aral, and Ivona Brandic

Table 1: Comparison of Our Approach to Related Literature on DNN Splitting.

Kang et al. [10] Lin et al. [12] Gao et al. [8] This work
Dynamic ✓ ✓ ✓
Energy Optimization PREDICTED PREDICTED
Cost Optimization ✓ COULD-ONLY ✓
Latency Optimization LAYER-BASED TIME-CONSTRAINT LAYER-BASED LINEAR, CLOCK-SPEED
Mobile Devices ✓ ✓
Edge Nodes ✓ ✓ ✓
Cloud Nodes ✓ ✓

it is possible to infer the optimal splitting point. However, this
approach does not take costs into account. Lin et al. [12] consider
the cost between an end device, ES, and cloud. Yet, this algorithm
neither co-optimizes cost and latency nor is dynamic. Gao et al.
[8], on the other hand, apply multi-optimization for cost, energy,
and latency and is dynamic but focuses on a mobile device rather
than an edge server; hence, no cost is calculated at the edge. Table 1
summarizes the previous work and compares it to our work.

This work utilizes prediction models that take the current clock
speed, bandwidth, network latency, ES cost, and cloud cost into
account. We present a dynamic rescheduler that optimizes the sys-
tem’s cost and latency. The next section describes the proposed
system model, whereas Section 3 explains the prediction models.
Section 4 provides experimental results in a real test bed, and Sec-
tion 5 concludes the paper.

2 SYSTEM MODEL
2.1 Edge Server
The ES is the central part of the proposed system. It hosts the sched-
uling algorithm, the prediction models, and the DNN, as shown in
Figure 2. The ES is located at the network’s edge, where the data is
generated. It can be the user equipment (UE) itself, as in voice assis-
tance, or a server close to the UE, like a private hospital server that
processes local data. This server, however, should not be more than
about one hop away from the UE. The ESs often have limitations,
such as energy, bandwidth, and computational power. This leads to
the necessity of offloading some of the decision-making to the cloud.
In our work, we have two objectives that have to be optimized. i)
Cost. ESs can be rented or bought. When renting, ESs have a higher
fee per hour than the cloud due to the optimized location of the ESs
[2]. However, ESs can be owned by the application provided and
used extensively at no further cost. In this case, computing locally
on the ES can be cheaper than offloading to the cloud. ii) Latency.
Low bandwidths and long latencies are the results of the utilized
communication mediums due to the location of the servers. This
directly affects communication latency. Those limitations also vary
over time through environmental influences like the weather and
flash crowds. Furthermore, the computational capability of an ES
impacts the computational latency, represented by clock speed.

2.2 Stateless Cloud
The cloud data center consists of servers with virtually unlim-
ited resources regarding energy, storage, and computational power.
However, they are often geographically far from the UE, which

Figure 2: UML Component Diagram of the Proposed System.

can result in high response times. The time required for data to
reach the cloud depends on the network bandwidth, network la-
tency, and data size. In most DNNs, data size varies among the
layers. Because speed is crucial for a fast prediction, the cloud is
implemented stateless. A stateless cloud is an approach for service-
oriented architecture (SOA) for cloud computing environments.
In traditional SOA, service providers maintain state information
about their clients, which can lead to performance and scalability
issues. With the implementation of a stateless cloud, providers do
not maintain the state information of the users. This leads to better
scalability and performance in cloud environments. This fits per-
fectly with our approach since multiple servers send huge number
of requests, and there is no need for storing client state information.

2.3 Communication
In general, ESs are in close proximity to where data is generated,
enabling high-speed communication between UE and ES. ESs are
often installed in environments where the connection to the cloud
is also fast. However, ESs have to be installed in rough and rural
areas, like in environmental use cases or in autonomous vehicles.
Especially under rough conditions, efficiency is crucial for fast
decision-making. Since the data size significantly impacts commu-
nication latency, scheduling the splitting point to a layer where
the data size is small might have a huge impact. Figure 3 illustrates
the communication sequence from the data generation at the edge
(green boxes) to the predicted result in the cloud (yellow boxes).

In this work, we consider three latency types as highlighted in
Figure 3 with the red boxes: i) edge latency is the time required
by the edge to run the first part of the DNN; ii) communication
latency is the time required to send the data from the edge to the
cloud; and iii) cloud latency is the time to finish the execution

43

Cost-Aware Neural Network Splitting and Dynamic Rescheduling for Edge Intelligence EdgeSys ’23, May 8, 2023, Rome, Italy

Figure 3: UML Sequence Diagram of the Proposed Cost-Aware Dynamic Scheduler.

of the second part. The ES receives the input data, runs it at the
edge for a given amount of layers, and then offloads the data to
the cloud, where the DNN inference is finalized. The time spent
until offloading on the ES is called edge latency and depends on the
computation power of the ES. The overall end-to-end latency is the
time between calling the DNN at the edge and the predicted output.
The time taken to finish the NN by the cloud is called cloud latency.
Finally, the time consumed between offloading and receiving is
called communication latency. A Timer Edge periodically triggers
the prediction of the new splitting point, and the tasks.

2.4 Dynamic Splitting
Splitting a network requires a point at which the neural network is
partitioned into two parts. The first part runs at the first server, the
edge, and the second in the cloud. The point where the network is
partitioned is called the splitting point and is dynamically calcu-
lated in this work. However, the existing networks are usually not
built for splitting; therefore, the network must be prepared. This
is a manual, straightforward process in which particular functions
are implemented into an existing DNN. However, it is essential to
preserve all the existing layers and functions to ensure the predic-
tion outcome stays precisely the same. Therefore the tensor, which
has to be offloaded, is converted into a base 64 encoded string. This
string is added to the body of a POST request to the cloud. Fur-
thermore, the splitting point has to be sent along to continue at
the right point in the cloud. If multiple models are used with the
same cloud server, the model must also be specified and sent along.
The base 64 encoded tensor is decoded and transformed back into
a tensor when received by the cloud, which can be directly used to
call the model. This work focuses on CNNs with chain structure
thus, parallel layers, but the idea applies to other DNNs as well.

3 PREDICTION MODELS
We focus on two main objectives: cost and latency. Our goal is
to predict the optimal splitting point for minimizing the cost of

the servers and the latency based on real-time parameters. We
investigate two different strategies i) the application provider owns
the ES; therefore, does not have to pay rent for the ES, and ii) they
rent the ES as well as the cloud. In the first scenario, it is cheaper to
compute at the edge, whereas, in the second, it is cheaper to offload
since the ESs are more costly [6]. To find the optimal splitting point,
three prediction models are created. The first predicts the influence
of a change in the clock speed on the computation time; the second
predicts the influence of the bandwidth and network latency change
on communication latency; and the third predicts the cost. Based on
these, a dynamic splitting point scheduler, which minimizes overall
latency and reduces cost at the same time, is proposed.

3.1 Computation Latency
Deploying ESs in unaffiliated environments with limited energy
supply and relying on batteries and solar power results in fluctua-
tions and scarcity in computational resources. Therefore a variety of
edge nodes with different clock speed settings coexist. We include
clock speed in our models to predict edge computation latency.

The first step is the prediction of the computation latency in a
specific layer independent of the clock speed. Therefore wemeasure
the final layer latency and assume that the edge latency has a linear
behavior. Since the edge latency is zero before the first layer, we
can create a linear equation. With this equation, the predicted
computation latency in a specific layer can be calculated, albeit
only for this specific server, under the specific setting and the
specific DNN. The next step is to adapt the prediction model so
that the calculation of the edge latency takes the clock speed into
account. To that end, we investigate the relationship between the
computation latency and the clock speed on the specific server
by running the DNN on the server. We benchmark the execution
time under various clock speed settings and compute the latency
slope, which estimates the latency in this layer when multiplied
by the layer number. Because each DNN has completely different
layer latencies due to the different numbers and types of layers, the
data points cannot be combined directly and must be normalized to

44

EdgeSys ’23, May 8, 2023, Rome, Italy Daniel Luger, Atakan Aral, and Ivona Brandic

Table 2: Reference Configurations and On-Demand Prices for AWS EC2 [2]

Instance Name Hourly Rate vCPU Memory Storage Type Location
Edge Server t3.xlarge $0.224 4 16 GiB EBS Only Wavelength Zone US East (Verizon) - NY
Cloud Server t3.xlarge $0.1664 4 16 GiB EBS Only Region US Rast (Ohio)

Figure 4: Normalized Slopes with Curve Fitting.

the range [0, 1]. Figure 4 illustrates normalized slopes of the edge
latency from the three different DNNs (Alexnet, Mnist, VGG16).
Here, we use 60% of the data points and 40% is for validation. After
normalizing the data points, Power Law can be used to generate
a fitting curve through all measurements. The resulting model to
predict the edge latency has to be de-normalized before being used
for a specific DNN. This can only be done with the upper and lower
bounds. The resulting prediction function for the latency based on
the clock speed is given in Equations 1 and 2.

𝑓𝑒𝑑𝑔𝑒 (𝐶𝑆, 𝑆𝑃,𝑀) = 𝑓𝑑𝑒𝑛𝑜𝑟𝑚 (𝑎 ∗𝐶𝑆𝑏 , 𝑢𝑝_𝑏 (𝑀), 𝑙_𝑏 (𝑀)) ∗ 𝑆𝑃 (1)

𝑓𝑑𝑒𝑛𝑜𝑟𝑚 = 𝑠𝑙𝑜𝑝𝑒𝑛𝑜𝑟𝑚 ∗ (𝑢𝑝_𝑏 (𝑀) − 𝑙_𝑏 (𝑀)) + 𝑙_𝑏 (𝑀) (2)

a, b = Parameters from the curve fitting
CS = Clock speed

up_b = NN specific upper bound
l_b = NN specific lower bound
M = NN model
SP = Splitting Point

The prediction of the cloud computation latency works the same
way as the prediction for the edge computation latency but without
the dependency on the clock speed. This is because the cloud runs
on virtual CPUs with a fixed clock speed.

3.2 Communication Latency
ESs are usually installed in close proximity to the data generation
to achieve low latencies. However, when the ES sends data to the
cloud, the communication latency can be high, depending on where
the ES and cloud data center are located. In this work, we assume
the ES is in a region with volatile internet connectivity. This can
result from an external condition such as weather or increased

internet traffic. Furthermore, intermittent connectivity can also
appear when the ES is mobile, such as a car driving through regions
with good or bad connectivity. Therefore, the connectivity must
be considered when offloading a DNN since the data size can be
massive. Therefore, the splitting point needs to be dynamically
recalculated. To achieve this, we create a prediction model for the
splitting point based on the current bandwidth and network latency.
Since we know the current bandwidth and network latency and the
data size in each layer, the communication latency can be estimated.
Equation 3 takes the bandwidth, network latency, and splitting
point as input and calculates the communication latency.

𝐿𝑐𝑜𝑚𝑚 (𝐵𝑊 , 𝑃𝐿, 𝑆𝑃,𝑂𝑆) = 𝑂𝑆 (𝑆𝑃) ∗ 8
1000 ∗ 𝐵𝑊 + 𝑃𝐿

2 ∗ 1000 (3)

OS = Array of layers with offload sizes [Byte]
BW = Bandwidth [kbit/s]
PL = Ping Latency [ms]

3.3 Cost
To predict the costs arising during the computation of a task, we use
the two strategies presented at the beginning of this section, namely
owned and rented ES. The two strategies are given in Equation 4.We
use real-world AWS prices for our calculation. AWS offers ESs with
ultra-low latencies for 5G services at a higher price than the cloud
resources, as shown in Table 2 [2]. We choose the corresponding
price for the partitions that run on edge and cloud.

𝑓𝑐𝑜𝑠𝑡 (𝑅𝑇) =
{
0 +𝐶𝑐𝑙𝑜𝑢𝑑 (𝑅𝑇𝑐𝑙𝑜𝑢𝑑), if ES is owned.
𝐶𝑒𝑑𝑔𝑒 (𝑅𝑇𝑒𝑑𝑔𝑒) +𝐶𝑐𝑙𝑜𝑢𝑑 (𝑅𝑇), if ES is rent.

(4)

RT = Runtime

3.4 Combined Prediction Model
To combine the prediction models to optimize the overall latency
as well as cost based on clock speed, bandwidth, and network
latency, an optimization function is presented in Algorithm 1. The
optimization function can be weighted to optimize lower latency or
cost. The weight parameter𝑤 can take values from 0 to 1, with 0 to
optimize only the latency and 1 to optimize only the cost. First, the
cost and the latency are calculated for each layer, assuming it is the
splitting point. The overall latency, including edge computation,
communication, and cloud computation, and overall cost, including
edge and cloud, are considered. The results are stored in two arrays
and are sorted in decreasing order of preference. Then, one array
entry is compared to the corresponding array entry plus a calculated
amount of additional entries based on the weight𝑤 . This happens
in the function 𝑎𝑑𝑑_𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (). If the weight is 0.5, there is exactly
one entry of both arrays added to the 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 arrays. Through this,
the first match of the two weighted arrays can be found.

45

Cost-Aware Neural Network Splitting and Dynamic Rescheduling for Edge Intelligence EdgeSys ’23, May 8, 2023, Rome, Italy

Figure 5: Dynamic Rescheduling of Splitting Points Under Different Clock Speeds.

Algorithm 1Weighted cost latency optimization algorithm
Require: 𝑤
Require: 𝐿 = [𝑝𝑟𝑒𝑑_𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑙𝑎𝑡]
Require: 𝐶 = [𝑝𝑟𝑒𝑑_𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡]

sort[C] ⊲ Cheapest first
sort[L] ⊲ Fastest first
𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑠𝑡 = []
𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑙𝑎𝑡 = []
for i in range(0, layer_length) do

𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑠𝑡 ← 𝑎𝑑𝑑_𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑤,𝐶, 𝑖)
𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑙𝑎𝑡 ← 𝑎𝑑𝑑_𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑤, 𝐿, 𝑖)
if visited_cost in visited_lat ||

visited_lat in visited_cost then ⊲ Check if a match
return match

end if
end for

4 EVALUATION
4.1 Experimental Setup
In our test bed, the ES is a Raspberry Pi 4 with 4 GB of RAM, in-
stalled directly where the data is generated. The ES hosts three
software components; the scheduling algorithm, the prediction
models, and the neural networks themselves. Each part is imple-
mented in Python, and the DNNs use PyTorch as the framework.
We evaluated our approach with the AlexNet CNN, a CNN for the
MNIST dataset, and VGG16 CNN. The training datasets are Ima-
geNet for AlexNet and VGG16 and the MNIST dataset. For brevity
and since the results are similar, we report only AlexNet results
and the rented edge scenario in full detail.

The cloud server runs in an Amazon EC2 instance using a Linux
Server, with four virtual CPUs at a clock speed of 1,5 GHz and with
32 GB of RAM. The server is implemented as a web server using
Pythonwith a REST interface. For simulating bandwidth limitations,
we use Wondershaper [3].To measure the execution times, Python
function time.time() is used, which performs on Unix systems
with a precision of 1 microsecond. Since the counter is only valid for
one system, we calculate the communication latency by subtracting
computation latencies from the total end-to-end latency.

4.2 Numerical Results
Figure 5 illustrates the different offloading strategies when latency,
cost, or both (𝑤 = 0.5) are optimized under various clock speeds and
fixed bandwidth. It can be seen that latency optimization and the
proposed cost/latency optimization are dynamic, whereas the cost
is static. In this scenario, the ES is rented; therefore, the cheapest
solution is always to offload immediately. The proposed approach
identifies a good trade-off solution with 13.73% higher latency or
35.28%more cost than the two single-objective solutions on average.

For the measurements shown in Figure 6, we chose 20 samples
from a pool with Poisson-distributed bandwidths and normally
distributed clock speeds. Each measurement is run three times, and
the median of the runs has been taken. We also choose a weight
𝑤 of 0.5, meaning cost and latency are taken into account equally.
Figure 6a compares the costs of the different offloading strategies,
best cost, best latency, or the proposed combination. In this sce-
nario, the ES is rented, so offloading early is cheaper. Our proposed
approach is 65.53% cheaper than the latency-optimization approach
on average, while at the same time, 41.76% more costly than the
cost-optimization. Figure 6b shows the same scenario with latency

46

EdgeSys ’23, May 8, 2023, Rome, Italy Daniel Luger, Atakan Aral, and Ivona Brandic

(a) Cost Measurement with Different Offloading Strategies.

(b) Latency Measurement with Different Offloading Strategies.

Figure 6: Alexnet Cost and Latency Optimization (w=0.5).

measurements. The proposed trade-off solution reduces latency
by 70.47% on average in comparison to cost-optimization and in-
curs 29.09% additional latency on average in comparison to the
latency-optimization. For the MNIST model, we have a decrease in
the cost by 27.13% and a slight increase in latency of 3.35%. For the
owning strategy of the ES with the VGG16 model, we achieve a cost
reduction of 98.01%, although with an increase of 42.16% latency.
To investigate the impact of the weight on cost and latency, we
compute solutions with different splitting points by changing the
weight from 0 to 1 with a step size of 0.01 as shown in Figure 7.

5 CONCLUSION
In this work, we created a dynamic rescheduler that takes the real-
time clock speed, bandwidth, and network latency into account
and predicts, through prediction models, the best splitting point
for offloading regarding cost and latency. This is crucial for edge
servers, which run DNNs in a volatile environment such as envi-
ronmental monitoring or autonomous driving. The results show
that our algorithm combines cost and latency optimization and can
reduce cost as well as latency. The trade-off is presented, which
allows a user of this rescheduler the focus on either cost or latency
or a weighted combination. The next open challenge will be to im-
prove this rescheduling algorithm to include other parameters like
CPU Type, RAM, or kernels, which might enable this scheduling
algorithm to work on different types of edge resources.

Figure 7: Trade-Off Between Latency and Cost.

ACKNOWLEDGMENTS
This work was supported by the CHIST-ERA grant CHIST-ERA-19-
CES-005, by the Austrian Science Fund (FWF): I 5201-N and Y904-
N31 START-Programm 2015, and by the FFG Flagship Project High
Performance Integrated Quantum Computing (HPQC): #45285029.

REFERENCES
[1] Sabtain Ahmad and Atakan Aral. 2022. FedCD: Personalized Federated Learning

via Collaborative Distillation. InWorkshop on Distributed Machine Learning for
the Intelligent Computing Continuum (DML-ICC). IEEE, Vancouver, WA, 6 pages.

[2] AWS. 2023. On-Demand Plans for Amazon EC2. Retrieved 2023-02-22 from
https://aws.amazon.com/ec2/pricing/on-demand/

[3] Simon Séhier Bert Hubert, Jacco Geul. 2021. The Wonder Shaper. Retrieved
2023-02-22 from https://github.com/magnific0/wondershaper

[4] Thierry Bouwmans, Sajid Javed, Maryam Sultana, and Soon Ki Jung. 2019. Deep
neural network concepts for background subtraction: A systematic review and
comparative evaluation. Neural Networks 117 (2019), 8–66.

[5] Cisco. 2020. Cisco Annual Internet Report (2018–2023) White Paper. Retrieved
2022-12-21 from https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[6] Vincenzo De Maio and Ivona Brandic. 2018. First Hop Mobile Offloading of DAG
Computations. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). IEEE, Washington, DC, USA, 83–92.

[7] Aaron Yi Ding, Ella Peltonen, Tobias Meuser, Atakan Aral, Christian Becker, et al.
2022. Roadmap for edge AI: a Dagstuhl perspective. ACM SIGCOMM Computer
Communication Review 52, 1 (2022), 28–33.

[8] Mingjin Gao, Rujing Shen, Long Shi, Wen Qi, Jun Li, and Yonghui Li. 2021.
Task Partitioning and Offloading in DNN-Task Enabled Mobile Edge Computing
Networks. IEEE Transactions on Mobile Computing 22, 4 (2021), 2435–2445.

[9] Sukhpal Singh Gill, Minxian Xu, Carlo Ottaviani, Panos Patros, Rami Bahsoon,
et al. 2022. AI for next generation computing: Emerging trends and future
directions. Internet of Things 19 (2022), 100514.

[10] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, et al.
2017. Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge. ACM SIGARCH Computer Architecture News 45, 1 (2017), 615–629.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[12] Bing Lin, Yinhao Huang, Jianshan Zhang, Junqin Hu, Xing Chen, and Jun Li. 2020.
Cost-Driven Off-Loading for DNN-Based Applications Over Cloud, Edge, and
End Devices. IEEE Transactions on Industrial Informatics 16, 8 (2020), 5456–5466.

[13] Ella Peltonen, Ijaz Ahmad, Atakan Aral, Michele Capobianco, Aaron Yi Ding, et al.
2022. The Many Faces of Edge Intelligence. IEEE Access 10 (2022), 104769–104782.

[14] Md. Maruf Hossain Shuvo, Syed Kamrul Islam, Jianlin Cheng, and Bashir I.
Morshed. 2023. Efficient Acceleration of Deep Learning Inference on Resource-
Constrained Edge Devices: A Review. Proc. IEEE 111, 1 (2023), 42–91.

[15] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing.
Proc. IEEE 107, 8 (2019), 1738–1762.

47

https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/magnific0/wondershaper
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

	Abstract
	1 Introduction
	2 System Model
	2.1 Edge Server
	2.2 Stateless Cloud
	2.3 Communication
	2.4 Dynamic Splitting

	3 Prediction Models
	3.1 Computation Latency
	3.2 Communication Latency
	3.3 Cost
	3.4 Combined Prediction Model

	4 Evaluation
	4.1 Experimental Setup
	4.2 Numerical Results

	5 Conclusion
	References

