
Hierarchical Federated Transfer Learning:
A Multi-Cluster Approach on the Computing

Continuum
Sabtain Ahmad

Vienna University of Technology
Vienna, Austria

sabtain.ahmad@tuwien.ac.at

Atakan Aral
University of Vienna, Vienna, Austria

Umeå University, Umeå, Sweden
atakan.aral@umu.se

Abstract—Federated Learning (FL) involves training models
over a set of geographically distributed users. We address the
problem where a single global model is not enough to meet the
needs of geographically distributed heterogeneous clients. This
setup captures settings where different groups of users have their
own objectives however, users based on geographical location
or task similarity, can be grouped together and by inter-cluster
knowledge they can leverage the strength in numbers and better
generalization in order to perform more efficient FL. We in-
troduce a Hierarchical Multi-Cluster Computing Continuum for
Federated Learning Personalization (HC3FL) to cluster similar
clients and train one edge model per cluster. HC3FL incorporates
federated transfer learning to enhance the performance of edge
models by leveraging a global model that captures collective
knowledge from all edge models. Furthermore, we introduce
dynamic clustering based on task similarity to handle client drift
and to dynamically recluster mobile (non-stationary) clients. We
evaluate the HC3FL approach through extensive experiments on
real-world datasets. The results demonstrate that our approach
effectively improves the performance of edge models compared
to traditional FL approaches.

Index Terms—federated transfer learning, hierarchical collab-
orative learning, dynamic clustering

I. INTRODUCTION

Federated learning (FL) is a privacy-preserving distributed
on-device learning framework that employs privately available
data on client devices such as tablets, smartphones, and IoT
devices. In traditional machine learning, the client is supposed
to send data to the cloud server for training. However, sending
data to the cloud server raises privacy concerns and may not
even be possible due to regulations such as GDPR. FL relaxes
this restriction by allowing clients to locally train models and
aggregate them over the cloud parameter server. The objective
is to compute a single global model in a collaborative and
privacy-preserving manner [1]. The training routine comprises
the following basic steps: (1) the parameter server broadcasts
the initial global model to all participating clients, (2) each
client learns a local model using its private data, (3) the
parameter server collects and aggregates the local models to
compute a new global model. The updated global model is
sent back to the clients for another training round.

In FL, it is typically assumed that clients can be grouped
into a single cluster, and a single global model can be learned
to generalize over clients’ individual learning tasks [2]. The
attempt to collaboratively train a model over a diverse set
of clients with different storage and computation capacities
suffers from data and system heterogeneity [3], [4]. Exploiting
data heterogeneity and task similarity is particularly crucial for
applications such as environmental monitoring, recommender
systems, and smart cities. For instance, sensors deployed
on different geographical locations (tributaries) over a river
to monitor its health may obtain different measurements as
the characteristics of the river change over distance due
to elevation, climate, and geology [5]. This indicates that
leveraging the data heterogeneity among different sensors and
geographical locations is of potential interest.

We propose a hierarchical, multi-cluster approach to person-
alization in FL, inspired by the prevalence of hierarchical mod-
els in social sciences. Data often exhibit hierarchical structures
in various social science fields, where entities are nested within
larger communities or clusters, acknowledging that entities
within the same cluster may be more similar to each other
than to those in other clusters [6]. Our approach leverages the
known hierarchical structure and enables us to simultaneously
learn three models: (1) a global model that captures trends
and patterns for all clients, (2) a cluster-specific model that
captures shared characteristics among clients within a cluster,
and (3) a personalized model that captures unique features
of each individual client. More specifically, the devices on
the lower level of the computing continuum train device-
specific personalized models and are grouped into clusters
based on intrinsic similarity. Each cluster is assigned to an
edge node responsible for training a cluster-specific model,
while the cloud server is responsible for generating the global
model by aggregating only the updates from edge nodes.
Additionally, we introduce transfer learning to fine-tune the
edge models using the global model to allow inter-cluster
knowledge sharing while retaining the cluster-specific features.

By utilizing the hierarchical structure, our approach can
capture both shared and unique information among clients,
resulting in better personalization. Additionally, the cluster-

specific models enable us to capture the cluster-level charac-
teristics that are not captured in the global model, which can
lead to better performance. Furthermore, the global model can
be used as a starting point for cluster-specific and personalized
models, reducing the overall training time.

Our work makes several key contributions. First, we propose
a clustering scheme to group geographically dispersed clients
based on task similarity and data distribution. Second, we
introduce a hierarchical multi-cluster approach that enables
the simultaneous learning of three models: a global model,
a cluster-specific model, and a personalized local model.
This approach leverages the computing continuum to organize
devices into a hierarchy based on their computing capabil-
ities, improving scalability and reducing the burden on the
cloud server. Third, instead of overriding the edge models
in each iteration, we employ transfer learning to encourage
inter-cluster knowledge sharing. We empirically evaluate the
performance of our proposed algorithm, called Hierarchical
Multi-Cluster Computing Continuum for Federated Learning
Personalization (HC3FL), in both IID, non-IID, and dynamic
clustering settings where client identities are unknown and
may change over time. Our experiments demonstrate that
HC3FL outperforms existing state-of-the-art methods, such as
FedAvg [1] and HierFL [7], for all three settings. The rest of
the paper is organized as follows. Related work is discussed in
Sec. II. In Sec. III and IV, we introduce HC3FL and present
experimental results. We conclude the paper in Sec. V.

II. RELATED WORK

Ever since its inception, FedAvg [1] has become the
preferred method due to its simplicity and effectiveness in
most applications. However, the vanilla version suffers from
concept drift, and its performance deteriorates in the case
of non-IID [8]. This issue has been in the spotlight for a
while, and numerous approaches have been proposed with a
strong emphasis on personalization. For instance, MOCHA
[2] employed multi-task learning to allow for personalization
and to handle statistical heterogeneity. Another approach is
to formulate the non-IID problem as a meta-learning problem
with the objective of obtaining a single global model. Then,
each client fine-tunes the model using its data [3], [9]. The
underlying assumption is that the data distributions among
heterogeneous clients are similar; therefore, the global model
can serve as a suitable initialization.

Another reason for the inferior performance of the single
global model in non-IID settings is the assumption that the
diverse set of clients with individual preferences belongs to
a single large set. This observation has forced researchers
to steer their attention towards clustered FL, with some of
the recent works focusing on clustering users based on data
distribution or task similarity [10], [11]. IFCA [10] suggests
leveraging data heterogeneity to improve accuracy and conver-
gence speed by introducing a hierarchical clustering algorithm
that groups clients based on data similarity. Similarly, in [11],
the authors introduced a clustering algorithm based on privacy
requirements, data similarity, and computational power.

The clustered FL approaches are effective yet heavy at the
server; leading to high computation costs at the parameter
server. Our work differs from the existing literature in several
aspects. First, we cluster clients based on their data distribu-
tion, which allows us to form clusters based on the similarity
of data characteristics among clients. Second, we introduce
edge servers that act as intermediate nodes between the cloud
server and clients and let us train one edge model per cluster.
Specifically, all clients from a cluster send their updates to a
specific node to train cluster-specific models. The distributed
architecture reduces communication overhead and facilitates
efficient model updates within each cluster. Third, we in-
troduce a variation of HC3FL to handle dynamic clustering
(HC3FL-DC) as the clients’ associations may change over time
due to concept drift. By allowing dynamic clustering, HC3FL-
DC can adapt to shifting data patterns and maintain up-to-date
cluster assignments for optimal personalization. Finally, we
employ transfer learning to facilitate inter-cluster knowledge
sharing and improve model performance. To the best of our
knowledge, HC3FL is the first framework to introduce and
integrate dynamic clustering and federating transfer learning
in a hierarchical FL setting.

III. HC3FL

The motivation behind HC3FL is three-fold: (1) it is reason-
able to assume that a small subset of devices among a large
pool of users may share common interests or similar tasks.
For instance, devices in closer proximity may contain similar
information, but data characteristics may diverge for distant
devices. By clustering clients with similar learning tasks,
HC3FL aims to capture similar patterns and task similarity
to improve the performance of individual models, (2) even
clusters that are further apart and have heterogeneous data
may still be able to contribute to improving the cluster-specific
models, emphasizing the need for inter-cluster knowledge-
sharing, (3) communication with the cloud server is often
the most expensive step in FL, which can significantly be
reduced by strategically placing edge nodes. By exploiting the
hierarchical architecture and facilitating a significant portion
of the communication within the edge nodes, HC3FL reduces
the communication iterations with the cloud server, thereby
minimizing the communication costs.

A. Problem Formulation

We consider a distributed learning setting where we have
one parameter (cloud) server, m edge servers, and n clients.
The clients can communicate with the edge servers, and the
edge servers communicate with the parameter server through
predefined communication channels. We assume there are
K = {i : i = 1, ...,K} data distributions, D1, ..., Dk, and that
n clients are partitioned into k disjoint clusters, C1, ..., Ck

where each cluster ci communicates only with a particular
edge server ej . We assume no knowledge about the cluster
identity of each client. In addition, each client contains a local
data set Dn = {xl, yl}|Dn|

l=1 where xl denotes the input sample
and yl is the corresponding label. In our problem, we aim

Fig. 1: An overview of the HC3FL framework.

to collaboratively train three models, one per entity (device,
edge, and cloud), and enable inter-cluster knowledge transfer
to train federated transfer models and improve performance.

B. Overview of the Framework
Our HC3FL architecture, depicted in Figure 1, utilizes

geographically dispersed devices across three computing con-
tinuum levels to collaboratively train device, edge, and cloud
models. The framework consists of four main procedures.
First, we employ client-edge assignment to group similar
clients together based on either geographical vicinity or similar
data distributions. This ensures that clients within the same
cluster have more similar models compared to clients in
other clusters. Second, we implement hierarchical federated
learning training. Initially, the clients’ models, trained on
their local data, are aggregated at the edge to compute
cluster-specific edge models. These edge models then, in
turn, are aggregated at the parameter server to generate the
global model. Third, due to potential distribution divergence
between clusters, we introduce transfer learning to exploit
and incorporate knowledge from other clusters. Finally, in
many federated learning scenarios, clients are assumed to be
static, with their geographical locations remaining unchanged
throughout the learning process. However, certain applications,
such as autonomous driving and wearable health, involve
mobile clients. Additionally, the client’s distribution or the
learning task itself may change over time due to concept
drift, requiring a change in client edge/cluster associations.
To cater to such scenarios, we employ dynamic clustering
based on task similarity. This method allows for the re-
clustering of mobile clients, ensuring efficient collaboration
and model training. By incorporating these procedures into
our HC3FL architecture, we achieve effective and adaptive
FL in heterogeneous computing environments.

C. Hierarchical Federated Learning
We consider a hierarchical FL setup with one parameter

server, m edge servers, and n clients. Within this setup, Nk

clients are assigned to each edge server, where k represents
the cluster index. Each client aims to optimize the model
parameters wn using its local training data. The standard loss
function for a client n can be defined as;

Mn =
1

|Dn|

|Dn|∑
l=1

fn(xl,yl,wn) (1)

where, fn represents the client-specific loss function, xl and
yl are the input and output data, respectively, and |Dn| denotes
the size of the local dataset for client n.

During the training process, each client n performs t
number of local iterations and computes the local update at
the tth iteration;

wt
n = wt−1

n − η∇fn(wt−1
n) (2)

where η is the learning rate hyperparameter, and ∇fn repre-
sents the gradient of the loss function wrt. model parameters.

After compiling the local updates, each client n within the
cluster ck transmits its local model wt

n to its associated edge
server ek. The edge server then aggregates the models to
compute a cluster-specific edge model wc using the objective;

Mc =
1

Nk

Nk∑
j=1

fc(θj,c,wc) (3)

where wc is the cluster model and θj,c is the local model of
jth client in cluster c .

At the edge aggregation step, after receiving the local
updates, each edge node ek performs local model aggregation
to obtain the cluster-specific edge model wc as follows;

wc =

∑
n∈Nk

|Dn|wt
n

|DNk
|

(4)

where |DNk
| is the aggregated data of all clients in cluster ek

Following Equation 3, the global loss function is computed
by aggregating the wc, resulting in the global model wg;

Mg =
1

K

K∑
c=1

fg(wc,wg) (5)

where, fg denotes the global loss function, and wc and wg

represent the edge model of the ek edge node and the global
model, respectively.

To generate the global model, each edge node ek uploads
its edge model wc to the parameter server. The parameter
server then performs aggregation on the received edge models,
resulting in the computation of the global model as follows;

wg =

∑
c∈m |DNk

|wc

|D|
(6)

where D is the aggregated data set from all clients.

D. Federated Transfer Learning

The motivation for federated transfer learning stems from
the observation that the edge models can learn the repre-
sentations of the clients belonging to the same cluster fairly
well. However, further apart clusters with slightly different
distributions modeling the same task may still be able to
capture some features that could be relevant and helpful
for other edge models. As a result, the global model that
aggregates all edge models can be assumed to encompass
the characteristics of the entire set of edge models. Enabling
knowledge transfer from the global model to the edge models
can thus enhance the performance of the edge models and,
consequently, improve the personal client models.

The aim of federated transfer learning is to optimize the
performance of the edge models by incorporating knowledge
from the global model. This can be achieved by minimizing
the discrepancy between the edge and global models while
preserving the individual features learned by each edge model.
Therefore, the objective function is defined as;

minimize
∑
c∈K

αc · L(wc,wg) (7)

where L(·) is a loss function that quantifies the discrepancy
between two models, and αc is a weight factor that determines
the importance of each cluster’s contribution to the objective.

For fine-tuning the global cloud model, the loss function can
be defined as the difference in performance metrics between
the two global and the edge models;

L(wc,wg) = f(Mc)− f(Mg) (8)

The objective function aims at minimizing the discrepancy
between the cluster models and the global model while encour-
aging the edge models to acquire relevant knowledge from the
global model while retaining their individual characteristics
learned from the local data sets.

E. Federated Clustering

The aim of federated clustering is to partition the devices
into clusters based on task similarity and ensure that the
models trained on each local data set capture the characteristics
of the respective clusters. The objective function is defined as;

minimize
∑
c∈K

∑
zl,c∈Dn

L(zl,c,wc) (9)

where Zl,c is the data sample of nth client of cluster c and
L(·) is a loss function that quantifies the dissimilarity between
a data point and the edge models.

We use k-means and define the loss function as the squared
Euclidean distance between data points and cluster centroid;

L(zl,c,wc) = ||zl,c − centroid(c)||2 (10)

F. Algorithm

We propose an algorithm for hierarchical multi-cluster fed-
erated transfer learning (HC3FL). We discuss two variations
of HC3FL, namely static clustering and dynamic clustering,
presented in Algorithm 1. As the precursor to the main
algorithm, a preprocessing step is introduced to create an
initial set of clusters with similar clients and assign them to
appropriate edge servers. HC3FL begins by initializing the
global model, cluster-specific edge models, and clients’ local
models. The parameter server sends the global model to each
edge server. Each client within the cluster associated with an
edge server receives a copy as their local model. The number
of global, edge, and local iterations are set as g, e, and t.

During each global iteration, the parameter server sends the
global model to each edge server (step 1). Similarly, at each
edge iteration, each edge server broadcasts the edge/cluster
model to each client within the cluster (step 2). After receiving
the model, each client trains the model using its local data for
t local iterations and computes the local update (steps 3 &
4). After, clients send the local update to their respective edge
servers (step 5). Each edge server performs edge aggregation
similar to the weighted FedAvg [12] (step 6).

Each client’s contribution to the edge model is relative to its
local sample size. Each edge server sends the edge model back
to clients, and steps 2-5 are repeated for e− 1 steps. After e
edge iterations, each edge server computes the cluster/edge
model using the local updates from the clients associated
with it and uploads the cluster model to the parameter server
(step 7). After receiving the cluster models from each edge
server, the parameter server performs the weighted aggregation
to generate a global model update (step 8). Similar to edge
aggregation, the contribution from each cluster to the global
model is relative to the cluster sample size. The updated global
model is then broadcast to all the edge servers.

Once the edge servers receive the updated global model,
the algorithm proceeds to the transfer learning step (step 8),
where the knowledge from the global model is shared with
each cluster model. In the vanilla HC3FL approach, each edge
server broadcasts its client model to the respective clients,
and training continues until convergence or a specified number

Algorithm 1 Hierarchical Multi-Cluster Federated Transfer
Learning (HC3FL)
Input: client-edge mapping, local data sets Dn, # clusters k
Output: personalised client models wn, cluster-specific edge

models wc, and a global cloud model wg

// Main HC3FL Loop for each global iteration do
for each edge server ek do

Broadcast global model wg to ek // Step 1
wc ← federatedTransferLearning(wg,wc)
for each edge iteration do

Broadcast cluster model wc to all clients within ek
// Step 2
for each client n in cluster k do

Perform local training using wn for t local
iterations // Step 3
Compute local update wt

n = wt−1
n −

η∇Mn(w
t−1
n) // Step 4

Send local update to ek // Step 5
end
Perform edge aggregation to compute wc

// Step 6
end
Upload wc to the parameter server // Step 7

end
Perform global model aggregation to update wg

// Step 8
end
// Transfer Learning // Step 9
Function federatedTransferLearning(wg , wc):

// Perform TL using wg and wc

minimize αc.L(wc, wg)
return updated edge model wc

end

HC3FL-DC (Dynamic Clustering):;
for each edge server ek in m edge servers do

Broadcast cluster model wc to all participating clients
end
for each client n do

Estimate cluster identity ĉ = argminc∈[k] Fn(wc)
if n belongs to cluster ĉ then

perform steps 3 & 4
Communicate the local update to the edge server

end
end

of global iterations, denoted as g. However, in HC3FL with
dynamic clustering, the cluster models are broadcast to all
participating clients. Utilizing the received cluster models and
the local empirical loss Fi, each client estimates its cluster
identity by finding the cluster model with the lowest loss,
denoted as ĉ = argminc∈[k] Fi(θ

g
c). After estimating the

cluster identities, clients with the same cluster identity perform
local training (steps 3 and 4) and communicate their updates
to their corresponding edge server.

IID Setting

(a) Global Model (b) Edge Model (c) Training Loss

Non-IID Setting

(d) Global Model (e) Edge Model (f) Training Loss

Fig. 2: MNIST Results

IID Setting

(a) Global Model (b) Edge Model (c) Training Loss

Non-IID Setting

(d) Global Model (e) Edge Model (f) Training Loss

Fig. 3: CIFAR Results

IV. EXPERIMENTS

We evaluate the effectiveness of HC3FL in both IID and
non-IID settings with dynamic clustering using MNIST [13]
and CIFAR-10 [14] data sets. Both IID and non-IID config-
urations consist of 3 clusters, each containing 10 clients. We
employ the non-IID data generation and distribution approach
from [15] for simulating non-IID settings. We also generate
clustered FL data sets based on these two data sets. In order
to simulate a configuration where the data on different clients
are generated from different distributions, we augment the data
sets using rotation and generated rotated MNIST and CIFAR-
10 data sets [10]. The rotated MNIST data set is split into 4
clusters by applying 0, 90, 180, and 270 degrees of rotation
to the images. The data with the same rotation is divided into
10 clients resulting in 4 clusters in total, each of the size 10.
We split the test data in the same fashion. Similarly, we create
a rotated CIFAR-10 data set by creating two clusters with 0
and 180 rotations. For MNIST experiments, we use the fully
connected neural network with a single hidden layer of size
200 and ReLU activations. For the CIFAR experiments, we
use Resnet18 [16], and the data is preprocessed using standard
data augmentation, such as random sampling and flipping.

TABLE I: Test accuracies (%) ± std on MNIST and CIFAR

Clustered MNIST Clustered CIFAR
m,n 2, 10 3, 10 4, 10 2, 25

HC3FL-DC 94.63 ±0.03 95.20 ±0.03 97.44 ±0.02 83.05 ±1.37
HierFL 89.54 ± 0.04 90.65 ± 0.08 92.37 ± 0.13 77.27 ± 0.39
FedAvg 66.32 ± 0.02 67.87 ± 0.04 69.05 ± 0.02 53.97 ± 1.19

A. IID and Non-IID Settings

We compare the performance of the proposed method with
the HierFL [7] since it involves personalized client models,
edge models, and a global cloud model. We evaluate and
compare the performance of these two methods in both IID
and non-IID settings for both data sets MNIST and CIFAR-
10, as presented in Figures 2 and 3, respectively. The HC3FL
outperforms HierFL; both the edge and global models achieve
better performance than HierFL. On average, HC3FL achieves
3.12% and 9.6% increase in performance compared to HierFL
in IID settings for MNIST and CIFAR, respectively. While in
the case of non-IID, the HC3FL experiences 5.4% and 12.2%
performance boost. The superior performance of the HC3FL
is due to the fact that the HierFL randomly assigns clients
to the edge servers, and aggregating clients with different
learning tasks could result in inferior performance as reflected
in Figures 2 and 3 (b & e). Furthermore, HC3FL benefits from
the inter-cluster knowledge and retains the cluster-specific
characteristics by fine-tuning the global model.

B. Dynamic Clustering

We compare our proposed HC3FL-DC with two baseline
algorithms, i.e., FedAvg [1] and HierFL [7]. For MNIST
experiments, the client participation is set to 1. For local client
training, we chose τ = 10 and learning rate γ = 0.1. For
CIFAR, the participation rate was set to 0.5, the learning rate
to 0.01, the learning rate decay to 0.995, and the batch size to
20. In the FedAvg (global model scheme), the algorithm does
not consider cluster identities and tries to learn a single global
model that can make predictions from all the distributions.
While in HierFL, it introduces an edge layer between the
clients and the cloud server, and clients are randomly assigned
to the edge nodes.

The experimental results are shown in Table I. We can
observe that the proposed approach HC3FL-DC performs
better than both baselines. We observe that HC3FL-DC can
gradually find the underlying cluster identities of the individual
clients, and after the correct cluster is found, each client model
is trained and tested using data with the same distribution,
resulting in enhanced performance. The global model based
on FedAvg performs worse as it tries to fit all the data
from different distributions, and cannot provide personalized
predictions.

V. CONCLUSION

In this paper, we proposed HC3FL, a hierarchical multi-
cluster federated transfer learning approach, which incorpo-
rates a dynamic clustering algorithm (HC3FL-DC) to adap-

tively estimate the cluster identities of the clients to accom-
modate mobile and non-stationary data distributions. The ex-
perimental evaluations compared HC3FL with two baselines,
HierFL, and FedAvg, on the widely used MNIST and CIFAR-
10 datasets under both IID and non-IID settings with dynamic
clustering. The empirical results demonstrate the superior
performance of HC3FL over the baselines in all evaluated
scenarios. In future, we will investigate the impact of the
number of clusters on convergence and performance and the
tradeoff between geo-proximity and task/data similarity in
cluster formation.

ACKNOWLEDGMENT

The work presented in this paper has been supported by
the CHIST-ERA grant CHIST-ERA-19-CES-005 and by the
Austrian Science Fund (FWF): I 5201-N.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Advances in neural information processing systems,
vol. 30, 2017.

[3] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning: A meta-learning approach,” arXiv preprint arXiv:2002.07948,
2020.

[4] S. Ahmad and A. Aral, “Fedcd: Personalized federated learning via
collaborative distillation,” in 2022 IEEE/ACM 15th International Con-
ference on Utility and Cloud Computing (UCC). IEEE, 2022, pp.
189–194.

[5] S. Ahmad, H. Uyanık, T. Ovatman, M. T. Sandıkkaya, V. D. Maio,
I. Brandic, and A. Aral, “Sustainable environmental monitoring via
energy and information efficient multi-node placement,” IEEE Internet
of Things Journal, 2023.

[6] S. Banerjee, A. Yurtsever, and M. H. Bhuyan, “Personalized multi-
tier federated learning,” in Workshop on Federated Learning: Recent
Advances and New Challenges (in Conjunction with NeurIPS 2022),
2022.

[7] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020-2020 IEEE International
Conference on Communications (ICC). IEEE, 2020, pp. 1–6.

[8] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning
by local adaptation,” arXiv preprint arXiv:2002.04758, 2020.

[9] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving feder-
ated learning personalization via model agnostic meta learning,” arXiv
preprint arXiv:1909.12488, 2019.

[10] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient frame-
work for clustered federated learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 19 586–19 597, 2020.

[11] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy con-
straints,” IEEE transactions on neural networks and learning systems,
vol. 32, no. 8, pp. 3710–3722, 2020.

[12] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[13] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[14] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online:
http://www. cs. toronto. edu/kriz/cifar. html, vol. 55, no. 5, 2014.

[15] C. T Dinh, N. Tran, and J. Nguyen, “Personalized federated learning
with moreau envelopes,” Advances in Neural Information Processing
Systems, vol. 33, pp. 21 394–21 405, 2020.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

