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Abstract. We design a framework for assisted normative reasoning based on Aris-
totelian diagrams and algorithmic graph theory which can be employed to address
heterogeneous tasks of deductive reasoning. Here we focus on two problems of nor-
mative determination: we show that the algorithms used to address these problems
are computationally efficient and their operations are traceable by humans. Finally,
we discuss an application of our framework to a scenario regulated by the GDPR.
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1. Introduction

The growing interest in formal analyses and computational applications of Aristotelian
diagrams [1,2,3,4,6,8,9] encourages the development of new methods for their use in as-
sisted reasoning. If compared to full-fledged logical systems, Aristotelian diagrams trade
expressiveness for transparency: the inferences performed over these diagrams (i) are
simple and limited, (ii) can be automated via algorithms whose computational complex-
ity is low, (iii) are sufficient to address relevant reasoning problems from everyday life,
and (iv) are traceable by individuals without a background in formal logic.

This article provides a novel and general framework for assisted reasoning with
Aristotelian diagrams, based on a systematic interaction between logic and graph theory
(Section 2). We illustrate how this framework can be used to represent two problems of
normative determination [7]. The first problem (RP1) consists in checking whether the
truth of some statements in a set X determines the truth-value of all statements in a set
Y in light of a normative theory Γ. The second problem (RP2) generalizes the first and
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consists in checking whether X can be expanded to a set X ′ via stronger assumptions so
that the truth of some statements in X ′ determines the truth-value of all statements in Y
in light of Γ. Aristotelian diagrams are here explored via algorithms from graph theory
(Section 3): RP1 and RP2 are solved in linear and cubic time, respectively, and linear
space with respect to the size of a diagram. Our framework is highly flexible and many
other reasoning problems can be dealt with in a modular way. Moreover, the algorithms
employed can be related to inferences visually made by humans on diagrams and are thus
transparent. Transparency is a crucial feature for legal applications, such as decisions
about rights and obligations [5], and is a goal pursued in this area also by other tradi-
tions, such as argumentation theory [10]. Finally, as an application of our framework, we
chose a scenario based on the GDPR (Section 4), one of the most discussed regulations
nowadays and often used to build examples for automated legal reasoning.

2. Formal framework

Our framework consists of three layers of analysis. The first is given by a normative
theory N formulated over natural language and reasoning problems on it. We move to the
second by representing N as a formal theory Γ, which we call Aristotelian theory, and by
representing reasoning problems on N as formal deduction problems on Γ. Finally, we
move to the third by transforming Γ into a graph DΓ, which we call Aristotelian diagram,
and formulate search procedures over DΓ to solve problems on Γ in a computationally
efficient way. We will focus on the second and the third layer of analysis.

Let L be a language with an arbitrary vocabulary and St(L ) the set of its state-
ments, namely the set of expressions of L describing states-of-affairs. We denote a func-
tion f with domain X and codomain Y as f : X −→ Y if f is total and as f : X ⇀ Y if f
is possibly partial. An interpretation of L is a function I : St(L )−→ {0,1}.

Definition 1 (Aristotelian relation). An Aristotelian relation between φ ,ψ ∈ St(L ) is a
relation that we call either dominance (dom) or contrariety (cty) or subcontrariety (sty)
or contradiction (ctd) or equivalence (equ), where:

• dom(φ ,ψ) iff ∀I(I(φ) = 1⇒ I(ψ) = 1)∧∃I(I(ψ) = 1∧ I(φ) = 0);
• cty(φ ,ψ) iff ∀I(I(φ) = 1⇒ I(ψ) = 0);
• sty(φ ,ψ) iff ∀I(I(φ) = 0⇒ I(ψ) = 1);
• ctd(φ ,ψ) iff ∀I(I(φ) = 1⇔ I(ψ) = 0);
• equ(φ ,ψ) iff ∀I(I(φ) = 1⇔ I(ψ) = 1).2

Definition 2 (Aristotelian theory). Let AR= {dom,cty,sty,ctd,equ}. An Aristotelian
theory over L is Γ = 〈Σ, f 〉 where Σ⊆ St(L ) is a finite set and f : Σ×Σ ⇀ AR.

2Notice that we are here modifying and expanding the standard theory of Aristotelian relations: the four tra-
ditional Aristotelian relations are ‘contrariety’, ‘subcontrariety’, ‘contradiction’ and ‘subalternation’. Subalter-
nation is just the converse of dominance: ψ is a subalternate of φ iff φ dominates ψ . By contrast, equivalence
is not connected to any traditional Aristotelian relation, yet sometimes employed to pre-process theories [2].
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f is a possibly partial function in Γ since we want to represent reasoning problems where
one has incomplete information about which Aristotelian relations hold in Σ. Yet, for
brevity, here we only deal with theories that are symmetry-closed, in the following sense:3

Definition 3 (Symmetry-closed theory). An Aristotelian theory Γ = 〈Σ, f 〉 is symmetry-
closed iff, for any x ∈ AR\{dom} and φ ,ψ ∈ Σ, f (φ ,ψ) = x, entails f (ψ,φ) = x.

Definition 4 (Reasoning problems on theories). A reasoning problem on a theory Γ =
〈Σ, f 〉 is RP = 〈Γ,X ,Y,R〉, where X ,Y ⊆ Σ and R is a relation among the truth-values
of statements in (a set defined via) X and statements in (a set defined via) Y .

We focus on two reasoning problems of normative determination [7]. The first one is:

RP1 = 〈Γ,X ,Y,R1〉, where R1 indicates that within Γ the truth of some formulas in X deter-
mines the truth-value of all formulas in Y , i.e.,
∃φ1, ...,φn ∈ X∀I1, I2((I1(φ j) = I2(φ j) = 1 for 1≤ j ≤ n)→∀ψ ∈ Y (I1(ψ) = I2(ψ))).

To define the second one, we introduce the notion of a dominance ancestor.

Definition 5 (Dominance ancestors). Take Γ = 〈Σ, f 〉 and X ⊆ Σ. The set of dominance
ancestors of X, i.e. DAS(X), is the set of all ξ ∈ Σ\X s.t. for some θ1, ...,θn ∈ Σ (n > 1)
and φ ∈ X, it holds that θ1 = ξ , θn = φ and, for 1≤ i < n, f (θi,θi+1) = dom.

Note that there may be contradictions between statements in DAS(X). We can now pro-
ceed to the second kind of reasoning problem:

RP2 = 〈Γ,X ,Y,R2〉, where R2 indicates that within Γ the truth of some formulas in X∗ =
X ∪DAS(X) determines the truth-value of all formulas in Y , i.e.,
∃φ1, ...,φn ∈ X∗∀I1, I2((I1(φ j) = I2(φ j) = 1 for 1≤ j ≤ n)→∀ψ ∈ Y (I1(ψ) = I2(ψ))).

In RP2 we can regard X as conveying factual information available on a scenario and
X∗ = X ∪DAS(X) as an integration of such information with further (and stronger) hy-
potheses. Notice that a positive answer to RP1 is also a positive answer to RP2 but not the
other way around. Thus, RP2 is especially relevant when the answer to RP1 is negative.

A reasoning problem on a theory Γ will be addressed via search procedures on the
Aristotelian diagram corresponding to Γ (which can be easily proven to be unique up to
isomorphism), as per the definition below. By doing this we move from the second to the
third layer of analysis in our framework.

Definition 6 (Aristotelian diagram). The Aristotelian diagram corresponding to a theory
Γ = 〈Σ, f 〉 is DΓ = 〈V, l,E,r〉, where:

• V is the set of vertices of DΓ s.t. |V |= |Σ|;
• l : V −→ Σ is a bijective function assigning a statement to each vertex;
• E ⊆ V ×V is the relation constituting the set of edges of DΓ s.t., for v,u ∈ V , (v,u) ∈ E iff

f (l(v), l(u)) ∈ AR.
• r : E −→ AR is a function assigning an Aristotelian relation to each edge s.t., for v,u ∈V ,

r(v,u) = f (l(v), l(u)).

3Restricting our attention to symmetry-closed theories does not affect the computational complexity of the
methods illustrated in Section 3, given that a theory Γ can be transformed into its symmetry-closure Γ′ in linear
time with respect to |Θ|, where Θ is the subset of Σ×Σ for which f is defined.
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Let size(DΓ) = |V |+ |E|: this is always finite, by Def. 2 and Def. 6. Diagram DΓ allows
for graphically displaying theory Γ; thus, one can visually reconstruct the solutions to a
given reasoning problem on Γ provided by an algorithm, as discussed in Section 4.

3. Search procedures

We will now present two search procedures over DΓ, SP1 and SP2, that can be respec-
tively used to provide a solution to the reasoning problems RP1 and RP2 described in
Section 2. These procedures solve the two problems in a computationally efficient way.

Given DΓ, X , and Y , the algorithm for SP1 solves RP1 using a modified breadth-first
search on DΓ, which we assume is implemented in a helper routine called SEARCH. The
algorithm maintains a state for each vertex v, indicating whether l(v) has already been
inferred, ¬l(v) has already been inferred or neither of the two. SEARCH uses a queue
to temporally store those vertices that have already been encountered, but have not been
processed yet, and starts by enqueuing each vertex with a label in X and recording that it
has already been inferred. It then proceeds analogously to a classic breadth-first search,
but observing the relation that is assigned to each edge it processes. The algorithm can
also detect and report inconsistencies, i.e., contradictions inferred from X by continuing
to run until the graph is exhausted.

The algorithm for SP1 can be implemented analogously to breadth-first search and
thus has the same time complexity, which is linear in the number of vertices and edges
of DΓ, i.e., O(size(DΓ)). The space complexity is O(|V |).

An algorithm that solves RP2 can reuse the SEARCH procedure from SP1. In-
deed, it starts exactly as SP1. If SEARCH returns all statements in Y or their nega-
tion, we are done. Otherwise, it performs a backwards breadth-first search, starting from
the vertices with label in X and using only those incoming edges with a dominance

relation. Notice that for each vertex u that is newly encountered in this way, l(u) is
a dominance ancestor of at least one φ ∈ X . The backwards breadth-first search is
run until the graph is exhausted, thereby computing DAS(X). For each non-adjacent
pair of vertices u,u′ s.t. l(u), l(u′) ∈ DAS(X), we run SEARCH to determine whether
X ∪{l(u), l(u′)} has an inconsistency. Afterwards, we compute all consistent maximal
subsets S1,S2, . . . ,Sk ⊆ DAS(X). The algorithm then returns Si for some 1 ≤ i ≤ k such
that X ∪ Si determines the truth-value of all statements in Y via SEARCH, if exists, and
otherwise returns failure.

The time complexity of the backwards breadth-first search itself is linear in size(DΓ).
As SEARCH is run for each non-adjacent pair of vertices u,u′ with l(u), l(u′) ∈DAS(X),
the time complexity for this part is O(|V |2 ·size(DΓ)). Running SEARCH on X∪Si for 1≤
i≤ k takes O(|V | · size(DΓ)) time in the worst case, since k ≤ |V | due to the maximality
of the subsets. Thus, the overall time complexity for SP2 is O(|V |2 · size(DΓ)).

4. An application to the GDPR

We apply the methodology presented above to the legal rule set out in Article 9 of the
GDPR4. This article concerns the Processing of special categories of personal data. Its

4Art. 9 of Regulation EU 2016/679 on the protection of natural persons with regard to the processing of per-
sonal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
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purpose is to declare that some categories of personal data are more sensitive than others
and therefore the rules for processing them are stricter. The first paragraph of this Article
states which specific categories of personal data may not be processed. The second para-
graph provides a list of exceptions to the general prohibition, namely conditions under
which the processing of the categories of personal data at issue is not prohibited. We here
discuss an example, taking into account one of the exceptions, i.e. obtaining the explicit
consent for each specific purpose of personal data processing.

Consider a mobile application m operating on the principle of telemedicine and in-
cluding a questionnaire about the health status of its users. On the basis of the input re-
ceived, the app may take action (e.g., arranging an appointment with an expert). Thus,
the app is able to (i.e., practically can) process data concerning the health of its users.
Yet, this does not entail that the app is allowed (i.e., has a right) to process such data.

We may wonder whether a user u explicitly gave consent to data processing for two
specific purposes, p(a) and p(b):

p(a) evaluating further diagnostic procedures;
p(b) transferring their data to a doctor and arranging a personal appointment.

Moreover, we may wonder whether u’s consent to the processing of data for the purposes
p(a) and p(b) is not precluded by the relevant Member State legislation. If all these
additional conditions apply to the scenario, then m complies with Article 9 and is allowed
to process personal data, otherwise it is not allowed for at least one of the two purposes.

We will represent this example of normative theory (Article 9 GDPR) and the de-
scribed scenario over it in our framework. It is a very simple scenario, yet it already gives
a precise idea about how the framework is designed. Consider the following statements:

1 mobile app m is able to process data concerning the health of user u;
2a u gave consent for the processing of their data to m for the purpose p(a);
2b u gave consent for the processing of their data to m for the purpose p(b);
3a u’s consent for p(a) is permitted by the Member State law;
3b u’s consent for p(b) is permitted by the Member State law;
4a m has a right to process data concerning the health of u for the purpose p(a);
4b m has a right to process data concerning the health of u for the purpose p(b).

Let L be a language s.t., for p ∈ {1,2a,2b,3a,3b,4a,4b}, the BNF grammar for
St(L ) is φ ::= p | ¬φ | φ&φ . We can define many Aristotelian theories representing our
scenario. A simple choice is a symmetry-closed theory Γ = 〈Σ, f 〉, where, for x ∈ {a,b}:

• Σ = {1, 1&2x, 1&¬2x, 1&2x&3x, 1&2x&¬3x, 4x, ¬4x}
• f (4x,¬4x) = ctd

• f (1&2x,1&¬2x) = f (1&2x&3x,1&2x&¬3x) = cty
• f (1&2x,1) = f (1&¬2x,1) = f (1&2x&3x,1&2x) = f (1&2x&¬3x,1&2x) = dom
• f (1&2x&3x,4x) = f (1&2x&¬3x,¬4x) = f (1&¬2x,¬4x) = dom

We can formulate various instances of RP1 and RP2 by taking Y = {4a,4b} as the set of
final statements and different sets of initial statements, such as X = {1} or X = {1&2a}
or X = {1&2a,1&2b}, etc., depending on what factual information about the scenario we
imagine to be available. For instance, let X = {1}: in this case we just take to be a fact that
app m is able to process u’s health data. RP1 = 〈Γ,{1},{4a,4b},R1〉 receives a nega-

Regulation). Available at: https://eur-lex.europa.eu/eli/reg/2016/679/oj
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tive answer via SP1, whereas RP2 = 〈Γ,{1},{4a,4b},R2〉 receives a positive answer via
SP2. Moreover, SP2 specifies all the consequences of expanding X with stronger assump-
tions (namely, that adding 1&¬2a determines the falsity of 4a, that adding 1&2a&3a
determines the truth of 4a, etc.). Human reasoners can explore theory Γ and keep track
of the solutions provided by SP1 and SP2 to the given instances of RP1 and RP2 by
looking at the Aristotelian diagram DΓ in Fig. 1. This is a simple diagram (its size is 13
vertices plus 20 edges) for a simple scenario; yet, the methods provided here work for
any Aristotelian diagram with a finite number of vertices and a finite number of edges,
thus being able to efficiently solve reasoning problems on much more complex theories.

1

1&2a

1&2b

1&2a&3a

1&2b&3b

4a

4b

1&¬2a

1&¬2b

¬4a

¬4b

1&2a&¬3a

1&2b&¬3b

Figure 1. An Aristotelian diagram for the GDPR example. A green edge directed from a vertex v to a vertex
u indicates that (the label of) v dominates (the label of) u (i.e., u subalternates v); a red edge between v and u
indicates that v and u are contradictories; an orange edge between v and u indicates that v and u are contraries.
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