
Architecting Digital Twins Using a Domain-Driven
Design-Based Approach*

Aurora Maćıas† and Elena Navarro††

LoUISE Research Group
University of Castilla-La Mancha

Albacete, Spain, aurora.macias@alu.uclm.es
elena.navarro@uclm.es

Carlos E. Cuesta
VorTIC3 group

Universidad Rey Juan Carlos
Madrid, Spain

carlos.cuesta@urjc.es

Uwe Zdun
Research Group Software Architecture

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—The Digital Twin (DT) concept has overcome its
initial definition based on a purely descriptive approach focusing
on modelling physical objects, often using CAD. Today DT often
describes a behavioural approach that can simulate an object’s
dynamics, monitor its state, and control or predict its behaviour.
Although DTs are attracting significant attention and offer many
advantages in the design of especially cyber-physical systems,
most proposals have focused on developing DTs for a specific
use case or need without providing a more holistic approach to
its design. We aim to propose a domain-agnostic approach for
architecting DTs. Here, DTs are directly supported by Domain-
Driven Design’s notion of Bounded Contexts (BCs), hiding
all the domain-inherent specifications behind BC boundaries.
These BCs are also the central abstraction in many microservice
architectures and can be used to describe DTs. A Wind Turbine
DT architecture is used as a running example to describe
how every relevant DT property can be satisfied following our
proposal for architecting digital twins. A qualitative evaluation
of this case by five external practitioners shows that our DDD-
based proposal consistently outperforms the 5-dimension model
used as the reference approach.

Index Terms—Digital Twin, Domain-Driven Design, Hexag-
onal Architecture, Microservice, Bounded Context, Design Sci-
ence

I. Introduction

Two decades have elapsed since Grieves and Vicker [1]
coined the term Digital Twin (DT) in 2002 as the con-
junction of three elements: “a real space, a virtual space,
and a link for the bi-directional flow of data between
both spaces for the convergence of virtual and physical
objects”. The DT concept has developed from its initial
definition, which provided a purely descriptive approach
that typically focuses on modelling physical objects, often
using CAD. Today, it often refers to a behavioural approach
able to simulate their dynamics, monitor their state, and
control or predict their behaviour. Therefore, DTs are
different from what has been called in the literature Digital
Model (DM) and Digital Shadow (DS) [2] (see Fig. 1).
A DM provides a digital representation of an (existing
or planned) Physical Object (PO) that usually offers
simulation facilities without automatic data flow. On the
other hand, a DS offers an automatic data flow from a PO
to a Logical Object (LO), focusing on monitoring the PO

* This paper is part of the R+D+i project PID2019-108915RBI00
funded by MCIN/AEI/10.13039/501100011033.
† Attendance to ICSA2023 funded by Google in the context of the
ACM-W Scholarship. †† Corresponding author.

Fig. 1. Digital Model, Digital Shadow and Digital Twin (adapted
from [2])

and predicting its future state. However, a DT supports
a bidirectional data flow between the PO and the LO to
provide facilities to control the PO and augment it with
new capabilities. Kritzinger et al. [2] argue that most of
the proposals up to date have focused their efforts on DM
and DS, while there is still a clear need for actual DT
proposals.
Emerging technologies such as IoT, Edge Computing,

Virtualization and Cloud Computing have undoubtedly
promoted the community’s interest in exploiting DTs as
a promising approach to developing future complex sys-
tems [3]. For instance, when searching the term “Digital
Twin” in the Scopus Search Engine, the references rise
from 7 in 2003 to 8,863 in 2022. DTs have been used in
many different domains such as Manufacturing [2], Smart
Farming [4], Smart Cities [5], Healthcare [6], etc.
Although DTs are a promising approach for developing

complex systems [7], most of the proposals developed dur-
ing these years focus on developing DTs for a specific use
case or need, without providing a more general approach
that guides their design and development. This need has
already been stated in the literature. For instance, Kamble
et al. [8] claim that a holistic approach, not just restricted
to the local manufacturing systems domain, is required.
Minerva et al. [9] state that there is a lack of modelling
approaches that help to make the DT concept a reality. In
a literature review [10], it is concluded that a unified DT
modelling framework is urgently needed, being one of the
most promising research directions in the field of DT. This
is the motivation of our work: to offer a domain-agnostic
approach to the design of DT.
To a certain extent, the notion of DT is yet another

expression of the classic design rule of direct mapping [11],
i.e., the idea that there should be a direct correspondence
between concepts in the problem domain and entities in
the solution space. This is also a main driver behind
Domain-Driven Design (DDD) [12]. This approach has



become popular during the last two decades and continued
evolving ever since [13]. It defines a dual (strategic and tac-
tic) process, in which a set of patterns are applied during
software design, leading to the construction of a domain-
based design structure consistent even within a varying en-
vironment. Though the basic conceptual core has remained
constant, several important DDD concepts appeared later.
This includes the relationship to the Hexagonal Architec-
ture a.k.a. Ports and Adapters [13], which has a separate
origin but has become an integral part of the proposal,
replacing the original layered architecture [14]. Not only
it provides a better form of dependency inversion, but it
has proven to be more suitable for the definition of service-
oriented architectures (microservices in particular) and, as
we will argue, also of DTs.

All these aspects have led us to define our first Research
Question, RQ1: Is it possible to apply DDD for architecting
DTs to satisfy DT properties? Then, provided that the an-
swer is positive, RQ2: Does this proposal offers results with
higher satisfaction of DT properties than other existing
proposals? There are many conceptual correspondences
between both areas, which will be explored in the follow-
ing. Our description of a Digital Twin is directly supported
by the notion of Bounded Contexts in DDD: the context
in which a certain object is used defines its meaning as
a DT. Every (Bounded) Context (BC) might work as an
independent system fragment, and their relationships to
each other define the final structure: their architecture.
These independent BCs are also a core abstraction of
microservices modelled with DDD: often, BCs or sub-
structures of the BCs, such as aggregates, are used to
define microservices [15]. We argue that we can also use
them to describe DTs.

This work is structured as follows. After this Introduc-
tion, Section II presents the Research Methodology applied
to conduct this study. Then, Section IV presents the
main DT concepts, focusing on the properties they should
satisfy. Related work is briefly presented in Section III.
Our proposal is described in Section V: how DDD may be
applied for architecting DT. Finally, the main results of
the evaluation conducted as well as the drawn conclusions
and our future work are described in Section VI and
Section VIII, respectively.

II. Research Method

The main goal (RQ1) of our research study is to in-
vestigate whether DDD can be used to architect DTs.
Then, our second goal (RQ2) is to determine whether
the results of our proposal offer a higher satisfaction of
DT requirements when compared to other proposals. As
RQs focus on the design of novel artefacts, a Design
Science research study [16] was conducted, comprising the
following five steps:

1) Awareness of the problem: A literature review was
conducted to detect whether any proposal offers
a holistic approach to architect DT. However, as
presented in Section III, the alternatives identified
focused on specific domains in their descriptions.

2) Suggestion: We designed the approach presented in
Section V, which applies DDD for architecting DTs.

3) Development: We further elaborated on the tentative
design by developing a UML profile that facilitates
the description of software architecture for DTs. This
profile is not presented in this paper but has been
used to specify the running example presented in
Section V.

4) Evaluation: The running example developed was
used to evaluate this proposal, using the properties
identified by Minerva et al. [9] as the criteria that
a DT should satisfy (see Section IV). A qualitative
evaluation was conducted, including a survey to
compare the current proposal with the 5-dimension
model presented in [17], as explained in Section VI

5) Conclusion: The evaluation results are reviewed re-
garding the RQ2 being the conclusions presented in
Section VI.

III. Related Work

As was stated in Section I, Digital Twins are attract-
ing extraordinary attention from both practitioners and
researchers. Most of the proposals developed up to date
have focused their efforts on developing DT for solving
specific problems. For instance, they have been widely
embraced by the industry as a key technology for digital
transformation [2], e.g. to predict the performance of the
production chain, assess reconfiguration changes, manufac-
ture customized products, etc. They are also being applied
in the development of smart cities [5], to monitor the
performance of the infrastructures or the human dynamics
continuously, simulate different scenarios and control their
evolution over time. Another example is their use of per-
sonalized medicine [6], to monitor a person’s bio-physical
and lifestyle information, provide data-driven therapies,
preventive care, etc.
Most of these proposals have been carried out from

scratch, without following a holistic approach that may
be applied in different domains or different systems. One
of the main reasons for this is the lack of architectural
guidelines. In this context, some of the already developed
proposals promote adapting the Reference Architecture
Model 4.0 (RAMI 4.0) [18] for modelling DTs. RAMI was
initially defined for the Industry 4.0 initiative, to control
the lifecycle of any asset that offers value to a business,
no matter whether it is a physical product, a software
component or a process. The example presented in [19]
proposes to adopt the asset administration shell (AAS)
concept for modelling the information to be managed
by a DT, facilitating interoperability among the different
subsystems. However, these proposals focus their efforts on
modelling the information that the DT should monitor,
instead of providing an integral process for architecting
DTs. Recently, ISO published standard 23247:2021 [20]
for creating any element that may be observed in a
manufacturing process. Although the standard describes
a Reference Architecture (RA) for constructing systems
using DTs, it mainly focuses on providing facilities for
interoperability in the manufacturing domain.



Fig. 2. Digital Twin: Physical Object and Logical Object

Some other works offer guidelines for designing systems,
including DTs as one of their constituents. For instance,
Kirchhof [21] has presented a model-driven method to
design Cyber-Physical Systems and their integration with
DT. This is a very promising proposal that focuses on the
generation of this integration. However, it has not been
defined as a process that guides the design of DTs as
reusable units.

Other works have focused on defining alternatives for
modelling DTs but on specific domains. One of these is
the 5-dimension model [17] that considers, while designing
DT, not only the PO, the LO and its connection, but
also DT data supporting an accurate information capture
and the DT functions to be provided. Similarly, the DTH
modelling process [22] has been defined to guide the design
of DT in the health domain, outlining the information to
be monitored for tracking a patient’s physical conditions.
These models describe its behaviour and the deduction
models for evaluating, reasoning and predicting its needs.

Regarding the use of DDD for designing DT, only a
few works have been applied in specific domains. Li et
al. [23] have presented an extension of DDD, used to
explore the domain of the social manufacturing process
and their subsequent implementation with enabling tech-
nologies. However, they are not presenting a proposal for
architecting DT. Similarly, Telnov et al. [24] propose to
apply DDD to identify the different processes during the
creation of a product, and to describe how these processes
may interact. Still, they are not guiding the design of DT.

IV. Digital Twins: Main Concepts

As mentioned in Section I, there is no standard def-
inition of DT, but many different definitions have been
offered in the literature. Just recently, in the manufactur-
ing domain, the ISO/DIS 23247-1 [20] standard has been
published that defines a DT as “a fit for purpose digital
representation of an observable manufacturing element
with synchronization between the element and its digital
representation”. A more general definition has been pro-
vided in [9], where a DT refers to the physical component
(PO), the logical component(s) (LO) and the relation
between the physical and logical entities. The DT links
two different entities, a real one that is relevant in the
physical world and a software one that is executed in a
virtualization space (see Fig. 2).

Different reasons explain why DTs are considered a
game-changer, mainly explained because of the advantages

they offer [9]: i) LOs are models of the POs, facilitat-
ing their comprehension; ii) LOs are used to store large
volumes of information of the POs that may be used
for prospective tasks. iii) LOs can be used to trace POs
throughout time and space. iv) DTs can be used to detect
likely relationships and commonalities between POs. v)
DTs may be exploited to manage the life cycle of POs. vi)
DTs may be used as services that may be exploited as a
business advantage. According to Minerva et al. [9] a DT
must satisfy three essential properties:

• (P1) Representativeness and Contextualization. Rep-
resentativeness means that the LO must mimic the
status and features of the PO. Here it is important
to highlight that many authors also revolve around
the idea of similarity as a cornerstone of the DT,
making the development of DT a cumbersome task
when such similarity introduces complexity that is
finally not needed for the goals of the DT. For this
aim, contextualization determines that only the in-
formation and features of the PO relevant to the
context of use should be considered in the LO. Thus,
contextualization is key to developing such LOs as
software versions of POs. In this sense, we may
consider contextualization as a function of time and
space. That is, different LO may be needed depending
on the specific location and moment in time. Figure 2
shows that if a DT of a person was created, we would
need to represent different information, status, etc.,
depending on the context where such person is.

• (P2) Reflection. This property states that a PO is
timely and univocally represented using the values of
the attributes, status and behaviour of its LO.

• (P3) Entanglement. The LO must receive in real-time
(or close to real-time, depending on the context of
use) the information that represents the PO so that
this information can be made available to other appli-
cations and services. It is worth mentioning that this
entanglement can be: strong when the communication
PO-LO is bidirectional and real-time; simple when it
is either real-time or bidirectional; weak when values
of the PO are inferred.

There is another group of properties that add value to
a DT and should be considered when it is developed [9]:

• (P4) Augmentation means that the LO can enhance
the PO by augmenting its functions and features. This
is achieved by exposing an API that facilitates the
management of the DT.

• (P5) Composability refers to the ability to group LOs
into a composed one so that both the individual and
composed objects can be observed and controlled.
Just consider the Wind Turbine example illustrated
in Fig. 4. It comprises different elements such as a
Rotor, a Gearbox, etc. The Wind Turbine could be
considered a single PO, but it may also be considered
a composition of single POs. The latter is more pow-
erful because it represents each one of such single POs
as LOs that may be individually managed. Moreover,
it would also be possible to control the whole system



by abstracting away only relevant properties.
• (P6) Memorization refers to the ability to store all

DT’s meaningful past and present data and the con-
text of when and where such data originated for their
later analysis.

• (P7) Predictability means that an LO of a DT may
be used to simulate its behaviour and interaction with
other DTs to determine the outcomes in a likely future
or context.

• (P8) Replication refers to a PO being replicated
several times using different LOs in a virtual space.
Moreover, a LO can also be replicated according
to the needs of a specific application. This is the
general ability to replicate an object in a different
environment. A PO can be virtualized and replicated
several times in a virtual space.

• (P9) Persistency says that the LO should be created
to support that the DT is available over longer peri-
ods.

• (P10) Accountability/Manageability. A LO should
provide facilities to deal with damages or problems
of both its PO and itself.

• (P11) Ownership states the need to establish the
ownership and usage rights both of the DT, especially
of the LO, and the data it produces.

• (P12) Servitization refers to the ability to offer DT
functionalities and processes as a new service in the
market.

All these properties, except for (P11) and (P12), have
been considered for defining our proposal, as detailed in
Section V. Properties (P11) Ownership and (P12) Servi-
tization have not been considered in this work as they do
not apply to the capabilities or functions of a DT.

V. A DDD-based proposal for architecting DT

This section presents our proposal to guide the process
of architecting DTs. As already noted, the main inspira-
tion is to apply concepts from DDD [12] [13], adapting
them to DT design and using them to support stakeholders
during its application.
Our proposal for a DT-architecting process is primarily

driven by DT properties and their comparison to DDD
concepts; essentially, the definition of a bounded context
becomes the entry point to this process.
As illustrated in Fig.3, the process entails two main

activities: Strategic Design, which is presented in Section
V-A, and Tactic Design, described in Section V-B. The
architecting of the DT for a Wind Turbine (WT) was
realized using the requirements described in [17]. Some
of the diagrams specified are used in the following to
illustrate the proposal, so many details required for a real-
world Wind Turbine have been omitted. The reason to
select this system was the comparison in the evaluation
process, as explained in Section VI.

A. Strategic Design of DTs

At the core of DDD is the distinction between strategic
and tactic design. Evans’ [12] strategic design mainly

affects broader, e.g. infrastructural and architectural, con-
cerns. Therefore, as depicted in Fig. 3, our process begins
with a Strategic Design activity, which is defined as the
iteration of three tasks.

Identify the DTs. To properly identify DTs, which are a
combination of PO, LO and the communication among
them, two properties are key: (P1) Contextualization and
(P5) Composability. That is, first (a) we should consider
which are the likely contexts of use, regarding time and
space, of our DT; so that we identify a different DT for
each one of such contexts. Next, (b) we should determine
whether such DTs should be considered as a single DT, or
a composite one, depending on the control level required.
In this activity, we simply start by enumerating the differ-
ent POs in our system. After that we identify which ones
are going to be considered as separate DTs and which ones
are not. Then we are ready to abstract this “LOs map” into
a proper model in the next step.

Considering the Wind Turbine (WT) example, only one
context was considered for optimizing its operation. Fig.
4 (b) illustrates the different POs of the WT as well as
the relationships among them that have been identified.
It should be mentioned that this design was conducted in
two different cycles. During the first cycle, every sensor was
also identified as a relevant PO. However, we noticed that
this decision added an unnecessary level of complexity.
Therefore, they were abstracted out from the model and
considered just as properties of the POs.

Map Types of DTs to Bounded Contexts. The goal of
this whole process is to describe the architecture of DTs.
Therefore, at the design level, we are not interested in
individual DT instances, but in identifying the different
types of DTs (tDT). That is, the process must distil the
different kinds of distinct DTs which are present in our sys-
tem. This is relevant because we are designing the software
comprising these different types, even when there could
be many instances of them in a specific situation. This
“instance model” will compose a concrete configuration of
our architecture.

One of the main concepts in strategic DDD is the
Bounded Context (BC). According to Millet [13], a
Bounded Context is a“semantic contextual boundary. This
means that within the boundary, each component of the
software model has a specific meaning and does specific
things. The components inside a Bounded Context are
“context-specific and semantically motivated,” facilitating
that the model keeps consistent and meaningful. We con-
sider this concept to be critical while designing DTs due
to one of its properties [13]: they should be loosely coupled
to allow them to be developed in isolation. Defining types
of DTs as these loosely coupled Bounded Contexts means
that they may be developed and evolved independently
and reused for different applications, avoiding creating
silos of functionality. Therefore, every type of Digital Twin
gets mapped to a specific Bounded Context. In fact, in
this process we use these terms interchangeably, as both
abstractions are functionally congruent, i.e. (tDT ∼= BC).

Considering the Wind Turbine example, Fig. 4(c) shows



Fig. 3. A DDD-inspired process for architecting DT

Fig. 4. Strategic Design for a Wind Turbine: (a) graphical description (extracted from [17]); (b) POs identified; (c) types of DTs and Context
Mapping (different colours are used to show the mapping between POs and tDTs)

the tDTs that were finally identified. Most of these tDTs
subsume more than a PO from those previously identified.
For instance, Rotor subsumes the Pitch, Blade and Bear-
ing POs, and WindTurbine subsumes both WindTurbine
and Electronic Controller.

Identify the Context Mapping. Considering that different
BCs, i.e. different tDTs, could be identified in the previous
step, they will need to interact among them to support the
required (P5) Composability. This interaction must also be
modelled, and the DDD concept of Context Mapping [13]
also serves this same goal. This mapping is used to identify
the integration points between Bounded Contexts and
the data flow between them. For this purpose, contracts
and boundaries between BCs must be clearly defined to
facilitate their interaction and evolution over time. Ac-
cording to DDD guidelines, the relationship between them
and their type must be specified for every two Bounded
Contexts that need to interact. They propose organiza-
tional and technical types for such integration [13]. In this
work, the following three types of DDD-based technical

relationships are suggested:

• Open Host Service. It is suggested that this should
be the default type of relationship between any two
BCs, as DTs should satisfy the (P4) Augmentation
property. This type of relationship determines that
Bounded Contexts expose their functionality as a set
of services through a public API, precisely that prop-
erty’s definition. Fig. 4 (c) shows that this was the
relationship established among the different tDT/BC
identified in the Wind Turbine example.

• Shared Kernel. Whenever two tDTs (i.e., BCs) share
many concepts and functionality, these commonalities
can be extracted as a shared model that is known as
Shared Kernel. This type of DDD relationship would
facilitate satisfying both the (P1) representativeness
and (P5) composability properties, which have already
been considered.
For example, consider that a Human DT (HDT, see
Fig. 2) is being designed. Different DTs may have
been identified because different contexts (e.g. health,



play) were detected. However, while designing such
HDT, we may also detect that different sensors (e.g.
accelerometer, heart rate) may be applied in specific
contexts. This could lead to the identification of
new DTs, as, in the end, those sensors are actually
POs, and their corresponding LOs may be created to
mimic their status and features, as requested by (P1).
But, these new sensor-based DTs are actually sharing
many concepts and information with prior DTs in
the compound HDT, so they would have a shared
kernel relationship, satisfying the (P5) composability
property.

• Anticorruption Layer (ACL). Whenever a DT needs
to communicate with legacy or third-party systems,
then an Anticorruption Layer relationship should be
created to protect the integrity and autonomy of this
DT. An ACL is used for integration purposes so that
it is responsible for translating between both the BC
it belongs to and the BC to which it is related. Thus,
it will be responsible for the bidirectional translation
between the DT and third-party systems.

B. Tactic Design of DT

Once the main contexts have been identified and their
boundaries outlined, strategy has defined the global scope;
the actual enactment into concrete elements is the domain
of tactics. In the context of DDD, tactic design defines the
set of domain elements (entities, services, etc.) which com-
pose a Bounded Context, and it takes into account specific
low-level operational concerns, such as concurrency. For
instance, aggregates are conceived to act as transactional
consistency boundaries [13].

Still, tactics must work within the limits defined by
strategy. But this is not a modular decomposition in which
strategic design defines the BCs, and then tactic design
develops their contents. Actually, both design approaches
work together to build the desired system: as strategy
defines boundaries and relationships, tactics describe how
subsystems enforce these limits while enabling these in-
teractions. Unsurprisingly, the connection between both
perspectives is architecture; the original (tactical) pattern
for this purpose was Layered Architecture [12]; but as
already noted, Hexagonal Architecture has acquired this
role [13].

The main outcome of Strategic Design is the set of
DTs to be developed and the different Context Map-
pings (CMs) among them. Then, Tactic Design intends
to identify the Application Architecture of these DTs.
Actually DDD does not enforce a specific style to architect
the application, but it does require it to be chosen to
protect the integrity of the domain models enclosed within
each Bounded Context. For this purpose, the separation of
concerns is considered critical: the architecture separates
the technical details from the complexities of the domain
models. This architecture must also serve to encapsulate
the low-level details of the domain model of every Bounded
Context, to protect clients from any potential changes in
their logic.

Fig. 5 illustrates the internal architecture of the BC
defining a DT. At the centre of this architecture is the Do-
main Layer that captures the logic of the domain. Then,
the Application Layer abstracts such logic domain behind
an API, to publish the relevant business use case. Both lay-
ers are isolated and protected against changes, unnecessary
dependencies from clients, or infrastructural issues using
the Infrastructure Layer. To satisfy these requirements,
we could use a variety of alternatives. However, Fig. 5
already presents them using the approach of the afore-
mentioned Hexagonal (a.k.a. Ports-and-Adapters, a.k.a.
Onion) Architecture, which has become the recommended
style [13]. This approach eases the required separation of
concerns, structuring the application into different areas
that change together. It is worth noting that, to enforce a
separation of concerns, one of the cornerstones of this style
is the use of Dependency Inversion [12]. This concept pro-
motes that those components offering low-level services,
as Infrastructure does, implement the interfaces defined
by high-level components, such as the Application Layer.
Thus, the domain layer does not depend on anything
else, and the application service layer just depends on
the domain layer. That is, dependencies between layers
are always directed towards the centre of the architecture.
Thereby, this work proposes that for every DT (as a
Bounded Context) identified during Strategic Design, its
architecture is specified in the Hexagonal Architecture
style.

As noted in Fig. 5, each one of the properties that a
DT may satisfy (refer to Section IV) has been traced to
a specific layer. Thus Fig. 5 may be used as a decision
map to decide which ones are going to be considered in
a specific implementation: depending on which properties
are expected from the DT being modelled, specific deci-
sions must be made in the affected layers. The remainder
of this section presents how each of these layers should be
modelled and how the DT properties are addressed.

Model the Domain Layer . In this layer, the domain
model is specified to satisfy the use case of the DT. Thus,
this domain model is key to satisfying the (P1) representa-
tiveness and (P2) reflection properties of DT. It must be
highlighted that this modelling must follow a technology-
agnostic approach, focusing just on the DT’s rules, logic
and workflows, without introducing any technological de-
tail. While modelling such domain concepts, the following
DDD concepts may be used:

• Entity. Each concept can be univocally identified
among all other concepts of the DT’s domain model.
It may be mutable over time according to our needs,
that is, its state may change. As Fig. 6 shows, Elec-
tronic Controller was initially identified as a PO of
the Wind Turbine. It is now specified as an Entity
used to define the control policy responsible for WT
productivity.

• Value Object. It describes every concept that is im-
mutable in the DT. They are used to specify the
properties of an Entity. As an example, in Fig. 6
Power was defined as Value Object to represent the



Fig. 5. Hexagonal Architecture: Tracing DT properties

metric Electric Power.
• Aggregate. It is defined as a composition of one or

more Entities and Value Objects. An Aggregate is
used to maintain transaction consistency within a
DT, that is, to maintain which business rules must
be satisfied once a transaction ends. The design of
Aggregates is a popular topic in the literature, and
several guidelines are provided [12] [13], but these
are left out of this work due to space constraints.
Fig. 6 shows that WindTurbine was specified as an
Aggregate that facilitates referring to WindTurbine
and ElectronicController as a single concept.

While modelling the domain layer, Domain Services
must also be specified. These are used to represent the
behaviour of the DT using Entities, Value Objects and
Aggregates, as well as relying on the Application Ser-
vice Layer for any technical detail. For instance, if a
domain service requests to retrieve any information from a
database, the Application Service Layer will be in charge
of this task due to dependency inversion. The (P7) pre-
dictability property can be satisfied using these domain
services. It is often requested to simulate the dynamic
of DTs to predict their outcome in specific situations
and environments. To conduct such a simulation, it is
necessary to have intrinsic knowledge of the domain:
Entities, Value Objects and Aggregates must be used.
When such simulations are defined as domain services,
the rules governing the DT’s likely behaviour can evolve
without affecting their clients. Fig. 6 depicts the Sim-
ulatorWT domain services that provide three different
types of analysis: deformation, stress and crack. As can be
observed, dependency inversion has been used to facilitate
simulation services’ evolution from Finite State Machines
to any other approach, such as Petri Nets, or stochastic
models.
Model the Application Service Layer . Following the
hexagonal style, this layer is responsible for providing the
DT’s use cases, by delegation to the other two layers, due
to dependency inversion. Let’s consider the WT example
again, as presented in Fig. 6. There, application services

may be offered as business use cases, such as monitoring
the power generated by a Wind Turbine, starting or
stopping its operation and predicting its fault. To do that,
this Layer orchestrates and coordinates the different steps
comprising each one of those use cases. So the Application
Service Layer is in charge of retrieving the domain objects
stored, e.g. in the database, using infrastructure services
(in the Infrastructure Layer), and delegating to these
objects, and to domain services (in the Domain Layer),
the responsibility of making the final decision regarding
the specific business use case at hand. Therefore, every
service that a DT offers to its clients is published in this
layer, hiding the details of the Domain Layer. Thus, it is
responsible for satisfying the (P4) augmentation property,
which exposes the DT functionality as a public API.

Another important feature of this layer is to notify
about changes in the status of domain objects that may
affect other system elements. As explained in Section IV,
the (P3) entanglement property is related to the commu-
nication between the PO and the LO, which must be bi-
directional to define a proper, full-fledged DT. Therefore,
this layer is responsible for notifying the POs about any
change in their LOs. For this purpose, the Application
Service Layer relies on Event Sourcing services, offered by
the Infrastructure Layer (as seen next).

Finally, another important aspect that may be contem-
plated during the DT’s design is (P10) accountability &
manageability, providing the means to deal with potential
problems or damages. When this feature is considered, this
Layer would be responsible for providing facilities to deal
with such damages, as part of the public API. For instance,
as Fig. 6 shows, different services have been defined for
predicting faults and maintaining a WT.

Model the Infrastructure Layer . This layer is respon-
sible for all the technical capabilities that the DT ar-
chitecture might have. Thus, Domain and Application
layers need just to focus on modelling the DT’s behaviour
and use cases, respectively. In contrast, the Infrastructure
Layer strives with technical details that do not impact
these use cases but only on their support. As summarized



Fig. 6. Tactic design for the Wind Turbine DT

in Fig. 5, different DT properties have been traced to
different DDD concepts, which are supported in this layer
in the form of services. Each one of these infrastructure
services, along with the DT properties they support, are
described in the following:

• Messaging. As stated above, whenever a DT is being
designed, it should be considered a reusable element
that may be exploited for different purposes. There-
fore, a DT must be developed as a loosely coupled
unit to evolve independently from other elements.
Also, DDD guidelines [13] suggest that a messaging
system should be included in the Infrastructure Layer.
This would provide support for (P5) composability
because, as DTs are completely decoupled from each
other, composite DTs may be created as necessary,
without affecting the component DTs. Besides, in case
any component DT fails, the remaining DT would
not be affected. For instance, the gearbox is one of
the most failure-prone elements of a Wind Turbine.
This motivated us to specify this element as a tDT
to facilitate its management (see Fig. 4). Therefore, a
message handler has been defined to allow the Wind-
Turbine to react promptly to any message informing
about a fault of the gearbox (e.g. tooth wear).

• Repository. An important DT property is (P6) mem-
orization. This refers to the ability to store relevant
information about the DT. In DDD, one of the most
popular services that the Infrastructure layer could

offer to persist any domain object is the Repository.
This acts as a façade that removes the complexity of
some persistence frameworks and maintains a clear-
cut difference between the domain model and the
data model used to interact with clients. Therefore,
introducing it during a DT’s design would make it
possible to store all relevant data in the DT, providing
it with the (P6) memorization property. Moreover,
this service also serves to satisfy the (P9) persis-
tency property. As the repository can maintain all
meaningful data and the PO status, it would also
make the LO persistent and resilient over time. Fig.
6 illustrates that RepositoryWT has been defined to
maintain meaningful data of a Wind Turbine, such as
its type, constraints regarding wind conditions for its
operation, etc.

• Event Sourcing. The introduction of this facility in
the design provides a noteworthy advantage, as it is
responsible for chronologically storing the sequence
of events emitted by a DT. Therefore it explains
why and how this has reached a specific status. This
provides support to satisfy at least three different DT
properties. First, (P3) entanglement between the PO
and LO is achieved by using whichever event service is
supported by the PO. Second, (P6) memorization, as
it helps capture the DT’s behaviour. Third, (P7) pre-
dictability, as analysing past sequences of events may
help to predict how a DT could behave in the future.



Finally, (P9) persistency, because in the case of failure
of a PO, the sequence of events may be analysed,
to determine how to reset it to an acceptable state.
As shown in Fig. 6, EventStoreWT has been defined
to collect all the events that may affect the Wind
Turbine, for instance, the wind speed.

• Integration Services. The Infrastructure layer may
also offer facilities to integrate other systems or ap-
plications, which have no impact on the design of
the domain model or business use cases but can
support different technical details. For instance, these
integration services may be used to support (P7) pre-
dictability. In fact, during a DT’s design, it is rather
frequent to use external testbeds or experimentation
settings, to simulate the behaviour and interaction of
this DT with other elements. Including this type of
service in the Infrastructure, the layer would help to
maintain both the Application Service and Domain
layers agnostic from these technologies so that they
could be modified or replaced at convenience.

Finally, among Minerva’s DT properties, only (P8) repli-
cation has yet to be explicitly addressed. This is a com-
plex issue, as it refers to individual DT replicas, and
the relationships between them; so this is located at the
configuration level, rather than at the architecture level.
A connection between two same-DT replicas cannot be
expressed in their type definition. There is some room
to consider that property. When a certain pattern (e.g.
“master replica”) is likely to appear, certainly the tDT
might be prepared to support such a construction. Even
more, existing frameworks (e.g. containerization) often
provide facilities to manage these arrangements out of the
box. This sort of delegation can therefore be achieved using
integration services, again.
In summary, tactic design can be used as a sort of

decision tree, in which every desired DT property can
be mapped to a certain architectural construction; the
resulting structure would depend on the set of chosen
capabilities.

VI. Evaluation

As outlined in Section II, our proposal was evaluated to
answer RQ2 by doing the following steps:

1) Selecting a reference proposal. An expert practitioner
in DT, not involved in the definition of this proposal,
was provided with the list of DT properties [9] and
was requested to select the best proposal for archi-
tecting DT available in the literature that presents
a detailed description of a real system. As a result of
this step, the 5-dimension model proposal presented
in [17] was selected.

2) Architecting the Wind Turbine example. We authors
applied the presented proposal for architecting the
WT. The main outcomes have already been pre-
sented in Fig. 4 and Fig. 6.

3) Collecting the evaluations. Different practitioners
were contacted by email with the following in-
structions. First, they should read carefully the 5-
dimension model proposal, as presented in [17], and

then our DDD-based proposal, paying special atten-
tion to the process of architecting a DT. Second, they
were requested to fill in an anonymous survey struc-
tured in the following sections: i) demographic data;
ii) a section for each analysed proposal that had 10
questions in the form:“As a practitioner, I found that
applying the proposal [PXXX], the outcome satisfies
the property [DTPY]”, where [PXXX] is the analysed
proposal and [DTPY] each one of the DT properties;
iii) any general comment they would like to provide
us with.

Fig. 7 summarizes the answers given by the five solicited
subjects. All of them have more than 5 years of experience
in Software Engineering. This was a compulsory require-
ment to ensure they have the background to make a fair
comparison between the proposals. Subjects 1 and 2, as
experts, have developed systems using DT. Subjects 3 and
4 have previous backgrounds in the field. Finally, Subject
5 has not worked with DTs but is an expert on other
related topics, such as IoT and CPS. Regarding DDD, only
Subject 3 is an expert; the other subjects just have some
background regarding DDD or related concepts, such as
hexagonal architecture. This aspect is highly relevant, as
a bias might have been introduced if most subjects were
experts in DDD.
Regarding the evaluation outcome, Fig. 7 illustrates that

our DDD-based proposal outperforms the 5-dimension
model proposal [17] for all the analysed properties. Re-
garding the mandatory properties (P1, P2, P3), all the
subjects considered (strongly agree, most of them) that
our DDD-based proposal facilitates their satisfaction. Only
(P2) Reflection was evaluated as neutral by Subject 1.
Even when the other subjects evaluated this property
positively, this suggests that our future work should be
oriented to guide architects in defining the domain layer.
Regarding the 5-dimension model proposal, subjects also
evaluated these 3 properties positively. These results are
consistent, as the 5-dimension model proposal is highly

Fig. 7. Evaluation of the 5-dimension model (5 dim [17]) and this
proposal (DDD))



detailed regarding describing the physical objects and their
mapping to logical objects.

However, greater differences can be perceived while
analysing the other properties. As can be observed, our
DDD-based proposal facilitates the satisfaction of all these
properties. The worst score (0,8) was obtained regarding
(P8) Replication. We consider that this was probably
due to the absence of constraints for this aspect in the
presented example. Regarding (P7) Predictability, we can
notice that both proposals had the same score. This is
highly positive because although the 5-dimension model
focuses its efforts on this aspect, it does not outperform
our DDD-based proposal. We have also detected that
Subject 1 evaluated this property negatively. Thus, some
additional work should be considered on this aspect. We
plan to investigate whether some alternative approaches
for modeling predictability could be considered; for in-
stance, using aggregations or entities instead of domain
services. For (P9) Persistency and (P4) Augmentation, we
also notice consistent results regarding our DDD-based
proposal. Subjects perceive that the LO developed with
our proposal not only facilitates additional functionalities
for the PO but also improves its availability over time.
For (P5) Composability, (P6) Memorization and (P10)
Accountability & Manageability, our DDD-based proposal
clearly provides much higher scores, where all the subjects
agree or strongly agree regarding the satisfaction of these
properties.

VII. Threats to Validity

In this section, we briefly discuss the threats to validity
of the presented evaluation.

Construct validity. These threats can be considered
mitigated. First, the paper itself presents the conceptual
framework (i.e., Minerva’s Properties from Section IV) to
be considered, so the context is clearly delimited. Also, the
survey is unequivocally asking for RQ2 itself.

Internal validity. The greatest threat may be due to
the selection of the subjects (i.e., participants in the
evaluation), and the bias which could be derived from
this. Different decisions were made to mitigate this threat.
First, all of them are practitioners, with an industrial
rather than an academic background; the enforced require-
ments were seasoned expertise in software engineering and
familiarity with modelling concepts. Most of them are fa-
miliar with DT concepts, granting even more independence
when assessing these models. Regarding DDD, we have one
expert and four novices in the topic. Thus our proposal
should be fairly evaluated in its own merits. Finally, all
of the practitioners were fully independent, and there is
no contact or connection between them, so a selection-
maturation threat is unlikely.

External validity. Although the number of subjects is
rather limited, they were chosen as representatives from
their own backgrounds. To improve the external validity,
the evaluation was conducted by comparing our proposal
with the well-known Wind Turbine case study from [17],
which can already be considered a reference example in
the field itself. Finally, instead of using a self-developed

conceptual model for our comparison, we rely on the
reference framework by Minerva et al. [9].

Reliability. Again, the main threat here is whether
the selection of the subjects might be affected by their
relationship to the authors; indeed, practitioners were
contacted by the conductors of the survey, directly or indi-
rectly. However, none of them has a working relationship
with any of the authors, and they are completely unrelated
to most of them. Moreover, no incentive was provided to
answer the survey, and all further interaction was fully
anonymous. Another threat is related to the selection of
the 5-dimension model as reference proposal conducted by
an expert practitioner. To mitigate this threat two actions
were conducted. First, this expert was not involved in
the definition of this proposal. Second, this expert was
requested to select the best possible proposal considering
it must be highly cited in the literature and present a clear
case study, being both conditions clearly satisfied by the
5-dimension model.

VIII. Conclusions and Future Work

Several proposals are already intended to help define
and model DTs. They consists of mapping a specific
physical configuration, and then its virtual correspondence
(i.e. logical objects and their connections), rather than
assisting in developing the DT itself. For this reason,
many of them rely on describing a pre-fixed software
architecture, instead of helping in the design of a suitable
architecture for this DT.

The goal of our proposal is explicitly to assist in the
design of DTs able to be reused in different contexts. The
DT architecture must include the relevant abstractions,
independently from particular configurations. Therefore, it
must identify the corresponding types of DTs (tDT), their
internal structure and their relationships to each other.
This process provides the identification method, the de-
scription of their internal architecture and domain model,
and the connection pattern. The proposal was used to
specify a Wind Turbine. After that, we are in the position
to answer positively (RQ1), that is, DDD can actually
be applied to the design of DTs. Finally, the proposal
was evaluated by external practitioners who, after reading
both the 5-dimension model proposal presented in [17]
and our proposal, answered a survey to evaluate to which
extent each proposal supports Minerva’s properties. The
outcome satisfies all mandatory DT properties, and also
supports most of the optional ones. Thus, we also answer
positively (RQ2) that is, it provides a higher satisfaction
of those properties than the alternative proposal. A 1-
to-1 comparison to this other proposal still favours our
proposal, even using the case proposed in [17].

Soon, we intend to apply this process to design a full-
fledged DT architecture in the healthcare domain, to check
its actual impact on real-world development and to obtain
feedback from more practitioners. We also plan to conduct
a formal case-study evaluation to identify the main issues
in the existing process, refine it, and analyse its usability.



References

[1] M. Grieves and J. Vickers, “Digital twin: Mitigating unpre-
dictable, undesirable emergent behavior in complex systems,” in
Transdisciplinary perspectives on complex systems. Springer,
2017, pp. 85–113.

[2] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn,
“Digital twin in manufacturing: A categorical literature review
and classification,” IFAC-PapersOnLine, vol. 51, no. 11, pp.
1016–1022, 2018.

[3] A. Niati, C. Selma, D. Tamzalit, H. Bruneliere, N. Mebarki, and
O. Cardin,“Towards a digital twin for cyber-physical production
systems: a multi-paradigm modeling approach in the postal
industry,” in 23rd ACM/IEEE Int. Conf. on Model Driven
Engineering Languages and Systems: Companion Proceedings,
2020, pp. 1–7.

[4] C. Verdouw, B. Tekinerdogan, A. Beulens, and S. Wolfert,
“Digital twins in smart farming,”Agricultural Systems, vol. 189,
p. 103046, 2021.

[5] N. Mohammadi and J. E. Taylor, “Smart city digital twins,”
in 2017 IEEE Symposium Series on Computational Intelligence
(SSCI), vol. 27, 2017.

[6] K. Bruynseels, F. Santoni de Sio, and J. Van den Hoven,
“Digital twins in health care: ethical implications of an emerging
engineering paradigm,” Frontiers in genetics, p. 31, 2018.

[7] A. Maćıas and E. Navarro, “Paradigms for the conceptualiza-
tion of cyber-physical-social-thinking hyperspace: A thematic
synthesis,” Journal of Ambient Intelligence and Smart Environ-
ments, vol. 14, no. 4, pp. 285–316, 2022.

[8] S. S. Kamble, A. Gunasekaran, H. Parekh, V. Mani, A. Belhadi,
and R. Sharma, “Digital twin for sustainable manufacturing
supply chains: Current trends, future perspectives, and an im-
plementation framework,” Technological Forecasting and Social
Change, vol. 176, p. 121448, 2022.

[9] R. Minerva, G. M. Lee, and N. Crespi, “Digital Twin in the
IoT Context: A Survey on Technical Features, Scenarios, and
Architectural Models,”Proceedings of the IEEE, vol. 108, no. 10,
pp. 1785–1824, oct 2020.

[10] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in
industry: State-of-the-art,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 4, pp. 2405–2415, 2018.

[11] B. Meyer, Object-oriented software construction. Prentice hall
Englewood Cliffs, 1997, vol. 2.

[12] E. J. Evans, Domain-driven design: tackling complexity in the
heart of software. Addison-Wesley Professional, 2004.

[13] S. Millett and N. Tune, Patterns, principles, and practices of
domain-driven design. John Wiley & Sons, 2015.

[14] L. Bass, P. Clements, and R. Kazman, Software architecture in
practice. Addison-Wesley Professional, 2003.

[15] A. Singjai, U. Zdun, and O. Zimmermann, “Practitioner views
on the interrelation of microservice apis and domain-driven
design: A grey literature study based on grounded theory,” in
18th IEEE International Conference On Software Architecture
(ICSA 2021), 2021.

[16] R. J. Wieringa, Design science methodology for information
systems and software engineering. Springer, 2014.

[17] F. Tao, M. Zhang, Y. Liu, and A. Y. Nee, “Digital twin driven
prognostics and health management for complex equipment,”
Cirp Annals, vol. 67, no. 1, pp. 169–172, 2018.

[18] Phoenix Contact, “RAMI 4.0 and IIRA reference architecture
models a question of perspective and focus,” 2020, last accessed
1 June 2022.

[19] S. Kosse, O. Vogt, M. Wolf, M. König, and D. Gerhard, “Digital
twin framework for enabling serial construction,” Frontiers in
Built Environment, vol. 8, p. 864722, 2022.

[20] I. 23247-1:2021, “Automation systems and integration — digital
twin framework for manufacturing — part 1: Overview and
general principles,” 2021.

[21] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, and A. Wort-
mann, “Model-driven digital twin construction: synthesizing the
integration of cyber-physical systems with their information sys-
tems,” in 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, 2020, pp. 90–101.

[22] Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu,
Z. Pang, and M. J. Deen, “A novel cloud-based framework for
the elderly healthcare services using digital twin,” IEEE access,
vol. 7, pp. 49 088–49 101, 2019.

[23] M. Li, Y. Fu, Q. Chen, and T. Qu, “Blockchain-enabled dig-
ital twin collaboration platform for heterogeneous socialized
manufacturing resource management,” International Journal of
Production Research, pp. 1–21, 2021.

[24] Y. F. Telnov, V. A. Kazakov, and A. V. Danilov,“Technology for
designing innovative processes for creating products and services
of a network enterprise using an i4. 0 knowledge-based system,”
Business Informatics, vol. 15, no. 4, pp. 76–92, 2021.


