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Abstract

Weakly supervised learning is a popular ap-
proach for training machine learning models
in low-resource settings. Instead of requesting
high-quality yet costly human annotations, it
allows training models with noisy annotations
obtained from various weak sources. Recently,
many sophisticated approaches have been pro-
posed for robust training under label noise, re-
porting impressive results. In this paper, we re-
visit the setup of these approaches and find that
the benefits brought by these approaches are
significantly overestimated. Specifically, we
find that the success of existing weakly super-
vised learning approaches heavily relies on the
availability of clean validation samples which,
as we show, can be leveraged much more ef-
ficiently by simply training on them. After
using these clean labels in training, the advan-
tages of using these sophisticated approaches
are mostly wiped out. This remains true even
when reducing the size of the available clean
data to just five samples per class, making these
approaches impractical. To understand the true
value of weakly supervised learning, we thor-
oughly analyze diverse NLP datasets and tasks
to ascertain when and why weakly supervised
approaches work. Based on our findings, we
provide recommendations for future research.1

1 Introduction

Weakly supervised learning (WSL) is one of the
most popular approaches for alleviating the anno-
tation bottleneck in machine learning. Instead of
collecting expensive clean annotations, it leverages
weak labels from various weak labeling sources
such as heuristic rules, knowledge bases or lower-
quality crowdsourcing (Ratner et al., 2017). These
weak labels are inexpensive to obtain, but are often
noisy and inherit biases from their sources. Deep
learning models trained on such noisy data without

∗Work done outside Amazon.
1Our code is available at: https://github.com/

uds-lsv/critical_wsl
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Figure 1: Performance improvement over weak la-
bels on the test sets. Each point represents the average
performance improvement of one approach over five
runs. On various NLP datasets, weakly supervised meth-
ods (dots) outperform weak labels (blue line) on the test
sets. However, simply fine-tuning on the available clean
validation data (light green crosses) outperforms all
sophisticated weakly supervised methods in almost all
cases. See Appendix D.2 for experimental details.

regularization can easily overfit to the noisy la-
bels (Zhang et al., 2017; Tänzer et al., 2022). Many
advanced WSL techniques have recently been pro-
posed to combat the noise in weak labels, and sig-
nificant progress has been reported. On certain
datasets, they even manage to match the perfor-
mance of fully-supervised models (Liang et al.,
2020; Ren et al., 2020; Yu et al., 2021).

In this paper, we take a close look at the claimed
advances of these WSL approaches and find that
the benefits of using them are significantly over-
estimated. Although they appear to require only
weak labels during training, a substantial number
of clean validation samples are used for various
purposes such as early-stopping (Liang et al., 2020;
Yu et al., 2021) and meta-learning (Ren et al., 2018;
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Shu et al., 2019; Zheng et al., 2021). We cast doubt
on this practice: in real-world applications, these
clean validation samples could have instead been
used for training. To address our concern, we ex-
plore fine-tuning models directly on the validation
splits of eight datasets provided by the WRENCH
benchmark (Zhang et al., 2021b) and compare it
to recent WSL algorithms. The results are shown
in Figure 1. Interestingly, although all WSL mod-
els generalize better than the weak labels, simply
fine-tuning on the validation splits outperforms
all WSL methods in almost all cases, sometimes
even by a large margin. This suggests that existing
WSL approaches are not evaluated in a realistic set-
ting and the claimed advances of these approaches
may be overoptimistic. In order to determine the
true benefits of WSL approaches in a realistic set-
ting, we conduct extensive experiments to investi-
gate the role of clean validation data in WSL. Our
findings can be summarized as follows:

• Without access to any clean validation sam-
ples, all WSL approaches analyzed in this
work fail to work, performing similarly to or
worse than the weak labels (§4).

• Although increasing the amount of clean vali-
dation samples improves WSL performance
(§5), these validation samples can be more
efficiently leveraged by directly training on
them, which can outperform WSL approaches
when there are more than 10 samples per class
for most datasets (§6).

• Even when enabling WSL models to continue
training on clean validation samples, they can
barely beat an embarrassingly simple baseline
which directly fine-tunes on weak labels fol-
lowed by fine-tuning on clean samples. This
stays true with as few as 5 samples per class
(§7).

• The knowledge encoded in pre-trained lan-
guage models biases them to seek linguistic
correlations rather than shallow rules from
the weak labels; further fine-tuning the pre-
trained language models with contradicting
examples helps reduce biases from weak la-
bels (§8).

Altogether, we show that existing WSL approaches
significantly overestimate their benefits in a real-
istic setting. We suggest future work to (1) fully
leverage the available clean samples instead of only

using them for validation and (2) consider the sim-
ple baselines discussed in this work when compar-
ing WSL approaches to better understand WSL’s
true benefits.

2 Related work

Weak supervision. Weak supervision is pro-
posed to ease the annotation bottleneck in training
machine learning models. It uses weak sources to
automatically annotate the data, making it possible
to obtain a large amount of annotated data at a low
cost. A comprehensive survey is done in Zhang
et al. (2022). Ratner et al. (2017) propose to la-
bel data programmatically using heuristics such as
keywords, regular expressions or knowledge bases.
One drawback of weak supervision is that its an-
notations are noisy, i.e., some annotations are in-
correct. Training models on such noisy data may
result in poor generalization (Zhang et al., 2017;
Tänzer et al., 2022; Zhang et al., 2022). One option
to counter the impact of wrongly labeled samples
is to re-weight the impact of examples in loss com-
putation (Ren et al., 2018; Shu et al., 2019; Zheng
et al., 2021). Another line of research leverages
the knowledge encoded in large language models
(Ren et al., 2020; Stephan et al., 2022). Methods
such as BOND (Liang et al., 2020), ASTRA (Kara-
manolakis et al., 2021) and COSINE (Yu et al.,
2021) apply teacher-student frameworks to train
noise-robust models. Zhu et al. (2023) show that
teacher-student frameworks may still be fragile in
challenging situations and propose incorporating
meta-learning techniques in such cases. Multiple
benchmarks are available to evaluate weak supervi-
sion systems, e.g., WRENCH (Zhang et al., 2021b),
Skweak (Lison et al., 2021), and WALNUT (Zheng
et al., 2022a). In this paper, we take representative
datasets from WRENCH and reevaluate existing
WSL approaches in more realistic settings.

Realistic evaluation. Certain pitfalls have been
identified when evaluating machine learning mod-
els developed for low-resource situations. Earlier
work in semi-supervised learning (SSL) in com-
puter vision, for example, often trains with a few
hundred training examples while retaining thou-
sands of validation samples for model selection
(Tarvainen and Valpola, 2017; Miyato et al., 2018).
Oliver et al. (2018) criticize this setting and pro-
vide specific guidance for realistic SSL evaluation.
Recent work in SSL has been adapted to discard
the validation set and use a fixed set of hyperpa-
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rameters across datasets (Xie et al., 2020; Zhang
et al., 2021a; Li et al., 2021). In NLP, it has been
shown that certain (prompt-based) few-shot learn-
ing approaches are sensitive to prompt selection
which requires separate validation samples (Perez
et al., 2021). This defeats the purported goal of
few-shot learning, which is to achieve high per-
formance even when collecting additional data is
prohibitive. Recent few-shot learning algorithms
and benchmarks have adapted to a more realistic
setting in which fine-grained model selection is ei-
ther skipped (Gao et al., 2021; Alex et al., 2021;
Bragg et al., 2021; Schick and Schütze, 2022; Lu
et al., 2022) or the number of validation samples
are strictly controlled (Bragg et al., 2021; Zheng
et al., 2022b). To our knowledge, no similar work
exists exploring the aforementioned problems in
the context of weak supervision. This motivates
our work.

3 Overall setup

Problem formulation. Formally, let X and Y be
the feature and label space, respectively. In stan-
dard supervised learning, we have access to a train-
ing set D = {(xi, yi)}Ni=1 sampled from a clean
data distribution Dc of random variables (X,Y ) ∈
X × Y . In weak supervision, we are instead given
a weakly labeled dataset Dw = {(xi, ŷi)}Ni=1 sam-
pled from a noisy distribution Dn, where ŷi repre-
sents labels obtained from weak labeling sources
such as heuristic rules or crowd-sourcing.2 ŷi is
noisy, i.e., it may be different from the ground-truth
label yi. The goal of WSL algorithms is to obtain a
model that generalizes well on Dtest ∼ Dc despite
being trained on Dw ∼ Dn. In recent WSL work,
a set of clean samples, Dv ∼ Dc, is also often
included for model selection.3

Datasets. We experiment with eight datasets cov-
ering different NLP tasks in English. Concretely,
we include four text classification datasets: (1)
AGNews (Zhang et al., 2015), (2) IMDb (Maas
et al., 2011), (3) Yelp (Zhang et al., 2015), (4)
TREC (Li and Roth, 2002), two relation classifica-
tion datasets: (5) SemEval (Hendrickx et al., 2010)
and (6) ChemProt (Krallinger et al., 2017), and

2Majority voting can be used to resolve conflicting weak
labels from different labeling sources.

3We refer to model selection as the process of finding the
best set of hyperparameters via a validation set, including the
optimal early-stopping time. Prior work has shown that early-
stopping is crucial for learning with noisy labels (Arpit et al.,
2017; Yu et al., 2021; Zhu et al., 2022; Tänzer et al., 2022).

two Named-Entity Recognition (NER) datasets:
(7) CoNLL-03 (Tjong Kim Sang and De Meul-
der, 2003) and (8) OntoNotes (Pradhan et al.,
2013). The weak annotations are obtained from the
WRENCH (Zhang et al., 2021b) benchmark. Table
1 summarizes the basic statistics of the datasets.

Dataset Task # Class # Train # Val # Test

AGNews Topic 4 96K 12K 12K
IMDb Sentiment 2 20K 2.5K 2.5K
Yelp Sentiment 2 30K 3.8K 3.8K
TREC Question 6 4,965 500 500
SemEval Relation 9 1,749 178 600
ChemProt Relation 10 13K 1.6K 1.6K
CoNLL-03 NER 4 14K 3.2K 3.4K
OntoNotes 5.0 NER 18 115K 5K 23K

Table 1: Dataset statistics. Additional details on
datasets are provided in Appendix A.

WSL baselines. We analyze popular WSL ap-
proaches including: (1) FTW represents the stan-
dard fine-tuning approach4 (Howard and Ruder,
2018; Devlin et al., 2019). Ren et al. (2020), Zhang
et al. (2021b) and Zheng et al. (2022a) show that a
pre-trained language model (PLM) fine-tuned on
a weakly labeled dataset often generalizes better
than the weak labels synthesized by weak labeling
sources. (2) L2R (Ren et al., 2018) uses meta-
learning to determine the optimal weights for each
(noisy) training sample so that the model performs
best on the (clean) validation set. Although this
method was originally proposed to tackle artifi-
cial label noise, we find it performs on par with
or better than recent weak supervision algorithms
on a range of datasets. (3) MLC (Zheng et al.,
2021) uses meta-learning as well, but instead of
weighting the noisy labels, it uses the meta-model
to correct them. The classifier is then trained on
the corrected labels. (4) BOND (Liang et al., 2020)
is a noise-aware self-training framework designed
for learning with weak annotations. (5) COSINE
(Yu et al., 2021) underpins self-training with con-
trastive regularization to improve noise robustness
further and achieves state-of-the-art performance
on the WRENCH (Zhang et al., 2021b) benchmark.

To provide a fair comparison, we use RoBERTa-
base (Liu et al., 2019) as the common backbone
PLM for all WSL approaches (re)implemented in
this paper.

4We use the subscript “W” to emphasize that this fine-
tuning is done on the weakly annotated data and to distinguish
it from the fine-tuning experiments in Section 6 which are
done on clean data.
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Figure 2: Relative performance gain over weak la-
bels when varying validation conditions. The dots
show the average performance gain across 5 runs for
each of the 8 datasets. The curves show the average
gain across datasets. WSL baselines achieve noticeable
performance gains only if a clean validation set is used.
Performing model selection on a weakly labeled valida-
tion set does not help generalization. Note that L2R and
MLC are not applicable without validation data.

4 Is clean data necessary for WSL?

Recent best-performing WSL approaches rely on
a clean validation set for model selection. Fig-
ure 1 reveals that they fail to outperform a simple
model that is directly fine-tuned on the validation
set. Therefore, a natural question to ask is: “Will
WSL still work without accessing the clean valida-
tion set?”. If the answer is yes, then we can truly
reduce the burden of data annotation and the bene-
fits of these WSL approaches would be undisputed.
This section aims to answer this question.

Setup. We compare three different validation
choices for model selection using either (1) a clean
validation set from Dv as in prior work, (2) weak la-
bels from D̃v obtained by annotating the validation
set via weak labeling sources (the same procedure
used to construct training annotations), or (3) no
validation data at all. In the last setting, we ran-
domly select 5 sets of hyperparameters from our
search space (see Appendix C). We run the WSL
approaches introduced in Section 3 on all eight
datasets with different validation choices and mea-
sure their test performance. Each experiment is
repeated 5 times with different seeds.

While one may expect a certain drop in perfor-
mance when switching from Dv to D̃v, the abso-
lute performance of a model does not determine

the usefulness of a WSL method. We are more
interested in whether a trained model generalizes
better than the weak labels.5 In realistic applica-
tions, it is only worth deploying trained models if
they demonstrate clear advantages over the weak
labels. Therefore, we report the relative perfor-
mance gain of WSL approaches over the weak
labels. Formally, let PWL, Pα denote the perfor-
mance (accuracy, F1-score, etc.) achieved by the
weak labels and a certain WSL method α, respec-
tively. The the relative performance gain is defined
as Gα = (Pα − PWL)/PWL. We consider a WSL
approach to be effective and practically useful only
if Gα > 0.

Results. Figure 2 shows the relative performance
gain for all considered WSL approaches. When
model selection is performed on a clean valida-
tion set (green curve), all weak supervision base-
lines generalize better than the weak labels. So-
phisticated methods like COSINE and L2R push
the performance even further. This observation
is consistent with previous findings (Zhang et al.,
2021b; Zheng et al., 2022a). However, when us-
ing a weakly labeled validation set (yellow curve),
all WSL baselines become ineffective and barely
outperform the weak labels. More interestingly,
models selected through the weakly labeled valida-
tion sets do not outperform models configured with
random hyperparameters (purple curve). These
results demonstrate that model selection on clean
validation samples plays a vital role in the effective-
ness of WSL methods. Without clean validation
samples, existing WSL approaches do not work.

5 How much clean data does WSL need?

Now that we know clean samples are necessary
for WSL approaches to work, a follow-up question
would be: “How many clean samples do we need?”
Intuitively, we expect an improvement in perfor-
mance as we increase the amount of clean data, but
it is unclear how quickly this improvement starts to
level off, i.e., we may find that a few dozen clean
samples are enough for WSL approaches to per-
form model selection. The following section seeks
to answer this question.

5Weak labeling sources are typically applied to the training
data to synthesize a weakly annotated training set. However,
it is also possible to synthesize the weak labels for the test set
following the same procedure and measure their performance.
In other words, weak labeling sources can be regarded as the
most basic classification model, and the synthesized weak
labels are its predictions.
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Figure 3: The impact of the number of clean validation samples on performance. We plot average performance
and standard deviation over 5 runs varying the size of the clean validation data. Whenever a small proportion of
validation data is provided, most WSL techniques generalize better than the weak label baseline (grey dashed line).
Performance improves with additional validation samples, but this tendency usually levels out with a moderate
number of validation samples.

Setup. We apply individual WSL approaches and
vary the size of clean data sub-sampled from the
original validation split. For text and relation clas-
sification tasks, we draw an increasing number of
clean samples N ∈ {5, 10, 15, 20, 30, 40, 50} per
class when applicable.6 In the case of NER, as a
sentence may contain multiple labels from different
classes, selecting exactly N samples per class at
random is impractical. Hence, for NER we sample
N ∈ {50, 100, 200, 300, 400, 500} sentences for
validation. For each N , we run the same experi-
ment 5 times. Note that the clean data is used solely
for model selection in this set of experiments.

Results. As shown in Figure 3, in most cases, a
handful of validation samples already make WSL
work better than the weak labels. We observe an
increasing trend in performance with more valida-
tion samples, but typically this trend weakens with
a moderate size of samples (~30 samples per class
or ~200 sentences) and adding more samples pro-
vides little benefit. There are a few exceptions. For
example, on IMDb all methods except L2R con-
sistently perform better with more validation data.
On CoNLL-03, on the other hand, most methods
seem to be less sensitive to the number of samples.
Overall, the results suggest that a small amount

6The validation set of SemEval is too small to support
N > 20. Also, if a dataset is unbalanced, we randomly select
N × C samples, where C denotes the number of classes.
This is a realistic sampling procedure when performing data
annotation.

of clean validation samples may be sufficient for
current WSL methods to achieve good perfor-
mance. Using thousands of validation samples,
like in the established benchmarks (Zhang et al.,
2021b; Zheng et al., 2022a), is neither realistic nor
necessary.

6 Is WSL useful with less clean data?

The previous sections have shown that current WSL
approaches (1) do not improve over direct fine-
tuning on the existing validation splits (Figure 1)
and (2) require only a small amount of validation
samples to be effective (Figure 3). This section
investigates whether the conclusion from Figure 1
would change with less clean data, i.e., can WSL
approaches outperform direct fine-tuning when less
clean data is available?

Setup. We follow the same procedure as in Sec-
tion 5 to subsample the cleanly annotated valida-
tion sets and fine-tune models directly on the sam-
pled data. In addition to the standard fine-tuning
approach (Devlin et al., 2019), we also experiment
with three parameter-efficient fine-tuning (PEFT)
approaches as – in the few-shot setting – they have
been shown to achieve comparable or even better
performance than fine-tuning all parameters (Peters
et al., 2019; Logan IV et al., 2022; Liu et al., 2022).
In particular, we include adapters (Houlsby et al.,
2019), LoRA (Hu et al., 2022), and BitFit (Zaken
et al., 2022).
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Figure 4: Using clean data for validation vs. training. We show the average performance (Acc. and F1-score in
%) difference between (parameter-efficient) fine-tuning approaches and COSINE when varying amounts of clean
samples. COSINE uses the clean samples for validation, whereas fine-tuning approaches directly train on them
(indicated in the legend with the subscript ‘C’). For most sequence classification tasks, fine-tuning approaches
work better once 10 clean samples are available for training. For NER, several hundreds of clean sentences may be
required to attain better results via fine-tuning. Refer to Appendix D for a comparison with other WSL approaches.

We use one fixed set of hyperparameter config-
urations and train models for 6000 steps on each
dataset.7 We report performance at the last step
and compare it with WSL approaches which use
the same amount of clean data for validation.

Results. Figure 4 shows the performance differ-
ence between the fine-tuning baselines and CO-
SINE, one of the best-performing WSL approaches,
when varying the number of clean samples. It
can be seen that in extremely low-resource cases
(less than 5 clean samples per class), COSINE
outperforms fine-tuning. However, fine-tuning ap-
proaches quickly take over when more clean sam-
ples are available. LoRA performs better than CO-
SINE on three out of four text classification tasks
with just 10 samples per class. AGNews is the only
exception, where COSINE outperforms LoRA by
about 1% when 20 samples per class are available,
but adapters outperform COSINE in this case. Re-
lation extraction has the same trend where 10–20
samples per class are often enough for fine-tuning
approaches to catch up. For NER tasks, all fine-
tuning approaches outperform COSINE with as

7The hyperparameters are randomly picked from the
ranges mentioned in the original papers of corresponding
methods and fixed across all experiments. We did not cherry-
pick them based on the test performances. In most cases the
training loss converges within 300 steps. We intentionally
extend training to show that we do not rely on extra data for
early-stopping. We find that overfitting to the clean data does
not hurt generalization. A similar observation is made in Mos-
bach et al. (2021). Detailed configurations are presented in
Appendix D.

few as 50 sentences on CoNLL-03. OntoNotes
seems to be more challenging for fine-tuning and
400 sentences are required to overtake COSINE.
Still, 400 sentences only account for 0.3% of the
weakly labeled samples used for training COSINE.
This indicates that models can benefit much more
from training on a small set of clean data rather
than on vast amounts of weakly labeled data. Note
that the fine-tuning approaches we experiment with
work out-of-the-box across NLP tasks. If one spe-
cific task is targeted, few-shot learning methods
with manually designed prompts might perform
even better.8 Hence, the performance shown here
should be understood as a lower bound of what
one can achieve by fine-tuning. Nevertheless, we
can see that even considering the lower bound of
fine-tuning-based methods, the advantage of us-
ing WSL approaches vanishes when we have as
few as 10 clean samples per class. For many real-
world applications, this annotation workload may
be acceptable, limiting the applicability of WSL
approaches.

7 Can WSL benefit from fine-tuning?

The WSL approaches have only used clean sam-
ples for validation so far, which is shown to be
inefficient compared to training directly on them.

8For example, Zhao et al. (2021) achieve an accuracy of
85.9% on AGNews using just 4 labeled samples in total. For
comparison, COSINE needs 20 labeled samples for validation
to reach 84.21%.
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Figure 5: Performance before and after continuous fine-tuning (CFT) on the clean data. The average
performance and standard deviation over 5 runs are reported. Though CFT improves the performance of WSL
approaches in general, the simplest baseline FTW gains the most from it. After applying CFT, FTW performs on
par with or better than more sophisticated WSL approaches, suggesting these sophisticated approaches might have
overestimated their actual value. Further plots are included in Appendix F.

We question whether enabling WSL methods to
further fine-tune on these clean samples would im-
prove their performance. In this section, we study
a straightforward training approach that makes use
of both clean and weak labels.9

Setup. Given both the weakly labeled training
data and a small amount of clean data, we consider
a simple two-phase training baseline. In the first
phase, we apply WSL approaches on the weakly
labeled training set, using the clean data for val-
idation. In the second phase, we take the model
trained on the weakly labeled data as a starting
point and continue to train it on the clean data. We
call this approach continuous fine-tuning (CFT).
In our experiment, we apply CFT to the two best-
performing WSL approaches, COSINE and L2R,
along with the most basic WSL baseline, FTW. We
sample clean data in the same way as in Section
5. The training steps of the second phase are fixed
at 6000. Each experiment is repeated 5 times with
different seeds.

Results. Figure 5 shows the model performance
before and after applying CFT. It can be seen that

9In Appendix E we also explored other baselines that com-
bine clean and weak data, but they perform considerably worse
than the approach we consider in this section.

CFT does indeed benefit WSL approaches in most
cases even with very little clean data (Figure 5a).
For L2R, however, the improvement is less obvious,
and there is even a decrease on Yelp and OntoNotes.
This could be because L2R uses the validation
loss to reweight training samples, meaning that
the value of the validation samples beyond that
may only be minimal. When more clean samples
are provided, CFT exhibits a greater performance
gain (Figure 5b). It is also noticeable that CFT
reduces the performance gap among all three WSL
methods substantially. Even the simplest approach,
FTW, is comparable to or beats L2R and COSINE
in all tasks after applying CFT. Considering that
COSINE and L2R consume far more computing
resources, our findings suggest that the net benefit
of using sophisticated WSL approaches may be
significantly overestimated and impractical for
real-world use cases.

Finally, we find the advantage of performing
WSL diminishes with the increase of clean samples
even after considering the boost from CFT. When
50 clean samples per class (500 sentences for NER)
are available, applying WSL+CFT only results in
a performance boost of less than 1% on 6 out of 8
datasets, compared with the baseline which only
fine-tunes on clean samples. Note that weak la-
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Figure 6: Performance curves of different PLMs dur-
ing training. PLMs are trained on weak labels and
evaluated on both clean and weakly labeled test sets.
Pre-training on larger corpora improves performance on
the clean distribution. Further plots are in Appendix G.

bels are no free lunch. Managing weak annotation
resources necessitates experts who not only have
linguistic expertise for annotation but also the abil-
ity to transform that knowledge into programs to
automate annotations. This additional requirement
naturally reduces the pool of eligible candidates
and raises the cost. In this situation, annotating
a certain amount of clean samples may be signifi-
cantly faster and cheaper. Thus, we believe WSL
has a long way to go before being truly helpful in
realistic low-resource scenarios.

8 What makes FTW+CFT effective?

As seen in the previous section, combining FTW
with CFT yields a strong baseline that more sophis-
ticated WSL approaches can hardly surpass. This
section examines factors that contribute to the ef-
fectiveness of this method. Specifically, we aim to
answer two questions: (1) “How does FTW resist
biases despite being trained only on weak labels?”
and (2) “How does CFT further reduce bias intro-
duced by weak labels?”.

Setup. To answer question (1), we modify the
backbone PLM to see if its encoded knowledge
plays an important role. We explore two additional
PLMs that are pre-trained on less data: RoBERTa-
small-1M and RoBERTa-base-10M, which are pre-
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Figure 7: Model performance varying the number
of clean samples N and agreement ratio α. Large
α generally causes a substantial drop in performance.
∗: Certain combinations of α and N are not feasible
because the validation set lacks samples with clean and
weak labels that coincide or differ. Further plots are in
Appendix G.

trained on 1M and 10M words, respectively.10 We
report model performance on both clean labels and
weak labels to see which labels the model tends to
fit. To answer question (2), we vary the agreement
ratio in the clean samples to see how these clean
labels help combat biases from weak labels. The
agreement ratio is defined as the percentage of sam-
ples whose clean labels match the corresponding
weak labels. Intuitively, if the clean label for a spe-
cific training example matches its weak label, then
this example may not contribute additional infor-
mation to help combat bias. A higher agreement
ratio should therefore indicate fewer informative
samples.

Results. Figure 6 shows the performances for
different PLMs. Pre-training on more data clearly
helps to overcome biases from weak labels. When
the pre-training corpus is small, the model tends
to fit the noisy weak labels more quickly than the
clean labels and struggles to outperform weak la-
bels throughout the entire training process. With
a large pre-training corpus, however, the model
can make better predictions on clean labels than

10The original RoBERTa-base model is pre-trained on 100B
words. The two less pre-trained models are obtained from
(Warstadt et al., 2020). RoBERTa-base-10M retains the same
architecture as RoBERTa-base, while RoBERTa-small-1M
contains fewer parameters.
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weak labels in the early stages of training, even
when it is only trained on weak labels. If we apply
proper early-stopping before the model is eventu-
ally dragged toward weak labels, we can attain a
model that generalizes significantly better than the
weak labels. This indicates that pre-training pro-
vides the model with an inductive bias to seek more
general linguistic correlations instead of superfi-
cial correlations from the weak labels, which aligns
with previous findings in Warstadt et al. (2020).
This turns out to be the key to why simple FTW
works here. Figure 7 shows how the agreement
ratio α in clean samples affects the performance.
Performance declines substantially for α > 70%,
showing that it is necessary to have contradictory
samples in order to reap the full advantage of CFT.
This is reasonable, given that having examples with
clean labels that coincide with their weak labels
may reinforce the unintended bias learned from the
weakly labeled training set. The optimal agreement
ratio lies around 50%. However, having α = 0 also
yields decent performance for most datasets except
TREC, suggesting contradictory samples play a
more important role here and at least a minimum
set of contradictory samples are required for CFT
to be beneficial.

9 Conclusions and recommendations

Our extensive experiments provide strong evidence
that recent WSL approaches heavily overestimate
their performance and practicality. We demon-
strated that they hinge on clean samples for model
selection to reach the claimed performance, yet
models that are simply trained on these clean sam-
ples are already better. When both clean and weak
labels are available, a simple baseline (FTW+CFT)
performs on par with or better than more sophisti-
cated methods while requiring much less computa-
tion and effort for model selection.

Inspired by prior work (Oliver et al., 2018; Perez
et al., 2021), our recommendations for future WSL
approaches are the following:

• Report the model selection criteria for pro-
posed methods and, especially, how much
they rely on the presence of clean data.

• Report how many cleanly annotated samples
are required for a few-shot learning approach
to reach the performance of a proposed WSL
approach. If thousands of weakly annotated
samples are comparable to a handful of clean

samples – as we have seen in Section 6 – then
WSL may not be the best choice for the given
low-resource setting.

• If a proposed WSL method requires extra
clean data, such as for validation, then the sim-
ple FTW+CFT baseline should be included in
evaluation to claim the real benefits gained by
applying the method.

We hope our findings and recommendations will
spur more robust future work in WSL such that
new methods are truly beneficial in realistic low-
resource scenarios.

Limitations

We facilitate fair comparisons and realistic evalu-
ations of recent WSL approaches. However, our
study is not exhaustive and has the following limi-
tations.

First, it may be possible to perform model selec-
tion by utilizing prior knowledge about the dataset.
For example, if the noise ratio (the proportion of
incorrect labels in the training set) is known in ad-
vance, it can be used to determine (a subset of)
hyperparameters (Han et al., 2018; Li et al., 2020).
In this case, certain WSL approaches may still work
without access to extra clean data.

Second, in this paper we concentrate on tasks
in English where strong PLMs are available. As
we have shown in Section 6, training them on a
small amount of data is sufficient for generalization.
For low-resource languages where no PLMs are
available, training may not be that effective, and
WSL methods may achieve higher performance.

Third, we experiment with datasets from the es-
tablished WRENCH benchmark, where the weak
labels are frequently assigned by simple rules like
as regular expressions (see Appendix B for exam-
ples). However, in a broader context, weak supervi-
sion can have different forms. For example, Smith
et al. (2022) generates weak labels through large
language models. Zhou et al. (2022) use hyper-link
information as weak labels for passage retrieval.
We have not extended our research to more diverse
types of weak labels.

Despite the above limitations, however, we iden-
tify the pitfalls in the existing evaluation of current
WSL methods and demonstrate simple yet strong
baselines through comprehensive experiments on a
wide range of tasks.
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A Datasets

In the following, we give a more comprehensive
description of the datasets used. A subset of the
commonly used WRENCH (Zhang et al., 2021b)
benchmark is used, covering various aspects such
as task type, coverage and dataset size. There is a
total of four classification, two relation extraction
and two sequence labeling datasets. See Table 2
for a detailed set of data statistics.

AGNews (Zhang et al., 2015) is a topic classifi-
cation dataset. The task is to classify news articles
into four topics, namely world, sports, business and
Sci-Fi/technology. Each labeling function is com-
posed of multiple keywords to search for. The num-
ber of keywords differs from a few up to dozens.

IMDb (Maas et al., 2011) is a dataset of movie
reviews sampled from the IMDb website. The task
is binary sentiment analysis. The labeling functions
are composed of keyword searches and regular ex-
pressions.

Yelp (Zhang et al., 2015) is another sentiment
analysis dataset, containing crowd-sourced busi-
ness reviews. The labeling functions are created
using keywords and a lexicon-based sentiment anal-
ysis library.

TREC (Li and Roth, 2002) is a question classifi-
cation dataset, i.e., it asks what type of response is
expected. The labels are abbreviation, description
and abstract concepts, entities, human beings, loca-
tions or numeric values. The labeling functions are
created using regular expressions and make a lot of
use of question words such as "what", "where" or
"who".

SemEval (Hendrickx et al., 2010) is a relation
classification dataset, using nine relation types. Ex-
amples for relation labels are cause-effect, entity-
origin or message-topic. Labeling functions are
created using entities within a regular expression.

ChemProt (Krallinger et al., 2017) is another
relation classification dataset, focusing on chemical
research literature. It contains ten different types of
relations, for example chemical-protein relations
such as “biological properties upregulator”. The
labeling functions are created using rules.

CoNLL-03 (Tjong Kim Sang and De Meulder,
2003) is a named entity recognition (NER) dataset,

with labels for the entities "person", "location", "or-
ganization", and "miscellaneous". Labeling func-
tions are built using previously trained keywords,
regular expressions and NER models.

OntoNotes 5.0 (Pradhan et al., 2013) is a another
NER dataset, using more fine-grained entities as
CoNLL-03. Here, a subset of the CoNLL weak
labeling sources is combined with keyword and
regular expression based weak labeling sources.

B Labeling functions

Weak labeling sources are often abstracted as label-
ing functions and vary in aspects such as coverage,
precision, or overlap (Ratner et al., 2017; Kara-
manolakis et al., 2021). To showcase how the weak
labeling process works, a selection of examples of
labeling functions is presented. More specifically,
we provide examples of rules for the two classifica-
tion datasets IMDb (Table 3) and TREC (Table 4),
the relation classification dataset SemEval (Table
5) and the NER dataset CoNLL-03 (Table 6).

C Overall implementation details

This section summarizes the overall implementa-
tion details of WSL approaches used in our pa-
per. Refer to Appendix D for hyperparameter con-
figurations of PEFT approaches. We use the Py-
Torch framework11 to implement all approaches
discussed in the paper. Hugging Face (Wolf et al.,
2020) is used for downloading and training the
RoBERTa-base model. AdapterHub (Pfeiffer et al.,
2020) is used for implementing parameter-efficient
fine-tuning.

Hyperparameters In this paper, we imple-
mented five WSL methods: FT (Devlin et al.,
2019), L2R (Ren et al., 2018), MLC (Zheng et al.,
2021), BOND (Liang et al., 2020), and COSINE
(Yu et al., 2021). We report the search ranges of
the hyperparameters in Table 7.

We do not search for batch size as we find it has
minor effects on the final performance. Instead, a
batch size of 32 is used across experiments. Also,
RoBERTa-base (Liu et al., 2019) is used as the
backbone PLM and AdamW (Loshchilov and Hut-
ter, 2019) is the optimizer used across all methods.

Computing infrastructure and training cost
We use Nvidia V100-32 GPUs for training deep
learning models. All WSL approaches studied in

11https://pytorch.org/
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Avg. over labeling functions (LFs)

Dataset Task #Classes #LFs %Ovr. Coverage %Coverage %Overlap %Conflict %Prec. MV #Train #Dev #Test

AGNews News Class. 4 9 69.08 10.34 5.05 2.43 81.66 81.23 96,000 12,000 12,000
IMDb Movie Sentiment Class. 2 5 87.58 23.60 11.60 4.50 69.88 73.86 20,000 2,500 2,500
Yelp Business Sentiment Class. 2 8 82.78 18.34 13.58 4.94 73.05 73.31 30,400 3,800 3,800
TREC Question Class. 6 68 95.13 2.55 1.82 0.84 75.92 62.58 4,965 500 500
SemEval Web Text Relation Class. 9 164 100.00 0.77 0.32 0.14 97.69 77.33 1,749 200 692
ChemProt Chemical Relation Class. 10 26 85.62 5.93 4.40 3.95 46.65 55.12 12,861 1,607 1,607
CoNLL-03 English News NER 4 16 100 100 4.30 1.44 72.19 60.38 14,041 3250 3453
OntoNotes 5.0 Multi-Domain NER 18 17 100 100 1.55 0.54 54.84 58.92 115,812 5,000 22,897

Table 2: Detailed data statistics. Note that ‘Class.’ is an abbreviation for classification. Coverage is the amount of
samples a labeling function (LF) matches. For NER datasets, labeling functions return an entity or "O" thus coverage
is always 100%. Overlap asks how many samples have at least 2 matching labeling functions. MV (majority vote)
performance is given as F1-score for the NER datasets and as accuracy on the test set otherwise.

Label Labeling Function

POS beautiful, handsome, talented
NEG than this, than the film, than the movie
POS .*(highly|do|would|definitely|certainly|strongly|i|we).*(recommend|nominate).*
POS .*(high|timeless|priceless|HAS|great|real|instructive).*(value|quality|meaning|significance).*

Table 3: Examples of two keyword based and two regular expression based rules for the IMDb dataset.

this paper can fit into one single GPU. We report
the training time of the WSL methods in Table 8.

D Training with clean samples

D.1 Methods and implementation details

In Section 6, we apply four (parameter-efficient)
fine-tuning approaches to train models on clean
validation sets. Since we do not have extra data for
model selection, we choose a fixed set of hyperpa-
rameters for all datasets. In the following we briefly
introduce the fine-tuning approaches, together with
their hyperparameter configurations.

• Vanilla fine-tuning (Devlin et al., 2019; Liu
et al., 2019) is the standard fine-tuning ap-
proaches for pre-trained language models. It
works by adding a randomly initialized classi-
fier on top of the pre-trained model and train-
ing it together with all other model parameters.
We use a fixed learning rate of 2e−5 in all ex-
periments.

• Adapter-based fine-tuning (Houlsby et al.,
2019) adds additional feed-forward layers
called adapters to each layer of the pre-trained
language model. During fine-tuning, we only
update the weights of these adapter layers and
keep all other parameters frozen at their pre-
trained values. We use a fixed learning rate of
2e−5 in all experiments. The reduction factor
is set to 16.

• BitFit (Zaken et al., 2022) updates only the
bias parameters of every layer and keeps all
other weights frozen. Despite its simplicity
it has been demonstrated to achieve similar
results to adapter-based fine-tuning. We use a
fixed learning rate of 1e−4 in all experiments.

• LoRA (Hu et al., 2022) is a recently proposed
adapter-based fine-tuning method which uses
a low-rank bottleneck architecture in each of
the newly added feed-forward networks. The
motivation here is to perform a low rank up-
date to the model during fine-tuning. We use a
fixed learning rate of 2e−5 in all experiments.
The α value used in LoRa is fixed to 16.

In all experiments, the batch size used in all fine-
tuning approaches is 32. The optimizer is AdamW
(Loshchilov and Hutter, 2019).

D.2 Training on the full validation sets

In addition to training sets, the WRENCH (Zhang
et al., 2021b) benchmark provides a validation set
for each of its tasks. The validation sets are cleanly
annotated and typically range in size from 5% to
25% of the weakly annotated training sets. Al-
though such validation size is reasonable for fully
supervised learning, we suspect that it is exorbi-
tant in the sense that it provides a significantly
better training signal for models than the weakly
annotated training set. Thus we compare the per-
formance of recent WSL approaches that access
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Label Labeling Function

ABBREVIATION ( |^)(what|what)[^\w]* (\w+ ){0,1}(does|does)[^\w]* ([^\s]+ )*(stand for)[^\w]*( |$)
DESCRIPTION ( |^)(explain|describe|how|how)[^\w]* (\w+ ){0,1}(can|can)[^\w]*( |$)
ENTITY ( |^)(which|what|what)[^\w]* ([^\s]+ )*(organization|trust|company|company)[^\w]*( |$)
HUMAN ( |^)(who|who)[^\w]*( |$)
LOCATION ( |^)(which|what|where|where)[^\w]* ([^\s]+ )*(situated|located|located)[^\w]*( |$)
NUMERIC ( |^)(by how|how|how)[^\w]* (\w+ ){0,1}(much|many|many)[^\w]*( |$)

Table 4: Rules for the TREC dataset. For each label a representative labeling function is given.

Label Labeling Function

Cause-Effect(e1,e2) SUBJ-O caused OBJ-O
Component-Whole(e1,e2) SUBJ-O is a part of the OBJ-O
Content-Container(e1,e2) SUBJ-O was contained in a large OBJ-O
Entity-Destination(e1,e2) SUBJ-O into OBJ-O
Entity-Origin(e1,e2) SUBJ-O emerged from the OBJ-O
Instrument-Agency(e2,e1) SUBJ-O took the OBJ-O
Member-Collection(e2,e1) SUBJ-O of different OBJ-O
Message-Topic(e1,e2) SUBJ-O states that the OBJ-O
Product-Producer(e1,e2) SUBJ-O created by the OBJ-TITLE

Table 5: One labeling function for each label of the SemEval dataset. Here e1 and e2 are entities which are already
available in the dataset.

Label Labeling Function

PERSON RegEx searching list one of 7559 first names, followed by an upper-cased word
LOCATION List of 15205 places
ORGANIZATION WTO, Starbucks, mcdonald, google, Baidu, IBM, Sony, Nikon
MISCELLANEOUS List of countries, languages, events and facilities

Table 6: For each label, one labeling function of the CoNLL-03 dataset is displayed.
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Hyperparameter Search Range

Learning rate 2e-5, 3e-5, 5e-5
Warm-up steps 50, 100, 200

(a) FT (for both training on clean or weak labels)

Hyperparameter Search Range

Learning rate 2e-5, 3e-5, 5e-5
Meta-learning rate 1e-4, 2e-5, 1e-5

(b) L2R

Hyperparameter Search Range

Learning rate 2e-5, 3e-5, 5e-5
Meta-learning rate 1e-4, 2e-5, 1e-5
hdim 512, 768

(c) MLC

Hyperparameter Search Range

Learning rate 2e-5, 3e-5, 5e-5
T1 5000
T2 5000
T3 50, 100, 300, 500

Confidence threshold 0.1, 0.3, 0.5, 0.7, 0.8, 0.9

(d) BOND

Hyperparameter Search Range

Learning rate 2e-5, 3e-5, 5e-5
T1 5000
T2 5000
T3 50, 100, 300, 500

Distance measure cosine
Regularization factor 0.05 0.1 0.2
Confidence threshold 0.1, 0.3, 0.5, 0.7, 0.8, 0.9

(e) COSINE

Table 7: The search range of the hyperparameters of the five WSL approaches considered in the paper. For BOND
and COSINE, we set T1 and T2 to constant values, because we stop training once early-stopping is triggered.

AGNews IMDb Yelp TREC SemEval ChemProt CoNLL-03 OntoNotes 5.0
FT 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.5
L2R 2.0 1.2 1.5 0.3 0.3 0.4 0.9 1.2
MLC 1.2 0.8 1.2 0.3 0.2 0.5 1.2 1.0
BOND 0.5 0.2 0.5 0.1 0.1 0.2 0.4 1.1
COSINE 0.6 0.2 0.6 0.2 0.2 0.3 0.5 1.5

Table 8: Running time in hours of each WSL method when trained on a weakly labeled training set. Since we also
track the validation and test performance during training, the training time reported here actually overestimates the
training time required for each method.
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both the training and validation sets with a model
that is directly fine-tuned on the validation set. The
following WSL methods are included in this ex-
periment: L2R (Ren et al., 2018), MetaWN (Shu
et al., 2019), BOND (Liang et al., 2020), Denoise
(Ren et al., 2020), MLC (Zheng et al., 2021), and
COSINE (Yu et al., 2021). Following prior work,
we select the best set of hyperparameters via the
validation set when applying the WSL methods.
Also, early-stopping based on the validation perfor-
mance is applied. In contrast, the direct fine-tuning
baseline uses a fixed set of hyperparameters across
all datasets, and no early-stopping is applied (same
configuration as in Appendix D.1). We train this
baseline for 6000 steps. In all cases, the training
losses converged much earlier than 6000 steps, but
we deliberately kept training for longer to show
that the good performance achieved by this base-
line is not due to any fine-grained configurations.
As shown in Figure 1, this simple baseline outper-
forms all the WSL methods in all but one case.

D.3 Extended comparison of training on clean
data and validation for WSL approaches

In Section 6, standard fine-tuning (FT) and mul-
tiple parameter-efficient fine-tuning (PEFT) are
compared with the competitive WSL method CO-
SINE. In this section, we provide additional plots
which show the same comparison with the other
WSL methods examined in this work, namely L2R,
MLC, and BOND. We report average performance
(Acc. and F1 in %) difference between (parameter-
efficient) fine-tuning methods and the specific WSL
method for varying number of clean samples. The
overall tendency is consistent with the results in
Section 6: WSL methods perform well on a small
amount of clean labeled data but PEFT outperforms
WSL methods with an increasing amount of clean
labeled data.

E Additional baselines that combine weak
and clean data during training

Besides CFT we also explored two simple baselines
that combine both the cleanly and weakly annotated
data in training:

1. WCmix: it mixes the clean data into the
weakly labeled training set. We then fine-tune
a PLM on this combined dataset.

2. WCbatch: in each batch, we mix the weakly
and cleanly labeled data at a ratio of 50:50.

This makes sure that the model can access
clean samples in each batch.

We compared these two baselines with CFT, the
results are shown in Figure 9. It can be seen that
when the same amount of data is accessed, CFT
outperforms the two baselines in most cases, some-
times by a large margin.

F Additional plots on CFT with different
numbers of clean samples

We show further plots of experiments in Section
7 with different numbers of clean samples in Fig-
ure 10. More specifically, it shows the results for
selecting N ∈ {10, 20, 30, 40} clean samples per
class from the clean validation set for classifica-
tion and N ∈ {100, 200, 300, 400} for NER tasks.
These results corroborate the analysis presented in
Section 7.

G CFT with different PLMs and
agreement ratios

We provide additional plots of the experiments
mentioned in Section 8 on more datasets. Figure
11 shows the performance of CFT using different
PLMs during training and Figure 12 shows the per-
formance when the number of clean samples and
the agreement ratio is varied.
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Figure 8: Performance difference of (parameter-efficient) fine-tuning approaches (FT, LoRA, BitFit and Adapter)
with WSL apporaches (L2R, MLC, BOND and COSINE), using varying amounts of clean data. We use the subscript
“C" (e.g., FTC) to indicate that the fine-tuning approaches are applied on clean data.
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Figure 9: Performance vs. number of clean samples. In most cases, CFT outperforms the other two baselines,
WCbatch and WCmix, by a considerable margin.
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(b) N = 20 samples per class (N = 200 sentences on NER)
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(c) N = 30 samples per class (N = 300 sentences on NER)
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Figure 10: Performance difference before and after applying CFT to WSL methods. For text classification and
relation extraction tasks, we subsample N ∈ {5, 10, 20, 30, 40, 50} examples from the validation set. For NER, we
subsample N ∈ {50, 100, 200, 300, 400, 500}. On SemEval, the original validation set is small, and sampling more
than 20 samples per class is not possible. The figure shows that the performance gap between the simple baseline
FTW and COSINE/L2R becomes much smaller after CFT, suggesting that we may not require sophisticated WSL
methods to achieve good generalization.
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Figure 11: Performance curves of different PLMs during training. PLMs are trained on weak labels and
evaluated on both clean and weakly labeled test sets. Pre-training on larger corpora improves performance on the
clean distribution.
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Figure 12: Model performance varying the number
of clean samples N and agreement ratio α. Large
values of α generally cause a substantial performance
drop. ∗: Certain combinations of α and N are not
feasible because the validation set lacks samples with
clean and weak labels that coincide or differ.
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