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Abstract

Evidently, words can have multiple senses. For
example, the word mess refers to a place to have
food or to a confusing situation. How exactly
multiple senses emerge is less clear. In this
work, we propose and analyze a mathematical
model of the evolution of lexical meaning to
investigate mechanisms leading to polysemy.

This model features factors that have been dis-
cussed to impact the semantic processing and
transmission of words: word frequency, non-
conformism, and semantic discriminability. We
formally derive conditions under which a sense
of a word tends to diversify itself into multiple
senses that coexist stably.

The model predicts that diversification is pro-
moted by low frequency, a strong bias for non-
conformist usage, and high semantic discrim-
inability. We statistically validate these pre-
dictions with historical language data cover-
ing semantic developments of a set of English
words. Multiple alternative measures are used
to operationalize each variable involved, and
we confirm the predicted tendencies for twelve
combinations of measures.

1 Introduction

In natural language, lexical polysemy, i.e., the pres-
ence of multiple senses for a single word form, is
the rule rather than the exception. The word mess,
for instance, can denote, among other things, a
room in which food is served, semi-liquid food, a
confusing situation, or a physical state of disorder.
From a communicative point of view, the fact that
one form refers to multiple senses is, at first sight,
sub-optimal given that ambiguity acts against suc-
cessful communication. Yet, populations of speak-
ers sustain a multitude of polysemous words in
their communicative systems, viz., languages.
Where does this semantic diversity come from?
Evidently, multiple senses of a word do not just
simply appear. Rather, word meaning evolves over

a ——————— Have one's meals with a particular person.
A building or room providing meals.

A company of people eating together.

A portion of semi-liquid food.
——— Aquantity of milk/food.

— A large amount or quantity of something.

A situation that is confused and full of problems.

senses of mess

Make untidy or dirty.

A dirty or untidy state of things or of a place.

To mishandle or bungle an enterprise.

T T T 1
1400 1600 1800 2000
time of first attestation in OED

b senses of mess
X m.?g p?s 'portion of soup’
' )'(1850
X ¢ : , '(disgusting) portion of soup’
X1900
X " . ,  '(disgusting) portion of soup'
X1950

X ... sentiment dimension

Figure 1: (a) Evolutionary tree of the senses of mess
based on first dates of attestation as documented in the
Oxford English Dictionary (OED). (b) Schematic sketch
of the diversification of mess in the semantic dimension
of sentiment (negative to positive).

time and diversifies itself as additional senses are
established in the population of speakers (Trau-
gott, 1985; Deane, 1988; Sagi et al., 2011; Mitra
et al., 2014; Hamilton et al., 2016; Hu et al., 2019;
Schlechtweg et al., 2020). Figure 1a displays the
evolutionary tree of the semantics of the word mess.

The goal of this paper is to identify conditions
under which semantic diversity is enforced with
the help of analytic models of the population dy-
namics of words. More specifically, we define
a model of the spread of words through a popu-
lation of speakers in which word transmission is
governed by social and cognitive factors that have
been suggested to be relevant to semantic change:
word frequency, non-conformism, and semantic
discriminability. An analytical assessment of our
model shows that these factors indeed affect the
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tendency to establish additional senses in speaker
populations. The predictions of the model are sub-
sequently tested against empirical language data.’

2 Approach

We consider three factors that have been suggested
to be relevant to lexical transmission, semantic pro-
cessing, and change (frequency, non-conformism,
discriminability; see Background section 3 below).
The question is if and how these factors impact
the diversification of a word’s meaning, and, more
importantly, what the potential mechanisms lead-
ing to diversification might be. Our approach to
tackle these questions involves two parts, namely a
theoretical and an empirical part.

On the theoretical level, we model the evolution
of a word’s meaning over time and analyze under
which conditions a word’s meaning is split into two
separate and stably coexisting senses. This model
captures the population dynamics of the semantic
variants of a word, that is, we investigate how word
variants spread through a population of speakers.
Interactions among speakers and how they transmit
word variants are governed by effects of frequency,
non-conformism, and discriminability that we as-
sume beforehand.

More concretely, we assume (i) that the success-
ful transmission of a word variant from one individ-
ual to another is more likely if it is used frequently,
(ii) that rare linguistic behavior can have an ad-
vantage during interactions as it stands out, and
(iii) that the cognitive ability to discriminate be-
tween senses impacts what is actually perceived as
the same or different linguistic behavior in inter-
actions. Table 1 shows more details about these
assumptions. Note, crucially, that none of these
assumptions is about semantic long-term evolution
per se. All of them are exclusively about how in-
dividuals communicate and process language in
short-term interactions.

Based on the model, we deduce the evolutionary
dynamics of a word’s meaning and we derive which
effects of frequency, non-conformism, and discrim-
inability on the tendency to diversify meaning the
model would predict.

Mathematically, our model consists of two
stacked dynamical systems defined by ordinary
differential equations: one that defines the long-
term evolutionary dynamics of meaning, and one

'Code and data available at https://gitlab.com/
andreas.baumann/evolution_lexical_polysemy

that defines the short-term dynamics of lexical us-
age in a speaker population. In combination, the
model lets us show that diversification of meaning
is encouraged for words subject to low frequency,
high non-conformism biases, and high semantic
discriminability (cf. Table 1).

Note that although the model would, provided
all necessary historical information, theoretically
allow us to obtain semantic trees for single words
and single semantic dimensions (like ‘sentiment’,
‘edibility’, ‘objectness’) similar to the one in Figure
1a, this is not what we do. We also do not need to
focus on the linguistic behavior of individual speak-
ers. Rather, the strength of our model is that we
can use it to predict more generally under which
conditions semantic diversification can occur on
the population level. Thus, our model reveals po-
tential mechanisms governing the establishment of
multiple coexisting senses.

On the empirical level, we measure the impact of
frequency, non-conformism, and discriminability
on the tendency to diversify meaning. We base our
analysis on historical language data covering about
3000 English words (Hu et al., 2019). Based on
this data set, we show that the predictions of the
theoretical model are also supported on empirical
grounds.

In what follows, we motivate our choice of fac-
tors in semantic evolution, present an outline of
the evolutionary model, its underlying population
dynamics, and its predictions of how long-term
evolution unfolds. After that, we describe the setup
and outcome of our empirical account. The discus-
sion section links both parts of this study.

3 Background

We adopt the established definition of polysemy as
a one-to-many form-meaning mapping that comes
about via changes on the meaning side. The key cri-
terion here is historical relatedness (Leech, 1974;
McMahon, 1994). This contrasts with the phe-
nomenon of homophony (e.g., steak vs. stake),
which results from changes on the form side (see
Valera, 2020, for a more recent discussion).

Multiple factors have been suggested to impact
semantic change and the evolution of polysemy.
In this research, we consider three of them that
have been discussed in the linguistic, cognitive,
and computational literature.

The most prominent factor that was suggested to
impact lexical semantics is the word frequency. In
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Frequency ¢

Non-conformism bias /3

Discriminability &

Definition

Empirical measure-
ment

Model assumptions
about interactions

Number of occurrences of a
word variant

Normalized token frequency of
a word (contemporary vs. his-
torical)

High exposure increases
chance of successful adoption
in interactions

Tendency at which a word vari-
ant is used in non-conformist
vs. conformist settings
Fraction of frequency in non-
conformist genres vs. fre-
quency in conformist genres

Imposes advantage in the propa-
gation of the word variant when
rare (common strategies lose

Ability to distinguish between
two semantic uses of a word

Lexical concreteness ratings
and average correlation be-
tween sentence embeddings of
all sense descriptions of a word
Modulates effects of (non-) con-
formist behavior in interactions
among individuals using differ-

Prediction T~1/p V

their distinctive status)
T~ Vv

ent variants of a word
T~6 V

Table 1: Overview of the main model parameters, how they are defined and measured, and their respective impact on
the tendency to diversify meaning T as predicted by the model. A check-mark (v') indicates whether the predictions

are empirically supported.

their seminal contribution, Hamilton et al. (2016)
have demonstrated that high-frequency words are,
on the historical time scale, more stable than low-
frequency words (but see Dubossarsky et al. (2017)
for criticism).

The negative relationship between semantic
change and frequency was suggested to be an effect
of entrenchment (Hamilton et al., 2016; Cassani
etal., 2021; Baumann et al., 2023). Frequent words
are typically learned early, and this leads to cogni-
tive entrenchment, i.e., routinization of their pro-
cessing and usage (Bybee, 2006). By consequence,
it is less likely for high-frequency words to change
their semantic profile than this might be the case
for low-frequency words that could be, perhaps
erroneously, used in novel contexts.

The second factor that was suggested to in-
crease diversity in the domain of cultural evolu-
tion is that of non-conformist behavior, i.e., to
behave differently than the majority does. Non-
conformist behavior entails what is referred to as
negative frequency dependence (Efferson et al.,
2008; Boyd and Richerson, 1988; Doebeli and Is-
polatov, 2010a). That is, behavioral strategies are
particularly successful if they are rarely employed.

Non-conformist behavior is present in the lin-
guistic domain as well. For one, several phenom-
ena of linguistic innovations have been discussed
under the notion of linguistic extravagance. Speak-
ers have been argued to choose unorthodox lin-
guistic strategies to stand out, get recognized, and
in turn to promote the transmission of their mes-
sage (Ungerer and Hartmann, 2020; Detges and
Waltereit, 2002; Petré, 2017; Hein, 2017; Haspel-
math, 2000). Often, extravagant linguistic behavior
extends to the semantic domain. So, originally
negative words like awesome have gained a pos-

itive connotation (this particularly holds true for
slang with its function to signal out-group mem-
bership) (Fajardo, 2019). The initial salience of
these words, however, becomes weaker the more
abundantly they are used.

Non-conformism is counteracted by conformism,
i.e., the disproportionally high tendency to behave
just like the majority does (Henrich and Boyd,
2002). Conformism functions as stabilizing mecha-
nism in the transmission of communicative systems.
Intuitively, conformism biases should prevent se-
mantic ambiguity since the introduction of novel
senses is discouraged.

The third factor, discriminability, refers to an in-
dividual’s ability to discriminate between two con-
textual uses of a word (Miller and Charles, 1991;
Miller, 1999). Intuitively, if discriminability is high
then individuals are less likely to view two different
uses of a word as belonging to the same sense (for
instance, if individuals can discriminate well, they
would suggest the word mess to have two different
senses in the utterances I see through the mess and
I have a burger in the mess). There is much less re-
search on the effect of semantic discriminability on
language change than for the other two factors dis-
cussed above, but modeling and simulation results
suggest that high discriminability entails more com-
plex signaling inventories (Chaabouni et al., 2021;
Imel, 2023). From a cognitive point of view, inter-
dependencies among word utterances are weaker
if they are (perceived as being) different from each
other, i.e., in the case of high discriminability (den
Heyer and Briand, 1986). This also extends to
interdependencies imposed by (non-)conformism
pressures in interactions among individuals (Kim
and Hommel, 2015).
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4 Theoretical analysis

Our model has the following components: We as-
sume that words are transmitted through popula-
tions of speakers. At any point in time, each word
has a set of one or more senses that we take to
constitute a word’s meaning. We assume that each
word sense can be represented as real value on a
semantic dimension.

More specifically, we assume that z takes a value
on a continuous scale so that x € X where X C R
is a real-valued interval representing the range of
possible values on the semantic dimension. For
instance, X could represent the word’s sentiment
ranging from O (negative) to 1 (positive). Then, a
sense of a word like mess might have had a rather
positive sentiment of about z = 0.8 in the middle
of the 19th century.

Speakers might introduce a new variant of an
already existing word sense. This happens, for in-
stance, when someone starts using a word sense
in a slightly different context (e.g., ‘potentially
disgusting soup’ rather than just ‘soup’). When
this innovative behavior is adopted by the speaker
population, the semantic value z of a word sense
changes within X.

Note that this only means that a certain semantic
property of a sense changes. The introduction of
an innovative variant of an already existing vari-
ant does not automatically entail that both of them
coexist stably in the speaker population. Stable
coexistence would mean that the semantic value
representing one sense splits into two variants de-
fined by two values z; and x9 within X that now
represent two separate senses (i.e., a more posi-
tive and a more negative sense of mess) that are
both sustained by the speaker population. Such a
scenario is schematically visualized in Figure 1b.
The crucial question is under which conditions are
splits like this possible?

To shed light on this question, we use the canon-
ical equation of adaptive dynamics which models
the evolution of continuous properties in popula-
tions of individuals (Metz et al., 1995; Dieckmann
and Metz, 2006; Dercole and Rinaldi, 2008; Doe-
beli, 2011). Theoretically, the equation was shown
to be linked to other well-studied models of evolu-
tion such as replicator dynamics (from evolution-
ary game theory) or the Price equation (Page and
Nowak, 2002; Meszena et al., 2002).2

This equation has found applications in biology to study
the evolution of phenotypic traits like drug resistance in in-

In our context, the canonical equation of adaptive
dynamics models change in a semantic property.
More specifically, it defines the rate of change of x
in the semantic subspace X as a function of (a) the
number of users of the word variant characterized
by z, and (b) the fitness of the word variant relative
to another variant:

i=C-Ulz)- afgc’y) (1)

Y ly=z

Here, C' > 0 is a constant defined by the rate
and variance of semantic innovations that is in-
dependent of the semantic property x. Further-
more, U (2) denotes the number of users U of the
word sense characterized by the value = on the
semantic dimension at population dynamic equilib-
rium.? Intuitively, this means that a higher number
of users facilitate larger amounts of change (be-
cause each user could introduce an innovation).
Finally, f(z,y) denotes the fitness, i.e., the growth
rate of a word variant with a slightly different value
of the semantic property ¥ € X in a population
of individuals mainly using the word variant char-
acterized by value z. This quantity is referred to
as invasion fitness because it determines whether
or not a new variant can successfully invade to be
used by the speaker population (for a visualiza-
tion of f, see Figure 4 in Appendix A.1.2). The
term O f(x,y)/0y|y—. determines the direction of
evolution.

Equation (1) can exhibit different types of long-
term behavior (Metz et al., 1995). Two relevant
scenarios are (a) convergence to a steady-state, i.e.,
the existence of an attracting evolutionarily sta-
ble strategy in X and (b) diversification, i.e., the
existence of an evolutionary branching point in X
(Geritz et al., 1997). The latter case implies the sta-
ble coexistence of two different variants (formally,
two stable equilibria of equation (1)). In the follow-
ing, we investigate conditions for the existence of
a branching point, as this relates to polysemy.

Whether or not such points exist in X for equa-
tion (1) depends on the quantities U () and f(z, ).
Both of them are determined by the underlying pop-
ulation dynamics of word variants. The population
dynamics of a single word variant characterized
fectious diseases (Dieckmann et al., 2002), in economics to
examine technological change leading to efficiency gains (Der-
cole et al., 2008), or in cultural studies to model the evolution
of religious behavior (Doebeli and Ispolatov, 2010b).

3This equilibrium is reached when the variant has success-

fully spread through the speaker population, i.e., when its
number of users stops growing. See Appendix A.1.1.
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by value z are defined by an ordinary differential
equation (ODE) tracing the change in the number
of users U(z) of that variant. The change in the
number of users is influenced by the factors out-
lined in Section 3. The dynamics are based on the
following assumptions:

(I) Population structure: Individuals either use
or do not use a word variant. We assume ho-
mogeneous mixing of users U and individuals
not using the word variant, i.e., non-users N.

(II) Transmission: Whenever a user and a non-
user meet, successful transmission of a word
variant depends on word frequency ¢ and an
adoption rate . Adoption rate « is assumed
to be a smooth function of x. We assume that
there exists a value xg within X maximizing
« (arguably, adoption is not independent from
semantic properties).

(III) Negative frequency dependence: Whenever
a user meets another user of the same word
variant they abandon it at a rate (3, the non-
conformism bias. This bias is reduced by
a propensity to behave in a conformist way.
When a user meets another user with a slightly
different variant, non-conformism biases ap-
ply as well but they are reduced by the per-
ceived distance between the two variants. This
distance depends on discriminability §.

The ODE modeling the change in the number of
users U given assumptions (I-III) reads

U=ga(@)UN+k(A=0)UU-v(A=0)UU,
2
with a  conformism rate k(A) =
koexp(—1/2 - A2%6%), a non-conformism rate
v(A) = vgexp(—1/2 - A%5?), and vy — kg =: f3.
Here, A = x — y denotes the difference between
two semantic property values x and y. A detailed
description of this ODE can be found in Appendix
A.l.1.
This leads us to the following

Proposition 1. Consider a semantic dimension X.
Assume that innovations in X occur in relatively
small steps and that new innovations occur only
after a previous innovation has either spread suc-
cessfully or disappeared.

Given the population dynamics of single word
variants characterized by a single value in X as
defined in (2), the canonical equation of adaptive

dynamics in (1) shows an evolutionary branching
point if

(i) frequency  is sufficiently low,
(ii) non-conformism bias (3 is sufficiently high,

(iii) and discriminability § is sufficiently high.

A proof is shown in Appendix A.1. In short, the
model predicts the tendency to diversify meaning
to be (i) negatively associated with frequency, (ii)
positively associated with non-conformism biases
and (iii) positively associated with discriminability.

S Empirical analysis

We test if predictions (i-iii) resulting from our the-
oretical analysis are supported empirically. To do
so, we investigate a sample of words and check
if (i) frequency, (ii) non-conformism biases, and
(ii1) discriminability are associated with the ten-
dency to diversify meaning in this sample. That
is, our model would predict words with high non-
conformism biases, high discriminability between
senses, and low frequency to become more polyse-
mous over time.

We base our analysis on a set of 3358 words
compiled by Hu et al. (2019) containing informa-
tion about the semantic development of words. In
this data set, each word is accompanied by (i) a
list of the descriptions of all of its senses* taken
from the Oxford English Dictionary (OED), and (ii)
for each decade in the 19th and 20th century, the
estimated probabilities for all senses of that word,
originally derived from the Corpus of Historical
American English (COHA) (Davies, 2010) through
SentenceBERT embeddings. The development of
the distribution of senses of the word mess is shown
in Figure 2a.

After only considering words with subjective
concreteness ratings in Brysbaert et al. (2014) (see
5.3 below), we ended up with a set of 3165 words.
We restrict our analysis to all decades between
1850 and 2000 since earlier subcorpora of COHA
are relatively small and display a different distribu-
tion of genres.’

“Note, also, that the observation period does not cover
major sound shifts in the history of English that might have
resulted in substantial increase of homophones.

>Conducting the analysis with all decades from 1800 to
2000 does not substantially change the results, though.
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Figure 2: (a) The evolution of the probability distribution over all senses of the word mess from 1850 to 2000. In
1850, mess has had mainly the meaning ‘room for meals’. The distribution of senses becomes more diverse over
time. (b) Ego-network representing the semantic neighborhood of mess in 1950 (for this visualization, only cosine
similarities above 0.25 are displayed as edges). At least two clusters can be identified. Nodes are color-coded with
respect to their senses. (c¢) Developments of sense diversity, number of senses, and network intransitivity (see 5.1)
of the word mess over time (0 denotes the respective slopes). All three developments indicate that mess became

more polysemous.

5.1 Diversification tendency

The tendency to diversify meaning measures the
extent to which a word becomes more polysemous
over time. Crucially, this depends on how the de-
gree of polysemy is measured for a given word at a
given point in time. We operationalize the degree
of polysemy in three ways.

First, we use the decade-wise probability distri-
bution (p;)i=1,....» over all n senses of a given word
provided by Hu et al. (2019). A flat distribution in-
dicates high diversity (i.e., high polysemy), while
a distribution with, say, only a single dominant
sense indicates low diversity. Hence, we derive an
index of diversity given by D = exp(H ), where
H = —3%"" | p;In(p;) is the Shannon entropy of
the distribution (Hill, 1973). We refer to this as
sense diversity.

Second, for a word in a given decade, we com-

pute the effective number of senses as the number
N of all senses with p; > 0.05 (see Section 7 for
discussion). That is, we ignore marginal senses
when computing polysemy. We refer to this mea-
sure as the number of senses.

Third, we operationalize polysemy as in Hamil-
ton et al. (2016) through the semantic neighbor-
hood of a word. We base our analysis on the pre-
trained SNGS embeddings used in that paper.® For
each decade, we compute a network in which two
words in our data set are connected if they are
semantically close. We compute pairwise cosine
similarity for all word pairs and add an edge when-
ever cosine similarity is greater than the median
of all pairwise similarities in the data set. An ex-
ample is shown in Figure 2b. For each word, we
then compute its local clustering coefficient C' (i.e.,

6https: //github.com/williamleif/histwords
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transitivity), and define intransitivity [ = 1 — C.
As in Hamilton et al. (2016), we take intransitivity
to measure polysemy (words tightly interconnected
neighborhoods have few senses; words with star-
like network topologies have many senses).

We compute sense diversity, the number of
senses, and intransitivity for every word in every
decade. For every word we fit three Gaussian lin-
ear regression models, one for each measure, i.e.,
D(t) = bpt +cp + ¢, N(t) = byt + ¢y + &,
and I(t) = byt + cr + ¢, where ¢ is time. We take
the respective slopes ;D = bp, O:N = by, and
0¢I = by to function as measures of the rendency
to diversify meaning (see Figure 2c).

5.2 Non-conformism bias

A word’s non-conformism bias measures to what
extent that word is used in a non-conformist way.
We study the usage of words across more and
less conformist genres to obtain empirical esti-
mates of non-conformism biases. Six different
(sub-)corpora are used for this purpose. English
Wikipedia’, and sub-corpora from the Corpus of
Contemporary American English (COCA)? cover-
ing magazines, news, and academic texts are se-
lected as representing conformist genres, as they
feature language obeying linguistic norms. The
fiction sub-corpus of COCA, as well as a corpus
of song lyrics’, represent non-conformist genres
in that the language therein is expected to be less
constrained and more open to creative linguistic
behavior.

For each word, we compute the mean per-million
normalized frequency across all conformist cor-
pora, f., and the mean per-million normalized fre-
quency across all non-conformist corpora, f,.. We
define the strength of the non-conformism bias as
B = log(fne/fc), so that 3 is positive if a word
has relatively high frequencies in non-conformist
genres as opposed to conformist genres.

5.3 Discriminability

Discriminability measures how well an individual
can discriminate between two senses of a word. If
discriminability is low, individuals perceive two

"https://huggingface.co/datasets/wikipedia;
sample of 70 million tokens.

8Word-frequency list from https://www.
english-corpora.org/coca/; about 120 million tokens per
genre.

200,000 English songs from https://genius.com/; 32
million tokens.

semantic variants of a word as similar. If discrim-
inability is high, two semantic variants are more
likely perceived as different senses of the word.

Discriminability cannot be easily measured
based on corpus data, hence we rely on two dif-
ferent proxies in our analysis. We demonstrate
in the appendix that both proxies correlate signif-
icantly with a measure that is closer to what one
intuitively understands as semantic discriminability
in a small set of words.

The first discriminability measure that we em-
ploy is lexical concreteness. Lexical concreteness
is defined as the extent to which the content of a
word can be grasped by the senses. It was shown
that concreteness is subject to semantic prosody,
i.e., concrete words are likely to surface in concrete
contexts, and abstract words are likely to surface in
abstract contexts (Snefjella and Kuperman, 2016).
Under the assumption that this also extends to extra-
linguistic contexts, we argue that concrete words
(like mess) are more likely to be used in situations
that let individuals differentiate between meanings
than this holds true for abstract words (like space).
We use crowd-sourced subjective ratings from Brys-
baert et al. (2014) to measure concreteness.

The second discriminability measure is based
on the sense descriptions from OED as provided
by Hu et al. (2019) for all words. For each word,
we computed embeddings using SentenceBERT'?
(Reimers and Gurevych, 2019) for all sense descrip-
tions of that word, a standard approach to represent
text. We then compute all pairwise correlations
among all senses of the word (Pearson’s ). Dis-
criminability is defined as the mean of all corre-
lation coefficients. Thus, discriminability is low,
if all senses are relatively close to each other, and
high if, on average, senses differ from each other.

We find that the correlation between both
measures (concreteness based vs. description-
embedding based) is statistically robust at » = 0.25
(Cly.95 = (0.22,0.29)). For additional support of
the validity of these proxies see Appendix A.2.

5.4 Frequency

Two different ways to assess word frequency are
used. For measuring frequency synchronically,
we use contemporary frequency information from
Brysbaert et al. (2014). For measuring frequency

Yhttps://huggingface.co/sentence-transformers/
all-MinilLM-L6-v2

""Note that the correlation coefficient is equivalent with
cosine similarity for centered data.
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diachronically, we compute per million normalized
token frequencies for each decade in COHA and av-
erage across all decades in the observation period.
In both cases, frequency was log-transformed. Syn-
chronic/contemporary and diachronic/historical fre-
quencies correlate strongly and significantly with
Pearson’s r = 0.76 (C'ly.95 = (0.75,0.77)).

5.5 Statistical analysis and results

We need to measure the effects of (i) non-
conformism bias 5, (ii) discriminability ¢, and (iii)
frequency ¢ on the tendency to diversify meaning
T'. We have derived three measures for the depen-
dent variable T (9, D, 9; N, and 9;1), two measures
for bias 3 (concreteness vs. description based) and
two measures for frequency ¢ (synchronic vs. di-
achronic), resulting in 12 different configurations
of dependent and independent variables.

As slopes, estimates of the tendency to diversify
meaning are not theoretically constrained to a par-
ticular interval, and none of the three measures of
the independent variable shows a strongly skewed
distribution. Hence, we fit Gaussian linear models
of the form T" = bgf3 + bsd + by + ¢ + € to our
data. All variables were centered and normalized
with respect to their standard deviation before en-
tering the models in order to standardize regression
coefficients bg, bs, and b,,.

The estimated regression coefficients are shown
in Table 2. It can be seen, first, that almost all
effects turn out to be statistically significant, and,
second, that all significant effects have the sign
predicted by the theoretical analysis. That is, all
configurations (i) effects of non-conformism biases
are positive, (ii) effects of discriminability are posi-
tive, and (iii) effects of frequency are negative when
predicting the tendency of diversification, and this
holds true across all measures of the dependent
variable. The one measure that stands out in this
regard is 0,1, i.e., diversification tendency derived
through lexical networks, which shows no statisti-
cally robust associations with non-conformism bias
in two configurations. Most effects are within the
weak to medium range (Cohen, 1992). Visualiza-
tions for all model configurations can be found in
Appendix A.3.

6 Discussion and conclusion

In this paper, we have analyzed the evolution of
lexical polysemy in two ways: first, by means of a
mathematical model that captures the population

oD SE ON SE Ol SE
diachronic ¢ and concreteness-based §

bg 0.06 0.02 0.06 002 007 001

bs 023 0.02 015 0.02 0.03 0.01

b, -010 0.02 -0.12 002 -020 0.1

diachronic ¢ and description-based ¢

b 0.08 0.02 0.07 002 -0.00 0.02

bs 008 0.02 0.04 0.02 0.06 0.02

b, -0.05 0.02 -0.09 002 -048 0.02
synchronic ¢ and concreteness-based o

bg 0.08 0.02 008 002 -0.00 0.02

bs 008 0.02 0.06 0.02 012 0.02

b, -0.02 0.02 -0.06 002 -0.22 0.02
synchronic ¢ and description-based &

bg 0.08 0.02 0.09 002 009 001

bs 023 0.02 016 0.02 0.03 0.01

b, -0.08 002 -0.10 002 -0.13 0.1

Table 2: Regression coefficients with standard errors
for all models. Within each block, each column stands
for one model configuration. Bold indicates statistically
non-trivial effects at a 95% confidence level.

dynamics of word variants; second, through an em-
pirical analysis covering the factors implemented
in the population-dynamic model. The approaches
yield converging outcomes.

As far as frequency is concerned, our results
are in line with Hamilton et al.’s (2016) observa-
tion that frequency interacts with semantic change,
namely in such a way that frequency in fact im-
pedes change and fosters semantic stability. In a
similar vein, Pagel et al. (2007) have shown that
frequent concepts resist change more easily. Note
that our way of conceptualizing semantic change
subtly differs from that in Hamilton et al. (2016)
who measured the impact of frequency on any type
of change in word meaning. In contrast, the focus
of our analysis is on a word’s tendency to become
more polysemous over time. Note, though, that
our model not only predicts that low frequency
entails, under certain circumstances, semantic di-
versification but also that high frequency leads to
the existence of an attracting evolutionarily stable
strategy in the semantic space, hence eventually de-
moting semantic change for high-frequency words
altogether. That is, our model provides a mechanis-
tic explanation for the empirical observation made
in the literature: high-frequency words are more
likely to adopt stable states in the semantic trait
space that optimize ease of adoption.!?

This explanation is an interesting alternative to

12Similarly, our model and the empirical account implic-
itly capture sense loss: multiple equilibria in the semantic
trait space could lose their stable status if conditions (i-iii) in
Proposition 1 were not fulfilled anymore.
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the predominant account, which traces the posi-
tive relationship between frequency and semantic
stability back to the mechanism of cognitive en-
trenchment (Bybee, 2006; Ellis et al., 2016). Here,
the argument is that frequent words are strongly
entrenched, i.e., subject to routinized perception,
processing, and production so that they can resist
change more easily (Schmid, 2020; Baumann et al.,
2023).!13 Importantly, our account is agnostic with
respect to mechanisms of entrenchment. In our
model, the observed evolutionary behavior emerges
from the assumption that frequent words are ac-
quired more easily.

As a final note on the effect of frequency, it
is worth mentioning that Hamilton et al.’s (2016)
result was criticized as being a methodological
artifact that arises from effects of frequency on
cosine-similarities between word embeddings (Du-
bossarsky et al., 2017). While we do acknowledge
this criticism it is important to emphasize that, from
a methodological point of view, neither the theoret-
ical nor the empirical account in our approach can
be invalidated by these effects. Hence, our research
provides independent evidence for Hamilton et al.’s
(2016) findings.

In addition to the effect of frequency, our
model predicts a positive relationship between non-
conformism biases and the tendency of a word to
establish more senses over time. The prediction is
supported by our empirical account in ten out of
twelve configurations. In the model, the mecha-
nism that promotes the stable coexistence of two
semantic senses is that of negative frequency de-
pendence, i.e., an advantage of lexical variants if
and as long as they are rare.

The prediction that this mechanism promotes
polysemy is intuitive, and not very surprising for
that matter. If rare variants have an advantage in
their proliferation then this facilitates the estab-
lishment of innovative uses. This resembles the
argument that is brought forth in the discussion
about the role that extravagant usage plays in lex-
ical change (Ungerer and Hartmann, 2020; Petré,
2017; Haspelmath, 2000).

We have also shown empirically and theoret-
ically (in line with Baumann and Miihlenbernd
(2022)) that non-conformism leads to diversifica-

30n the other hand, however, frequency was argued to
drive semantic bleaching together with formal reduction (Hop-
per and Traugott, 2003), as evident in grammaticalization
processes (e.g., the development of French pas from a noun to
a negation particle).

tion of meaning only if discriminability is high. If
discriminability is low then semantic innovations
that are close to an established sense will be ef-
fectively perceived as coinciding with that sense.
Consequently, they will suffer from the same dis-
advantage imposed by negative frequency depen-
dence that all common types are subject to, even
though these innovations are initially rare.

We consider it as a main strength of our approach
that we do not only support (hypothesized) relation-
ships between factors in semantic change and pol-
ysemy on empirical grounds, but that we can also
point at the mechanisms driving semantic change
based on our theoretical analysis. This is so, in
particular, due to the two-level architecture of the
mathematical model, which combines short-term
population dynamics driven by linguistic interac-
tions that are subject to assumed biases with evo-
lutionary long-term dynamics of lexical semantics.
In that sense, our work goes beyond correlational
accounts of polysemy.

7 Limitations

Our approach is subject to multiple limitations, the
most prominent of which are grounded in the ab-
stract nature of our theoretical account. Our model
is based on a set of simplifying assumptions. First,
we assume that speakers in the population are ho-
mogeneously mixed (and no further population
structure, e.g., with respect to age, gender, or so-
cial status). This is a standard assumption in many
mathematical accounts to ecology (Hofbauer et al.,
1998). In line with linguistic research (Hopper and
Traugott, 2003) lexical change is assumed to be a
gradual phenomenon, i.e., that innovative steps are
relatively small. Furthermore, we assume innova-
tions to spread fast, namely so fast that they reach
their population-dynamic equilibrium (or vanish)
before the next innovation is introduced. From a
mathematical point of view, the latter two assump-
tions are necessary to model semantic change by
means of an ODE in continuous time (i.e., equation
(1)) (Dercole and Rinaldi, 2008).

Note, also, that we assume every speaker to use
only one semantic variant at a time, according to
our formulation of the model. That is, the stable
coexistence of multiple senses, say A and B, in
fact corresponds to the presence of two coexist-
ing sub-populations, one using A and one using B.
However, the model can easily be reinterpreted in
such a way that the units in the population are not
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individuals, but rather usage events of individuals.

Not all of the model’s parameters and quantities
can be measured empirically. Clearly, for example,
there is no available historical data of the number
of users U of a word and its multiple senses. Like-
wise, we do not specify what the shape of adoption
rate o looks like exactly. Importantly, however, we
do not need to have this information for making
predictions about the expected long-term evolution
of the semantic property. This is because we are in-
terested in qualitative assertions (does a branching
point exist?) rather than quantitative ones (when
did a certain word obtain a new sense?). The fact
that we can derive analytical predictions is one of
the main strengths of our approach.

Our empirical account is subject to limitations
as well. First, many of the effects in the statis-
tical models are relatively weak and sometimes
display non-linearities that could be further exam-
ined (see Appendix A.3). Second, the corpus data
might not be fully representative of the language
spoken through the 19th and 20th century. Third,
sense definitions in OED depend on decisions by
the lexicographer. Note, also, that the word-sense
identification model in Hu et al. (2019) has an ac-
curacy of about 93.8%. This means that there is
a non-negligible chance of the estimated propor-
tions not being accurate. The threshold of 5% for
assessing the number of senses is arbitrary, but it
uniformly applies to all words and all periods.

Using concreteness ratings for our purpose, de-
spite being motivated theoretically, can be problem-
atic as they are based on subjective ratings (Brys-
baert et al., 2014) and hence contemporary. This
could be mitigated by considering historically re-
constructed concreteness (Snefjella et al., 2019).
Non-conformism estimates are contemporary as
well. Follow-up research could examine historical
estimates of non-conformism, albeit at the cost of a
more limited range of genres than in our approach.

Sense descriptions in OED are often very short,
so it is possible that their embeddings do not faith-
fully represent the respective senses. That said, we
would like to point the reader to our robustness
check in Appendix A.2 which renders our proxies
of discriminability relatively reliable. Despite be-
ing subject to such limitations, we think that NLP
methods are highly valuable for testing the predic-
tions of analytical models employed in the study of
diachronic linguistics.
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A Appendix
A.1 Proof of Proposition 1

In this section, we derive conditions under which
equation (1) shows an evolutionary branching point
(resulting in the stable coexistence of two semantic
variants). Before that, we need to derive the pop-
ulation dynamics of single word variants given by
(2) based on the assumptions (I-III) in Section 4.
This is done in the following subsection.

A.1.1 Population dynamics

In order to derive the equilibrium number of users
of a word characterized by value z, i.e., U(l‘), we
need to define the underlying population dynamics
of the word. We will do so by setting out with a
simple and well-studied model of lexical change
that accounts for learning and frequency, and sub-
sequently expand it to cover conformism and non-
conformism biases.

First, we assume that for every individual word
variant, the population of linguistic individuals can
be split into users that know and use the word and
non-users that do not use it. Let us denote the
respective numbers of individuals as U and N, re-
spectively. Furthermore, we assume that popula-
tions are large and set U + N = 1. Non-users can
adopt a word variant (like mess with a positive con-
notation) and switch to the user class at an adoption
rate o whenever they encounter the word interact-
ing with a user, which occurs at frequency ¢. In
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this simple scenario and under the assumption of
homogeneous mixing of users and non-users, word
dynamics are defined by the ordinary differential
equation

U=ypaUN —U. (3)

This model is equivalent to previously studied mod-
els of cultural change (Cavalli-Sforza and Feldman,
1981) and lexical dynamics (Nowak, 2000; Nowak
et al., 2000; Solé, 2011). This equation models
how words spread through a speaker population in
an S-shaped manner; a pattern often encountered
in diachronic linguistics (Denison, 2003). Note
that, apart from variants of the same word (such
as positive and negative variants of mess), we do
not model any interactions between different word
types (like hypothetical co-developments and inter-
actions of mess and banana).

We assume that « is a real-valued smooth func-
tion of the value of the semantic property x and
that there is a value ¢ for which «(x) obtains a
maximum within X. Sentiment, for instance, was
shown to influence lexical processing, which in
turn arguably impacts a word’s adoption rate. Note,
importantly, that o does not only cover word acqui-
sition by children but also adoption of words and
their variants by adults.

Let wus integrate conformism and non-
conformism rates into the model. As discussed
above, conformism rates represent effects of
positive frequency dependence in addition to
frequency dependent word adoption.  When
two users meet, we assume that word usage is
strengthened at a conformism rate k. Similarly, if
a user of a word meets another user of that word,
they will abandon that word (or word variant)
due at a non-conformism rate v. In that case they
switch back to the non-user class.

It is plausible that, whenever two users of slightly
different variants x and y in X of the word meet,
conformism and non-conformism rates depend on
the difference between those two variants. This is
because if both variants are very dissimilar then
these two items are not so likely to be seen as two
variants of the same word in the first place. In
that case, conformism and non-conformism biases
are expected to vanish. We model this behavior
by letting rates x and v depend on the difference
A = z — y in a Gaussian manner as in

k(A) = Kkgexp(—1/2- A?6?) 4)

and
v(A) = vy exp(—1/2 - A%5?), (5)

with variance 1/4, so that (non-)conformism rates
are highest if x and y coincide (obtaining the max-
ima kg and 1y, respectively). Let us define non-
conformism bias as [ := vy — ko. The Gaus-
sian dependency of (non-)conformism rate on A is
motivated by the assumption that individuals are
influenced to a lesser extent by other individuals
that display substantially different linguistic behav-
ior (Dercole and Rinaldi, 2008; Kim and Hommel,
2015).'* For instance, non-conformism rates (i.e.,
the need to abandon one’s own behavior) is as-
sumed to be highest if the linguistic behaviors of
two individuals meeting each other coincide.

non-conformism v

conformism k

-0.4 -0.2 0.2 0.4
difference x - y

Figure 3: Conformism rate x(A) and non-conformism
rate v(A), both with § = 4. Maxima are at kg = 0.4
and vy = 0.8, so that the curvature of v is higher than
that of x at A = 0.

In both functions, § can be interpreted to mea-
sure the users’ ability to discriminate between us-
age variants within X. Le.,  measures the users’
discriminability. We assume, for simplicity, that
for any given word, J is constant across the whole
speaker population. If individuals are equipped
with fine-grained semantic perception (high §), they
can easily distinguish between, say, positive and
negative variants of the word mess. In that case,
(non-)conformism rates are reduced faster as A
increases. If, in contrast, individuals can not so
easily distinguish between different usage variants
(low ), they are more likely to treat these variants
as the very same item which in turn yields high
(non-)conformism rates. See Figure 3.

In total, for a single variant characterized by x,

14Similar functions were used to model perceptual similar-
ity (Nosofsky, 1986; Jdger, 2006) and communicative vague-
ness (Franke and Correia, 2018)
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Figure 4: Evolutionary dynamics of x in the semantic subspace X undergoing branching. In this setup, the adoption
rate is defined as a concave function a(z) = —(z — x9)? + « with 7y = 0.3 and o = 0.5. Discriminability is
set to § = 4, and frequency is ¢ = 1. Left: changing fitness landscape defined by invasion fitness f(x,y). Every
resident = defines a different fitness landscape that innovations y must cope with. Purple (dark) denotes areas where
innovations can invade (positive f) the resident variant. Through multiple invasion-substitution events, semantic
property = approaches the singularity z( (direction of evolution shown by white arrows). This is because for every
resident, innovations closer to x( have positive invasion fitness f (purple area). Bottom right: fitness landscape
defined by singularity x (i.e., the slice represented by the dark line in the changing fitness landscape). Here, x is a
local minimum of its own landscape so that it can be invaded by innovations on both sides. Top right: evolutionary
trajectory of = given equation (1). Property z first approaches x(, where it splits into two variants that converge

towards stably coexisting variants Z;gn and Ty, 1.€., an instance of evolutionary branching.

the population dynamic systems then reads

U=ypa(@x)UN+k(A=0))UU-v(A=0)UU.
(6)
This ODE is an extension of the model of re-
ligious change in Doebeli and Ispolatov (2010b)
and that of lexical change in Baumann and Miihlen-
bernd (2022) in that it features both, conformism
and non-conformism effects, as well as a parameter
measuring frequency (as does the model by Nowak
et al. (2000); see (3) above). It does also not feature
a term that logistically regulates population growth,
in contrast to the model in Doebeli and Ispolatov
(2010b).

The system above shows a non-trivial equilib-
rium at U(z) = g a(x)/(p a(z) — ko + o) > 0.
It exists and is stable as long as a(x) > 0 and
pa(x) + vy > ko, which can be seen by lineariz-
ing around U(z) in (2) (Hofbauer et al., 1998).
That is, words must be adoptable and conformism
rates must not be too strong.

A.1.2 Invasion fitness

We still need to derive invasion fitness f(z,y) in
equation (1). Invasion fitness is defined as the
growth rate of an initially rare innovation character-
ized by y in a population of speakers that predom-
inantly use z (i.e., the resident population) (Metz
et al., 1995; Dercole and Rinaldi, 2008; Doebeli,
2011). That is, the number of users of the variant
with value y is assumed to be close to zero and the
resident population characterized by value x rests
at its population dynamic equilibrium U (). That
is, in the beginning y users only interact with x
users but not with other y users. Hence,

fla,y) =ealy)1 - U(@)) +kly — 2)U(x)

—v(y —2)U(x).
@)
For every resident variant x, invasion fitness f(x, y)
defines a fitness landscape that users of innovative

variants characterized by value y must cope with.
If f(x,y) > 0 then an innovation characterized by
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y can successfully invade the resident population
characterized by z. Furthermore, if y is not close
to an evolutionary singularity (see below), the inno-
vation will, if it successfully invades, also replace
the resident. Thus, invasion fitness determines the
direction of the evolutionary dynamics of . More
specifically, evolutionary progress is determined

by the fitness gradient D(x) = %ﬁ;’y) in (1).
y=x
An evolutionary singularity then is a point £ € X

where D(z) = 0, i.e., an equilibrium of equation
(1). That is, invasion fitness lets us identify the
long-term evolutionary dynamics of semantic prop-
erty x.

A.1.3 Conditions for diversification

Let us now study the long-term dynamics of equa-
tion (1) given the quantities derived in the previous
sections. We have seen that for identifying evo-
lutionary singularities in this equation it is suffi-
cient to analyze the fitness gradient D(x). Since
k and v obtain maxima if * = y, we have that
D(z) = @d/(x). By assumption, adoption rate
« obtains a maximum at xg (see definition of «
above). This entails, first, that xg is an evolution-
ary singularity and, second, that the dynamics of x
given by equation (1) approach xy. Hence, xg is an
evolutionary attractor.

The question now is this: what happens if the se-
mantic property x comes close to x¢? For this, we
need to analyze the fitness landscape f(xg,y) de-
fined by z( that nearby innovations y are exposed
to. If x¢ is a maximum of this fitness landscape
then nearby innovations cannot invade. In this case,
xg is evolutionarily stable. If, however, x is a
minimum of this fitness landscape, then nearby
innovations on both sides of x( can invade and co-
exist. In that case, xg is an evolutionary branching
point (Geritz et al., 1997). It is this evolutionary
scenario which leads to diversification of semantic
properties and hence to polysemy.

Whether x( is a minimum of this fitness land-
scape is given by the local curvature of f(xg,y),
that is,

O f(wo,y)
Ty, = 78y2 .
= a”(z0)(1 - U(ao))
+ (K7(0) = V(0))U (o).

If T, > 0 then xg is a minimum of f(zg,y) (and
a maximum if 7T;,; < 0). In other words, we can

®)

interpret Ty, as a measure of the tendency to di-
versify meaning. In particular, we see that T3,
depends on a word’s frequency ¢, non-conformism
bias 5 = vy — ko, and discriminability . By taking
the derivatives of T}, with respect to ¢, 3, and 4,
we see that

0Ty, (@, B, 0 -
‘”’”0(5”5) = o”(20)(1 — U(x0)) <0, (9)
¥ S~——
<0
because « is locally concave around x( by assump-
tion,

O, (0,8,5)  de 2
T.Z’() 907 9 e 2 -
== U($0)>O,
03 PA |,
<0
(10)

since exp(—1/2-A252) is concave at its maximum,
and

A252
aTxO(cp,B,5):_ 0 |0e” 2 0 (o)
96 35 | PA |l 0
= —5g (6% U(z0) >0
96 ’
>0
(11)

aslong as 8 = vy — kg > 0.

Hence, an evolutionary branching point exists if
 is sufficiently low, and if 5 and § are sufficiently
high.

A.2 Robustness check for discriminability

In this section, we test to what extent both measures
of discriminability (concreteness based; sense-
description based) correlate with more direct esti-
mates of discriminability. For this, we use the WiC
data set (Pilehvar and Camacho-Collados, 2019),
which contains for a set of target words several sen-
tence pairs together with ratings indicating whether
the target word has the same sense in both sen-
tences or not (1 for same sense vs. 0 for different
sense). We used the whole data set (train, dev, test).

For each target word, we computed the mean
rating (mean sameness) of all sentence pairs for
that word, thereby only considering words with 20
or more sentence pairs to avoid inaccurate mean
estimates. This leaves us with 50 different target
words that also show up in our set of 3165 words.
Arguably, a high mean sameness rating indicates
that different contextual uses of a single word are
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not easy to discriminate, while a low mean same-
ness rating indicates high discriminability. Conse-
quently, we would expect mean sameness to neg-
atively correlate with both of our discriminability
proxies.

The correlogram in Figure 5 shows that both
discriminability proxies correlate negatively with
mean sameness as expected. While this supports
our assumption that concreteness and average cor-
relation among sense-description embeddings func-
tion as good proxies for discriminability, we do
need to emphasize that this robustness check is
based on a relatively small number of words all
of which show high utterance frequency. Future
research would need to consider a larger and more
representative set of words.

04 06 08
Lo

‘;7‘/,; 9
sameness o 788
RACYE. &
°1 r=-036 discriminability 0
2 p =0.0093 concreteness r S
<] Ll
W L
r=-04 r=0.34 discriminability q L <
p =0.004 p=0.015 sense descriptions °
"1 r=032 r=-062 r=-0.072
o] p=0022 p = 1.56-06 p=062 frequency

T T T T T T T
02 04 06 08 04 05 06 07

Figure 5: Correlogram of mean sameness, frequency,
and both discriminability proxies (Pearson’s r together
with p-values).

A.3 Visualization of statistical models

Figures 6 and 7 show the effects of v, 4, and ¢ on
the tendency to diversify meaning (three different
measures) for all twelve configurations (rows). The
shaded areas represent 95% confidence boundaries.
Each point (gray) represents a single word.
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Figure 6: Model configurations employing contemporary word frequency.
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Figure 7: Model configurations employing diachronic/historical word frequency.
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