
A Survey on Property-Preserving Database
Encryption Techniques in the Cloud

Johannes Koppenwallner
Faculty of Computer Science

University of Vienna
Vienna, Austria

Erich Schikuta
Faculty of Computer Science

University of Vienna
Vienna, Austria

erich.schikuta@univie.ac.at

Abstract—Outsourcing a relational database to the
cloud offers several benefits, including scalability,
availability, and cost-effectiveness. However, there are
concerns about the security and confidentiality of the
outsourced data. A general approach here would be
to encrypt the data with a standardized encryption
algorithm and then store the data only encrypted in
the cloud. The problem with this approach, however,
is that with encryption, important properties of the
data such as sorting, format or comparability, which
are essential for the functioning of database queries,
are lost. One solution to this problem is the use
of encryption algorithms, which also preserve these
properties in the encrypted data, thus enabling queries
to encrypted data. These algorithms range from simple
algorithms like Caesar encryption to secure algorithms
like mOPE. The report at hand presents a survey on
common encryption techniques used for storing data
in relation Cloud database services. It presents the
applied methods and identifies their characteristics.

Index Terms—Database systems, Property
Preserving encryption, Cloud computing

I. Introduction
A. Motivation

Operating and maintaining a database is a laborious
task. At first hardware for the server is needed. This
hardware is often over powered for the expected, but under
powered for the peak load. Then this hardware needs
space, has to be properly maintained and secured against
failure. The operating system has to be administered and
updated regularly and the database management system
also has to be installed and maintained. If the use of a
commercial database is needed, complying to the licenses
is a challenge for itself. In short, operating a database
does not only require a significant investment, but also
permanent effort (staff and means) for its maintenance.
If requirements for the database change at some later
point, for example the expected usage is much higher than
predicted, adjusting the solution can be expensive. Here
is where the cloud comes into play. In the database as
a service model, hardware and software are completely
maintained by the cloud vendor. No upfront investment is
needed, and if requirements change the service model can
also be easily adapted. But there is a significant drawback
for outsourcing a database into the cloud: The control

over the data is lost. Before putting the data into the
cloud, only members (for example administrators) of the
organization controlling the data were involved, now as
second party, the cloud vendor is involved, too. This is
the point, where many organizations give up their plan
of moving their data into the cloud. It is simply not
worth the risk and the additional organizational effort.
An apparent easy solution to this problem would be to
encrypt all data in the cloud with a standard cipher. Doing
this, the cloud vendor would never have access to the
plain text, so there should be no more issues regarding
privacy and confidentiality. The problem with this solution
is, that it does not work as intended. By using standard
ciphers for encryption, the relational data model is not
usable anymore. The reason for this is that encrypted
values are no more compatible with the defined column
data types, and queries do not retrieve the correct results
anymore, because important properties of the plain text,
like identity or order are lost. So we have two solutions
with different drawbacks: Deploying the data unencrypted
is insecure and usable, while encrypting the data makes it
secure, but unusable. This report tries to elaborate and
show alternative solutions, which maintain most of the
security, while still being usable.

B. Overview
For storing and retrieving structured data, the relational

data model is still the dominant model. More and more
data is collected and stored in databases and they are a
critical part in nearly every IT environment. Traditionally
these databases are run in house and managed by members
of the same organization using it. With the rise of cloud
computing this is changing. Databases are outsourced into
the cloud and run and managed by the cloud service
provider. As mentioned, this leads to serious privacy and
security concerns, because not only the members of the
organization itself have access to the data, but additionally
the administrators of the cloud provider have access.
Another serious concern is that a database, which was
formally only accessible in an internal network, is now
accessible over the internet. A solution to this problem is to
encrypt the data with proven secure ciphers before putting
it into the cloud. This approach does not work with

ar
X

iv
:2

31
2.

12
07

5v
1

 [
cs

.C
R

]
 1

9
D

ec
 2

02
3

structured data, because important properties of the data
are lost during encryption. The result is that the relational
model does not work for the encrypted data anymore. The
format of the data has changed and queries do not work
the way they used to on the plaintext data. The data
model and any application depending on this schema have
to be changed. Even then, the result comes with a serious
performance penalty, which makes this approach often
impractical. To avoid this, other solutions are required.
A lot would be gained, if ciphers can encrypt the values
while still keeping format, order or other query relevant
properties. In the optimal case, the data model can be
left unchanged, while still providing data confidentially
by encryption. Of course, any application depending on
such an unchanged data model can be left unchanged too,
if encryption and decryption is done transparently. To
achieve the objective of a fully usable encrypted relational
database in the cloud, multiple problems have to be solved.

Cryptography: A short overview of cryptography is
given. This includes history, taxonomy and the description
of some of the most significant ciphers. Ancient ciphers
like Caesar’s and standard ciphers like DES and AES are
shown. A small example of the classical Caesar’s cipher
is presented. The next chapter describes some attack
scenarios and the use of encryption to mitigate these
threats in the context of a database. It shows the use case
for data at rest and data in transit. For data at rest it
shows the different levels (storage, database, application)
at which encryption can be performed. The advantages
and disadvantages of the place of encryption are discussed
here too. Then concrete solutions and applications of
encryption on the different levels are presented. Database
specific issues of ciphers are shown, and state of the art
encryption techniques, such as homomorphic and order
preserving encryption are described.

Relational Model Requirements: The relational model
has some implicit requirements which have to be satisfied
to be usable. As plain text always satisfies these
requirements, ciphertext does often not (at least not out of
the box). As these requirements are different for each SQL
construct, the specific requirements for data definition and
queries are given.

Ciphers with Properties: Although standard ciphers
often do not satisfy the properties required by the
relational model, ciphers exist which satisfy some
or multiple of these requirements. An overview of
the different properties like format preserving, order
preserving, functional and homomorphic encryption is
given. State of the art ciphers are shown and described
in detail. For queries, order preserving is a often needed
property. Different order preserving encryption schemes
are shown in detail. Security definitions are given, and
theses ciphers are compared regarding their properties,
security and implementation.

Commercial Solutions: An overview of existing
solutions is given. These solutions includes research

projects like CryptDB as well as commercial products and
solutions. These cloud based solutions are presented and
compared with each other regarding their features and
security.

Requirements for Cloud Computing: Moving data
to the cloud requires additional concerns especially,
but not only regarding security. After describing the
database as a service scenario based on the previous
chapter, additional requirements on security and privacy
in the cloud are given. Contradictions between security
requirements and other cloud-specific requirements, like
scalability or elasticity, are shown. Deployment scenarios
are described, and a short overview of available database
as a service solutions is given. The chapter is concluded
with the description of Relational Cloud, a project aiming
to enhance the existing DBaaS model with security and
privacy in focus.

C. Scope and Limitations
This report focuses on relational databases running in

the the cloud. For evaluation the database as a service
(DBaaS) model is used from some cloud vendors. The
encryption of unstructured data or data in non-relational
databases like NoSQL databases is not examined. Of
course, some of the presented ciphers may work here as
well. This report is focused on the encryption of relational
databases in the cloud, not on security in general.
Other important security topics like key management,
authorization, authentication are only scratched on the
surface or not discussed at all.

II. Cloud
Originating from data centers and grid computing,

cloud computing started gaining momentum around 2006.
Organizations and enterprises began to outsource part
of their internal IT into the cloud, while a few other
companies provided their internal services to external
customers and became cloud service provider. One of
the first of theses companies was Amazon starting their
cloud offer “Amazon Web Service” (AWS) in 2006. Google
and Microsoft followed later with their offers “Google
Cloud Platform” and “Windows Azure” (later renamed
to Microsoft Azure). Another kind of company here
to mention is Salesforce. This company provided its
software as a service over the internet from the start,
thus becoming one of the first software as a service
provider. As the definition of cloud computing is is still
evolving and changing [1], for this work the definition of
cloud computing from the National Institute of Standards
(NIST) is used:

“Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network
access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications, and services) that can
be rapidly provisioned and released with

2

minimal management effort or service provider
interaction” [1, pp. 2].

Focusing more on the business perspective, but otherwise
similar is another definition of cloud computing: “Cloud
computing is an IT deployment model, based on
virtualization, where resources, in terms of infrastructure,
applications and data are deployed via the internet as
a distributed service by one or several service providers.
These services are scalable on demand and can be priced
on a pay-per-use basis” [2, pp 4]. According to [2], there is
a strong trend from products to services. This is not only
true for hardware, but more and more for software, too. In
cloud computing, hardware and software as a service are
tightly integrated. Multiple services can be composed to
support complex business processes. The NIST [1] defined
the essential characteristics of cloud computing as:

• On-demand self-service.
• Broad (ubiquitous) network access.
• Resource pooling.
• Rapid elasticity.
• Measured service.

On-demand self-service means that a customer can add
or remove computing capabilities without any human
interaction as wanted. All capabilities and services are
provided and accessed over a network. The provider’s
computing resources are pooled to serve multiple clients.
Another characteristic is that resources can be elastically
provisioned and released. The last characteristic is that
resource usage is monitored, controlled and reported. All
these characteristics are fulfilled by the services from the
established cloud vendors. As an example Amazon Web
Services (AWS) allows customers to manage their cloud
services with the AWS Management Console. With this
web-based user interface services can be created, modified
and removed on demand by the customer. These services
are shared by multiple customers and the resources
provided can be scaled up and down. All statistics of
used services and resources and resulted cost are available
directly to the customer [1].
A. Cloud Computing Elements

The services in the cloud can be classified by service and
deployment model.

1) Service Models: As cloud service providers offer
many different types of services, these services are roughly
categorized into three service models: Infrastructure,
platform and software. These models can also be seen as
layers, where basic services like providing storage, network
or computing services are on the bottom, supporting
services in the middle and specialized application services
on top. The higher the service in the layer, the more
specific the service is, where the lower a service, the more
flexible usable it is. Normally services are using other
services of the same layer or layers below. A database
service, for example is using infrastructure services like
storage and the database software will normally run on

Fig. 1. Cloud computing elements [3, pp. 14]

an operating system in a virtual machine. It will need
additional services, for example access to a domain name
service, a firewall or the like.

a) Infrastructure as a Service (IaaS): Virtualized
hardware is provided over a network. Storage or computing
resources are made available. Everything else, beginning
from the operating system is managed by the customer.

Platform as a Service (PaaS): These services are
provided for developers and administrators. They can
deploy applications on a software stack which is provided
for the customer. The service stack is managed by the
cloud provider, while the application itself is managed
by the customer. Amazon (AWS) also uses the terms
“Abstracted Services” and “Container Services” for this
service model.

Software as Service (Saas) : The applications of the
provider are used by the customer. The model is focused
of the end user of the cloud. The user does not manage
or control the underlying cloud infrastructure, only user-
specific application settings are possible. Examples for this
services are Office 365 from Microsoft or Photoshop CC
from Adobe.

2) Deployment Models: Another categorization is by
deployment. This categorization is orthogonal to the
service model. Every service model can deployed in
different ways, and a deployment model does not have
any influence on the service model. The deployment has
an direct impact on the security and privacy of the data
in the cloud, as there is an additional layer of defense
for the private and hybrid cloud, because the access to
it is restricted. Multiple service models can be deployed
by using the same deployment model, but the opposite
is possible too, a service can be available for multiple
deployment models.

a) Public cloud: The cloud infrastructure is
provisioned for use by the general public. This is
considered the standard deployment scenario for cloud
computing.

3

b) Private Cloud: The cloud infrastructure is
exclusively provisioned for a single (often large)
organization. This is the most secure deployment
scenario, as no unintentionally interactions with other
customers or users of the cloud are possible.

c) Community cloud: The cloud infrastructure is
exclusively provisioned for a specific community.

d) Hybrid Cloud: A composition of two deployment
models. Although the cloud infrastructure is separated,
applications and data can be deployed in the private and
in the public part. A typical usage model is cloud bursting:
If the demand for resources exceeds the capacity of the
private cloud, these additional resources are provided by
the public cloud. Azure Stack makes it possible, to deliver
cloud services from an internal data center [1].

e) Virtual Private Clouds (VPC): A private cloud
is simulated in the public cloud, by physically isolating
storage and networking [4, pp. 43].

3) Actors and roles in the cloud: Outsourcing processes
and services requires new actors and roles. According to [4]
the actors facility manager, service provider, cloud user,
and IT manager exist. Facility managers are the operators
for the outsourced services of the data center. These
data centers can be autonomous or a direct subdivision
of the cloud vendor. The service providers manage the
resources of the data centers and are employees of the
cloud vendor. Cloud users are the customers of the cloud
services, they can be different from the end user. End users
are the people using the services provided by the cloud.
IT Managers are the people responsible of the computer
infrastructure in an organization [4].

4) Cloud Computing Strength and Weakness: Cloud
computing is still growing fast. The main driver for this
growth are advantages over the classic in house operating
and maintenance model. According to [4],[5],[6] these
advantages are:

• Reduced cost with shared infrastructure.
• Avoiding over provisioning for peak times.
• Eliminate the need to hire or train specialized IT staff

for each application and system.
• Pricing models like charge per use and pay per use,

resulting in more budget flexibility.
• On-demand elastically and scalability, resulting in

more business agility.
• Any-where any-time accessibility.
• Outsourcing of hardware and software management.
• Better security.

Reduced cost is always a good motivation. But it is
also good to know, where this reduced cost come from.
For cloud services the reasons are economy of scale
and shared infrastructure. Considering the size of the
big cloud vendors, economy of scale does not need any
further explanation but an even stronger effect comes
from shared infrastructure. Multiple customers can share
the same infrastructure, but not only infrastructure itself,
but also the cost of maintenance for the infrastructure.

This minimizes capital investment in IT infrastructure and
the need to build out data center facilities. The provided
pricing models are very attractive too, as they are flexible
and do not require any upfront investments. This budget
flexibility makes it possible to switch capital expenditures
for operating expenses. As the services are available over
the network, the cloud resources can be accessed from any
location and at any time. So a change of the region for a
provided service is simple and fast. Resizing the resources
on-demand is a big advantage, too, as peak demand for
IT resources can easily satisfied. This makes it possible to
align costs with usage and to avoid over provisioning. As
result, this enhances business agility and makes it possible
to deploy and remove resources as needed. The next
advantage can not be overrated. Hardware and software
management requires a lot of internal resources in every
organization. Any problems in this area directly affects the
performance of the whole organization. Security is often a
controversial advantage, because it is often overseen, that
the cloud has some benefits regarding security. First, due
the availability of more resources, denial of service attacks
are much costlier for the attacker, and chances are high
that even DDoS (Distributed Denial of Service) attacks
fail against one of the major cloud providers. Second,
another advantage is that cloud provider usually have
expert security personnel, who are specialized for exactly
the services they are running. This might not be affordable
in the in house data center. But of course, outsourcing
into the cloud has not only advantages. Some potential
drawbacks and disadvantages exist. These disadvantages
are identified by [4],[5] as:

• Loss of control on hardware and software.
• Shared resource (performance reduced by neighbors).
• Potential security risk by placing critical data on

remote servers.
• Vendor lock-in.

The loss of control can be seen as a disadvantage.
The service provider takes over control of hardware and
software, whereas the degree of control for the later
depends on the chosen service model. The customer
therefore has no more control over the hardware
and software used. This means that any competitive
advantages regarding software or hardware are no longer
possible. Shared resources can also have some severe
drawbacks. As already mentioned, sharing resources is
great regarding cost, but only as long as the use by
other customers has no negative impact on the provided
resources. Privacy and security is a, if not the, critical
concern of outsourcing data. A lot of trust to the vendor
is necessary to give internal data out of hands. Depending
on a specific vendor for a service can also be a serious
disadvantage, if the vendor uses this dependency for its
own benefit. Many of theses disadvantages are in fact
simply the other side of the coin of the advantages listed
before. It is great, not having to grapple with software and

4

hardware, on the other side it is not so great if you cannot
control your software and hardware anymore.

B. Database as a Service

As this report is about databases in the cloud, the
database as a service model (DBaaS) is examined in
more detail. The database as a service model was first
described by [7] in 2002. It was implemented using the
database DB2 and therefore named NetDB2. Besides the
performance overhead of remote access, it identified data
privacy as the most challenging problem and suggested
first solutions to the problem. A cloud deployment of a
relational database has advantages over the traditional
in house approach. As already mentioned before, cost is
always a strong driver for migration into the cloud. In
this case it is not only the economy of scale on hardware
and energy, but also in workforce for administrating and
maintaining the database. Figure 2 on page 5 shows
the time spent on different tasks by an administrator.
Database administrators are not waiting at every corner,
and their expertise is well paid. Another, often more
important advantage is flexibility. Performance peaks are
easier to handle, because the cloud provider can easily
distribute the workload. Paying only the used resources is
also a great benefit. In short all general advantages of the
cloud apply to the DBaaS model as well. The commercial
DBaaS offers have only the standard database security
features enabled. This means that normally the transport
is encrypted and the data is at least optional encrypted
at rest. To gain additional security, encryption on the
application level is necessary.

Fig. 2. Database Administrator Time (AWS)[8]

1) Overview of DBaaS Providers: All major cloud
computing vendors offer managed relational databases as
a service. These services exist for both open and closed
source database management systems. The most widely
used open source database engines are MySQL/MariaDB
and PostgreSQL. Multiple service provider exist for the
top commercial databases from Oracle and Microsoft
, while a service using DB2 is offered only by IBM
itself at the time of writing. As there exist a myriad
of constantly changing different options of hardware and
software options, here is only a short overview of the
provided services:

Amazon Relational Database Service (RDS) : Amazon
offers the broadest range of services. Different options
regarding type and number of processors, amount of
memory, size of storage and network resources exist.
(https://aws.amazon.com/rds/) The supported database
engines are listed below.

TABLE I
AWS DBaaS

Database Description
Amazon Aurora MySQL and PostgreSQL compatible
PostgreSQL PostgreSQL 9.3.12 - 10.5
MySQL MySQL 5.5, 5.6, 5.7
MariaDB MariaDB 10.0, 10.1, 10.2
Oracle Oracle 11g (11.2.0.4) and 12c (12.1.02)
Microsoft SQLServer SQL Server 2012 - 2017

Microsoft Azure Relational Databases: Microsoft
offers many different configurations for relational
databases in the cloud. These configurations vary
regarding the used database engine, the type and
number of CPU cores and amount of memory provided
and the kind of deployment (shared, managed,
single). (https://azure.microsoft.com/en-us/product-
categories/databases/)

TABLE II
Azure DBaaS

Database Description
Azure SQL Database based on enterprise edition of SQL Server
Azure Database for PostgreSQL PostgreSQL 9.5, 9.6,10.4
Azure Database for MySQL MySQL 5.6, 5.7

Azure SQL Database was used during evaluation to
show the support of multiple databases (and not only
MySQL).

Google Cloud SQL: Google offers a fully
managed database service for (currently) two
open source database management systems.
(https://cloud.google.com/sql/docs/)

TABLE III
Google DBaaS

Database Description
Cloud SQL for MySQL MySQL 5.6, 5.7
Cloud SQL for PostgreSQL PostgreSQL 9.6

IBM Cloud : IBM offers its commercial databases
DB2 and Informix as fully managed service1. Additionally
it offers two open source relational databases on its
compose platform. Compose is a platform for all different
kinds of NoSQL and SQL databases and middleware like
message brokers. This includes services for MongoDB,
Redis, JanusGraph, RabbitMQ , MySQL and PostgreSQL.
Apart from Db2 on Cloud, Db2 Hosted also exists as the
unmanaged version of DB2.

1https://www.ibm.com/cloud/databases

5

TABLE IV
IBM DBaaS

Database Description
Db2 on Cloud a fully managed version of DB2
Informix on Cloud https://www.ibm.com/cloud/informix
Compose for MySQL MySQL Version 5.7
Databases for PostgreSQL PostgreSQL Versions 9.4, 9.5, 9.6

Oracle Database Cloud Service : Oracle supports its
own relational database in the versions 11g, 12c and 18c as
managed service2. Additionally Oracle offers its Exadata
Cloud Service, which is also available as customer edition.
Exadata is Oracles customized software and hardware
for running its database. The customer edition is the
Exadata Cloud Service running at the customer’s own data
center. MySQL is supported as cloud service, but not fully
managed.

TABLE V
Oracle DBaaS

Database Description
Oracle DB Cloud Service Version 11g, 12c and 18c
Oracle DB Exadata Cloud Service Exadata
Oracle DB Exadata Cloud at Customer Run at the customer’s data center
Oracle DB Exadata Express Service Lightweight version of Exadata
Oracle DB Schema Cloud Service No full access to the database

III. Security
No software system with some useful functionality is

without flaws and bugs. Although these flaws and errors
may restrict the use some of its functionality, a system
is often considered as working. If the software is well
designed, then an error in one component has no impact
on the usability of another component. The component
which is not affected, works as specified. In this aspect the
security of a system is different, because it is only as strong
as its weakest link. It does not matter, how secure one part
of the system is, if other parts, even only one, has a flaw,
the whole security of the system can be lost. Functionality
can be tested by validating the specification of its features.
A system’s security has to be tested the other way,
it is important to verify that certain functionality, like
accessing assets without authentication or authorization
does not exist in the system. This is significant harder
to test than functional features. Another difference is the
adversarial setting. Normally (legal issues set aside), a user
wants to use the software in the way it was intended by the
developer, certain rules like constraints and circumstances
under which the software works are accepted. In the
context of security, there are no rules to which the attacker
has to comply. Another problem is that time is on the
side of the attacker. Attackers often can research and
examine a system for years, where the systems itself was
developed under timing pressure and forced to finish by
an always too early deadline. All these things mentioned,
show that a secure system is hard to develop and even

2https://cloud.oracle.com/database

harder to maintain. The more complex this software is, the
harder it is to maintain security. As mentioned in [9, pp
37], “complexity is the worst enemy of security”. Another
important point to mention is that security not only
includes hardware and software, but also its users and
their interactions. Bruce Schneier brings this to the point,
saying “Security is a process not a product”[10, pp. XXII].
A. Privacy

In nearly every country of the world, the gathering,
using and transferring of data, especially personal data is
restricted by law. Every member of the European Union
has to have data protection laws, which implements the
directive 95/46EC of the European parliament and of the
council.In 2018 this directive was replaced by the general
data protection regulation (GDPR) 2016/679 of the
European Parliament and Council. The directive restricts
the processing of personal data in specific categories.
Examples of personal data are: Racial or ethnic origin,
political opinions, religious or philosophical beliefs, trade-
union membership, health or sex life.The processing of
data in theses special categories is generally forbidden and
only allowed, if

• The subject has given explicit consent.
• Processing is necessary for the purposes of carrying

out the obligations and specific rights of the controller
in the field of employment law.

• Processing is necessary to protect the vital interests
of the subject, where the subject is incapable of giving
his consent.

• Processing is carried out by an association with a
political, philosophical aim and that the data is only
of members and not disclosed to others.

• The processing relates to data which are made public
by the data subject or is necessary for legal claims.

In the United States of America the National Institute
of Standards and Technology (NIST) provides a guide
to protecting the confidentiality of personally identifiable
information (Special Publication 800-122) for all federal
agencies. It defines personal identifiable information as

“Any information about an individual
maintained by an agency, including (1) any
information that can be used to distinguish or
trace an individual‘s identity, such as name,
social security number, date and place of
birth, mother‘s maiden name, or bio-metric
records; and (2) any other information that
is linked or linkable to an individual, such as
medical, educational, financial, and employment
information.”[11]

Examples of personal identifiable information are name,
social security number, driver license number, passport
number, credit card number, address information, images
of a person, fingerprints or other bio-metric data. The
main recommendations for the handling of personal
identifiable data are to

6

• Minimize the use, collection and retention to what is
strictly necessary to accomplish their purpose.

• To categorize them by the confidentiality impact level.
• To apply the appropriate safeguards based on their

confidentiality impact level.
• Develop an incident response plan to handle breaches.
• Encourage close coordination between chief privacy

officers, chief information officers, chief information
security officers and legal counsel.

General speaking, the European legislative is more
restrictive than the American, because every member of
the European union has to implement the directives. The
previous mentioned NIST guide for example is only a
recommendation and not a law [12], [11], [13].

a) General Data Protection Regulation (GDPR): For
cloud computing the responsibilities are split. The data
processor is the cloud computing service provider like
Amazon (AWS) or Microsoft (azure). The Data Controller
is the customer of these cloud services [14].

b) Information Systems Categorization regarding
security: Information and Information Systems can be
categorized in three categories regarding the objectives of
security: Confidentiality, Integrity, and Availability (also
called the CIA triad) [15].

Low : The loss of confidentiality, integrity and
availability has only a limited adverse effect, like minor
damages or loss of assets on the organization.

Moderate : The loss of confidentiality, integrity and
availability results in severe negative effects, like significant
financial loss, but the organization is still able to perform
its primary functions.

High : The potential impact of the loss of
confidentiality, integrity and availability is high, if the
organization is not longer able to fulfill its primary
functions or results in major damage and losses for the
organization or severe harm to individuals.

Server Security Principles : The NIST “Guide to
General Server Security” [15] also lists security principles
like simplicity, fail-safe, complete mediation, open design,
separation of privilege, least privilege, psychological
acceptability, least common mechanism, defense in depth,
work factor and compromise recording. All these principles
are applicable to servers in the cloud, too. The difference
is that some of these principles have to be followed by the
cloud vendor, and not the cloud customer or user anymore.

B. Cryptography
Cipher Security: The security of a cipher is

determined on how hard it is to break, and how
much information is needed to do so. An algorithm
is unconditional secure only, if no matter how much
information the attacker has, it is not possible to recover
the plain text. If an algorithm is only computationally
secure, it means that it cannot broken by the available
resources [16]. Cryptography is a vast discipline with many
ciphers. Many taxonomies of these ciphers exist, but to

give these ciphers some order and to give an overview a
common taxonomy was chosen (see Figure 3 on page 7).

Fig. 3. Taxonomy of ciphers

Kerckhoff’s principle:
The security of the encryption scheme must only
depend on the secrecy of the key, and not on the
secrecy of the algorithm[9, pp 24].

The opposite of this principle is called security through
obscurity. By security through obscurity an unknown
cipher is used, or it is even unknown that any cipher
at all is used. The problem is, if the obscure cipher is
revealed, chances are high that it is not secure anymore,
because an detailed cryptoanalysis in public was never
done. Security through obscurity is not recommended
anymore. NIST Guide to General Server Security (SP
800-123) says regarding open design: “Security should
not depend on the secrecy of the implementation or its
components” [15, pp 2-4]. Steganography in contrast to
cryptography tries to hide secretly information in plain
sight. This can be also seen as security through obscurity.

Block ciphers: Block ciphers are rarely used directly,
because the message size usually does not fit to the exact
size of the block. For this are block cipher modes, which
support arbitrary message sizes. The simplest definition of
a secure block cipher according to [9, pp 44] is: “A block
cipher is secure, if it keeps the plain text secret.“ Another
definition for security is the idea of an ideal block cipher.
An ideal block cipher means, that for each key value there
is a random permutation.

An ideal block cipher implements an
independently chosen random even permutation
for each of the key values [9, pp 50].
a) Block cipher modes: To encrypt messages, that are

not exactly one block long, a block cipher mode has to be
used. A block cipher mode is a function to encrypt an
arbitrary length plain text to an ciphertext. As often the
size have to be a multiple of the block length reversible
padding is required to get the original message after
decryption. Some of the most common modes for block
ciphers are: ECB, CBC, Fixed IV, Counter IV, Random
IV, Nonce-Generated IV [17].

7

• ECB (electronic code book). Each block is encrypted
separately in this mode. This means that two
identical blocks in plain text are encrypted to the
same ciphertext, which makes this mode less secure,
because with a chosen plaintext attack, it is easy to
gain more information than acceptable. For example,
if records contain an encrypted name, and an attacker
tries to reveal if a distinct person with this name is in
the record, than all the attacker has to do, is to create
a record with the same name, and then select all rows
with the encrypted name. Of course, sometimes this
deterministic property is exactly what is wanted. An
example is the foreign key relation in a database. If
the same value is encrypted to different ciphertexts,
it is not possible to reference it as a foreign key.

• CBC (cipher block chaining). Before encrypting the
plain text, it is xor-ed with the previous encrypted
block in this mode. This avoids the problem of
identical plain text blocks resulting in the same
ciphertext blocks. For the calculation of the first XOR
there is no previous ciphertext block, so an initializing
vector is needed. The following modes use different
strategies to solve this problem.

• Fixed IV. Here the initialization vector (IV) is fixed.
It has the same disadvantage as the ECB mode but
for the first block only.

• Counter IV. In this mode, the initialization vector
is the sequence of the message. This has the
disadvantage that sometimes the sequence differs only
one bit which means, that the same plain text is
encrypted in a very similar ciphertext.

• Random IV. Using a random initialization vector
is secure, but has the disadvantage, that this
initialization vector has to be send to the receiver in
the first block. Therefore the ciphertext is one block
longer than the plain text.

• Nonce-Generated IV. Instead of sending the
initializing vector itself, only the information
(message counter) for creating an unique number
(the nonce) is sent. This normally requires less
overhead than the IV itself.

• Stream cipher modes. Multiple modes like OFB,
CTR, OCB, CCM, CWC and GCM exist for stream
ciphers.

• OFB (output feedback mode). Here an output stream
with the key is generated, and the plain text is xor-ed
with it.

• CTR (counter mode). Another stream cipher mode,
but in this case it is using a nonce.

• OCB,CCM,CWC and GCM. These are special modes
combining encryption and authenticity functionality
at the same time.

1) Classical ciphers: All ciphers invented and used
before 1950 are called classical ciphers. They can
be further classified in substitution and transposition

ciphers [18, 28]
a) Substitution ciphers: A substitution cipher is a

cipher where every letter of the plain text is substituted
by a different letter. If every letter is always mapped to
the same encrypted letter, a substitution cipher is called
monoalphabetic.

b) Caesar cipher:: The most famous and in fact one
of the simplest of these ciphers is the “Caesar Cipher”.
Each cleartext letter is replaced by shifting the letter
in the alphabet by n positions. The distance between
the letter and the substituted letter in the alphabet is
always constant.. More general, the key in this substitution
cipher is the number of the shifts between the cleartext
and ciphertext. Each letter of the alphabet is assigned a
number according to its position in the alphabet, starting
with letter A = 1 and ending with letter Z = 26. The
function for encryption can be written as:

encryptK(P) = (P + K)mod|A|

P is the plain text (respectively the position of a plain
text letter in the alphabet), K is the chosen key (number
of shifts) an |A| is the number of letters in the alphabet.
To encrypt a message, for each letter its position in the
alphabet is determined, and the position of the encrypted
letter is calculated by adding the value of the key modulo
the number of letters in the alphabet. At the end the
number is replaced with the corresponding letter. For
decryption the function looks similar:

decryptK(C) = (C − K)mod|A|

In this function, C is the ciphertext and the other variables
have the same meaning as in the function for encryption.
To decrypt the message, the same steps are performed as
in the encrypting function, but instead of adding the value
of the key, the key is subtracted.

Example: Given the key K = 3 (the original key used
by Julius Caesar) and the plain text “VENI VIDI VICI”
the ciphertext can be easily generated using the encrypt
function: The first letter is ’V’ so its position in the
alphabet is 22. Adding the key (3) results in 25 modulo
26, which is 25, respectively the letter ’Y’ according to
the chosen alphabet. The next letter is ’E’ encrypted
to the letter ’H’. To make it handier, a table of the
alphabet in plain text and ciphertext can be generated.
The first row shows the positions of the letters in the
alphabet, the second shows the letters of the plain text
and in the third row the letters of the ciphertext can
be seen. To encrypt a letter, it is simply looked up in

TABLE VI
Caesar cipher with key = 3

position 1 2 3 4 5 ... 9 10 11 12 13 14 ... 22 ... 26

plain text A B C D E ... I J K L M N ... V ... Z

ciphertext D E F G H ... L M N O P Q ... Y ... C

the plain text row and substituted with the letter of

8

the ciphertext. After the substitutions ’V’ -> ’Y’ , ’E’
-> ’H’, ’N’ -> ’Q’, ’I’ -> ’L’ the resulting ciphertext
of the first word in the example is then “YHQL”. As
letters which are not members of the alphabet (in this
case space) are ignored the whole message encrypted is
“YHQLYLGOYLFL”. To decrypt it, each letter is looked
up in the ciphertext text row, and substituted with the
plain text, resulting in “VENIVIDIVICI”, which is (after
including the corresponding spaces) the original message
“VENI VIDI VICI”.

A special case of this kind of cipher is ROT13. In this
case the key is 13 and the plain text is revealed if the
cipher is applied on the ciphertext a second time. The
key space of these simple substitution cipher is 26, which
means that only 26 different keys for this algorithm are
possible. (Including the not very useful key 26, where
the ciphertext is equal the plain text.) The result is that
the encryption is very weak, and can be easily broken by
an ciphertext-only attack. Even if the alphabet would be
larger (resulting in more possible keys), it is easy to make a
statistical attack on the ciphertext. When the frequencies
of the letters in a language are known, and the frequencies
of the encrypted letters are similar as in the plain text, it
is easy to guess which letter is mapped to the encrypted
one. In the German language for example, the letter “E”
is with 17,4% the most used letter of the alphabet, so
the probability is high, that in the ciphertext the most
frequent used letter is the encrypted “E”. One solution to
avoid this kind of statistical attack is to map one plain text
number (the position of a letter) to one or more ciphertext
numbers according to their distribution in the language.
These ciphers are called homophone [18], [19, 29].

c) Multiplicative ciphers: Another kind of
monoalphabetic ciphers are multiplicative ciphers. In
a product cipher every letter (its position in the alphabet
starting with 0) is multiplied by a number, this number
and the number of letters in the alphabet has to be
relatively prime, to make the decryption unambiguous.
The function to encryption and decryption can be written
as:

encryptK(P) = (P ∗ K)mod|A|

decryptK(C) = C ∗ (Kmod|A|)−1

To decrypt the ciphertext has to divided modulo |A|,
which is in fact a multiplication with the multiplicative
inverse modulo |A|, which can be easily guessed for a small
alphabet or calculated with extended Euclidean algorithm.
A weakness of multiplicative ciphers is the tine key space.
For an alphabet with 26 letters, there exist only 12 valid
keys, which vulnerable for a brute force attack [18].

d) Polyalphabetic substitution ciphers: A
polyalphabetic cipher has not only one key, which
maps a plain text letter to the ciphertext but has many
keys. For encryption of the first letter the first key is
used, for the second letter the second key and so on. After

the last key is used the circle starts again, encrypting
the next letter with the first key. The advantage of these
kind of ciphers is, that in the resulting ciphertext the
distribution of the letters is hidden, which complicates a
statistical attack on the cipher. Members of this kind of
cipher are the Vigenere cipher and the Hill cipher [16],
[18].

e) Transposition ciphers: In a transposition cipher
the difference between plain text and ciphertext is only the
order of the letters. A simple example of a transposition
cipher is to write down the plain text in rows of fixed
length and the ciphertext is the same text read by column.
As there are many other possibilities in which order the
ciphertext can be read from the table, many different
ciphers of this kind exist. Another form of a transposition
cipher is called permutation cipher, where the key is a
permutation. All these ciphers are prone to statistical
attacks, because the distribution of the letters in the plain
text is the same as in the ciphertext [16].

f) Rotor machines: These mechanical devices allowed
the automatic encryption of a message via a keyboard. It
was a machine with a set of rotors in the end implementing
a polyalphabetic substitution cipher. The best known
rotor machine is the Enigma, which was used by Germany
during WWII. As history showed, the encryption was
not bulletproof and the encryption was broken by the
British [16].

g) One-Time pad: Although all of the classical
ciphers are weak and can be easily broken, there is
one exception to this rule, the one-time pad. It is the
only cipher which is unconditional secure. The cipher is
simple and depends only on a good random key. This key
consisting of random letters is used to encrypt the message
letter by letter. The letter from the key is added to the
plain text letter modulo 26. To decrypt the letter of the
key is subtracted from the ciphertext. The important thing
in this secure encryption scheme is, that every key is used
only once. Every message has to be encrypted with another
key, and the key has also be real random. The problem
with this cipher is, that it is quite unpractical, because
the key has to be the same size as the message (in fact, as
the key can be only used once, a new key for every new
message is needed), both sender and receiver need the this
key and the key has to be truly random [18].

2) Modern Block ciphers:
a) Symmetric ciphers: A symmetric cipher is a cipher

where the same key is used for encryption and decryption.
Block ciphers: Block ciphers are symmetric ciphers

operating on a block of fixed size. The plain text message
is divided in blocks and each block es encrypted separately.

b) DES: Data Encryption Standard [16], also known
as Data Encryption Algorithm (DEA), was the first
cryptographic algorithm, which became a ANSI standard.
DES is a block cipher with a block size of 64bit. The result
of applying the encryption on a block of plain text, is the
ciphertext with the same size. The length of its key is 64

9

bits but because every eighth bit is used for parity checking
the effective size is only 56. The basic building blocks of
DES are simple (which makes it easy to implement), in
fact only XOR, permutation and substitution is used. The
application of a substitution followed by a permutation is
called round.

The algorithm works as follows: After an initial
permutation (IP), the block is split in two halves. Then
16 rounds (permutation and substitution) are performed,
in which the key is combined with the data (in function
F). At the end a final permutation is performed, which is
the inverse of the initial permutation.

The interesting part of the algorithm is the function F,
where the key (in fact a sub-key) is applied. In the first
step of this function a sub-key of length 48 is generated.
This is called a compression permutation, where the key
is shuffled and reduced in one step. Then the right half
is expanded to length 48. This is done via a expansion
permutation, which not only changes the order of the
right side, but adds additional bits too. In the next step
XOR is applied on the compressed key and the expanded
right side. The substitution is performed on the result.
DES has eight different substitution boxes (S-Box), each
having an input of 6 and an output of 4 bits. The 48 bit
block is distributed to the S-boxes and the substitution is
performed. In the next step, the 32 bit output is permuted
by a P-box. At the end of the round XOR is applied on the
output of the right side and the left side and the sides are
switched for the next round. Decrypting works the same
way, the only difference is, that the order of the sub-keys
is inverted.

The security of DES depends on the length of the
key and the implementation of the S-boxes. The S-boxes,
although not perfect showed only minor flaws, which can
be avoided. The problem is, that the key with 56 bits is to
short, opening the door for brute force-attacks. Another
flaw is that if you choose 0 as key then all rounds use
the same key and as encryption and decryption are the
same, except from the order of rounds this distinguishes
the algorithm from a ideal block cipher. Another property
of DES is, that if you encrypt the complement of the
plain text with the complement of the key, you get the
complement of the ciphertext. 3DES is attempt to enhance
the security 3DES by using three keys in sequence to
encrypt a block. This solves the problem of the small key
size, but not the problem of the small block size. Of course
encryption/decryption takes three times as long as with
DES [19], [18], [9].

c) AES: Because DES with a key of 56 bit was no
longer secure, a new standard, the Advanced Encryption
Standard (AES), was created. It is a cipher with a block
size of 128 bit. The key can have a length of 128, 192 or 256
bit. According to the length of its key, AES performs 10, 12
or 14 rounds. In every round except the last the following
steps are performed. Subbytes implements an S-box, doing
substitutions. ShiftRow does some permutations analog

to a P-box. As all this operations are done on a 4x4
matrix the next step MixColumns changes the order of
the columns. AddRoundKey, the last step adds a sub-key
to the matrix. In the last round the step MixColumns is
replaced by AddRoundKey. As of today no security flaws
of AES are known, so the only possible attack is a brute-
force attack on the key, which is even with the smallest
length not possible with current available hardware. This
has not to be true for the future. In fact there are already
theoretical attacks on AES with 192bit and even 256bit
key length [19], [18], [9].

d) Stream ciphers: Stream ciphers are symmetric
ciphers, where each bit is encrypted one by one. Stream
ciphers are often faster than block ciphers, but their
security depends on the randomness of the used keys. A
famous example of a real secure stream cipher is the one-
time pad, which was already mentioned before in the group
of the classical algorithms.

e) RC4: Another well known and used represent of
stream ciphers is RC4, named after Ron Rivest. This
cipher uses a 8x8 S-Box, with permutations in the range
from 0 to 255. The permutation depends on the key, which
has no fixed size. Then according to a simple algorithm,
a random byte K is generated and XOR is applied on K
and the plain text. The same thing is done to decrypt
the ciphertext. The algorithm is about ten times faster
than DES. If the key is long and random enough, this
encryption is quite strong. If not, like in the case of WEP
(Wired Equivalent Privacy) it is not secure [20].

f) Asymmetric ciphers: An asymmetric cipher is a
cipher where different keys are used for encryption and
decryption. They are also called public-key algorithms,
because at least one key is public available. It is crucial
for an asymmetric cipher, that the private key can not
be deducted from the public key. The plain text can be
encrypted with the public key , and this plain text can only
be decrypted with the private key. The classic example is
to send an encrypted email. To do this, the public key of
the receiver is used by the sender (the sender has to know
this key) to encrypt the message. This message is then sent
to the receiver, and can only decrypted by the private key
of the receiver.

g) RSA: The first commercial public-key algorithms
was RSA, named after Rivest, Shamir, and Adleman. The
algorithm works as follows: To generate the both keys
(public and private), two large primes p and q are chosen
and multiplied, resulting in n. Then a encryption key e is
chosen, which has to be relative prime to (p-1)(q-1). Then
the decryption key d is calculated by

ed ≡ 1mod((p − 1)(q − 1))

The public key consists of the numbers e and n, and the
private key is e. To encrypt a message it is split in blocks
smaller than n. A block is encrypted with

memod(n)

10

and decrypted with

cdmod(n)

The security of RSA depends on the fact, that factoring
large numbers is computational costly, because the
factoring of n is required to get the decryption key. The
key length is obvious very important and has normally a
length from 1024 to 4096 bit.

3) Tokenization : “Tokenization is the process of
randomly generating a substitute value, or token, that
is used in place of real data, where the token is not
computationally derived in any way, shape or form from
the original data value”[21]. While the plaintext and the
token is stored local, only the tokens are stored in the
external database. The tokens can, but do not have to,
preserve the type and format of the plain text data. The
drawback of this approach is, that the whole data has to
be stored locally, which requires additional resources and
security measures. This can contradict the advantages of
moving the data in the cloud. If the tokens are ordered
or searchable, the same security drawbacks as of order
preserving encryption exist. Access from outside can be
another issue, which can, from a security standpoint,
enlarge the attack surface of the solution significantly.
Although having the same goal as encryption, a difference
to encryption is, that tokenization is a non mathematical
approach. As no sophisticated processing is required, it
is usually more performant than the encryption process.
Encryption, on the other hand requires no storage (except
for the key). While the security of ciphers is often
analyzed thoroughly, for tokenization this is often not
the case, leading to security through obscurity. As a
standard for tokenization X9.119 exists. Visa has defined
best practices for tokenization in [22]. Best practices
are for example: Segment the tokenization system from
the rest of the network, give only authenticated users
access the system and monitor it tightly. The tokens
should be distinguishable from the plain text.The token
generation should use a strong cipher or a one-way
reversible function [23], [21].

4) Cryptographic attacks: The goal of cryptography is
to keep messages secure. Cryptoanalysis on the other
hand has the goal to break the encrypted message and
reveal its plaintext. Cryptology is the combined study
of cryptography and cryptoanalysis. Practitioners of this
discipline are called cryptologist and have normally a
strong mathematical background. As the terminology
of the domain cryptology is not unambiguous a short
terminology for this report is given. A plain text (also
called cleartext) is a readable message. Through the
process of encryption the plain text message is concealed.
The resulting encrypted message is called ciphertext. The
reverse process, which restores the plain text from the
encrypted message, is called decryption. A cipher is a
cryptographic algorithm used to encrypt and decrypt a
message. If the security of a cipher is based on keeping

the way the algorithm works secret, it is called restricted.
The sum of the cipher, plaintexts, ciphertexts and keys
is called a cryptosystem [16]. Although the focus of this
report lies on cryptography, cryptoanalysis is also needed
as the complementary part of it, determining the quality
of a cipher and the usability for its applications. As the
goal of the cryptoanalysis is to recover the original plain
text, there a different type of attacks a cryptanalyst can
perform.

Cryptographic attacks can be classified by the kind of
access the attacker has to a system. A type of attack is also
called attack model [10, p.90]. The more prerequisites and
information for an attack is needed , the harder it is for
the attacker to be successful. Or seen from the perspective
of the cryptosystem: A cryptosystem is more secure, if it
can withstand an attack where the attacker has all the
information he can gather, than a cryptosystem, which
can only withstand attacks where the attacker has only
limited information about the system. A threat model and
threat analysis is a prerequisite for every project. A threat
itself is defined as: “An action by an adversary aimed at
compromising an asset” [9, pp 21]. According to [9], the
following attack models exist:

• Ciphertext Only Attack. The attacker has only the
ciphertext of one or several messages. The goal of the
attacker is to recover the plain text of the messages,
or even to recover the key used for encryption. This is
the hardest way for an attacker to break an encryption
system. Modern algorithms normally withstand these
attacks, because often the only way to decrypt the
message is a brute-force attack to guess the key.

• Known-Plaintext Attack. In this attack model the
attacker knows the plain text and the associated
ciphertext for some messages. The goal of the attacker
is again the decryption of other messages or even
getting the key to get access to all messages. The
access to plain text and ciphertext is quite common,
if you think about standard messages in a protocol
or the scenario, where the same message is sent
encrypted to multiple receivers, in which case multiple
receiver know the plain text. Another scenario is
where the plain text is revealed after some time,
because the secret is revealed to the public anyway,
like a quarterly report of a public corporation.

• Chosen-Plaintext Attack. In this kind of attack, the
attacker does not only know some given plain text and
its associated ciphertext like in the previous attack
model, but can also choose the plain text which is
encrypted. The attacker has access to the resulting
ciphertext. This is often the case when the attacker
can specify input values, which are saved encrypted by
an application. A simple example is if you can create
an user with a password for an application and have
access to the database, where the password is stored,
too.

11

• Chosen-Ciphertext Attack. The cryptanalyst can
choose different plaintexts and ciphertexts and has
full access to the associated ciphertext and plaintexts.
This gives the attacker more freedom for the attack,
making it more powerful than the chosen-plaintext
attack, although it is not that common as the later.
The goal of this attack is still to recover the key [16,
p.32].

• Distinguishing Attack. In the attacks before, the
goal was to get access to the plain text or the key.
In this sort of attack the goal is to get additional
information about a new encrypted message after
observing several messages before. This means that
although the new message can not be fully decrypted
at least some information is disclosed.

• Side-Channel attacks (information leakage). In this
kind of attack timing information or electricity
consumption can reveal information. Although the
cipher itself is not compromised, valuable information
is leaked. An example could be that the validating of
a passwords takes more time if the first letters are
valid. This makes it much easier for the attacker to
guess a valid password.

• Generic attack techniques. Another group of attacks
is called generic attack. These attacks can not be
avoided, because they a system immanent. A example
is DRM for audio or video files. It is always possible to
make an analog copy of the audio or video file, when
it is played. Other examples of generic attacks, which
can hardly be avoided are:

– Birthday Attack. This attack is named by the
fact, that if there are 23 people in a room, the
chance that 2 have the same birthday is more
than 50%. In general this means that duplicate
values and collisions are not as uncommon as
expected. This fact is important, where the
security is based on the fact that values are
unique, for example for transactions.

– Meet-in-the-Middle Attack. This is another
collision attack similar to the birthday attack.
For this attack, parts of the possible keys are
generated and stored in a table with a known
plain text, known from the protocol. If a match
is found, some valuable information (worst case
a key) can be revealed.

– Related-key attack. This attack is applicable if
a relation between different keys exist. If this
relation can be revealed other attacks can be
launched.

Attack tree: An attack tree can be built, to show
the links of a security systems and the possible attacks
on them. Figure 4 on page 12 shows the possible and
impossible attacks on the different components of a system
from the perspective of the attacker. Other attributes of
the attack like cost and the needed know how can be

added. The goal is to think like the attacker and to fortify
the links which are protected the least.

Fig. 4. Attack tree [20]

Forward secrecy: Forward secrecy means, that even if
a key is compromised, old ciphertext is not revealed.

C. Database Security
In a database, the avoidance of unauthorized access

to restricted data is one of the key aspects of security.
To prevent the disclosure of sensitive data, a database
management system provides a role-based access control
system to all objects in a database. With access control
it is possible to define and execute fine granular policies
to ensure the confidentiality of sensitive data. Although
an important (maybe the most important) single aspect
in database security, it is not enough to guarantee data
confidentiality within the system. Defense in depth as
a security principle is always a good reason to provide
additional protection to data, as there are always chances
that confidential data can be leaked to unauthorized
users. Threats like bugs in the access control system or
misconfiguration of user access rights can never excluded
completely. The even more important reason is, that
some threats against data confidentiality simply cannot
be mitigated by the access control of the database. This is
specially true in the case of deployment scenarios, where
the provider of the database server or the administrator
of the database cannot or can only partially be trusted.
Common threats are:

• Eavesdropping of communication.
• Legitimate privilege abuse.
• Platform vulnerabilities.
• Backup data exposure.

Data encryption can be a viable option to mitigate these
threats. Two main use cases for data encryption can be
identified here: In the first scenario the data is encrypted
at rest and in the second the it is encrypted in transit
to avoid eavesdropping. Some solutions provide data
confidentiality in both scenarios, and mitigate multiple
threats, while some solutions only mitigate a single threat.

12

In both scenarios encryption plays a key role for data
confidentiality [24].

1) Encrypting data in transit: Also known as encrypting
data on the wire, encrypting data-in-transit is mitigating
the risk of eavesdropping the database communication.
Normally the communication between the database server
and its client is not encrypted and can easily be
eavesdropped. To avoid this, the communication between
the server and the client or between database servers
for replication is encrypted. There is a number of ways
to achieve this goal by using a broad range of not
only database specific techniques. According to [25] these
techniques can be summarized as:

• Database-specific features (Oracle Advances
Security).

• Connection-base methods (SSL).
• Secure tunnels (SSH).
• Relying on the operating system (IPSec).

The most common techniques used are SSL and IPSec
and have a wide range of applications, the encryption of
database communication being only one of them.

a) Secure Socket Layer: SSL or more correct TLS
(transport layer security) since Version 3, is the de facto
standard for e-commerce. It uses asymmetric encryption
for the exchange of a private symmetric session key,
which is then used for the rest of the session. Nearly all
databases support the use of SSL via the driver and an
advantage is that TLS is protocol independent and not
restricted exclusively to the internet protocol, because it
is implemented above the transport layer.

b) IPSec : IPSec (Internet Protocol Security) is
another way to secure the communication between client
and database server. IPSec operates on a lower level than
SSL and can only used for IP traffic. IPSec is a standard
and supported by most modern operating systems. It can
ensure the authentication, integrity and confidentially of
communication between two endpoints. An advantage here
is that it does not need the cooperation of the applications
involved in the communication, so a database server has
no support of IPSec, because it is not even aware that it
is used to encrypt its entire communication [26].

2) Encrypting data at rest: Even if the database is
perfectly secure and the database administrator can be
completely trusted, the data is still in danger, if the
server running the database itself is compromised. If the
attacker gains access to the file system by any means,
it is possible to steal data and log files of the database,
and break its confidentiality. One kind of threat is that
the attacker gains physical access to the storage system
in cold state, either because of the rare case that the
hardware is stolen or the more common case that the data
on old tapes or hard disks is not completely destroyed. A
solution against this threat is to encrypt the file system
of this disks, so even if physical access can be gained, the
confidentiality of the data is not broken. Another threat
exists, if the attacker gains access to the file system on

the running system. In this case the encryption of the
file system does not help, because during operation of
the system, the files are decrypted and can be accessed
easily. As any vulnerability in the software running on
the server which enables access to the database files is
sufficient to attack, it is important to avoid the leakage
of confidential data even if access to the file system is
gained. This can be accomplished if the database encrypts
all data, or at least all confidential data in its files and
log files. Most commercial database vendors support the
encryption of data and log files, and they support the same
symmetric ciphers for encryption. The biggest differences
in the solutions are the granularity of encryption, like per
column, table or database, and the management of the
keys in the database management system. The encryption
is either built in the database server or available as an
option [25], [27]. An important decision is the place where
the data at rest is encrypted. It has an significant impact
on the threats that can be mitigated with the chosen
solution. It also has great influence on the cost and
performance of the database. The levels where data can
be encrypted are:

• Storage-level encryption.
• Database-level encryption.
• Application-level encryption.

As shown in Figure 5 on page 13 the level, where the
encryption is performed has direct influence on the key
management and which threats can be mitigated on the
specific level.

Fig. 5. DB-Level Encryption [25]

On storage level the file system is encrypted, minimizing
the risk that a backup discloses confidential information.
Also the data and logs are secure, if the server is in
the cold state. If the server is running, this is not the
case, because any malicious application on the server
with enough privileges can access the data. The keys
are stored on the database server, normally managed by
the operating system. The database is not aware of the
encryption. Other threats are not mitigated.

When the data is encrypted at the database layer, the
database transparently encrypts and decrypts the data
and logs. The keys are stored in the database itself, which
means that a database administrator has access to keys
and the encrypted data. During the operation of the
database management system the data is in clear text in

13

the memory. As long as the database application itself
is not compromised, the data is secured against backup
disclosure and platform vulnerabilities. The encryption
and decryption puts a significant additional workload
on the database server. A big advantage is that the
encryption is transparent to any application, so there is
no customization of the application necessary.

If encryption is performed at the application layer,
the database server is completely excluded of the
encryption process. The key management is handled by
the application and the encryption and decryption is
also performed by the application, meaning there is no
performance overhead for applying the ciphers on the
server. As the size of encrypted data is usually bigger
than the clear text and some ciphers require the selection
and transfer of more data, this performance penalty still
applies on the server. All threats on the database server
are mitigated, but some like key management are only
moved to the client. A major disadvantage is that it
is not easy to perform complex queries with joins or
aggregates on encrypted data on the database. There
are special ciphers with additional attributes which make
complex queries possible, but as already discussed, these
solutions are either not as secure or have an significant
impact on performance and are not as easy to use as
standard symmetric block ciphers. An advantage is that
the application has the full control of the encryption and
can use in exactly the way needed.

Examples of encryption on database level :
a) MS SQL Server: Microsoft SQL Server is

supporting the encryption of all data and log files of
a database since Version 2008. This feature is called
“Transparent Data Encryption” (TDE). TDE performs
I/0 encryption and decryption at the page level in real
time. The data is encrypted before written to the disk,
and decrypted after it is read from the disk. This is
independent of the underlying file system. To do this,
the database encryption key is stored in the database
and secured by using a certificate stored in the master
database. The protection of this certificate and its private
key is very important, because the whole operation
(including backups) of the database server depends on it.
The ciphers used for encryption are AES and 3DES with
different key lengths [28].

b) Oracle Database: Under the same name, but with
different features, the Oracle Database is supporting
transparent data encryption since Version 10g, too. It is
part of an additional option called “Advanced security
option”. This option includes the possibility to encrypt
columns (constraint by data types) and since Version 11g
the encryption of whole table spaces. For every encrypted
table, a key is generated and all keys are secured by a
master key. The whole key management is done by the
database, and its master key is saved in a wallet or in a
hardware security module (HSM) for more security. The
use of TDE on a table or column is specified during the

data definition in SQL. It is possible to choose the cipher
(AES or 3DES with different key lengths) and the use of
salt can be specified. Without the use of salt, every value
is encrypted to the same cipher text, so using salt is more
secure, but it has the limitation, that it is not possible to
create an index on encrypted column [29].

c) IBM DB2: Although not called or advertised as
transparent data encryption, IBM has a solution for its
database DB2 too. It is called IBM Database Encryption
Expert and can as TDE encrypt all data at rest. It
supports the encryption of backups and live data. Which
data or files are encrypted and which not, is configured by
the encryption expert agent, which can run on a separate
server. As in the other solutions, the supported ciphers are
AES and 3DES,

d) Vormetric Encryption for Databases: This
product is an example of a vendor independent solution,
as it supports Oracle, DB2, Informix, MS SQL Server,
Sybase, MySQL and many other database management
systems. The encryption key management is centralized
and according to the vendor, it is completely transparent
to databases and applications. Add-on exist for encryption
in the cloud and for the Amazon cloud offering (AWS).

D. Cloud Security
According to [4, pp. 98] and a recent survey from IDC

[30] security is still the biggest single concern in cloud
computing. This is preventing or at least slowing down
cloud adoption. One of the problems in cloud computing
environments is the unclear definition of responsibilities
between the customer and cloud service provider. As
stated in [9, pp 5] “A security system is only as strong
as the weakest link”, it is essential for security, that
all different parts of a solution are taken into account.
For example a perfect maintained operating systems does
not help if the database has unpatched vulnerabilities
or is configured without any access restrictions. Cloud
providers like Amazon (AWS) try to solve this problem
by defining the responsibilities in a model they call
“Shared Responsibility Model”. This model splits the
responsibilities between the customer and the provider
by defining exactly for which configuration or artefact
the customer is responsible and for which the provider
(AWS) itself. As these responsibilities vary depending
on the service model , each service type has its own
shared responsibility model. Figure 6 on page 15 shows the
shared responsibility model for container services. AWS
manages all underlying infrastructure up to the database.
This includes the operating system and the database
management system itself. The customer is responsible
for the configuration of data backup / recovery tools and
the firewall. The responsibility for the customer data,
its encryption and import still lies in the hand of the
customer [31, pp 9].

Other important aspects of security in the cloud (and
not only there) are:

14

Fig. 6. AWS Shared Responsibility Model [31]

• Access Control.
• Secure Communications.
• Protection of private data.

Identity and authentication are fundamental for every
secure software system. This is especially true for services
in the cloud, as all resources are accessible over the
network and due scalability there are plenty of resources
available. Authorization for access of each asset is
mandatory, too. As data has to be transferred in and
out of the cloud, secure transmission of data is essential
for avoiding eavesdropping of any kind. The protection
of private data is fundamental for every organization and
required by law. To protect this data, secure storage and
computation is mandatory. Data integrity, confidentiality,
and the risk of data leakage are here the main concerns.

Relational Database Security with AWS : AWS
supports some security features for its relational database
service. To get the data in and out of the cloud, encrypting
the data in transit is supported by most databases, as
they support SSL/TLS wrappers. This means that the
driver communicates with the database in the cloud via
TLS. This feature is supported by all RDS MySQL
and Microsoft SQL instances. Amazon RDS for Oracle
does not support a SSL/TLS wrapper but has a native
encryption solution called “Native Network Encryption”,
which encrypts the data on transit. For the encryption of
data at rest the following options are available [31]:

• Encryption on application level.
• Oracle Transparent Data Encryption.
• MySQL cryptographic functions.
• Transact-SQL data protection function.

Encryption on application level does not need a
support from the service provider, as here the data is
encrypted and decrypted by the application and not the
infrastructure service. Some databases like Oracle support
the transparent encryption of data at rest and some like
MySQL and Microsoft SQLServer have built-in functions
to encrypt and decrypt data.

1) Security Concerns in the Cloud: As already
mentioned, security concerns prevent the adoption of cloud
solutions. According to [32] these concerns can be classified
in:

Traditional security concerns: Computer and network
intrusions are traditional security concerns, which are
relevant for the cloud, too. There aspects of the cloud
which can even reduce these concerns. For example cloud
provider may have better than average security measures
and processes or insider attacks are more unlikely, as
security via contracts is easier than internal control.

• VM-level attacks.
• Cloud provider vulnerabilities (SQL-injections, cross-

site scripting).
• Phishing cloud provider.
• Expanded network attack surface. Infrastructure to

connect and interact has to be secured.
• Authentication and authorization has to be extended

to the cloud.
• Difficult forensics in the cloud, as there is limited

access to equipment. and media
Availability:

• Uptime (arguments are they are as high as in house).
• Single point of failure.
• Assurance of computational integrity (is the

application faithfully. run and gives valid results)
Third-party data control:

• Due diligence (Can cloud provider respond in the
required time-frame on a subpoena or other legal
action, can deletion of data be guaranteed).

• Audit-ability (Has the provider enough transparency
for auditing purpose.

• Contractual obligations by using the cloud.
• Cloud provider espionage.
• Data lock in (proprietary data format, vendor lock-

in).
• Transitive nature (the cloud provider has itself

subcontractors).
Information-centric security : Focus is shifted from

data from the outside (systems and applications using
the data) to protecting the data from inside. The data
needs to be self-describing and defending, regardless of
the environment [32]. Data is encrypted and packaged
with its access policy and when accessed, reveals itself
only in an trusted environment according to its policy.
Data owners wish to audit how their data is used and
to ensure that their data is not leaked or being abused.
An approach is to have a trusted monitor, that can
provide proof on compliance to the data owner. Another
approach is to encrypt all data in the cloud, which has
the drawback of limiting data use. Searchable (predicate)
encryption is a method to restore the usability, even if the
data is encrypted. As of today no perfect encryption is
available, but recent research is promising. Other qualities
like retrievability, which proves that all data of a client
is stored correctly, are important too. Cloud fears largely
stem from the loss of control of sensitive data. Control
can be extended to the cloud by using trusted computing
and encrypting all sensitive data [32]. This is exactly the

15

attempt of this report, encrypting all sensitive data, while
still being usable in a database.

Providing access to a database in the cloud has, apart
from the usual requirements for security and privacy,
additional needs, because the data is not longer in the
scope of the organization owning the data. One of these
requirements is for example the secure transport from and
into the cloud. In the cloud itself, the data has to be
secured too, but not only against attacks from outsiders,
but additional from insiders or the service provider too.
Often this threat is not even a malicious cloud provider,
but curiosity alone is enough motivation to breach privacy.
As a public cloud normally has multiple clients, strict
isolation between their data is an additional mandatory
requirement.

2) Privacy and Security: As the transfer from and to
the cloud can be secured by standard technologies like
SSL/TLS or the like, the main goal is to secure the data,
when it is in the cloud. The best way to achieve this, is
to encrypt all or at least all sensible data in the cloud.
For this, all techniques described in the chapter database
encryption are relevant, but there are some additional
things to consider, like compatibility with features of the
cloud approach, for example scalability. The later in this
chapter described project Relational Cloud is an approach
to fulfill all these requirements.

a) Attack Models: According to the Cloud Security
Alliance (CSA) the “Treacherous Twelve Cloud
Computing Top Threats” [33] are:

1) Data Breaches. A data breach in general is an
incident where confidential data is accessed without
authorization. The impact of the data breach
depends on the confidentiality and the scope of the
disclosure of the information.

2) Insufficient Identity, Credential and Access
Management. If attackers gain control of credentials
and private keys security is broken. Therefore
credentials and cryptographic keys have to be
secured in particular. This includes activities to
prevent weak passwords, invalid certificates and
lack of cryptographic key rotation.

3) Insecure Interfaces and APIs. The security of
cloud services depends on the provided application
programming interface. This interfaces must provide
protection against circumvention of authentication
and access control.

4) System and Application Vulnerabilities. Every
system and application can have bugs and flaws
which can be used to compromise the system or
application. Systems and application have to be
updated and patched against found vulnerabilities
to prevent the risk of data breaches.

5) Account Hijacking, Accounts can be hijacked by
attack methods like phishing or simply social
engineering. A compromised account can be used
as a base for another attacks. Make matters worse,

credentials are often reused, compromising not only
one but multiple accounts.

6) Malicious Insiders. A malicious insider can be a great
threat. This is particular true in the cloud, because
the insider of the service provider is normally no
member of the organization, which owns the data.

7) Advanced Persistent Threats. A system is
compromised for a long period by using sophisticated
techniques to exploit vulnerabilities. The attacker
in such cases can be a big organization or even a
country with much more power at hand, than a
normal attacker.

8) Data Loss. Losing important and not restorable data
is a big concern in the cloud. Reasons for data loss
are not only attacks, but also natural disasters of all
kind.

9) Insufficient Due Diligence. As the cloud service
provider is normally not part of the organization,
which uses its services, all technical, commercial,
legal and compliance issues have to be evaluated,
before an outsourcing is possible.

10) Abuse and Nefarious Use of Cloud Services. If cloud
services are not secured, they can be abused to
cause damage on other systems. Misuse can be a
DDoS attack, sending of spam mails or hosting illegal
content.

11) Denial of Service. A denial of service attack prevents
users from using a service. As a service in a public
cloud has to be available on the internet and not
only in an internal network, the attack surface for
this kind of threat becomes larger in the cloud.

12) Shared Technology Issues. A cloud service provider
usually shares its hardware and software for
different customers. If these shared resources are not
completed isolated, than the confidentiality of the
data is at risk. In such a scenario it is possible that
customer A using the same cloud as customer B,
gains access to information of customer B.

A risk is composed of a threat, a probability and an
impact. According to [34] a taxonomy of risks is given:

A Taxonomy of risks::
• Organizational Risks like Loss of reputation, loss of

share value.
• Technological Risks Risks associated with the use

of technological services like design,engineering,
processes and procedures.

• Legal risks All issues due to legislation and
regulations.

• Human errors an accidents.
• Network threats.
• Application threats.
• Host Threats.

Threat assessments::
• Data Threats (loss of data or integrity).

Attacks cracking authentication credentials, SQL

16

injection, privilege escalation, unpatched database
vulnerabilities, human errors, loss of encryption keys)
These threats are not cloud specific, but using the
internet as medium widens the risk (bigger attack
surface) Another impact on security is less data
control in the cloud. Establishing auditing controls
are more difficult in the cloud. Data lock-in can
also be seen as security issue. It is important to
know, what happens with the data if the provider is
changed.

• Physical Threats. When natural disasters occur,
infrastructure can be harmed. As cloud providers
often operate on larger scale, it is possible that
they have more barriers against physical threats (for
example datacenters in multiple regions). This threat
is not cloud specific, too.

• Interface Threats. Are not only cloud specific, too.
Security policy should ensure authentication and
access controls. Monitoring is more complex in the
cloud, as there are various layers of applications.

• Authentication Threats (Phishing, etc). They are the
same in the cloud, but the impact in the cloud can
be much higher, as there are often multiple clients
affected.

• Virtualization Threats int the Cloud. Nearly all
computing in the cloud depends on the virtualization
paradigm. Isolation is not guaranteed. Attacks on
hypervisors are possible.

• Cloud Power Threats. Denial of Service can affect
multiple clients and applications can not separated
from the internet.

• Outage. Although the chance is less probably, the
impact of an outage in the cloud is much higher.

Traditional IT is easier to control and to manage, but also
much more limited in resources (technical and human).
There is no right answer whether traditional computing
or cloud computing is better in terms of security [34].

Threat classification: STRIDE is a threat
classification model for computer security threats. It
is a mnemonic for

• Spoofing of user identity.
• Tampering.
• Repudiation.
• Information disclosure.
• Denial of service.
• Elevation of privilege.

It is used to reason about threats and find threats to a
system [35].

Threat Risk Modeling: To assess the risk of a security
threat and damage potential of it, the DREAD model can
be used. It stands for

• Damage (How much damage will be caused, if an
exploit is successful?).

• Reproducibility(How much effort is needed, to
reproduce the exploit?).

• Exploitability (What is needed to exploit the threat?).
• Affected users (How many users a affected by the

threat?).
• Discoverability (How easy is it, to discover the

threat?).
The last item of the list (discoverability) is controversial
discussed, because it can be interpreted as “security by
obscurity”, which itself is controversial, and some say is
no security at all, where others say, that every obstacle
for an attacker, and not knowing that there is a threat is
an obstacle, enhances security.

RiskDREAD =(DAMAGE +
REPRODUCIBILITY + EXPLOITABILITY +
AFFECTED USERS * DISCOVERABILITY) /
5

Values from 0 to 10 are assigned to each attribute. 0 means
nothing or minimum effects and 10 maximum effects. The
simple formula above calculates the overall risk of a treat,
the higher the score, the higher the risk [36].

Insider threats: Many mechanisms exist for
protecting data from outside attacks. Unfortunately, these
mechanisms fail to protect data from authorized users
from inside, who abuse their privileges. The protection of
sensitive data from insiders is as important as protection
from outside, as the the adverse consequences are the
same. Insiders can use tables and relations they are
authorized to access. Furthermore they also may gain
additional knowledge by using dependencies. These
dependencies can be:

• functional dependency.
• fuzzy dependency.
• multi valued dependence.

A functional dependency can reveal full information about
another field, which depends on an accessible field. Fuzzy
dependencies only reveals partial information, where as
multi valued dependencies do not leak information [37].
Replication and load balancing of a database in the cloud
can increase the probability of insider threats, which
cannot be easily detected. To mitigate the threat the
activities of insiders have to be monitored on different
instances in different zones. Knowledge bases of insiders
have to be monitored and synchronized. As this is
normally the responsibility of the data owner, in the cloud
it is the responsibility of the cloud provider. Different
prevention models exist [38]:

• Peer-to-Peer.
• Centralized.
• Mobile Knowledge bases.

Threat mitigation: There are many possibilities to
mitigate these threats like

• Data Obfuscation (Masking, Scrambling). Fake
or scrambled data set for use by design and
implementation teams, can be very expensive.

17

• Encryption of Data. Allows personally identifiable
data to be scrambled if intrusion takes place, but adds
overhead and possible performance issues.

• Database Intrusion/Extrusion Prevention. Looks for
SQL injections, bad access commands and odd
outbound data. Can cause performance issues, and
needs very specific criteria to set up.

• Data Leak Prevention. Catches any data that is being
sent out of the system. Does not protect data in the
actual data warehouse.

Other threats are:
• Lost or stolen media. Can be mitigated by encryption.
• Unauthorized file sharing. Can be mitigated by

encryption.
• Privileged user abuse. Can be mitigated by

encryption, separation of duties and application
authentication audit.

• Data leakage/unauthorized access. Can be mitigated
by policy-based security.

IV. Database Encryption in the Cloud

As shown before, deploying a database into the cloud
has advantages, but privacy concerns remain. To solve
this problem, it would be great to only deploy the data
encrypted and never as plaintext into the cloud. So in
short, the goal is to deploy a database in the cloud, with
all sensitive data encrypted, but still being usable as if the
data were not encrypted at all. No change of an application
or a query should be necessary.

A. Prerequisites

It is important to classify the data according to its
sensitivity, because sensitive data needs special protection.
A naive solution would be to classify all data as sensitive,
but as this comes with an overhead, it is often no viable
solution. For handling sensitive data different scenarios
exist:

1) No Sensitive data at all: Maybe this looks like a
trivial scenario, but often applications store and process
more data than they need. Nowadays the technical
tools (hardware and software) exist to process more
data than ever, the credo here is often: the more data
the better. But this does not come for free, and has
some significant drawbacks regarding cost for storing,
retrieving and managing the data. If this data contains
sensitive data, then this cost is even much larger,
because this sensitive data has to be protected, and
the protection mechanism often include big overhead in
the processing and management of the data. Also the
legislative environment is changing to more restrictive
privacy protection laws, and user and customer awareness
of privacy issues is rising. So if it is possible to implement
an application without the need of the processing and
storing of sensitive data, this is simply the best case.

2) No Sensitive data in the cloud: If sensitive data is
needed another way to avoid the drawbacks is to simple
split the application and the database in two separated
systems. One system has no sensitive data at all and
can be easily deployed in the cloud like in the first
scenario. For the system with sensitive data, there are
either one of the following encryption strategies possible
or the system can hold its data off the cloud. Of course
it is important that this system does not only store
the sensitive data separately, but also does not leak the
information via its provided services. If you have an
architecture based for example on microservices, then this
can be a viable approach. Only services with no sensitive
data are deployed in the cloud. The approach of this
scenario is quite similar to the first, by rather not solving
but avoiding the problem.

3) Encrypting sensitive data in the cloud: This is the
case where at least some of the data is classified as
sensitive and is deployed encrypted in the cloud. The
data in a database can be encrypted on different levels
of granularity. These levels of granularity are [39]:

• Relation.
• Attribute.
• Tuple.
• Element.

If the relation is encrypted, all data of an table is stored in
a single value in the encrypted database. The granularity
“Attribute” means, that each column is stored in a single
value in the encrypted database. If the encryption is
tuple based, a whole row (or at least most of it) is
encrypted as one value in the encrypted database. The
finest granularity is where each element is encrypted
as single field in the database. As encryption of the
levels relation and attribute make any normal usage of
the database impossible, encryption based on tuple and
specially on element granularity is preferred.

B. Encryption Strategies
To encrypt the data, multiple strategies are possible.

Which to use best is highly dependent on the data
model, data usage (like updates and kind of queries) and
confidentiality or privacy requirements of the data.

1) Standard ciphers: The sensitive data is stored
encrypted with a standard symmetric block cipher like
AES. This is done without considering the datatype used
in the database scheme. The data or better queries on
it cannot processed in the cloud. Only exclusion is that
the encrypted data can be selected like any binary field
in the database. To process the data in a meaningful way,
it has to be downloaded and decrypted. For range query
this means that all data has to be downloaded. This is
only practical if there are no such queries at all or these
queries are executed only on a very small amount of data,
as in all other scenarios the performance impact would
be prohibitive. The key management is also a critical
part of this solution, because it has to be implemented

18

on every private server where the data is processed. The
advantage of this scenario is, that it is possible to use
proven existing ciphers and can still achieve some of the
benefits of the cloud like availability and scalability. As
there is no processing possible in the cloud, it is more
like a central master database in the cloud, from which
every client can download or sync the data before it can
be processed local.

2) Standard ciphers and augmented data model: In this
scenario the data is fully encrypted as in the scenario
before, but for each encrypted data field additional
information on the data is provided. This can be additional
information on order or equality of a field. The data model
is extended for these fields. This makes range queries
possible, by operating on the additional fields, and not
on the encrypted data itself. Of course it is important,
that this additional data does not leak information on
the sensitive data itself. If these additional fields have to
be computed for every update or delete, it could make
the performance penalty prohibitive. For example, if any
addition of one row, requires the update of all existing
rows, to calculate the new orders in a row this would not
work very well. A major disadvantage is, that the data
model differs significant from the normal, domain specific
data model and every query has to use the additional fields
to work on the data. The advantage on the other side is
that standard encryption technology can be used and some
of the restriction on queries can be avoided. As queries are
executed on a different data model, they have to rewritten
to be compatible for the enhanced data model. It is of
course useful to automate the rewrite of the query, either
by generating these queries or by rewriting it in a proxy.

3) Ciphers with additional properties: Beside from
standard ciphers, other ciphers with additional properties
exist. Encrypting the data with these ciphers makes it
possible, to use the encrypted data as if it were plaintext.
This strategy needs no change in the data model, which
sounds only too well. The drawback is that there is a
overhead of these ciphers and they are not as secure (at
least not nowadays) as standard ciphers. Which properties
are required is highly dependent of the queries used.
Ciphers with properties are described later in detail V-B3
and VI, but before describing them, it is essential to
determine the requirements of queries on the encrypted
data.

C. Query Requirements
As mentioned before, to perform non trivial SQL queries

on encrypted data, the used ciphers have to provide
additional properties to work. To make queries work on
encrypted data without modification, different properties
have to be supported by the used encryption scheme. The
listed elements of queries are based on the description
of relational operators in [40]. But before examining the
queries, a short overview of the requirements originating
from the used datatypes is given.

Datatypes
As SQL uses different types, it is necessary, that the

encrypted data is still a valid attribute. Format preserving
means in this context not a special domain format like a
social security number, but more a kind of type preserving
encryption.

String datatypes (CHAR, VARCHAR, TEXT ...) :
If the field is long enough, no additional properties are
required for the cipher. If the length is too short or a
special encoding is necessary, format preserving encryption
is required.

Number datatypes (TINYINT, INT, FLOAT,
DECIMAL ...) : Format preserving encryption is
required.

Date datatypes (DATE, DATETIME, TIMESTAMP,
TIME...): Format preserving encryption is required.

Restrictions
A select is restricted by one or multiple conditions.

Multiple operators are supported, and the conditions
can be combined with “and” and “or“. These operators
determine the properties required for a cipher, so the are
examined separately.

SELECT T.* FROM Table T WHERE T.Attr OP Value

or

SELECT T.* FROM Table T WHERE T.Attr BETWEEN Value1
AND Value2

• Equal (=). Equal requires a deterministic cipher.
• Not Equal (“<>”). Not equal requires a deterministic

cipher.
• Less (“<”). Requires an order preserving cipher.
• Less Equal (“<=”). Requires an deterministic order

preserving cipher.
• Greater (” >”) . Requires an order preserving cipher.
• Greater Equal (” >=”). Requires an deterministic

order preserving cipher.
• Between. Requires deterministic order preserving

encryption

Projection

SELECT DISTINCT T.Attr1, T.Attr2 FROM Table T

For the elimination of duplicates (DISTINCT) a
deterministic cipher is needed. If no duplicates are
eliminated, there are no requirements for a cipher.

Join

SELECT T1.Attr1, T2.Attr2 FROM Table1 T1 JOIN Table2
T2 ON T1.Attr2 = T2.Attr2

As the join uses the equal operator a cipher has to be
deterministic.

19

Union

SELECT T1.Attr1 FROM Table1 T2 UNION Select T2.Attr1
FROM Table2 T2

As union has an implicit distinct, filtering duplicate
entries, a deterministic cipher is needed.

Union All

SELECT T1.Attr1 FROM Table1 T2 UNION ALL Select
T2.Attr1 FROM Table2 T2

Union all has no additional requirements for a cipher.

Intersect

SELECT T1.Attr1 FROM Table1 T2 INTERSECT Select
T2.Attr1 FROM Table2 T2

For intersection a deterministic cipher is needed.

Difference

SELECT T1.Attr1 FROM Table1 T2 EXCEPT CORRESPONDING
Select T2.Attr1 FROM Table2 T2

For difference to work, a deterministic cipher is needed.

Semijoin

SELECT T1.* FROM Table1 T1 WHERE T1.Attr1 IN (SELECT
T2.Attr1 FROM Table2)

As the semijoin uses the equal operator a cipher has to be
deterministic.

Semidifference

SELECT T1.* FROM Table1 T1 WHERE T1.Attr1 NOT IN
(SELECT T2.Attr1 FROM Table2)

As the semidifference uses the equal operator a cipher has
to be deterministic.

Extend

SELECT T1.Attr1 * 123, T1.Attr2 FROM Table1 T1

As an arithmetic calculation (+,-,*,/,%) is performed, the
cipher has to be homomorphic supporting the arithmetic
operation.

Aggregate Operators

SELECT SUM(T1.Attr1) FROM Table1 T1 GROUP BY
T1.Attr2 HAVING SUM (T1.Attr1 < 2000)

The cipher has to be homomorphic (addition) and order
preserving for the having clause, if another comparison
operator like equal is used, than the cipher has to be
deterministic.

SELECT MIN (T1.Attr1) FROM Table1 T1

The cipher has to be order preserving.
Group By : The cipher for the relevant attribute has to

be deterministic.
Having: The same properties as for aggregate operator

are needed.

Summarization

SELECT COUNT(*) from Table1

No additional properties are required.

Order By

SELECT T1.* from Table1 T1 ORDER BY T1.Attr1 DESC

The cipher has to be order preserving.

Like

SELECT T1.* from Table1 T1 WHERE T1.Attr1 LIKE
’%String%’

The cipher has to be searchable.

Functions (Substr, Concat ...)

The cipher needs to be homomorphic, and the Functions
must be implemented as user defined functions.

SELECT SUBSTR(T1.Attr1,1,5) from Table T1

Summary

To give an overlook of the properties the relational
operators are listed in Table VII on page 20. Of course
depending on the type of the used attributes format
preserving encryption may be an additional requirement
for all of the listed elements.

TABLE VII
Required Properties for SQL

deterministic order homomorphic search
RESTRICTION X X
PROJECTION X
JOIN X
UNION X
INTERSECTION X
DIFFERENCE X
SEMIJOIN X
SEMIDIFFERENCE X
EXTEND X
AGGREGATE (AVG,SUM) X
AGGREGATE (MIN,MAX) X
SUMMARIZATION
ORDER BY X
LIKE X
FUNCTIONS X

20

V. Order Preserving Encryption
As the requirements from the chapter before (IV-C)

show, order preserving is an important property for
many queries to work. If sensitive data is encrypted
order preserving, many queries on the encrypted data
are possible. As seen queries like “order by” or “>”
“<” in the where clause could work on the encrypted
data without changes. Other properties are dependent
of the algorithm used, in some cases order preserving
includes also format preserving, which means that all the
advantages of format preserving encryption can be applied
here too. If there is a one to one mapping between the
plain text and the ciphertext, then even joins on the
encrypted fields are possible without change of the data
model or the queries. The drawback is that generally the
more additional features an order preserving algorithm
supports, the less secure it is. Other features, which require
operations on the data like the aggregate functions “Sum”
or “Average” are not supported directly. For theses cases
the whole data has to be decrypted before processing is
possible.

Order preserving encryption can be seen also as a
kind of property preserving encryption. The property that
should preserved is the order relation. If the plain text
value v1 > v2, then the encrypted value v1’ > v2’ still
holds. All order preserving ciphers presented here are
symmetric. The reason for this is that for the uses of
order preserving encryption, symmetric ciphers are more
appropriate and not that asymmetric order preserving
ciphers are impossible. Order preserving ciphers can have
additional properties and constraints. Some of them work
only for specific datatypes like numbers or strings, while
others work for all. An order preserving cipher can be
either deterministic or probabilistic (one to many), which
has also great impact on usability and security. This
section gives an overview of past and present order
preserving encryption schemes. Some of these schemes
are described more in detail than others, because they
either had a significant impact on the development of order
preserving encryption, they are the most practical or are
the most secure currently available.

A. Classical Schemes
Some of the classical ciphers are already order

preserving, or can be easily made so. Although not
practically from a security standpoint, these ciphers can
show some insight on order preserving encryption. As they
are easy to understand and implement, they can be used
as simple test bed for any solution using order preserving
encryption. Out of the box for example, Caesar cipher
is not order preserving, because the last letters of the
alphabet are encrypted as the first. For example a Caesar
cipher with 3 as a key and only letters as the alphabet.
For the letters A - W it is order preserving, but for
X,Y,Z it is not because e(W) = Z and e(X) = A thus
e(W) > e(X) is not correct. To make it order preserving

is easy, the range of the ciphertext is extended. X,Y, Z
is mapped to additional characters like “.”, “,” and “;”.
Another way is to support only range queries. Here the
query is rewritten in such a way that the wrap-around
case is taken into account. This shows an interesting point:
Knowledge gained on such simple ciphers like the Caesar
cipher can be used on much more complicated and more
secure ciphers. In this case, the solution for range queries
with the Caesar cipher is the same as for modular order
encryption.

B. Modern Encryption Schemes
Historically ciphers aside, it all started with the

Hacigumus Scheme [41], then OPES [42], which created
the term Order Preserving Encryption (OPE). After
that, OPE [43], took a more formal approach to
security, defining ciphertext indistinguishability for
order preserving algorithms. Modular order preserving
encryption [44] was the latest addition to order preserving
ciphers, claiming the highest security level, while still
being practically usable. Besides these ciphers many
other encryption schemes were created in recent years.
These ciphers are only described here on the surface.
Some of them were only minor variations of existing ones,
while other could not deliver the security they promised.
The research of order preserving encryption is still very
active, resulting in new schemes every year. Also more
knowledge of the security of theses ciphers is gained,
but still the security of order preserving encryption is
not as well understood as the security of standard block
ciphers like AES. Thus most of the researchers warn of
the use of these ciphers in practical applications, if the
requirement for security is high. The following schemes
are all order preserving. This is a non-exhaustive list of
existing schemes and only an overview is given. For more
details on these ciphers see the original publications as
stated in the bibliography.

1) Bucket Based Approach: The encrypted relation
differs from the unencrypted relation. The whole original
tuple is stored in one attribute and for every searchable
attribute an index attribute is added. Each index attribute
does not contain the original value, but only the bucket
value. Each bucket is a subset of the attribute domain.
Two strategies for selecting the boundaries of the buckets
are possible:

• equi-width. all buckets have the same range.
• equi-depth. all buckets contain the same number of

items.
The disadvantage of the equi-width strategy is that the
distribution of the attributes is revealed to the encrypted
database. The downside of the equi-depth strategy is, that
data changes requires updates of the bucket boundaries, so
that all buckets still contain the same number of items [45].
To create a bucket value the domain of each attribute
is split in buckets, mapping multiple values to one. To
execute a query on the encrypted data the values in the

21

query are replaced by the corresponding bucket values.
After receiving the data, it is filtered on the client to
remove the spurious tuples.This makes queries on equality
on the encrypted data possible, but as the buckets are not
sorted, range queries are, depending on the domain either
limited or not possible. Aggregation queries are possible
too. While using an homomorphic encryption scheme
leaks information as shown by [45], another approach is
to predetermine aggregate functions like count and sum
for each bucket. These attributes are stored encrypted
together with the bucket id in the same way as normal
index attributes [41].

TABLE VIII
Original Table (Bucket)

CUSTOMERID LASTNAME AGE INCOME
1 Miller 22 30000
2 Smith 54 90000
3 Hill 21 25000
4 Moore 77 35000

Example: The values are split to buckets:

Lastname: H -> 8 M ->13 S -> 19
Age: 21 - 30 -> 3 51 - 60 -> 6 71 -80 -> 8
Income: 0 - 25000 -> B 25001 - 50000 -> C 50001 -

75000 -> D 75001 - 100000 -> A

TABLE IX
Encrypted Table (Bucket)

ID TUPLE I_LAST I_AGE I_INCOME
1 $$&%&/(%/&§” 13 3 C
2 %$%($%§$&/§ 19 6 A
3 &(%%/$/(§”/%/(/ 8 3 B
4 &%&)%()%%)% 13 8 C

TABLE X
Encrypted Aggregate Table (Bucket)

BUCKET_ID SUM COUNT
A enc(90000) 1
B enc(25000) 1
C enc(65000) 2
D enc(0) 0

Some example queries:
Value query: client:

SELECT * FROM CUSTOMERS WHERE LASTNAME = ’Miller’;

server:

SELECT TUPLE FROM CUSTOMERS WHERE I_LAST = 13;

client:

decrypt each TUPLE, filter by LASTNAME ’Miller’

Limited range query: client:

SELECT * FROM CUSTOMERS WHERE INCOME BETWEEN 20000
AND 40000;

server:

SELECT TUPLE FROM CUSTOMERS WHERE I_INCOME = ’B’ OR
I_INCOME = ’C’

client:

decrypt each TUPLE, filter by INCOME between 20000
and 40000

Aggregate query: client:

SELECT SUM(INCOME) FROM CUSTOMERS
WHERE INCOME BETWEEN 20000 AND 50000;

server:

SELECT SUM FROM AGG_INCOME WHERE BUCKET_ID = ’C’;
SELECT TUPLE FROM CUSTOMERS WHERE I_INCOME = ’D’;

client:

decrypt all tuples, filter by INCOME >= 20000,
calculate sum

decrypt sum from AGG_INCOME and add calculated sum

Hash Based Approach: This approach is very similar
to the bucket approach but instead of splitting the domain
of an attribute into buckets a one-way hash function is
applied. If the hash function is not collision free then the
spurious tuples have to be filtered in this approach, too.
Queries on equality are supported, but range queries are
not possible, because the hashes do not preserve the order
of the original values.

B+ Tree Approach: This requires a more different
schema than the previous approaches. Here the data is
stored as a b+ tree. A vertex has a id and the content,
which contains references to the lesser and to greater
vertex and leaf nodes contain the links to the other nodes.
This content is encrypted and to query the data, the tree
has to be traversed by the decrypted vertexes until an leaf
node is found. Although more steps for the retrieval are
necessary, this makes range queries possible.

2) OPES (Order Preserving Encryption Scheme): The
intuition behind this algorithm [42] is the following:
Values from a user-specified distribution are generated,
and sorted in a table. The index of an value in this table
is the encrypted value. This table is the key. Decryption
is a simple lookup in this table, which has the role of the
encryption/decryption key. So the only thing revealed by
the encrypted value is the order, which is exactly what is
wanted. In reality, this is not practical, because the key is
large, and every update can require a complete encryption.
The goal of OPES is to construct an encryption function
which has the same properties. OPES is the first order

22

preserving encryption scheme which is constructed with
the relational data model in mind. OPES works in three
stages:

1) Model. Input and target distributions are modeled
as piece-wise linear splines. Here the data values are
partitioned into buckets, and each bucket is as linear
spline.

2) Flatten. The plain text values are transformed, so
that the values are uniformly distributed. Values
from a bucket are mapped to buckets with length
proportional to the number of values.

3) Transform. The flattened values are mapped into the
target distribution and then encrypted.

3) OPE (Order Preserving Encryption):
Hypergeometric probability function: There is a

relation between a random order preserving function
and hypergeometric probability distribution. Any order
preserving function f from {1,....M} to {1,....N} can be
represented by a combination of M out of N ordered items.
This can be represented by a bin with N balls. M balls
are black and N-M balls are white. The at each step a
random ball without replacement is drawn. The random
variable X is the number of black balls in the sample, after
collecting the y-th ball. This variable has a hypergeometric
distribution. The probability of X=x is given by(

x
y

) ((
N−y
M−x

))
(

N
M

)
If the y-th ball is black, then the least unmapped point of
the domain is mapped to y. A simple example with a very
small domain and range could be: domain D: [1,2,3] which
is mapped to R: [1,2,3,4,5,6,7,8,9]. The experiment would
be to withdraw random balls from the set. In this example
the set would contain 3 black balls (elements from D), and
6 white (elements from R) [*,*,*,o,o,o,o,o,o]. A possible
random sequence of chosen balls could be {o,o,*,*,o,*}.
The following steps are performed:

1) [*,*,*,o,o,o,o,o] y = 1, o is chosen.
2) [*,*,*,o,o,o,o] y = 2, o is chosen.
3) [*,*,o,o,o,o], y = 3, * is chosen the least unmapped

number of D is mapped [1 -> 3].
4) [*,o,o,o,o], y = 4, * is chosen, the least unmapped

number of D is mapped [2 -> 4].
5) [*,o,o,o], y = 5, o is chosen.
6) [o,o,o], y = 6, * is chosen, the least unmapped

number of D is mapped [3 -> 6].
As this is not efficient for real domains, a more efficient
function is given by [43], which recursively samples a
random order-preserving function. This makes the solution
more practical, although the rationale stays the same [43,
pp 3].

Multiple messages and state: As the independent
encryption of multiple plaintexts would not be ordered,
and keeping state of all encrypting messages is
cumbersome, the state can be assumed as an static,

but random tape. To encrypt plain text x, the encryption
algorithm performs a binary search of x by recursively
calling the encryption with e(K,M/4) if m < M/2 or with
e(K,3M/4) if greater. “Each ciphertext is made out of
the hyper-geometric sampling algorithm and coins from
an associated portion of the random tape, indexed by the
plain text”. A pseudo-random function can be created, to
generate the tape dynamically. This function should be
block cipher-based [43, pp 3].

Encryption and decryption: D = Domain {1..M},
R = Range {1..N} plain text m ∈[D], ciphertext y
∈[R] A Range gap is mapped to a domain gap. The
algorithm is called with sets of the domain and the
range. The start value for the range gap (y) = N/2.
After generating pseudo-random coins and giving them
to the hypergeometric sampling function x is calculated.
The number of values of the order preserving function
which are less than y is the domain gap x. The mth
point of the ciphertext is m. If m is less than x the
encryption function is recursively called with the subset
D{d+1,x} and R{r+1,y} or if greater with D{x..d+M}
and R{y..r+N}. If the number of the domain is 1 the
algorithm ends returning the ciphertext by choosing a
point from the set as result.The decryption is very similar.
At the end of the recursion if the ciphertext is in the range,
the message m is returned as result. It is crucial for the
algorithm to choose the right size of N. The goal is to have
a large number of random order preserving functions. It is
suggested by the authors, that N = 2M, which results in
more than 2^80 functions.

Fig. 7. OPE Algorithm [43]

As already mentioned, order preserving encryption
(OPE) is a encryption where the order of the cleartext is
retained in the cipher text. It is crucial that only the order
and no other information of the clear text is revealed in the
cipher text.It is a kind of homomorphic encryption, where
the homomorphic operation is order comparison [42], [43],
[46].

4) MOPE (Modular Order Preserving Encryption):
Modular OPE is a modification of order preserving

23

encryption [43]. It adds a secret modular offset to the
plain text before encryption. The scheme is not strictly
order preserving anymore, but it permits range queries.
For the execution of a modular range query two cases
have to to be considered: The standard case occurs, if the
range values are ordered c1 < c2. For this case, there is no
difference between the execution on the plain text and the
ciphertext. In the second case (c2 > c1), also called the
wrap around case, the query on the ciphertext differs: Here
the query is executed with range [c1, M] and range [1,c2].
Consider the following simple example: D = [1,2,3,4,5,6]
M = 5, R = [1,2,3,4,5,6,7], j = 2, the trivial OPE f(x) ->
x + 1. The data is [1,2,2,3,4,5,5,5] the encrypted data is
[4,5,5,6,1,2,2,2].

• Standard query. select t.* from table t where t.a1
between 1 and 3. The result is [1,2,2,3]. The offset
is 2 so the lower bound 1 is encrypted as (1 + 2 mod
6) = enc(3) = 4. The upper bound 3 is encrypted as
(3 +2 mod 6) = 5 = 6. As 4 < 6 this is the standard
case and the encrypted query is select t.* from table
t where t.a1 between 4 and 6. The encrypted result
is [4,5,5,6] which is decrypted to [1,2,2,3].

• Wrap around query. select t.* from table t where t.a1
between 3 and 5. The offset is 2 again. The lower
bound 3 is encrypted as (3 + 2 mod 6) = enc(5) =
6 and the upper bound is (5 + 2) mod 6 = enc(1)
= 2. As 6 is not < 2 the query is rewritten to: select
t.* from table t where t.a1 between 6 and 7 union
select t.* from table t where t.a1 between 1 and 2.
The encrypted result is [6] union [1,2,2,2] which is
decrypted as [3] union [4,5,5,5] [44], [47].

5) MV-POPES (Multivalued-Partial Order Preserving
Encryption Scheme) : The domain of the plain text is
divided in multiple partitions which are randomized in the
encryption domain.To enhance the security of OPE this
scheme encrypts an integer to multiple different values.
In each partition the encrypted values are ordered.Range
queries have an higher overhead than in OPE. The
overhead depends on the number of the partitions, but can
be reduced with multilevel partitioning or binary recursive
partitioning [48].

6) mOPE (Mutable Order Preserving Encoding): This
scheme is more a protocol, than a cipher. According to [49]
it is defined as: “A mutable order-preserving encryption
scheme for plain text domain D is a tuple of polynomial-
time algorithms mOPE= (KeyGen, InitState, Enc, Dec,
Order) run by a client and a stateful server, where KeyGen
is probabilistic and the rest are deterministic, and Enc is
interactive.“ It requires state on a server, and this state
has to be mutable. Although more complicated than other
order preserving solutions, it achieves the highest level of
security for order preserving encryption IND-OPCA. This
means that only the order, but nothing else is revealed
about the encrypted values. The values are ciphered on the
client with a symmetric cipher and stored in a search tree

on the server. The tree traversal for a value v is performed
by these steps:

Fig. 8. mOPE data structures [49]

Request root from server:
1) Decrypt value v on client as v’, if v < v’ request

left, if v’ > v right from the server, if v = v’ request
found.

2) Repeat step 2 until v is found or empty returned.
3) The result is the path from the tree and whether the

value was found.
To insert a new value, the following steps are

performed::
1) Encrypt value v on the client.
2) OPE tree is traversed (as in the 1st algorithm), and

inserted, possible balanced.
3) To query, the server finds the order in the tree of

the encrypted value or the bounds and executes the
query on the encrypted data using an user defined
function (order).

7) DOPE (Dynamic Order Preserving Encryption):
This scheme is a enhancement of mOPE. The main
difference is, that the OPE tree is stored in the database
by using an AVL tree [50].

8) FH-OPE (Frequency Hiding Order Preserving
Encryption): This scheme keeps local state of the plain
text and the encrypted order. Only the ciphertext is sent
to the server.The encryption is key-less, the security relies
on the state of the algorithm. An update can potentially
affect the complete ciphertext.It assumes uniformity
of distribution of the plain text.For decryption only a
lookup in the state tree is required.This scheme achieves
better performance than the IND-OPCA Scheme, but
the assumption of uniformity of the distribution is a
significant constraint [51].

• IND-OPCA Scheme. This scheme requires
statefulness.The state is encrypted in a tree data
structure at the server and therefore the encryption
process requires multiple requests between the client
and the server. On the server the search tree is
used to query the encrypted data. Additionally the
complete ciphertext has to be updated after some
time for not leaking the distribution of the plain
text.If the plain text has uniform distribution, than
no updates are required, but in reality, this is not
often the case [52], [53].

24

9) COPE (Chaotic Order Preserving Encryption) :
This cipher works only on a trusted database, as the
data is decrypted and encrypted on the server. The
transformation of the plain text values is performed in two
steps: The goal of the first step is to hide the order of the
plain text. The second step preserves the order to allow
efficient queries.

• Random Shuffling. The domain of the data is
partitioned in buckets. Each of these buckets has
either descending or ascending order and the buckets
are randomly mixed. To partition the domain, a
number of random values is generated, where the
order of the bucket is determined by the sequence.
The order within the bucket can be either ascending
or descending and is determined by the number of the
bucket.

• Chaotic Beta-Expansion. The randomly shuffled
database is transformed into an ordered ciphered
database by using Beta-expansion.The encrypted
values preserves the lexicographic order. This makes
fast queries on the encrypted database possible [54].

10) SOPE (Semi-Order Preserving Encryption):
Although similar to order preserving encryption the
resulting ciphertext is not strictly ordered, but only
ordered to some degree. It is possible to encrypt two
different values to the same ciphertext, which is not
possible in OPE. If the encryption function is f(x) ->
y and x1 < x2, then only the constraint y1 <= y2
and not y1 < y2 is satisfied. The ciphertext space of
SOPE can be divided in two sets: One that satisfies the
order preserving condition, the other does not satisfy the
condition. The ratio between these two sets measures the
difference between OPE and SOPE. If all values are in
the ordered set, it is in fact an OPE.The degree d is
the sum of the probability of plain text encoded in the
same value. A degree of 0 means that every plain text is
encoded in a different ciphertext, while 1 means that at
least 2 plaintexts are mapped to the same ciphertext.The
higher the semi-order preserving degree is, the better is the
security of the cipher. The drawback is that the error rate
is higher, too. As different plaintexts are mapped to same
values, the encryption has to keep state to make it possible
to decrypt the value to the original value again [55].

11) p-OPE (Probability-p Order Preserving
Encryption): This is similar to the semi-order preserving
encryption scheme. The resulting ciphertext is ordered,
but only to a certain degree. Not all ciphertext values
are in the correct order. If a query is executed on the
encrypted data, the result can contain false positives
(values which are not in the result of the query on the
plain text) and it can even contain not all queried values
(false negatives). The result of an query on encrypted data
is not the same as the query on the cleartext data.The
deviation of the correct result depends on the probability
and it can be acceptable to loose some precision to gain

more security [56].
12) New order preserving encryption model: This OPE

model sets the focus on outsourced databases in cloud
environments. The goal is to be more secure than OPE,
but also to avoid the performance penalty of secure
OPE like IND-OCPA.The encryption scheme mitigates
statistical attacks (the data distribution/ data frequency),
which are the weak spot for OPE. To achieve this, the
message space is extended. This can be done by two
different ways. One way is to keep the type of the attribute
but increase the precision. For example a real (8,4) can
be enhance to a real(12,8). The other, more invasive way
is to represent the number as string. The encryption is
performed in different steps: 1) The message space is split.
This destroys the data distribution. 2) The ciphertext
space is split. 3) Each value is mapped to the ciphertext
space. Both the encryption and decryption is run on the
client [57].

13) Order-Preserving Encryption Using Approximate
Integer Common Divisors: As other OPE schemes the
ciphertext has to be significant larger than the plain text
space.The security of this scheme is given by the general
approximate common divisor problem. For additional
security, t he scheme can be used in conjunction with other
OPE schemes like the original OPE [58].

14) One-to-Many OPE: Instead of mapping a plain text
value to an encrypted value, each value is mapped to a
bucket, and from this bucket a encrypted value is chosen
randomly. This requires a significant larger ciphertext
space, but the frequency of the plain text is hidden,
because it is mapped to different values.Although the
distribution is effectively hidden, an differential attack is
still possible. Common values are mapped to the same
bucket, which means that from this bucket many values
are used, with little difference between them [59].

15) NOPE (Noise Based Order Preserving Encryption):
This encryption scheme generates a noised based
encryption function for enhanced security [60].

16) sOPE (Stateful Order Preserving Encryption):
The encryption algorithm is separated between an order
preserving and a symmetric key encryption part. A
ciphertext c contains (c1,c2) where c1 is the ordered and
c2 is the symmetric encrypted part. For c1, a key point is
that the the ratio of the partitions in the plain text and
ciphertext space are the same.All values are stored in a
table, and for encryption each value is looked up in this
table.This table can be stored either on the client or on
the server. For decryption only c2 is needed [52].

17) TOPE (Top Order Preserving Encryption): This
scheme is for retrieving the top relevant tuples, also called
top-k queries. A simple example is the query “select
max(a) from table”, which selects the max value of a
column of a table . Another would be “select * from
table order by attr desc limit 10”, which selects the 10
tuples where a has the highest value. These queries can be
executed over the encrypted data without revealing any

25

other information about the data (even the ordering of
the non top-k data). The security is defined and proved
with “indistinguishability under top-ordered chosen plain
text” attacks. The schemes utilizes a partially ordered
tree structure (heap) for min and max values. The values
themselves are encrypted with a standard symmetric
encryption cipher. While the encryption of the value
itself never changes (permanent ciphertext), the top/min
information has to be updated (transient ciphertext),
if additional data is created, updated or deleted. The
state of the heap is maintained on the server, while the
encryption/decryption is done on the client. The state
could be kept on the client too, but this would require a lot
of local storage on the client, and if used on multiple clients
multiple copies of the heap would exists. On the other
hand, the key on the server could compromise security.
A query is executed on the concatenated values of the
transient and permanent ciphertext, and the result, the
permanent value and or other attributes are retrieved and
decrypted on the client [61].

C. Security of Order Preserving Encryption
Pseudo Random Permutation (PRP) and Pseudo

Random Function (PRF) are security notions. A common
approach it the “Rank-then-Encipher Approach”: At first
the rank of each plain text message is calculated, so
that each plain text message has a rank. This rank is
encrypted. The plain text message is replaced with the
plain text message of the encrypted rank. To decrypt
the rank of the decrypted message is calculated and
encrypted. The message is replaced with the plain text
of the decrypted rank [62], [63]. It is no secret, that
security is the most important quality of a cipher. A cipher
without security is pretty useless. Of course an unusable
secure cipher is useless, too. So there is always an area
of tension between security and usability. Ciphers without
constraints or required properties like order or format are
always potentially more secure than property preserving
algorithms, because the attack surface is smaller. Another
point is that standard (not property preserving) ciphers
are much better researched and analyzed, because they are
much more common and widespread than order preserving
ciphers.

ROPE (Random Order Preserving Encryption): This
is just a theoretical order preserving encryption scheme for
comparison with a real one. It is used to describe an ideal
order preserving encryption scheme. It is used in security
analysis, to analyze which information is leaked from an
order preserving encryption scheme [44].

Ciphertext Indistinguishability: Ciphertext
Indistinguishability is a property of an encryption
scheme. It means that an adversary cannot distinguish
the ciphertext of two encrypted messages with the same
length. If an adversary can distinguish the ciphertext
with a probability significant greater than 0.5, the
the encryption scheme is not secure in the terms of

indistinguishability.(wiki) The type of attack is specified
for the distinguishability like indistinguishability under
chosen plain text (IND-CPA), chosen ciphertext (IND-
CCA) or another kind of attack.

Definition CPA Security: Let HE =
{Gen,Enc,Dec,Eval} be an encryption scheme. Given
any adversary A, we consider an experiment between the
adversary A and the following challenger C:

• C runs (pk, sk) ← Gen(1κ) and sends pk to the
adversary A.

• A selects two messages in the message space M, i.e.,
(m0 ,m1)M×M, and sends them to C.

• C flips a uniformly random bit b ∈ {0, 1} and sends
c* ← HE.Enc(pk, mb) to A. Here c* is called the
challenge ciphertext.

• A outputs b’ ∈{0, 1}. We say A wins the game if b’
= b, i.e., A correctly finds out the bit b [3, pp 334].

Indistinguishability under chosen plain text attack (IND-
CPA), also known as polynomial security is a strong
security property for (asymmetric) encryption algorithms.
Of course this can never be achieved by an order
preserving encryption scheme, because as the order in the
ciphertext is preserved, it is always possible to distinguish
the ciphertext by simply comparing the order of the
ciphertext. Indistinguishability under chosen ciphertext
attack/adaptive chosen ciphertext attacks (IND-CCA1 /
IND-CCA2) are even stronger security properties. Here
additional to IND-CPA the adversary has access to the
decryption oracle, meaning the adversary can encrypt
and decrypt messages. IND-CCA1 restricts the access to
decryption oracle to point where the two messages, which
should be distinguished are received, while IND-CCA2
can access the encryption oracle even after receiving the
messages. Of course it is not allowed to use the oracle
on the messages received. Other weaker models exist too:
IND-DCPA (Indistinguishability under distinct chosen
plain text attack) for example is a weakened IND-CPA,
requiring the adversary to only choose distinct messages.
For order preserving encryption the following ciphertext
indistinguishability models exist

• Indistinguishability under ordered chosen-plaintext
attack (IND-OCPA). This is the ideal security model.
No information other than the order is revealed.

• Indistinguishability Under Frequency-Analyzing
Ordered Chosen Plaintext Attacks (IND-FA-OCPA).
It is an generalization of IND-OCPA. According
to [53] it is not achievable, but an achievable
definition IND-FA-OCPA* is suggested. Because
of security concerns this kind of OPE is not
recommended.

• Pseudo-random order-preserving function, security
under chosen-ciphertext attack (POPF-CCA). Here
the oracle access to the encryption algorithm of the
order preserving encryption function and a random
ordered encryption function are indistinguishable

26

under chosen ciphertext attacks. This security model
is weaker than IND-OCPA. It is proven, that at
least half of the bits of a plain text are leaked.
According to Popa [49] this goal can only be
achieved by statefulness on the client and ciphertext
mutability. Ciphertext mutability means that when a
new ciphertext value is added, existing ciphertext is
updated [52].

• θ-lsb-KPA. In this model the secrecy of the fraction
(θ) of the least significant bits is guaranteed under
known plain text attacks.

• δ-IND-OCPA. A stronger security goal than θ-lsb-
KPA and for δ = 1 even IND-OPCA [52].

• random order-preserving function (ROPF). A random
order preserving function is seen as an ideal object. If
an order preserving function cannot not distinguished
from this ideal object indistinguishability to ROPF is
achieved [44].
Security Notions for Order Preserving Encryption:

• One-Wayness. The is a very fundamental security
requirement. It states that it is not possible to recover
the message from a ciphertext without the key. Of
course this notion is not as strong as it seems,
because even if the cleartext itself is not known, other
information may be revealed [64].

• Window One-Wayness. This is a stronger security
notion. The adversary is successful if the message is
contained in an interval of cleartext. As an example
the value 1000 is encrypted. If the given interval is 100
and the adversary finds the value is 960, it counts as
successful decrypted [44].

• Window distance One-Wayness. This metric tries to
quantify if the information of the distance between
numbers of the plain text are revealed. For example
if values 5 and 6 are ciphered, the order preserving
encrypted values should reveal that e(6) > e(5) but
not that the distance between e(5) and e(6) is 1.
Security Models:: Leakage profiles show if and how

much additional information is revealed by an encryption
scheme. The following profiles exist [65], [64]:

• Ideal. Only the order of the ciphertexts is revealed.
It hides any statistical information about the gaps
between the messages.

• ROPF. Random order-preserving function: As later
shown reveals at least half of the plain text bits.

• MSDB. Most-significant-differing bit profile: The
most significant bit are allowed to leaked.

• TrM, MtR are other leakage profiles mentioned in
literature [65, pp 4].

Attack models::
• Known ciphertext model. The attacker can only

access the encrypted files without any additional
background information.

• Known background model. The attacker has not only
access to the encrypted data but also additional

information like statistical information about the
data.If known which kind of data is stored, this can
be used for statistical attacks.

Attacks on order revealing encryption [65]:

• Inter-column correlation-based attacks. As columns
are often correlated, an attacker can attempt to
reveal more information from multiple order revealing
encrypted columns.

• Inter + intra-column correlation-based attack.

The following example shows the result of an attack on
order revealing encryption. Although not one exact value
is revealed, a lot insight to the data can be gained.

Fig. 9. 2D Attack [65, pp 5]

Attack Scenario Order Preserving Encryption:
Information Leakage: If an attacker can insert new
entries in the database via the application, it is possible
that the order preserving encryption leaks information.
In this simple example a row exists with salary data of
an employee. Then the attacker creates a new record with
the application, now he only has to query the (encrypted)
database with a simple query like “select * from employee
order by salary desc” to know, if the target earns more
than the created dummy employee. This can be continued
until the exact salary is disclosed.

27

TABLE XI
Information Leak OPE

ID Description Salary (order
preserving encrypted)

1 The target of the attack 9897899
2 Dummy Row with salary €5000

(created by attacker)
7866688

3 Other Rows
...

D. Summary of Security of Order Preserving Encryption
In [49] order preserving encryption schemes were

analyzed regarding leakage besides order and any security
guarantees given. To complete this chapter an overview of
security and leakage beside order of some of the ciphers
shown before, is given:

TABLE XII
Excerpt from comparison of ciphers in [49]

Order-preserving scheme Guarantees Leakage besides order
Agrawal et al.’04 [42] None Yes
Boldyreva et al. [43] ROPF [43] §II-A Half of plain text bits

Lee et al.’09 [54] None Yes
Yum et al.’12 [40] ROPF [43] §II-A Half of plain text bits
Popa, et.al [49] IND-OCPA None

VI. Property Preserving Encryption
Aside from order preserving encryption schemes

there exist encryption schemes, which preserve other
properties of a plaintext. Order preserving encryption,
order revealing encryption, format preserving encryption,
searchable encryption, prefix preserving encryption and
even homomorphic encryption schemes can all be classified
as property preserving encryption schemes. All of the
following encryption schemes are property preserving
encryption schemes. A property preserving cipher is
optimal, if a certain property of the plain text remains
in the ciphertext without revealing any additional
information. At the end homomorphic encryption is
presented. Homomorphic encryption makes it possible, to
perform some operations like “plus” or “multiplication”
on the encrypted data without decrypting it first.
Homomorphic encryption is neither order preserving nor
format preserving, but as arbitrary functions can applied
on the encrypted data, many useful properties can be
implemented as functions. The cost of these operations
is multiple magnitudes bigger than the operations on the
plain text data, so although a very promising approach for
future research, it is not ready for use for now.

A. FPE (Format Preserving Encryption)
Ciphertext normally does not meet the format

constraints of an existing data model. Fuzzy queries, range
queries and other SQL operations can not simply executed
over encrypted data. The usage of symmetric ciphers like
AES results in binary strings regardless of the type or
format in the database or application. Therefore the data

model and the application has to be changed. To avoid
this, FPE preserves data type and length in ciphertext, so
the existing schema of the database is still usable. Other
characteristics of the data like order preserving, logical
laws or domain specific checks are although possibly lost.
All queries are the possible on a technical level, but range
queries for example would not give the correct result,
because operators like “>”, “<” are not be valid for the
encrypted data anymore. For such queries, the whole data
has to be retrieved, decrypted and then processed, which
can lead to a big overhead. If there are no such restrictions
on the sensitive data fields, it can be a good solution for
legacy systems, because the existing data model can be
used without modification. The quality of the encryption is
not only dependent on the algorithm but also by the length
of the domain. Depending on the format, it is usually not
as secure as the use of standard block ciphers like AES.

Schemes : According to [63], format preserving
ciphers can be be split based on the size of the space.

TABLE XIII
Taxonomy format preserving encryption [63]

setting size msg space
tiny-space FPE N ≤ 2^10 X = [N]

small-space FPE N ≤ 2^128 X =
∑

n
large-space FPE N ≥ 2^128 X = {0,1}n

As seen in table XIII format preserving ciphers can be
categorized by size and space. If N is sufficiently small,
then it is acceptable to spend O(N) time for key setup or
the first encryption. This is the easy case. If the message
space is small like X =

∑
n for some arbitrary alphabet

∑
,

the a solution can often be based on Feistle networks. FFX
is an example for such small-space FPE. The last category
is large-space FPE. It is also called wide-block encryption.
Standards are EME2 and XCB. For tiny spaces some
simple and provable secure format preserving encryption
schemes exist:

a) Knuth shuffle (Fisher Yates shuffle): Shuffle a set
of numbers [x1..Xt] [66, pp 145].

• P1. Initialize, Set j <- t,
• P2. Generate a random number U uniformly

distributed between zero and one.
• P3. Exchange Set k <- [jU] +1, exchange Xk <-> Xj.
• P4. Decrease j. Decrease j by 1 if j > 1, return to step

P2.
b) Permutation numbering: Map key K to a number

k e [N!] and encrypt with the kth permutation on [N] [63].
c) Prefix cipher : Use ordering of Ek(0)..Ek(N-1)

to determine permutation. AES can be used for the
encryption, to determine the order. As an output, a sorted
table is created. This table can be used for table-driven
encryption [63].

d) FFX Algorithms: NIST Special Publication 800-
38G, “Recommendation for Block Cipher Modes of
Operation” [67] specifies some methods for format

28

preserving encryption. This publication contains two
recommendations for algorithms, which can be used for
legacy applications, where the format can not be changed
or to generally encrypt sensitive information while keeping
the format. Both of them are based on a block cipher.
Currently AES with key lengths of 128, 192 and 256
bits are supported. The main aspect of format preserving
algorithms is that data is not necessarily binary and the
encrypted text may not have the same length as the plain
text. The alphabet (allowed symbols of the data) can be
restricted, for example only numbers or certain letters
could be allowed. FF1 and FF3 are the two recommended
modes. They work like this: Each symbol is represented by
a numeral, base is the number of the alphabet, denoted
as radix. Two related function exist for encryption and
decryption. For encryption, the input is the plain text
given as numerical string (X) and a byte string as tweak
(T), the resulting output is a numerical string Y of the
same length as X. The decryption function has as input the
encrypted numerical string and the tweak and as output
the plain text as numerical string. For the same tweak
the decryption function is the inverse of the encryption
function. A tweak does not have to be a secret, it can be
data associated to the plain text. Although not mandatory
variable tweaks enhance the security, because the chance
of identical encryptions of the identical values is reduced.
Both algorithms, FF1 and FF3 are based on the Feistel
structure (10). The Feistel structure consists of several
iterations, called rounds, of a reversible transformation.

Outline of FF3:
• Split data in two parts.
• Apply a function on one part of the data to modify

the other part.
• Swap roles for the next round.

In 10 four rounds of the transformation are shown.
1) Length Limits of Modes:
2) FF1 : The allowed parameters for FF1 are: radix:

[2..2^16] and radix^minlen > 100, but much higher values
are recommended resulting in the range of 2 <minlen <
maxlen < 2^32.

3) FF3: The allowed parameters for FF3 are radix:
[2..2^16] and radix^minlen > 100 and the possible values
are: 2 < minlen < maxlen < 2[log.radix(2^96)].

4) IFX: IFX is also based on a Feistel network as
the FFX algorithms but supports non uniform data. For
example, part of data can be numeric and the rest can be
a string [67].

B. Order Revealing Encryption (ORE)
Here the ordering is not preserved, but there exists a

comparison function which reveals the order of any two
ciphertexts. Instead of using < for comparison, this user
defined comparison function is used. It is IND-COPA
secure, but has a big performance penalty. Practical ORE
schemes reveal information about the relative distance of
the plain text [52].

Fig. 10. Feistel Structure [67, pp 10]

C. Searchable Encryption

The ciphertext can be searched with an encrypted
search term without decrypting the ciphertext. Searchable
encryption can be seen a special case of functional
encryption. Not a cipher, but another approach is this:
Additional fields are used to store keyword ciphertexts for
fuzzy queries. For each encrypted field in the database an
additional keyword field is added. On enciphering string
data it generates an keyword string which represents all
sub strings of the data. After that this string is encrypted
and stored in the keyword field. During the query it
transforms the original query into combinations of terms,
and searches in the keyword field and not in the original
data field [68], [62].

D. Prefix Preserving Encryption

This is just a variant of searchable encryption: The
ciphertext can be searched by prefix in the same way like
the plaintext.

E. Deterministic Encryption

The same plain text is always encrypted to the same
ciphertext. AES CBC mode is an example of deterministic
encryption.

F. Commutative Encryption

The order of two encryptions and decryptions on the
same plain text is not relevant. e1(e2(P)) == e2(e1(P)),
d1(d2(C)) == d2(d1(C))

29

G. Homomorphic Encryption
According to [24] homomorphic encryption is defined

as “An encryption mechanism E is called homomorphic
basically if it preserves certain algebraic structure between
the plain text space and the ciphertext space,where the
encryption key is fixed.” Homomorphic encryption makes
it possible, to execute operations on cipher text and after
decryption this operations are visible on the clear text.
An example for this is RSA , where the product of two
ciphertexts is a valid encryption of the product of the
corresponding plaintexts. Fully homomorphic encryption
(FHE) [69], [70], [71], [72], [73], [74] is a special
kind of homomorphic encryption, where two operations,
addition and multiplication in any number and any
order are supported. This makes it possible to preserve
the (algebraic) ring structure of the plain text and by
supporting these two operations any computable function
can be evaluated on encrypted values. An important
application of such an encryption scheme in the context
of a database is to apply aggregate functions like sum or
average directly on encrypted data, without ever revealing
the plain text. Some homomorphic encryption schemes
exist:

• El Gamal Encryption Scheme [3, pp 308].
• Pailliar Ebcryption Scheme [3, pp 309].
• BGN (Boneh, Goh, and Nissim) Encryption

Scheme [3, pp 311]. Addition and Multiplication
is supported, but only one multiplication.

• GSW (Gentry Sahai Waters) Encryption scheme
(fully homomorphic).

Fully homomorphic encryption has a big performance
penalty. It is up to 1000000x slower than without
encryption. Although improved, practical use is still not
possible due the limited performance [75].

H. Functional Encryption
In contrast to the previous ciphers, this is an asymmetric

encryption scheme. Normal ciphers have no way to
reveal only a particular information about the plain text.
Functional encryption gives a more fine grained access
to information. With a master key the ciphertext is
still decrypted to the plain text. Additionally to this
master key a kind of sub-key exists. With this key the
ciphertext cannot decrypted, but an associated function
can performed with this key on the ciphertext, only
revealing a special property of the plain text and not the
whole plain text itself [3], [76, pp 315].

VII. Other Solutions
A. Eperi Gateway

Eperi Data Protection for Databases3 is an approach to
store only encrypted data in the database. For processing,
the data is decrypted by stored procedures so the cleartext

3http://eperi.de/produkte/database-encryption/

is in memory of DB-Server, thus providing no real end-
to-end encryption. The encryption and decryption is
transparent to an application, so the application does not
have to be changed. Eperi gateway itself provides a lot
more features. It is the central point for accessing and
retrieving data from the cloud. It supports transparent
encryption/decryption for different types of data and
documents. A disadvantage of this central gateway
approach is, that as all traffic to the cloud comes and
goes through the gateway. Thus, it can be a performance
bottleneck and a single point of failure [77].

B. Relational cloud
Relational cloud4 is a project from MIT to explore and

enhance technology of the database as a service (DBaaS)
model in cloud computing. The vision of Relational cloud
is to provide access to all features of a DBMS without
the need to manage hardware, software and privacy.
Relational cloud consists of multiple nodes running a
single database server. Applications communicate by their
standard interfaces like JDBC. A special driver is used to
connect to the front-end to ensure data is kept private. A
router is consulted by the front end to analyze the queries
and it determines the execution nodes [78].

C. CryptDB
CryptDB [79] is a database management system, which

can execute SQL queries over encrypted data. It follows
an SQL-aware encryption strategy and evaluates the query
directly on the server. The client must only decrypt the
results and does not need to perform any query processing.
The encryption can be completely transparent to an
application, as long as the provided client front-end is
used. CryptDB uses order preserving and homomorphic
encryption.

The goal of CryptDB is to be as secure as possible, while
still providing practical access to the database. However,
CryptDB’s security was analyzed and some successful
attacks were revealed:

• LP-optimization. Based on combinatorial
optimization techniques, this attack targets
deterministic encryption schemes.

• Sorting attack. This attack decrypts order preserving
encrypted columns. It works on dense sets, where
nearly every value exists in the database.

• Cumulative attack. Another attack on order
preserving encrypted columns. It works even
on low-density columns by using combinatorial
optimization techniques.

According to [80], there exist some CryptDB based or
at least inspired solutions:

• Monomi [80]. It is based on the design of CryptDB but
with a focus on analytical queries. It runs queries on
encrypted data on top of the PostgreSQL database.

4http://relationalcloud.com

30

For the execution of complex queries, it uses the split
client/server approach (similar to [41]), where part of
the query is executed on the encrypted data on the
server, and another part of the query is executed on
the decrypted data on the client.

• Microsoft’s Always Encrypted SQL Server [81].
• Encrypted Bigquery5. It is a cloud service for analysis

of large data-sets from Google storage. For queries
it uses an SQL dialect. Encrypted BigQuery is an
extension to the Bigquery client, which is capable of
client-side encryption for a subset of query types.

• Skyhigh Networks6. McAfee Skyhigh Security Cloud
is a cloud access security broker (CASB). This
software sits between cloud service consumers
and cloud service providers to enforce security,
compliance, and governance policies for cloud
applications. Among tons of other features,
it supports encryption schemes for transparent
encrypting of data going through the broker into the
cloud. The Skyhigh Security Cloud supports, besides
regular symmetric encryption schemes, format-
preserving and searchable encryption schemes.
Among other schemes, order preserving encryption is
supported too.

D. DiCE - A Data Encryption Proxy for the Cloud
Order-preserving encryption algorithms range from

simple algorithms like Caesar encryption to secure
algorithms like mOPE [49]. In order to be able to use
these algorithms as easy as possible, DiCE [82] a JDBC
driver was developed7, that parses SQL queries as a proxy
and transparently encrypts and decrypts these queries.
This allows to execute many queries on an encrypted
database in the cloud with (nearly) the performance as on
unencrypted databases. The DiCE driver can be used with
any other JDBC driver and therefore supports a variety
of databases. The driver can be configured to support
different encryption algorithms.

This research was motivated by our experience
with large scale data stores [83] and complex
applications in Grids and Clouds [84], [85], [86], [87],
and strongly motivated by our focus on Web-based
workflow optimizations [88], [89] and their respective
management [90].

E. SecureDBaaS
SecureDBaaS [91] differs from other solutions on the

application level (e.g. DiCE [82]), that it does not need
a proxy to store metadata. Instead all metadata is stored
encrypted on the server to avoid scalability issues. Features
of SecureDBaaS are

• guaranteed confidentiality by allowing concurrent
SQL over encrypted data,

5https://github.com/google/encrypted-bigquery-client
6https://www.skyhighsecurity.com
7https://github.com/dicejk/dice

• same availability, elasticity and scalability as
unencrypted database as a service,

• concurrent access from distributed clients,
• no trusted broker or proxy required, and
• compatible with most relational Databases. It

is possible to use existing database servers like
PostgreSQL or MS SQL Server.

F. CipherCloud
CipherCloud8 works as gateway which intercepts any

traffic between a database and its clients. In fact, it uses
an enhanced JDBC driver and supports format preserving
encryption. It works with Amazon RDS as a database in
the cloud [92].

G. Voltage Secure
Voltage Secure9 provides another solution for Amazon

relational database service. Unlike CipherCloud it provides
its service for applications in the elastic cloud although
with external key management. Similar to CipherCloud,
it is possible with this solution to query over encrypted
data [92].

H. Perspecsys
CloudSOC [21] is a cloud access security broker

(CASB). Part of it (Symantec Cloud Data Protection
& Security) provides encryption schemes for the data
stored in the cloud. Additionally to the standard
schemes, it supports different functionality (including
order) preserving encryption schemes.

VIII. Conclusion and Outlook
Collecting and storing only the minimal required data

seems obvious, but often it is not. The GDPR makes
data minimization of personal data a principle and from a
security point of view this makes absolutely sense. Never
collected data does not have to be stored, maintained and
protected. But there are enough systems, where sensible
data is definitely needed. Here it is crucial to make
this classification as sensible data explicit. Without this
knowledge, it it is impossible to protect it accordingly.
Mixing sensitive with non sensitive data is also a bad idea,
because then everything has to be handled as sensitive
data and this comes with an overhead. Often it is good
practice to separate sensitive tables or even systems from
non sensitives, but this will work only if considered
from the start. This report discussed many ciphers, with
different properties and different strength of security. It is
recommended to always go for the best matching cipher
regarding security requirements and needed functionality,
even if that means to use multiple different ciphers. Here,
the use of the smallest common denominator is definitely
no good idea, as there is no perfect cipher which is best for
all use cases. Ciphers with specific properties required for

8http://www.ciphercloud.com/
9https://voltage.com

31

queries on encrypted data are available and usable. Order
preserving encryption schemes with best possible security
exist, but they are still not as secure as algorithms without
additional properties. It is important to know, that these
ciphers are relatively new and not analyzed in depth like
standard algorithms as AES for example. Of course often
not optimal encryption is better than none, but it is
important to know the weaknesses of these ciphers. As
a result, is not recommended to use any non standard
encryption schemes for high classified data. The use of
these ciphers also does not come for free. There is a certain
overhead by embedding the encryption in a JDBC driver
compared to using the native JDBC driver of the database
directly. The reason for this is that much more processing
has to be done before sending the query to the server. The
SQL statement has to be parsed, encrypted and sometimes
rewritten before it is forwarded to the real driver. The
results of a query have to be parsed and decrypted again.
The performance results show that the response time is
significant higher, but by simulating multiple simultaneous
queries the impact on the throughput is not as dramatic.
Compared with the naive approach, by not enabling joins
or indices on the encrypted data the result is clear: The
naive approach is simple not working for anything but
toy projects. Of course it can not repeated more often
that security is more than encryption, and a lot more
than encrypting the database has to be done to achieve
security. Using the database as service solutions from AWS
and Azure worked like a charm. It literally takes only 5
minutes and a database is up and running and available for
operation. Network access and speed is definitely an issue.
For example the data setup for evaluation took some time
to get it into the cloud.

Optimal order preserving encryption is here, but it has
to prove itself over the next years. As of today no high
quality standard implementation like for example for AES
exist. This will hopefully change soon. The big elephant
in the room is fully homomorphic encryption, and future
will show if it is possible to develop a secure and well
performing cipher. If it is possible to achieve this, the
impact goes far beyond database encryption, because then
it would be possible to directly operate on the encrypted
data and move the whole data processing in the cloud, too.
Quantum computing could be a disruptive technology for
many ciphers, which are currently believed to be secure.
The adoption of cloud computing is continuing to grow,
but as more and more important services rely on it, it
seems very likely that more legislative control will be
applied to it. Privacy and security in and outside the
cloud will be more important than ever, and legislative
regulation like GDPR will become more and more relevant.

References

[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition
of cloud computing,” National Institute of Standards &
Technology, Gaithersburg, MD, United States, Tech. Rep., 2011.

[2] S. Leimeister, C. Riedl, M. Böhm, and H. Krcmar, “The
business perspective of cloud computing: Actors, roles, and
value networks,” in Proceedings of 18th European Conference
on Information Systems (ECIS 2010), Pretoria, South Africa,
2010. [Online]. Available: http://home.in.tum.de/~riedlc/res/
LeimeisterEtAl2010-preprint.pdf

[3] J. R. Vacca, Cloud Computing Security: Foundations and
Challenges. Boca Raton, FL, USA: CRC Press, Inc., 2016.

[4] N. K. Sehgal and P. C. Bhatt, Cloud Computing. Springer
International Publishing, 2018.

[5] I. M. Khalil, A. Khreishah, and M. Azeem, “Cloud computing
security: A survey,” Computers, vol. 3, no. 1, pp. 1–35, 2014.

[6] L. Stadtmueller, “Are cloud managed services the
right financial choice for your business? an executive
brief sponsored by ibm,” 2017. [Online]. Available:
https://www.inxero.com/channels/flagshipsg-com/showcase/
2422-managed-services?resource_mapping_id=28325

[7] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database as
a service,” in Proceedings of the 18th International Conference
on Data Engineering, ser. ICDE ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 29–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=876875.879015

[8] W. Neu, “Role of the dba when moving to
amazon rds: Responsibilities,” 11 2017. [Online].
Available: https://aws.amazon.com/blogs/database/part-1-
role-of-the-dba-when-moving-to-amazon-rds-responsibilities/

[9] N. Ferguson, B. Schneier, and T. Kohno, Cryptography
Engineering: Design Principles and Practical Applications.
Wiley Publishing, 2010.

[10] B. Schneier, Secrets & Lies: Digital Security in a Networked
World, 1st ed. New York, NY, USA: John Wiley & Sons, Inc.,
2000.

[11] E. McCallister, T. Grance, and K. A. Scarfone, “Sp 800-
122,” Guide to Protecting the Confidentiality of Personally
Identifiable Information (PII), National Institute of Standards
& Technology, Gaithersburg, MD, 2010.

[12] K. Hänsch and L. Serna, “Directive 95/46/ec of the european
parliament and of the council of 24 october 1995 on the
protection of individuals with regard to the processing of
personal data and on the free movement of such data, nov. 1995.”

[13] P. V. A. von dem Bussche, EU-Datenschutz-Grundverordnung
(DSGVO). Springer-Verlag Berlin Heidelberg, 2018.

[14] P. Voigt and A. v. d. Bussche, The EU General Data Protection
Regulation (GDPR): A Practical Guide, 1st ed. Springer
Publishing Company, Incorporated, 2017.

[15] K. A. Scarfone, W. Jansen, and M. Tracy, “Sp 800-123. guide
to general server security,” National Institute of Standards &
Technology, Gaithersburg, MD, United States, Tech. Rep., 2008.

[16] B. Schneier, Applied cryptography (2nd ed.): protocols,
algorithms, and source code in C. New York, NY, USA: John
Wiley & Sons, Inc., 1995.

[17] L. R. Knudsen, Block Ciphers —A Survey. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 18–48. [Online]. Available:
https://doi.org/10.1007/3-540-49248-8_2

[18] W. Ertel, Angewandte Kryptographie. Hanser, 2007.
[19] K. Schmeh, Kryptografie: Verfahren, Protokolle,

Infrastrukturen, ser. iX Edition. Dpunkt.Verlag GmbH,
2009.

[20] B. Schneier, Angewandte Kryptographie.: Protokolle,
Algorithmen und Sourcecode in C., ser. Reihe
Informationssicherheit. Addison-Wesley, 1996.

[21] Symantec, “Data privacy and compliance in the cloud.”
[Online]. Available: https://www.symantec.com/content/dam/
symantec/docs/white-papers/data-privacy-and-compliance-in-
the-cloud-en.pdf

[22] Visa, “Visa best practices for tokenization
version 1.0,” 7 2010. [Online]. Available:
https://usa.visa.com/dam/VCOM/global/support-legal/
documents/bulletin-tokenization-best-practices.pdf

[23] P. G. Alexandra Boldyreva, “The cloud encryption handbook:
Encryption sscheme and their elative strengths and weaknesses.”

[24] H. C. A. van Tilborg and S. Jajodia, Eds., Encyclopedia of
Cryptography and Security, 2nd Ed. Springer, 2011.

32

http://home.in.tum.de/~riedlc/res/LeimeisterEtAl2010-preprint.pdf
http://home.in.tum.de/~riedlc/res/LeimeisterEtAl2010-preprint.pdf
https://www.inxero.com/channels/flagshipsg-com/showcase/2422-managed-services?resource_mapping_id=28325
https://www.inxero.com/channels/flagshipsg-com/showcase/2422-managed-services?resource_mapping_id=28325
http://dl.acm.org/citation.cfm?id=876875.879015
https://aws.amazon.com/blogs/database/part-1-role-of-the-dba-when-moving-to-amazon-rds-responsibilities/
https://aws.amazon.com/blogs/database/part-1-role-of-the-dba-when-moving-to-amazon-rds-responsibilities/
https://doi.org/10.1007/3-540-49248-8_2
https://www.symantec.com/content/dam/symantec/docs/white-papers/data-privacy-and-compliance-in-the-cloud-en.pdf
https://www.symantec.com/content/dam/symantec/docs/white-papers/data-privacy-and-compliance-in-the-cloud-en.pdf
https://www.symantec.com/content/dam/symantec/docs/white-papers/data-privacy-and-compliance-in-the-cloud-en.pdf
https://usa.visa.com/dam/VCOM/global/support-legal/documents/bulletin-tokenization-best-practices.pdf
https://usa.visa.com/dam/VCOM/global/support-legal/documents/bulletin-tokenization-best-practices.pdf

[25] R. B. Natan, Implementing Database Security and Auditing:
Includes Examples for Oracle, SQL Server, DB2 UDB, Sybase.
Newton, MA, USA: Digital Press, 2005.

[26] R. Spenneberg, “Ipsec howto.” [Online]. Available: http:
//www.ipsec-howto.org/

[27] D. Cherry, Securing SQL Server: Protecting Your Database from
Attackers. Elsevier Science, 2012.

[28] Microsoft, “Transparent data encryption (tde) sql server 2012,”
http://technet.microsoft.com/en-us/library/bb934049.aspx.

[29] H.-W. Fabry, “Daten verschlüsseln mit transparent data
encryption (tde),” ORACLE Deutschland GmbH. [Online].
Available: http://www.oracle.com/webfolder/technetwork/de/
community/dbadmin/tipps/tde/index.html

[30] L. S. Nishad, Akriti, J. Paliwal, R. Pandey, S. Beniwal,
and S. Kumar, “Security, privacy issues and challenges in
cloud computing: A survey,” in Proceedings of the Second
International Conference on Information and Communication
Technology for Competitive Strategies, ser. ICTCS ’16. New
York, NY, USA: ACM, 2016, pp. 47:1–47:7. [Online]. Available:
http://doi.acm.org/10.1145/2905055.2905253

[31] I. Amazon Web Services, “Aws security best practices,” 2016.
[Online]. Available: https://d1.awsstatic.com/whitepapers/
Security/AWS_Security_Best_Practices.pdf

[32] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon,
R. Masuoka, and J. Molina, “Controlling data in the
cloud: Outsourcing computation without outsourcing control,”
in Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, ser. CCSW ’09. New York, NY,
USA: ACM, 2009, pp. 85–90. [Online]. Available: http:
//doi.acm.org/10.1145/1655008.1655020

[33] CSA, “The treacherous 12 cloud computing
top threats in 2016,” 2016. [Online]. Available:
https://downloads.cloudsecurityalliance.org/assets/research/
top-threats/Treacherous-12Cloud-ComputingTop-Threats.pdf

[34] A. V. Katerina Lourida1, Antonis Mouhtaropoulos2, “Assessing
database and network threats in traditional and cloud
computing,” International Journal of Cyber-Security and
Digital Forensics (IJCSDF) 2(3): 1-17 The Society of Digital
Information and Wireless Communications, 2013 (ISSN: 2305-
0012.

[35] M. Jouini, L. B. A. Rabai, and A. B. Aissa, “Classification of
security threats in information systems,” Procedia Computer
Science, vol. 32, pp. 489–496, 2014.

[36] OWASP, “Threat risk modeling.” [Online]. Available: https:
//www.owasp.org/index.php/Threat_Risk_Modeling

[37] Q. Yaseen and B. Panda, “Knowledge acquisition and insider
threat prediction in relational database systems,” 2013 IEEE
16th International Conference on Computational Science and
Engineering, vol. 3, pp. 450–455, 2009.

[38] ——, “Tackling insider threat in cloud relational databases,”
Utility and Cloud Computing, IEEE Internatonal Conference
on, vol. 0, pp. 215–218, 2012.

[39] S. Foresti, Preserving Privacy in Data Outsourcing, ser.
Advances in Information Security. Springer US, 2010.

[40] C. J. Date, SQL and Relational Theory: How to Write Accurate
SQL Code. O’Reilly Media, Inc., 2011.

[41] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Executing sql
over encrypted data in the database-service-provider model,”
in Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’02. New
York, NY, USA: ACM, 2002, pp. 216–227. [Online]. Available:
http://doi.acm.org/10.1145/564691.564717

[42] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order
preserving encryption for numeric data,” in Proceedings
of the 2004 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’04. New York, NY,
USA: ACM, 2004, pp. 563–574. [Online]. Available: http:
//doi.acm.org/10.1145/1007568.1007632

[43] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
Preserving Symmetric Encryption,” in Proceedings of the 28th
Annual International Conference on Advances in Cryptology:
the Theory and Applications of Cryptographic Techniques, ser.
EUROCRYPT ’09. Berlin, Heidelberg: Springer-Verlag, 2009,

pp. 224–241. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-01001-9_13

[44] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving
encryption revisited: Improved security analysis and alternative
solutions,” in Advances in Cryptology – CRYPTO 2011,
P. Rogaway, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 578–595.

[45] E. Mykletun and G. Tsudik, “Aggregation queries in the
database-as-a-service model,” in 20th Annual IFIP WG 11.3
Working Conference on Data and Applications Security on
Data and Applications Security XX - Volume 4127. New York,
NY, USA: Springer-Verlag New York, Inc., 2006, pp. 89–103.
[Online]. Available: https://doi.org/10.1007/11805588_7

[46] H. Mengke, “Key-controlled order-preserving encryption,” pp.
1–5, 2010. [Online]. Available: http://eprint.iacr.org/2010/268

[47] C. Mavroforakis, N. Chenette, A. O’Neill, G. Kollios, and
R. Canetti, “Modular order-preserving encryption, revisited,”
in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’15. New
York, NY, USA: ACM, 2015, pp. 763–777. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2749455

[48] H. Kadhem, T. Amagasa, and H. Kitagawa, “Optimization
techniques for range queries in the multivalued-partial order
preserving encryption scheme,” in Knowledge Discovery,
Knowledge Engineering and Knowledge Management, A. Fred,
J. L. G. Dietz, K. Liu, and J. Filipe, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 338–353.

[49] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-
security protocol for order-preserving encoding,” in 2013 IEEE
Symposium on Security and Privacy, 5 2013, pp. 463–477.

[50] K. S. Reddy and S. Ramachandram, “A novel dynamic order-
preserving encryption scheme,” in 2014 First International
Conference on Networks Soft Computing (ICNSC2014), 8 2014,
pp. 92–96.

[51] F. Kerschbaum and A. Schroepfer, “Optimal average-
complexity ideal-security order-preserving encryption,” in
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New
York, NY, USA: ACM, 2014, pp. 275–286. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660277

[52] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H.
Kim, “Security of stateful order-preserving encryption,” in
Information Security and Cryptology – ICISC 2017, H. Kim
and D.-C. Kim, Eds. Cham: Springer International Publishing,
2018, pp. 39–56.

[53] M. Maffei, M. Reinert, and D. Schröder, “On the security of
frequency-hiding order-preserving encryption,” in Cryptology
and Network Security, S. Capkun and S. S. M. Chow, Eds.
Cham: Springer International Publishing, 2018, pp. 51–70.

[54] S. Lee, T.-J. Park, D. Lee, T. Nam, and S. Kim, “Chaotic
order preserving encryption for efficient and secure queries on
databases,” IEICE transactions on information and systems,
vol. 92, no. 11, pp. 2207–2217, 2009.

[55] C. Yang, W. Zhang, and N. Yu, “Semi-order preserving
encryption,” Information Sciences, vol. 387, pp. 266 –
279, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0020025516320503

[56] C. Yang, W. Zhang, J. Ding, and N. Yu, “Probability-p order-
preserving encryption,” in Cloud Computing and Security: Third
International Conference, ICCCS 2017, Nanjing, China, June
16-18, 2017, Revised Selected Papers, Part II 3. Springer, 2017,
pp. 16–28.

[57] Z. Liu, X. Chen, J. Yang, C. Jia, and I. You, “New order
preserving encryption model for outsourced databases in cloud
environments,” Journal of Network and Computer Applications,
vol. 59, pp. 198 – 207, 2016. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S1084804514001350

[58] J. Dyer, M. Dyer, and J. Xu, “Order-preserving encryption
using approximate integer common divisors,” CoRR, vol.
abs/1706.00324, 2017. [Online]. Available: http://arxiv.org/
abs/1706.00324

[59] K. Li, W. Zhang, C. Yang, and N. Yu, “Security analysis on one-
to-many order preserving encryption-based cloud data search,”

33

http://www.ipsec-howto.org/
http://www.ipsec-howto.org/
http://www.oracle.com/webfolder/technetwork/de/community/dbadmin/tipps/tde/index.html
http://www.oracle.com/webfolder/technetwork/de/community/dbadmin/tipps/tde/index.html
http://doi.acm.org/10.1145/2905055.2905253
https://d1.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d1.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
http://doi.acm.org/10.1145/1655008.1655020
http://doi.acm.org/10.1145/1655008.1655020
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/ Treacherous-12 Cloud-Computing Top-Threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/ Treacherous-12 Cloud-Computing Top-Threats.pdf
https://www.owasp.org/index.php/Threat_Risk_Modeling
https://www.owasp.org/index.php/Threat_Risk_Modeling
http://doi.acm.org/10.1145/564691.564717
http://doi.acm.org/10.1145/1007568.1007632
http://doi.acm.org/10.1145/1007568.1007632
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/11805588_7
http://eprint.iacr.org/2010/268
http://doi.acm.org/10.1145/2723372.2749455
http://doi.acm.org/10.1145/2660267.2660277
http://www.sciencedirect.com/science/article/pii/S0020025516320503
http://www.sciencedirect.com/science/article/pii/S0020025516320503
http://www.sciencedirect.com/science/article/pii/S1084804514001350
http://www.sciencedirect.com/science/article/pii/S1084804514001350
http://arxiv.org/abs/1706.00324
http://arxiv.org/abs/1706.00324

IEEE Transactions on Information Forensics and Security,
vol. 10, no. 9, pp. 1918–1926, 9 2015.

[60] R. T. Santi Martinez, Josep M. Miret and M. Valls, “Security
analysis of order preserving symmetric cryptography,” Applied
Mathematics & Information Sciences, 2013.

[61] H. Quan, B. Wang, Y. Zhang, and G. Wu, “Efficient and
secure top-k queries with top order-preserving encryption,”
IEEE Access, vol. 6, pp. 31 525–31 540, 2018.

[62] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers, “Format-
preserving encryption,” Cryptology ePrint Archive, Report
2009/251, 2009.

[63] P. Rogaway, “A synopsis of format-preserving encryption,”
2010.

[64] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, “Practical
order-revealing encryption with limited leakage,” Cryptology
ePrint Archive, Report 2015/1125, 2015.

[65] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else
is revealed by order-revealing encryption?” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 1155–1166. [Online]. Available: http:
//doi.acm.org/10.1145/2976749.2978379

[66] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1997.

[67] D. Morris, “Recommendation for block cipher modes of
operation: methods for formatpreserving encryption,” NIST
Special Publication, vol. 800, p. 38G, 2013.

[68] Z. Liu, C. Jia, J. Yang, and K. Yuan, “Format-preserving fuzzy
query mechanism,” 2013 Fourth International Conference on
Emerging Intelligent Data and Web Technologies, vol. 0, pp.
220–226, 2013.

[69] N. Smart and F. Vercauteren, “Fully homomorphic encryption
with relatively small key and ciphertext sizes,” Cryptology
ePrint Archive, Report 2009/571, 2009. [Online]. Available:
http://eprint.iacr.org/

[70] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully
homomorphic encryption without bootstrapping,” Cryptology
ePrint Archive, Report 2011/277, 2011. [Online]. Available:
http://eprint.iacr.org/

[71] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can
homomorphic encryption be practical?” Cryptology ePrint
Archive, Report 2011/405, 2011, http://eprint.iacr.org/.

[72] J.-S. Coron, D. Naccache, and M. Tibouchi, “Optimization
of fully homomorphic encryption,” Cryptology ePrint
Archive, Report 2011/440, 2011. [Online]. Available:
http://eprint.iacr.org/

[73] C. Gentry and S. Halevi, “Implementing gentry’s fully-
homomorphic encryption scheme,” in EUROCRYPT, 2011, pp.
129–148.

[74] M. V. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan,
“Fully homomorphic encryption over the integers,”
Accepted to Eurocrypt 2010 Available, vol. athttp,
p. //eprintiacrorg/2009/616, 2009. [Online]. Available:
http://eprint.iacr.org/2009/616.pdf

[75] Y. Gahi, M. Guennoun, and K. El-Khatib, “A secure database
system using homomorphic encryption schemes,” CoRR, vol.
abs/1512.03498, 2015.

[76] D. Boneh, A. Sahai, and B. Waters, “Functional encryption:
A new vision for public-key cryptography,” Commun. ACM,
vol. 55, no. 11, pp. 56–64, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2366316.2366333

[77] Eperi, “How eperi can help to achieve compliance with
strict data residency requirements,” [Online]. Available:
https://blog.eperi.co, 2018.

[78] C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich, “Relational Cloud: A
Database Service for the Cloud,” in 5th Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, 1 2011.

[79] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan, “Cryptdb: Protecting confidentiality with
encrypted query processing,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11. New York, NY, USA: ACM, 2011,
pp. 85–100. [Online]. Available: http://doi.acm.org/10.1145/
2043556.2043566

[80] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich,
“Processing analytical queries over encrypted data,” Proc.
VLDB Endow., vol. 6, no. 5, pp. 289–300, Mar. 2013. [Online].
Available: http://dx.doi.org/10.14778/2535573.2488336

[81] P. Antonopoulos, A. Arasu, K. D. Singh, K. Eguro, N. Gupta,
R. Jain, R. Kaushik, H. Kodavalla, D. Kossmann, N. Ogg et al.,
“Azure sql database always encrypted,” in Proceedings of the
2020 ACM SIGMOD International Conference on Management
of Data, 2020, pp. 1511–1525.

[82] J. Koppenwallner and E. Schikuta, “Dice – a data encryption
proxy for the cloud,” 2023.

[83] E. Schikuta, T. Fuerle, and H. Wanek, “Vipios: The
vienna parallel input/output system,” in Euro-Par98 Parallel
Processing: 4th International Euro-Par Conference. Springer,
1998, pp. 953–958.

[84] W. Mach and E. Schikuta, “A generic negotiation and re-
negotiation framework for consumer-provider contracting of web
services,” in Proceedings of the 14th International Conference on
Information Integration and Web-based Applications & Services,
2012, pp. 348–351.

[85] E. Schikuta and T. Weishäupl, “N2grid: neural networks in the
grid,” in 2004 IEEE International Joint Conference on Neural
Networks (IEEE Cat. No. 04CH37541), vol. 2. IEEE, 2004,
pp. 1409–1414.

[86] E. Schikuta, F. Donno, H. Stockinger, H. Wanek, T. Weishäupl,
E. Vinek, and C. Witzany, “Business in the grid: Project
results,” in 1st Austrian Grid Symposium. OCG, 12 2005.
[Online]. Available: http://eprints.cs.univie.ac.at/745/

[87] T. Weishäupl and E. Schikuta, “Towards the merger of grid
and economy,” in Grid and Cooperative Computing - GCC 2004
Workshops, H. Jin, Y. Pan, N. Xiao, and J. Sun, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 563–570.

[88] E. Schikuta, H. Wanek, and I. Ul Haq, “Grid workflow
optimization regarding dynamically changing resources and
conditions,” Concurrency and Computation: Practice and
Experience, vol. 20, no. 15, pp. 1837–1849, 2008.

[89] K. Kofler, I. ul Haq, and E. Schikuta, “A parallel branch
and bound algorithm for workflow qos optimization,” in 2009
International Conference on Parallel Processing. IEEE, 2009,
pp. 478–485.

[90] G. Stuermer, J. Mangler, and E. Schikuta, “Building a modular
service oriented workflow engine,” in 2009 IEEE international
conference on service-oriented computing and applications
(SOCA). IEEE, 2009, pp. 1–4.

[91] P. Jagadeeswaraiah and M. P. Kumar, “Securedbaas model for
accessing encrypted cloud databases,” Telkomnika Indonesian
Journal of Electrical Engineering, vol. 16, no. 2, pp. 333–340,
2015.

[92] K. Beer and R. Holland, “Securing data at rest with
encryption.” [Online]. Available: https://d0.awsstatic.com/
whitepapers/aws-securing-data-at-rest-with-encryption.pdf

34

http://doi.acm.org/10.1145/2976749.2978379
http://doi.acm.org/10.1145/2976749.2978379
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2009/616.pdf
http://doi.acm.org/10.1145/2366316.2366333
http://doi.acm.org/10.1145/2043556.2043566
http://doi.acm.org/10.1145/2043556.2043566
http://dx.doi.org/10.14778/2535573.2488336
http://eprints.cs.univie.ac.at/745/
https://d0.awsstatic.com/whitepapers/aws-securing-data-at-rest-with-encryption.pdf
https://d0.awsstatic.com/whitepapers/aws-securing-data-at-rest-with-encryption.pdf

	Introduction
	Motivation
	Overview
	Scope and Limitations

	Cloud
	Cloud Computing Elements
	Service Models
	Deployment Models
	Actors and roles in the cloud
	Cloud Computing Strength and Weakness

	Database as a Service
	Overview of DBaaS Providers

	Security
	Privacy
	Cryptography
	Classical ciphers
	Modern Block ciphers
	Tokenization
	Cryptographic attacks

	Database Security
	Encrypting data in transit
	Encrypting data at rest

	Cloud Security
	Security Concerns in the Cloud
	Privacy and Security

	Database Encryption in the Cloud
	Prerequisites
	No Sensitive data at all
	No Sensitive data in the cloud
	Encrypting sensitive data in the cloud

	Encryption Strategies
	Standard ciphers
	Standard ciphers and augmented data model
	Ciphers with additional properties

	Query Requirements

	Order Preserving Encryption
	Classical Schemes
	Modern Encryption Schemes
	Bucket Based Approach
	OPES (Order Preserving Encryption Scheme)
	OPE (Order Preserving Encryption)
	MOPE (Modular Order Preserving Encryption)
	MV-POPES (Multivalued-Partial Order Preserving Encryption Scheme)
	mOPE (Mutable Order Preserving Encoding)
	DOPE (Dynamic Order Preserving Encryption)
	FH-OPE (Frequency Hiding Order Preserving Encryption)
	COPE (Chaotic Order Preserving Encryption)
	SOPE (Semi-Order Preserving Encryption)
	p-OPE (Probability-p Order Preserving Encryption)
	New order preserving encryption model
	Order-Preserving Encryption Using Approximate Integer Common Divisors
	One-to-Many OPE
	NOPE (Noise Based Order Preserving Encryption)
	sOPE (Stateful Order Preserving Encryption)
	TOPE (Top Order Preserving Encryption)

	Security of Order Preserving Encryption
	Summary of Security of Order Preserving Encryption

	Property Preserving Encryption
	FPE (Format Preserving Encryption)
	Length Limits of Modes
	FF1
	FF3
	IFX

	Order Revealing Encryption (ORE)
	Searchable Encryption
	Prefix Preserving Encryption
	Deterministic Encryption
	Commutative Encryption
	Homomorphic Encryption
	Functional Encryption

	Other Solutions
	Eperi Gateway
	Relational cloud
	CryptDB
	DiCE - A Data Encryption Proxy for the Cloud
	SecureDBaaS
	CipherCloud
	Voltage Secure
	Perspecsys

	Conclusion and Outlook
	References

