
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 4162–4176
December 6-10, 2023 ©2023 Association for Computational Linguistics

ULF: Unsupervised Labeling Function Correction
using Cross-Validation for Weak Supervision

Anastasiia Sedova†⋆ and Benjamin Roth†⋄
† Faculty of Computer Science, University of Vienna, Austria

⋆ UniVie Doctoral School Computer Science, University of Vienna, Austria
⋄ Faculty of Philological and Cultural Studies, University of Vienna, Austria

{anastasiia.sedova, benjamin.roth}@univie.ac.at

Abstract
A cost-effective alternative to manual data la-
beling is weak supervision (WS), where data
samples are automatically annotated using a
predefined set of labeling functions (LFs), rule-
based mechanisms that generate artificial la-
bels for the associated classes. In this work,
we investigate noise reduction techniques for
WS based on the principle of k-fold cross-
validation. We introduce a new algorithm ULF
for Unsupervised Labeling Function correc-
tion, which denoises WS data by leveraging
models trained on all but some LFs to identify
and correct biases specific to the held-out LFs.
Specifically, ULF refines the allocation of LFs
to classes by re-estimating this assignment on
highly reliable cross-validated samples. Eval-
uation on multiple datasets confirms ULF’s ef-
fectiveness in enhancing WS learning without
the need for manual labeling.1

1 Introduction

A large part of today’s machine learning success
rests upon large amounts of annotated training data.
However, collecting manual annotation (even in
a reduced amount, e.g., for fine-tuning large pre-
trained models (Devlin et al., 2019), active learn-
ing (Sun and Grishman, 2012), or semi-supervised
learning (Kozareva et al., 2008)) is tedious and
expensive. An alternative approach is weak super-
vision (WS), where data is labeled in an automated
process using one or multiple WS sources such
as keywords (Hedderich et al., 2021), knowledge
bases (Lin et al., 2016), and heuristics (Varma and
Ré, 2018), which are encoded as labeling functions
(LFs, Ratner et al. 2020). LFs are applied to unla-
beled datasets to obtain weak training labels, which
are cheap, but often conflicting and error-prone, re-
quiring improvement (see Table 1).

We focus on enhancing the quality of weak la-
bels using k-fold cross-validation. Intuitively, by

1We make our code available within the Knodle framework
(Sedova et al., 2021): https://github.com/knodle.

Table 1: Examples of WS annotation for YouTube
dataset (Alberto et al., 2015). (1) is classified as spam
as all matched LFs belong to the SPAM class. In (2)
and (3), there is a conflict as matched LFs belong to
different classes. In (4), no LFs matched; such samples
are usually filtered out.

leaving out a portion of the data during training,
the model avoids overfitting to errors specific to
that part. Hence, a mismatch between predictions
of a model trained on a large portion of the dataset
and the labels of the held-out portion can indicate
potential noise specific to the held-out portion. Pre-
vious cross-validation-based denoising approaches
(Northcutt et al., 2021; Wang et al., 2019b) split the
data samples into folds randomly; a direct applica-
tion of these methods to WS data ignores valuable
knowledge stemming from the WS process. In
our work, we leverage this knowledge by splitting
the data based on matching LFs in the samples.
The intuition is the following: a mismatch between
predictions of a model trained on a large portion
of the LFs and labels generated by held-out LFs
can indicate noise specific to the held-out LFs. By
performing cross-validation for each LF, noise as-
sociated with all LFs can be identified.

In contrast to correcting labels as in previous
work for supervised settings, we utilize the cross-
validation principle in a WS setting to adjust and
improve the LF-to-class assignment. In some cases,
an LF correctly captures some samples but misla-
bels others. For example, one of the LFs used to
annotate the YouTube dataset (Alberto et al., 2015)
is the keyword my, which is effective in identify-
ing spam messages such as subscribe to my chan-

4162

https://github.com/knodle/knodle

Figure 1: ULF. Noisy training labels y∗ are obtained
by multiplying the matrices Z and T . The most con-
fident predictions ŷ are calculated using k-fold cross-
validation and used to estimate new LFs-to-class corre-
spondence and update the T matrix. The clean labels are
obtained by multiplying the updated T and Z matrices.

nel or check my channel out (see Table 1). How-
ever, considering this LF as solely indicative of the
spam class would be unwarranted, as numerous
non-spam messages also contain the word my (e.g.,
Sample 3). The weak labeling of such samples
can results in a tie (i.e., one vote for SPAM and
one vote for HAM), potentially leading to incorrect
label assignments through (random) tie-breaking.

To address such cases, we introduce a new
method ULF: Unsupervised Labeling Function
correction (Figure 1), which comprises both erro-
neous labels detection and correction by leveraging
weakly supervised knowledge. ULF re-estimates
the joint distribution between LFs and class la-
bels during cross-validation based on highly confi-
dent class predictions and their co-occurrence with
matching LFs. Importantly, this reestimation is
performed out-of-sample, meaning it is guided by
the data itself without involving additional man-
ual supervision. Instead of a hard assignment of
naive WS (i.e., an LF either corresponds to the
class or not), ULF performs a fine-adjusted one,
which helps to correct the label mistakes. For ex-

ample, such assignment reduces the association
of the LF "my" with the SPAM class, resulting in
dominant HAM probability in Samples 2 and 3
in Figure 1. Moreover, ULF successfully labels
samples with no LFs matched, as, e.g., Sample 4,
unlike other methods that filter them out (Ratner
et al., 2020). We conduct extensive experiments us-
ing feature-based and pre-trained models to demon-
strate the effectiveness of our method. To the best
of our knowledge, we are the first to adapt cross-
validation denoising methods to WS problems and
refine the LFs-to-class allocation in the WS setting.

2 Related Work

Weak supervision (WS) has been widely applied to
different tasks across various domains, such as text
classification (Zeng et al., 2022), relation extraction
(Datta and Roberts, 2023), named entity recogni-
tion (Wang et al., 2022), video analysis (Chen et al.,
2023), medical domain (Fries et al., 2021), image
classification (Yue et al., 2022). Weak annotations
are easy to obtain but prone to errors. Approaches
to improving noisy data include building a specific
model architecture (Karamanolakis et al., 2021), us-
ing additional expert annotations (Mazzetto et al.,
2021), identifying and removing or downweighting
harmful samples (Northcutt et al., 2021; Sedova
et al., 2023), or learning from manual user guid-
ance (Boecking et al., 2021; Chatterjee et al., 2020).
ULF is compatible with any classifier and do not re-
quire any manual supervision; instead of removing
the samples, ULF corrects the labels, utilizing as
much WS data as possible. K-fold cross-validation,
a reliable method for assessing trained model qual-
ity (Wong and Yeh, 2019), is also often used to de-
tect errors in manual annotations (Northcutt et al.,
2021; Wang et al., 2019b,a; Teljstedt et al., 2015),
but has not been applied to a WS setting. We pro-
pose WS extensions to some of these methods in
Appendix B and use cross-validation in ULF.

3 ULF: Unsupervised Labeling Function
Correction

In this section, we present the key elements of
ULF. More details can be found in Appendix A,
the pseudocode is provided in Algorithm 1.

Given a dataset X = {x1, x2, ..., xN} to be used
for K-class classifier training. In WS setting, we
do not have any gold training labels, but only a
set of LFs L = {l1, l2, ..., lL}. An LF lj matches
a sample xi if some condition formulated in lj

4163

Figure 2: Weak annotation encoded with Z and T matri-
ces, with Z containing LFs matches in samples, and T
representing LF-to-class mapping. T∗ is an improved
version of T with ULF. Applying Z and T (or T∗) ma-
trices multiplication and majority vote yields labels Y .

holds for xi. Following Sedova et al. (2021), we
store this information in a binary matrix ZN×L,
where Zijf = 1 means that LF lj matches sam-
ple xi. A set of LFs matched in sample xi is de-
noted by Lxi , where Lxi ⊂ L and |Lxi | ∈ [0, |L|].
The LFs to class correspondence is stored in a bi-
nary matrix TL×K , where Tij = 1 means the
LF li corresponds to class j (i.e., li assigns the
samples to the class j)2. The weak training labels
Ỹ = {ỹ1, ỹ2, ..., ỹn}, ỹj ∈ K are obtained by mul-
tiplying Z and T , apply majority vote, and break
the ties randomly. The main goal of the ULF al-
gorithm is to refine the T matrix. The graphical
explanation is provided in Figure 2.

First, class probabilities are predicted for each
sample using k-fold cross-validation on the training
set X and weak labels Ỹ . We propose different
ways of splitting the data into k folds f1, ..., fk,
with the most reliable method being splitting by
signatures (refer to Appendix A for details and
other possible splitting methods). The samples’
signatures, i.e., the sets of LFs matched in each
sample, are collected, split into k folds, and used
to create data folds: Xtraini = {xj |Lxj /∈ fi},
Xouti = {xj |Lxj ∈ fi} (1). Next, k models are
separately trained on each of k−1 folds and applied

2The initial manual class assignment is typically such that
each LF corresponds to one class, covering a prototypical case.
However, assigning an LF to multiple classes is theoretically
possible and compatible with ULF.

to the held-out folds, resulting in out-of-sample
predicted probabilities PN×K . The out-of-sample
label ŷi for each sample i is determined by selecting
the class with the highest probability, provided that
this highest probability exceeds the class average
threshold tj :

tj :=

∑
xi∈Xỹ=j

p(ỹ = j;xi, θ)

|Xỹ=j |
(2)

That is, a sample xi is confidently assigned to class
j if the out-of-sample probability of it belonging
to class j is higher than the average out-of-sample
probability of all samples initially assigned to this
class. If no probability exceeds the class thresholds
(e.g., all probabilities are equally small), the sample
is disregarded as unreliable for further calculations.

These assignments are used to build an LFs-to-
classes confidence matrix CL×K , which estimates
the joint distribution between matched LFs and
predicted labels. For each LF li and each class
kj , the confidence matrix CL×K is populated by
counting the number of samples that have LF li
matched and confidently assigned to class kj :

Cli,ŷj = |{xi ∈ X : ŷi = ỹj , li ∈ Lxi}|. (3)

Algorithm 1: ULF: Unsupervised Labeling
Function Correction for Weak Supervision

Input: unsupervised training data X ,
samples to LFs matrix ZN×L, LFs
to classes matrix TL×K , CV model
g (·; θ0), end model h (·; θ′0)

1 Calculate noisy labels Ỹ ← ZT
2 for iter = 1, 2, ..., I do
3 Split the data into k folds f1, ..., fk
4 for fi, i ∈ [1, 2, ..., k] do
5 Build Xtraini , Xouti sets (Eq. 1)
6 Ỹtraini = {ỹ ∈ Ỹ : ∀x ∈ Xtraini}
7 θi = train(Xtraini , Ỹtraini)
8 Calculate p(ỹ = j;xi, θi) for

∀xi ∈ Xouti , 1 ≤ j ≤ K
9 Calculate labels ŷi w.r.t. the thresholds

tj (Eq. 2)
10 Calculate LFs-to-class confidence

matrix Cl,ŷ (Eq. 3)
11 Estimate Q̂l,ŷ joint matrix (Eq. 4)
12 Recalculate T ∗ matrix (Eq. 5)
13 Calculate improved labels Ỹ ← ZT ∗

14 θ′ = train(X , Ỹ)
Output :Trained θ′

4164

YouTube Spouse TREC SMS Yorùbá Hausa Avg
Gold 98.8 - 96.6 97.7 67.3 83.5 88.8
Majority Vote (MV) 93.2 21.3 68.6 93.0 48.1 43.9 61.4
MeTaL (Ratner et al., 2019) 96.0 19.6 55.8 89.2 58.6 41.6 60.1
Snorkel-DP (Ratner et al., 2020) 95.6 32.6 61.8 94.6 58.7 45.7 64.8
FlyingSquid (Fu et al., 2020) 94.0 14.9 35.8 23.7 32.4 45.1 41.0
WeaSEL (Cachay et al., 2021) 96.0 14.9 64.4 23.6 49.6 43.2 48.6
FABLE (Zhang et al., 2023) 94.8 27.8 54.6 91.1 23.2 18.6 51.7
MV + Cosine (Yu et al., 2021) 96.4 33.3 65.8 93.6 52.6 45.4 64.5
MeTaL + Cosine 95.6 26.9 67.4 80.7 62.0 45.5 63.0
Snorkel-DP + Cosine 96.0 28.1 73.8 96.1 55.0 46.5 65.9
FlyingSquid + Cosine 95.6 24.9 38.6 90.1 33.3 41.5 54.0
FABLE + Cosine 94.0 33.9 70.6 97.7 60.1 44.7 66.8
ULF (Ours) 96.8 36.9 76.8 96.2 55.8 48.2 68.4

Table 2: ULF experimental results with pre-trained language models. Accuracy is reported for YouTube and TREC,
F1 score is presented for other datasets to account for class imbalance. The Gold baseline is not applied to the
Spouse dataset due to the absence of gold labels. Hyper-parameters were obtained through a random search with 10
initialization for energy considerations (not a grid search, as in, e.g., Zhang et al. 2021).

Subsequently, CL×K is calibrated and normal-
ized to Q̂L×K in order to align with the data pro-
portions of the Z matrix:

Q̂li,ŷj =

(
Cli,ŷj ·

L∑

m=1

Zlm,ŷj

)
/

(
L∑

m=1

Clm,ŷj

)
,

(4)

where
∑

i∈L,
j∈K

Cli,ŷj = n,
K∑
j=1

Zlm,ŷj =
K∑
j=1

Q̂lm,ŷj .

This calibration ensures that Q̂L×K sums up to the
total number of training samples, and the sum of
counts for each LF is the same as in the original
Z matrix; thus, Q̂L×K can be utilized as a cross-
validated re-estimation of T . Finally, a refined T ∗

matrix is calculated as follows:

T ∗ = p ∗ Q̂+ (1− p) ∗ T. (5)

Here, the hyperparameter p, p ∈ [0, 1], determines
the extent to which information from the original T
matrix should be retained. The resulting T ∗ matrix
is utilized to generate improved labels for addi-
tional ULF iterations or training the final classifier.

Unlabeled samples. ULF also takes advantage
of unlabeled samples that do not have any LFs
matched. A portion of these samples, determined
by the hyperparameter λ, is randomly labeled and
included in cross-validation training, with reesti-
mation in subsequent iterations. To leverage all
unlabeled samples in a fine-tuning-based setting,
we also include the optional Cosine self-training
step (Yu et al., 2021), which can be executed during
cross-validation and/or final classifier training.

CV / Final YouTube Spouse TREC SMS Yorùbá Hausa
FT_FT 96.8 22.0 68.2 96.1 54.6 43.0
FT_Cos 94.4 36.9 76.6 96.2 54.2 48.2
Cos_FT 95.2 21.3 68.6 96.1 55.8 43.6
Cos_Cos 94.8 33.0 76.8 96.1 54.2 44.5

Table 3: Results of all ULF combinations of cross-
validation and final model (simple fine-tuning (FT) or
followed by additional Cosine (Cos) training).

4 Experiments

Datasets and baselines. We evaluate ULF on
four WS English datasets: (1) YouTube Spam
Classification (Alberto et al., 2015); (2) Spouse
Relation Classification (Corney et al., 2016); (3)
Question Classification from TREC-6 (Li and Roth,
2002); (4) SMS Spam Classification (Almeida
et al., 2011), and two topic classification WS
African datasets: (5) Yorùbá and (6) Hausa (Hed-
derich et al., 2020). For all datasets, we utilize the
LFs provided by dataset authors.

We compare our results towards the (1) Gold
baseline (the only classifier which exploits gold
labels) and the most popular and recent WS base-
lines: (2) Majority Vote, (3) MeTaL (Ratner et al.,
2019), (4) Snorkel-DP (Ratner et al., 2020), (5) Fly-
ing Squid (Fu et al., 2020), (6) WeaSEL (Cachay
et al., 2021), and (7) FABLE (Zhang et al., 2023).
More details are provided in Appendices C and D.

Results. We run experiments using RoBERTa fol-
lowing Zhang et al. (2021) for English datasets and
mulitlingual BERT following Devlin et al. (2019)
for others (more implementation details are pro-
vided in Appendix F). Table 2 presents the results
of the best combination of cross-validation and
final models; each of them can be either simple

4165

fine-tuning or followed by Cosine training step (Yu
et al., 2021). On average, ULF outperforms the
baselines and achieves better results on four out
of six datasets. The weakest performance was ob-
served on the Yorùbá dataset, which is explained
by the extremely high number of labeling functions
(19897) and the smallest training dataset size (1340
samples) when compared to the other datasets.

Results of other combinations are provided in
Table 3. Two out of the four combinations achieve
average scores of 67.6 and 67.1, demonstrating
a better performance compared to the baselines.
Although the Cosine contrastive self-training con-
siderably improves the results, the ULF high per-
formance does not rely solely dependent on it. This
is evident in the fact that the most effective config-
uration for all other datasets except TREC incor-
porates the use of Cosine in only one of the two
model training steps. Moreover, FT_FT setting,
which does not involve Cosine at all, also demon-
strates compatible results across all datasets.

Case Study. We provide a YouTube dataset case
study. Figure 3 shows the initial and adjusted T
matrices after two ULF iterations in FT_FT setting.
Some LFs underwent minimal adjustments (such
as keyword_subscribe and regex_check_out,
which clearly corresponded to one class), while
contentious LFs (like short_comment, i.e., short
comments are non-spam) were significantly ad-
justed. The adjustment was slightly improved after
the second iteration of ULF; however, a single it-
eration was already sufficient for most of the set-
tings, as demonstrated by our experiments (see Ap-
pendix F). Table 4 shows mislabeled samples and
their corrected labels after ULF application. In (1),
the original equal voting was changed to 1.58 for
HAM and 2.42 for SPAM after T matrix correction,
explicitly determining the label as SPAM. Simi-
larly, labels assigned by a clear majority vote, such
as (2), were also corrected. Next, there are sam-

Figure 3: Transformation of T matrix with ULF after
first and second iterations.

ples where improved and gold labels do not match
(i.e., where ULF, strictly speaking, failed). How-
ever, these samples are quite controversial: e.g., (3)
might be a spam message if the link was different
(our model does not check the link’s content), while
(4) can be interpreted differently and perceived as
a spam comment. Finally, (5), not covered by any
LFs and initially randomly assigned to the HAM
class, has been corrected to the SPAM class.

5 Conclusion & Future Work

In our work, we focused on denoising WS data by
leveraging information from LFs. Our approach
assumes that the noise specific to some LFs can be
detected by training a model that does not use those
LFs signals and then comparing its predictions to
the labels generated by the held-out LFs. This idea
is used in our method ULF, which improves the
weak labels based on the data itself, without lever-
aging external knowledge. Extensive experiments
validate the effectiveness of our approach and sup-
port our initial hypothesis of the significant role of
LFs in denoising WS data. In future work, we plan
to try ULF for other tasks, such as sequence tag-
ging and image classification, and perform more
experiments on weakly supervised datasets with
different peculiarities and in different languages.

Table 4: Examples of label changes in the YouTube dataset after applying ULF.

4166

Limitations

In our work, we did not focus on the task of creating
labeling functions. Rather, our primary objective
is to improve the model performance with a fixed
set of already provided labeling functions, and to
enable better generalization to new data.

All the datasets and their corresponding label-
ing functions used in our experiments are weakly
supervised datasets that have been extensively uti-
lized in previous research. The provided labeling
functions for these datasets, as well as other well-
known weakly supervised datasets, are considered
reliable. ULF does not require the majority of LFs
to have high precision; however, if we consider a
significantly different setting where the majority of
labeling functions are highly unreliable (e.g., gener-
ated by a noisy automatic process), cross-validation
as done in ULF may not be as effective as in a more
standard WS setting.

In our experiments, we restricted ourselves to
NLP datasets and tasks, as creating labeling func-
tions for weak supervision is particularly intuitive
for language-related tasks. We leave the explo-
ration of other data modalities for future research.

Ethics Statement

While our method can lead to better and more help-
ful predictions by the models trained on the noisy
data we cannot guarantee that these predictions
are perfect and can be trusted as the sole basis for
decision-making, especially in life-critical applica-
tions (e.g. healthcare). Machine learning systems
can pick up and perpetuate biases in the data, and
if our algorithms are used for real-world applica-
tions, the underlying data and the predictions of
the resulting models should be critically analyzed
with respect to such biases. We build our work
on previously published datasets and did not hire
annotators.

Acknowledgement

We thank the anonymous reviewers for their
constructive feedback. This research has
been funded by the Vienna Science and Tech-
nology Fund (WWTF)[10.47379/VRG19008]
“Knowledge-infused Deep Learning for Natural
Language Processing”.

References
Túlio C. Alberto, Johannes V. Lochter, and Tiago A.

Almeida. 2015. Tubespam: Comment spam filtering
on youtube. In Proceedings of the 2015 IEEE 14th
International Conference on Machine Learning and
Applications (ICMLA).

Tiago A. Almeida, José María G. Hidalgo, and Akebo
Yamakami. 2011. Contributions to the study of sms
spam filtering: New collection and results. In Pro-
ceedings of the 11th ACM Symposium on Document
Engineering, DocEng ’11.

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal, and
Sunita Sarawagi. 2020. Learning from rules gener-
alizing labeled exemplars. In Proceedings of the 8th
International Conference on Learning Representa-
tions, ICLR 2020.

Benedikt Boecking, Willie Neiswanger, Eric P. Xing,
and Artur Dubrawski. 2021. Interactive weak super-
vision: Learning useful heuristics for data labeling.
In Proceedings of the 9th International Conference
on Learning Representations, ICLR 2021.

Salva Rühling Cachay, Benedikt Boecking, and Artur
Dubrawski. 2021. End-to-end weak supervision. In
Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021.

Oishik Chatterjee, Ganesh Ramakrishnan, and Sunita
Sarawagi. 2020. Robust data programming with
precision-guided labeling functions. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020.

Siqi Chen, Jun Xiao, and Long Chen. 2023. Video
scene graph generation from single-frame weak su-
pervision. In The Eleventh International Conference
on Learning Representations, ICLR 2023.

David P. A. Corney, Dyaa Albakour, Miguel Martinez-
Alvarez, and Samir Moussa. 2016. What do a million
news articles look like? In Proceedings of the First
International Workshop on Recent Trends in News
Information Retrieval co-located with 38th European
Conference on Information Retrieval ECIR 2016.

Surabhi Datta and Kirk Roberts. 2023. Weakly super-
vised spatial relation extraction from radiology re-
ports. JAMIA Open, 6(2). Ooad027.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

4167

https://doi.org/10.1109/ICMLA.2015.37
https://doi.org/10.1109/ICMLA.2015.37
https://doi.org/10.1145/2034691.2034742
https://doi.org/10.1145/2034691.2034742
https://openreview.net/forum?id=SkeuexBtDr
https://openreview.net/forum?id=SkeuexBtDr
https://openreview.net/forum?id=IDFQI9OY6K
https://openreview.net/forum?id=IDFQI9OY6K
https://proceedings.neurips.cc/paper/2021/hash/0e674a918ebca3f78bfe02e2f387689d-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/5742
https://ojs.aaai.org/index.php/AAAI/article/view/5742
https://openreview.net/forum?id=KLrGlNoxzb4
https://openreview.net/forum?id=KLrGlNoxzb4
https://openreview.net/forum?id=KLrGlNoxzb4
https://ceur-ws.org/Vol-1568/paper8.pdf
https://ceur-ws.org/Vol-1568/paper8.pdf
https://doi.org/10.1093/jamiaopen/ooad027
https://doi.org/10.1093/jamiaopen/ooad027
https://doi.org/10.1093/jamiaopen/ooad027
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Jason A. Fries, Ethan Steinberg, Saelig Khattar, Scott L.
Fleming, Jose Posada, Alison Callahan, and Nigam H.
Shah. 2021. Ontology-driven weak supervision
for clinical entity classification in electronic health
records. Nature Communications, 12(1).

Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper,
Kayvon Fatahalian, and Christopher Re. 2020. Fast
and three-rious: Speeding up weak supervision with
triplet methods. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119.

Michael A. Hedderich, David Ifeoluwa Adelani, Dawei
Zhu, Jesujoba O. Alabi, Udia Markus, and Dietrich
Klakow. 2020. Transfer learning and distant supervi-
sion for multilingual transformer models: A study on
african languages. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2020.

Michael A. Hedderich, Lukas Lange, and Dietrich
Klakow. 2021. ANEA: distant supervision for
low-resource named entity recognition. CoRR,
abs/2102.13129.

Giannis Karamanolakis, Subhabrata Mukherjee, Guo-
qing Zheng, and Ahmed Hassan Awadallah. 2021.
Self-training with weak supervision. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021.

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. 2008.
Semantic class learning from the web with hyponym
pattern linkage graphs. In Proceedings of ACL-08:
HLT. Association for Computational Linguistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo Mendes, Sebastian Hell-
mann, Mohamed Morsey, Patrick Van Kleef, Sören
Auer, and Christian Bizer. 2014. Dbpedia - a large-
scale, multilingual knowledge base extracted from
wikipedia. Semantic Web Journal, 6.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th International
Conference on Computational Linguistics, COLING
2002.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2016. Neural relation extraction with
selective attention over instances. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).

Alessio Mazzetto, Dylan Sam, Andrew Park, Eli Upfal,
and Stephen Bach. 2021. Semi-supervised aggre-
gation of dependent weak supervision sources with
performance guarantees. In Proceedings of the 24th
International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Re-
search. PMLR.

Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang.
2021. Confident learning: Estimating uncertainty
in dataset labels. Journal of Artificial Intelligence
Research (JAIR), 70:1373–1411.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32. Curran Associates, Inc.

Alexander Ratner, Stephen H. Bach, Henry R. Ehren-
berg, Jason A. Fries, Sen Wu, and Christopher Ré.
2020. Snorkel: rapid training data creation with weak
supervision. VLDB J., 29(2-3):709–730.

Alexander Ratner, Braden Hancock, Jared Dunnmon,
Frederic Sala, Shreyash Pandey, and Christopher
Ré. 2019. Training complex models with multi-task
weak supervision. In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019.

Anastasiia Sedova, Andreas Stephan, Marina Speran-
skaya, and Benjamin Roth. 2021. Knodle: Mod-
ular weakly supervised learning with PyTorch. In
Proceedings of the 6th Workshop on Representation
Learning for NLP (RepL4NLP-2021).

Anastasiia Sedova, Lena Zellinger, and Benjamin Roth.
2023. Learning with noisy labels by adaptive
gradient-based outlier removal. In Machine Learn-
ing and Knowledge Discovery in Databases: Re-
search Track, pages 237–253, Cham. Springer Nature
Switzerland.

Snorkel. Detecting spouse mentions in sen-
tences. https://www.snorkel.org/use-cases/
spouse-demo. Accessed: 14 February 2022.

Ang Sun and Ralph Grishman. 2012. Active learning
for relation type extension with local and global data
views. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Manage-
ment.

Christopher Teljstedt, Magnus Rosell, and Fredrik Jo-
hansson. 2015. A semi-automatic approach for label-
ing large amounts of automated and non-automated
social media user accounts. In Proceedings of the
2015 Second European Network Intelligence Confer-
ence.

Paroma Varma and Christopher Ré. 2018. Snuba: Au-
tomating weak supervision to label training data.
Proc. VLDB Endow., 12(3).

4168

https://doi.org/10.1038/s41467-021-22328-4
https://doi.org/10.1038/s41467-021-22328-4
https://doi.org/10.1038/s41467-021-22328-4
https://proceedings.mlr.press/v119/fu20a.html
https://proceedings.mlr.press/v119/fu20a.html
https://proceedings.mlr.press/v119/fu20a.html
https://doi.org/10.18653/v1/2020.emnlp-main.204
https://doi.org/10.18653/v1/2020.emnlp-main.204
https://doi.org/10.18653/v1/2020.emnlp-main.204
http://arxiv.org/abs/2102.13129
http://arxiv.org/abs/2102.13129
https://doi.org/10.18653/v1/2021.naacl-main.66
https://aclanthology.org/P08-1119
https://aclanthology.org/P08-1119
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://aclanthology.org/C02-1150/
https://aclanthology.org/C02-1150/
https://doi.org/10.18653/v1/P16-1200
https://doi.org/10.18653/v1/P16-1200
https://proceedings.mlr.press/v130/mazzetto21a.html
https://proceedings.mlr.press/v130/mazzetto21a.html
https://proceedings.mlr.press/v130/mazzetto21a.html
https://doi.org/10.1007/s00778-019-00552-1
https://doi.org/10.1007/s00778-019-00552-1
https://doi.org/10.1609/aaai.v33i01.33014763
https://doi.org/10.1609/aaai.v33i01.33014763
https://doi.org/10.18653/v1/2021.repl4nlp-1.12
https://doi.org/10.18653/v1/2021.repl4nlp-1.12
https://www.snorkel.org/use-cases/spouse-demo
https://www.snorkel.org/use-cases/spouse-demo
https://doi.org/10.1145/2396761.2398409
https://doi.org/10.1145/2396761.2398409
https://doi.org/10.1145/2396761.2398409
https://doi.org/10.1109/ENIC.2015.31
https://doi.org/10.1109/ENIC.2015.31
https://doi.org/10.1109/ENIC.2015.31
https://doi.org/10.14778/3291264.3291268
https://doi.org/10.14778/3291264.3291268

Sophia Y. Wang, Justin Huang, Hannah Hwang,
Wendeng Hu, Shiqi Tao, and Tina Hernandez-
Boussard. 2022. Leveraging weak supervision to
perform named entity recognition in electronic health
records progress notes to identify the ophthalmology
exam. International Journal of Medical Informatics,
167:104864.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jin-
feng Yi, and James Bailey. 2019a. Symmetric cross
entropy for robust learning with noisy labels. In
Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision, ICCV.

Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu, Ji-
acheng Liu, and Jiawei Han. 2019b. Crossweigh:
Training named entity tagger from imperfect anno-
tations. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing, EMNLP-IJCNLP 2019.

Tzu-Tsung Wong and Po-Yang Yeh. 2019. Reliable ac-
curacy estimates from k -fold cross validation. IEEE
Transactions on Knowledge and Data Engineering,
PP:1–1.

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo
Zhao, and Chao Zhang. 2021. Fine-tuning pre-
trained language model with weak supervision: A
contrastive-regularized self-training approach. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021.

Jun Yue, Leyuan Fang, Pedram Ghamisi, Weiying Xie,
Jun Li, Jocelyn Chanussot, and Antonio Plaza. 2022.
Optical remote sensing image understanding with
weak supervision: Concepts, methods, and perspec-
tives. IEEE Geoscience and Remote Sensing Maga-
zine, 10(2).

Ziqian Zeng, Weimin Ni, Tianqing Fang, Xiang Li,
Xinran Zhao, and Yangqiu Song. 2022. Weakly su-
pervised text classification using supervision signals
from a language model. In Findings of the Associa-
tion for Computational Linguistics: NAACL 2022.

Jieyu Zhang, Linxin Song, and Alexander Ratner. 2023.
Leveraging instance features for label aggregation in
programmatic weak supervision. In In Proceedings
of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yam-
ing Yang, Mao Yang, and Alexander Ratner. 2021.
WRENCH: A comprehensive benchmark for weak
supervision. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

A Details on ULF method

In this section, we give a more formal description
of the ULF algorithm as well as discuss its details.

A.1 A detailed explanation of Z, T, and Y
matrices

Figure 2 represents the weak annotation encoded
with Z and T matrices. The matrix ZN×L rep-
resents the information regarding the matches of
labeling functions (LFs) in samples. For instance,
in the case of keyword-based LFs, an LF matches
a sample if this keyword is present in this sample
(this sample is then assigned to the class associated
with this LF). This matrix is binary: if an LF lj
matches a sample xi, Zij = 0.

The matrix TL×K signifies the correspondence
between LFs and classes. Original T matrix is
binary: each element Tkl represents whether an LF
lk corresponds to class l. Tkl = 1 indicates that
an LF lk corresponds to class l and assigns this
class to all samples where it matches. For example,
the keyword subscribe corresponds to the class
SPAM; any sample containing the word subscribe
will receive one vote for the SPAM class.

By multiplying the matrices Z and T and apply-
ing majority vote, we obtain weak labels Ỹ . The
T ∗ matrix denotes the improved version of the T
matrix achieved through ULF. Note that the T ∗

matrix is not binary anymore: instead of hard as-
signments, it contains soft ones. The improved,
clean labels can be obtained by multiplying the
improved matrix T ∗ with the original matrix Z.

A.2 Data Splitting into Folds for
Cross-Validation

First, the training data is split into k folds for cross-
validation training. We analyzed three possible
ways of splitting:

• randomly (ULFrndm): the samples are as-
signed to folds the same way as it would be
done in standard k-fold cross-validation irre-
spective of LFs matching;

• by LF (ULFlfs): the LFs are randomly split
into k folds {f1, ..., fk} and each fold fi is
iteratively taken as held-out LFs, while others
become training LFs. All samples where train-
ing LFs match become training set Xtraini ;
the rest build a hold-out set and are used for
re-estimation Xouti :

Xtraini = {xj |Lxj ∩ fi = ∅}
Xouti = X \Xtraini (7)

(7)

4169

https://doi.org/https://doi.org/10.1016/j.ijmedinf.2022.104864
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2022.104864
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2022.104864
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2022.104864
https://doi.org/10.1109/ICCV.2019.00041
https://doi.org/10.1109/ICCV.2019.00041
https://doi.org/10.18653/v1/D19-1519
https://doi.org/10.18653/v1/D19-1519
https://doi.org/10.18653/v1/D19-1519
https://doi.org/10.1109/TKDE.2019.2912815
https://doi.org/10.1109/TKDE.2019.2912815
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.1109/mgrs.2022.3161377
https://doi.org/10.1109/mgrs.2022.3161377
https://doi.org/10.1109/mgrs.2022.3161377
https://doi.org/10.18653/v1/2022.findings-naacl.176
https://doi.org/10.18653/v1/2022.findings-naacl.176
https://doi.org/10.18653/v1/2022.findings-naacl.176
https://openreview.net/forum?id=Q9SKS5k8io
https://openreview.net/forum?id=Q9SKS5k8io

• by signatures (ULFsgn): for each training
sample xi, we define its signature Lxi as the
set of matching LFs. For instance, if LFs
lf1, lf4, and lf7 match in a sample xi, its sig-
nature is represented as {1, 4, 7}. Next, the
signatures are split into k folds, each of which
becomes in turn a test fold, while others com-
pose training folds. All samples with signa-
tures present in the training folds are consid-
ered as training samples Xtraini , while the re-
maining samples form the hold-out set Xouti .

Xtraini = {xj |Lxj /∈ fi}
Xouti = {xj |Lxj ∈ fi}

(8)

After the data is split into folds, k models are
separately trained on Xtraini , i ∈ [1, k] and applied
on the held-out folds Xouti to obtain the out-of-
sample predicted probabilities PN×K .

A.3 Out-of-sample Labels Calculation
The predicted probabilities PN×K are used to cal-
culate the out-of-sample labels ŷ.

The class with the highest probability is selected:

ŷi = argmax
1≤j≤K

p(ỹ = j;xi, θ), (9)

if and only if the probability p(ỹ = j;xi, θ) ex-
ceeds the class j average threshold tj :

tj :=
∑

xi∈Xỹ=j

p(ỹ = j;xi, θ)/|Xỹ=j | (10)

In other words, the class average threshold tj is
calculated by summing up the probabilities of the j
class for samples initially assigned to that class and
then dividing it by the number of those samples. A
sample xi is considered as belonging to the class
j if and only if this sample confidently belongs to
the corresponding class. If no probability exceeds
the class thresholds for a sample (e.g., it belongs
to all classes with equally small probabilities), it is
disregarded in further calculations as unreliable.

A.4 LFs-to-Class Estimation Matrix
To refine the LFs to class allocation, ULF re-
estimates the joint distribution between matched
LFs and predicted labels. For each LF li and each
class kj , the confidently assigned to the class kj
samples with the LF li matched are calculated; the
counts are saved as a LFs-confident matrix CL×K :

Next, the confident matrix is calibrated and nor-
malized to Q̂L×K to correspond to the data propor-
tion in the Z matrix:

Q̂li,ŷj =

(
Cli,ŷj ·

L∑

m=1

Zlm,ŷj

)
/

(
L∑

m=1

Clm,ŷj

)
,

(11)

where
∑

i∈L,
j∈K

Cli,ŷj = n,
K∑
j=1

Zlm,ŷj =
K∑
j=1

Q̂lm,ŷj .

Algorithm 2: Train (X , Ỹ) in feature-
based ULF

11 θ = AdamW(θ, X , Ỹ)
Output :Trained θ

Algorithm 3: Train (X , Ỹ) in ULF
with pretrained language model fine-tuning
(optionally: with additional Cosine self-
training step)

1 Xlab = {x ∈ X : |Lxi | > 0}
2 Ỹlab = {ỹ ∈ Ỹ : ∀x ∈ Xlab}

1. fine-tune θ with Xlab and Ỹlab
3 θ = AdamW(θ, Xlab, Ỹlab)

2. (optional) contrastive self-training of
θ with X

4 Calculate pseudo labels ypsd
5 for step = 1, 2, ..., num_steps do
6 Select confident samples
7 Calculate classification loss Lc(θ, ypsd),

contrastive regularizer R1(θ, ypsd),
confidence regularizer R1(θ)

(see Yu et al. (2021) for exact formulas
and explanation)

9 L(θ, ypsd) = Lc + λR1 +R1

10 θ = AdamW(θ, X)
Output :Trained θ

A.5 T Matrix Update
The joint matrix Q̂ is used for improving the LFs-to-
class matrix T that contains the initial LFs-to-class
allocations. T and Q̂ are summed with multiplying
coefficients p and 1−p, where p ∈ [0, 1]. The value
of p balances the initial manual label assignment
with the unsupervised re-estimation and determines
how much information from the estimated assign-
ment matrix Q̂ should be preserved in the refined
matrix T ∗:

T ∗ = p ∗ Q̂+ (1− p) ∗ T (12)

4170

With the multiplication of Z and the newly re-
calculated T ∗ matrices, an updated set of labels Y ∗

is calculated. It can either be used for rerunning
the denoising process or training the end classifier.

B Weakly Supervised Extension of
Denoising Models

To validate our hypothesis regarding the impor-
tance of considering labeling functions in noise de-
tection in WS data, we adopt two cross-validation-
based methods originally designed for denoising
manually annotated data: CrossWeigh (Wang et al.,
2019b) and Cleanlab (Northcutt et al., 2021). We
adapt these methods for the weakly supervised set-
ting and introduce our extensions: WSCrossWeigh
and WSCleanlab. A key difference between the
original methods and our extensions is the approach
used to split the data into folds for cross-validation
training. Instead of random splitting, we split the
data based on the labeling functions that match in
the samples.

In this section, we outline the original methods
and introduce our WS extensions. Additionally,
we conducted experiments, which are detailed in
Appendix E.

B.1 Weakly Supervised CrossWeigh

The original CrossWeigh framework (CW, Wang
et al. 2019b) was proposed for tracing inconsis-
tent labels in the crowdsourced annotations for
the named entity recognition task. After randomly
splitting the data into k folds and building k train-
ing and hold-out sets, CrossWeigh additionally fil-
ters the training samples that include the entities
matched in hold-out folds samples. The intuition
behind this approach is that if an entity is constantly
mislabeled, the model would be misguided, but the
model trained without it would eliminate this con-
fusion. We consider this approach quite promising
for detecting unreliable LFs in weakly supervised
data similarly. If a potentially erroneous LF sys-
tematically annotates the samples wrongly, reliable
model-trained data without it will not make this
mistake in its prediction, and, thus, the error will be
traced and reduced. Our new Weakly Supervised
CrossWeigh method (WSCW) allows splitting the
data not entirely randomly but considering the LFs
so that all LFs matched in a test fold are eliminated
from the training folds. More formally, firstly, we
randomly split labeling functions L into k folds
{f1, ..., fk}. Then, we iteratively take LFs from

each fold fi as test LFs and the others as training
LFs. So, all samples where no LFs from hold-out
fold match become training samples, while the rest
are used for testing.

Xouti = X \Xtraini

After that we train the k separate models on
Xtraini and evaluate them on Xouti . In the same
way, as in the original CrossWeigh algorithm, the
labels predicted by the trained model for the sam-
ples in the hold-out set ŷ are compared to the initial
noisy labels y. All samples Xj where ŷj ̸= yj are
claimed to be potentially mislabeled; their influ-
ence is reduced in further training. The whole pro-
cedure of error detection is performed t times with
different partitions to refine the results. The sam-
ple weights wxN are then calculated as wxj = ϵcj ,
where cj is the number of times a sample xj was
classified as mislabeled, 0 ≤ cj ≤ t, and ϵ is a
weight reducing coefficient.

B.2 Weakly Supervised Cleanlab

The second method we introduce is Weakly Super-
vised Cleanlab (WSCL) - an adaptation of Clean-
lab framework (Northcutt et al., 2021) for weak
supervision. In the same way as in WSCW, not
data samples, but the labeling functions L are split
into k folds {f1, ..., fk} and used for building the
Xtraini and Xouti sets, 1 < i < k, for training
k models. In contrast to WSCW, for each sam-
ple, xi the label is not directly predicted on the
Xouti , but the probability vector of class distribu-
tion p̂(y = j;xi, θ), j ∈ K is considered. The
exact labels ŷ are calculated later on with respect
to the class expected self-confidence value tj (see
Northcutt et al. 2021):

tj :=

∑
Xj

p̂(y = j;xi, θ)

|Xj |
, (13)

where Xj = {xi ∈ Xy=j} , 1 < j < c

A sample xi is considered to confidently belong
to class j ∈ K if the probability of class j is greater
than expected self-confidence for this class tj or
the maximal one in the case of several classes is
probable:

ŷi = argmax
j∈[K]:

p̂(y=j;xi,θ)≥tj

p̂(y = j;xi, θ) (14)

4171

The samples with no probability that would ex-
ceed the thresholds have no decisive label and do
not participate in further denoising.

After that, a class-to-class confident joint matrix
Cy,ŷ is calculated, where:

Cy,ŷ[j][k] = |{xi ∈ X|yi = j, ŷi = j}|
Notably, Cy,ŷ contains only the information

about correspondence between noisy and out-of-
sample predicted labels (the same way as in North-
cutt et al. (2021)). So, it gives the idea about
the number of samples with presumably erroneous
noisy labels y but does not give us any insights
about the erroneous labeling functions that as-
signed this noisy label to this sample (in contrast
to the ULF approach we present in Section 3).

The confident matrix Cy,ŷ is then calibrated and
normalized in order to obtain an estimate matrix
of the joint distribution between noisy and out-of-
sample predicted labels Q̂y,ŷ, which determines
the number of samples to be pruned. We perform
the pruning by noise rate following the Cleanlab
default setting: n · Qyi,ŷj , i ̸= j samples with
max(p̂(y = j) − p̂(y = i)) are eliminated in fur-
ther training.

C Datasets

In this section, we give a brief overview of the
dataset and the examples of labeling function we
used in our experiments. The dataset statistics is
provided in Table 5.

YouTube (Alberto et al., 2015) A spam de-
tection dataset was collected from the YouTube
video comments. The samples that are not rel-
evant to the video (e.g. advertisement of user’s
channel or ask for subscription) are classified as
SPAM, while others belong to the HAM class.
We use the same labeling functions as in Rat-
ner et al. (2020); they were created using key-
words, regular expressions, and heuristics. For
example, a labeling function KEYWORD_MY corre-
sponds to class SPAM, meaning that if a sam-
ple contains the word "my" it will be assigned
to the SPAM class. Among other labeling func-
tions are KEYWORD_SUBSCRIBE, KEYWORD_PLEASE,
KEYWORD_SONG (keyword-based), SHORT_COMMENT
(if a comment is short, it is probably not spam; thus,
samples less than 5 words long would be classed
as HAM).

Spouse (Corney et al., 2016) A relation extrac-
tion dataset based on the Signal Media One-Million

News Articles Dataset, which main task is to define
whether there is a spouse relation in a sample. We
use the Snorkel annotation (Snorkel); the labeling
functions were created based on keywords (e.g.,
husband), spouse relationships extracted from DB-
Pedia (Lehmann et al., 2014), and language pat-
terns (e.g., check whether the people mentioned in
a sample have the same last name).

TREC (Li and Roth, 2002) A question classifi-
cation dataset that maps each data sample to one
of 6 classes. The labeling functions were gener-
ated based on keywords (Awasthi et al., 2020), e.g.
which, what, located, situated keywords
relate a sample to the class LOCATION.

SMS (Almeida et al., 2011) A spam detection
dataset comprised of text messages. The annota-
tion proposed by Awasthi et al. (2020) includes
keyword-based and regular expression-based label-
ing functions. For example, a regex-based labeling
function:
(|^)(won|won)[^\w]* ([^\s]+)*

(claim,|claim)[^\w]*(|$)

corresponds to class SPAM (e.g., as in a sample
449050000301 You have won a ??2,000 price! To
claim, call 09050000301.).

Yorùbá and Hausa (Hedderich et al., 2020)
Topic classification datasets of the second (Hausa)
and the third (Yorùbá) most spoken languages in
Africa comprised news headlines. The weak key-
word rules are provided by the authors.

D Baselines

We compare our method ULF towards the most
recent weakly-supervised baselines. Note that ULF
does not use manually annotated data and can-
not be directly compared to models that do (Kara-
manolakis et al., 2021; Awasthi et al., 2020).

Gold A classifier is trained using the gold, man-
ual labels. It is the only model which is trained
with manual labels in our experiments.

Majority Vote A classifier is trained using weak
labels obtained by applying labeling functions to
the samples, selecting the class with majority vot-
ing, breaking the ties randomly.

MeTaL (Ratner et al., 2019) A classifier is
trained with labels which are obtained by combin-
ing signals from multiple labeling functions and
training a hierarchical multi-task network.

4172

YouTube Spouse TREC SMS Yorùbá Hausa

Train Data 1586 22254 4965 4502 1340 2045
Valid Data 150 2711 500 500 189 290
Test Data 250 2701 500 500 379 582
#Classes (K) 2 2 6 2 7 5
#LFs (L) 10 9 68 73 19897 18624
#Unlabeled 195 16520 242 2719 0 0
Avg LF Hits 1.6 33.7 1.7 0.5 3.0 2.9
LF Accuracy 81%± 2.0 53%± 0.6 50%± 2.6 60%± 1.6 55%± 1.5 54%± 0.3
LF Coverage 87% 25% 85% 40% 100% 100%

Table 5: Statistics of all the datasets. The LF accuracy metrics are calculated with a majority vote without any model
training reported across 10 runs with standard deviation to reduce the instability caused by randomly broken ties.

Snorkel-DP (Ratner et al., 2020) A classifier is
trained using generative and discriminative Snorkel
steps.

FlyingSquid (Fu et al., 2020) A classifier is
trained using noisy labels that are rectified exploit-
ing an Ising model by a triplet formulation.

WeaSEL (Cachay et al., 2021) A classifier is
trained using a probabilistic encoder and a down-
stream model combined with a specifically defined
noise-aware loss function. As WeaSEL is an end-
to-end system, we were unable to include the Co-
sine step to it; that is the reason why (potential)
WeaSEL+Cosine baseline is absent in Table 2.

FABLE (Zhang et al., 2023) A classifier is
trained using noisy labels that are inferred lever-
aging the instance features and the mixture coeffi-
cients of the EBCC model.

In all baseline runs, we adhered to the hyper-
parameters and their associated search spaces as
suggested by the methods’ authors. However, for
some of the baselines, we have to change the setting
proposed in the original papers in order to provide
a fair comparison. For instance, in FABLE, we
fine-tuned the hyper-parameters of the final clas-
sifier training, similar to how we did it for other
baselines, even though the authors did not conduct
such fine-tuning in their experiments and did not
assume the presence of a gold validation set. It is
also important to note that due to energy considera-
tions and resource constraints, we retrieved the best
hyper-parameter values by random search, rather
than grid search. Consequently, for some of the
results, direct comparison is not possible.

E Feature-based Experiments

In Section 4, we presented the results of our fine-
tuning-based ULF implementation. In addition to it,
we also provide a feature-based ULF implemen-
tation that does not rely on pre-trained language
models but can be run with an arbitrary model for
the feature-based prediction.

We run the feature-based ULF experiments for
four datasets: YouTube, Spouse, TREC, and SMS.
The datasets selection was motivated by previous
work that includes feature-based methods (Zhang
et al., 2021, 2023) and run experiments with these
datasets. This choice allows for a direct comparison
of our results with those studies. (For the fine-
tuning-based experiments, which typically yield
better results, we expanded our experimental setup
and included the low-resource language datasets
Yorùbá and Hausa, see Section 4.)

We compare the feature-based ULF approach to
the same weakly supervised baselines used for com-
paring the fine-tuning-based ULF approach. Those
are: Majority Vote, MeTaL (Ratner et al., 2019),
Snorkel-DP (Ratner et al., 2020), FlyingSquid (Fu
et al., 2020), FABLE (Zhang et al., 2023), and
WeaSEL baseline (Cachay et al., 2021), which also
uses logistic regression in the setting presented in
the original paper. Additionally, we include two
methods for learning with noisy labels we already
discussed in Appendix B - CrossWeigh (Wang
et al., 2019b) and Cleanlab (Northcutt et al., 2021),
also feature-based in the original setting - together
with our weakly supervised extensions WSCross-
Weigh and WSCleanlab. The feature-based ULF
method was run in all possible data splitting set-
tings: randomly (ULFrndm), by LFs (ULFlfs), and
by signatures (ULFsgn), see Appendix A for more

4173

YouTube (Acc) Spouse (F1) TREC (Acc) SMS (F1) Avg
Gold 94.0 ± 0.0 - 81.9 ± 0.5 91.6 ± 0.2 89.3
Majority Vote (MV) 90.7 ± 1.4 24.0 ± 0.1 57.6 ± 5.0 90.8 ± 1.0 65.8
MeTaL* (Ratner et al., 2019) 89.8 ± 0.8 21.8 ± 0.8 59.5 ± 1.8 89.1 ± 0.9 65.1
Snorkel-DP* (Ratner et al., 2020) 90.0 ± 0.8 24.8 ± 1.1 64.1 ± 4.4 25.4 ± 0.7 51.1
FlyingSquid* (Fu et al., 2020) 87.7 ± 0.8 28.7 ± 2.0 34.2 ± 2.0 66.0 ± 5.5 54.1
WeaSEL (Cachay et al., 2021) 53.0 ± 0.2 8.9 ± 2.4 27.6 ± 0.1 24.0 ± 0.1 28.4
FABLE (Zhang et al., 2023) 91.1 ± 0.2 23.6 ± 0.2 46.0 ± 0.7 64.7 ± 1.1 56.3
CrossWeigh (Wang et al., 2019b) 90.1 ± 0.6 41.6 ± 0.5 40.1 ± 0.1 79.6 ± 1.4 62.8
Cleanlab (Northcutt et al., 2021) 86.9 ± 0.7 44.4 ± 1.2 55.8 ± 0.3 86.0 ± 0.6 68.3
WSCrossWeigh 90.8 ± 0.7 42.0 ± 0.0 46.0 ± 0.4 84.0 ± 0.9 65.7
WSCleanlab lfs 87.2 ± 0.4 44.4 ± 0.7 58.9 ± 0.3 86.6 ± 0.3 69.3
WSCleanlab sgn 88.3 ± 0.5 44.6 ± 0.9 56.4 ± 0.3 85.1 ± 0.3 68.6
ULF rndm 92.8 ± 0.1 44.8 ± 0.5 58.0 ± 0.2 85.7 ± 0.5 70.3
ULF lfs 90.8 ± 0.9 44.0 ± 0.9 55.5 ± 0.4 70.0 ± 0.4 65.1
ULF sgn 94.6 ± 0.2 49.8 ± 1.0 58.2 ± 0.2 88.6 ± 0.3 72.8

Table 6: Results of the feature-based ULF compared towards the feature-based baselines. All results are averaged
over 10 trials and reported with the standard error of the mean. The results marked with * are taken directly from
Zhang et al. (2021).

details. The feature-based ULF and the correspond-
ing baselines are realized in our experiments with a
logistic regression model; the training data are en-
coded with TF-IDF vectors. The results of feature-
based experiments are provided in Table 6.

Results. Our weakly supervised extensions to
CrossWeigh and Cleanlab methods consistently
outperform the base versions and most of other
baselines, supporting our hypothesis of LFs’ im-
portance in applying cross-validation techniques
to weakly supervised settings. Feature-based
ULF also shows the best result overall on most
datasets and even outperforms the model trained
on YouTube data with manual annotations.

We also use feature-based ULF to compare the
data splitting strategies. ULFrndm incorporates a
standard cross-validation with random data split-
ting, disregarding any signal originating from the
weak annotation. This approach can be viewed for
estimating the ULF performance alone, indepen-
dent of any weak signals. The lower performance
performance of ULFlfs compared to other configu-
rations may be due to multiple LF matches in many
data samples, leading to multiple overlaps during
cross-validation training (i.e., the samples were
reestimated multiple times). In ULFsign, on the
contrary, each data sample is considered only once
in each denoising round resulting in a better per-
formance. However, even in the worst-performing
settings (ULFlfs and ULFrndm) our feature-based
ULF outperforms the majority of the baselines.

The signature-based splitting, which demon-

strated the best performance for feature-based ULF,
was chosen for the fine-tuning-based ULF experi-
ments (see Table 2).

F Implementation Details

All our experiments used the validation set for
hyper-parameter tuning, early stopping, and model
selection. The gradient-based optimization was per-
formed with AdamW Optimizer and linear learning
rate scheduler. All results are reproducible with the
seed value 1111.

ULF-specific parameter search space was de-
fined heuristically. All parameter search spaces are
provided in Table 7. The number of iterations I
was also estimated based on the validation set: ini-
tially, it is set to I = 20, but if training labels do not
change after three iterations, the algorithm stops,
and the last saved model is used for final testing.
The actual number of iterations, alongside other
hyper-parameter values, can be found in Tables 8
and 9. These tables show that a single iteration
yields the optimal result in most scenarios, with
two iterations being the second most commonly
selected option.

In fine-tuning-based ULF, in addition to other
hyper-parameters, we include the label prediction
parameter: if it equals "soft", the probabilistic la-
bels are used for training; otherwise ("hard") a label
is the one-hot encoding of the most probable class
(the ties are broken randomly).

In order to reduce computational load, we per-
formed the random parameter search instead of the

4174

grid search in all our experiments. Specifically,
we tried 10 random parameter combinations from
search space and selected the one which performed
the best on the validation set. For feature-based
ULF and corresponding baselines, the model with
the retrieved best hyper-parameter values was run
ten times with different initializations; the aver-
age values with the standard error of the mean are
reported. For fine-tuning-based ULF and corre-
sponding baselines, the model with the retrieved
best hyper-parameter values was run once on the
test set; this value is reported. The retrieved hyper-
parameters are provided in Table 8 for the best
feature-based ULF setting, ULFsng, and in Table 9
for all fine-tuning and cosine combinations of the
fine-tuning-based ULF.

Both feature-based and fine-tuning-based ULF
were implemented with Python and PyTorch
(Paszke et al., 2019) in the setting of the weak su-
pervision framework Knodle (Sedova et al., 2021).
By providing access to all WS components Kno-
dle allowed us to implement and benchmark all
algorithms described above. The pre-trained lan-
guage models were downloaded from HuggingFace
(https://huggingface.co/models). We followed the
Wrench (Zhang et al., 2021) encoding method and
used their implementation for most of the baselines
(apart from Cleanlab and CrossWeigh which are
not included in the Wrench framework).

Feature-based ULF experiments were performed
on a machine with a CPU frequency of 2.2GHz
with 40 cores. Fine-tuning-based ULF experiments
were run on a single Tesla V100 GPU on Nvidia
DGX-1. The full setup took 20 hours on average
for each dataset for feature-based settings and 96
hours for fine-tuning-based settings.

Hyperparameter Values

Feature-based ULF

Multiplying coefficient p 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9
Learning rate lr 1e-1, 1e-2, 1e-3, 1e-4
Number of folds k 3, 5, 8, 10, 15, 20 (w.r.t. #LFs)
Number of iterations I 1, 2, 3, 4, 5, 10
Non-labeled data rate 0, 0.5, 1, 2, 3

Fine-tuning-based ULF

Multiplying coefficient p 0.1, 0.3, 0.5, 0.7, 0.9
Learning rate lr 1e-4, 1e-5, 1e-6
Number of folds k 3, 5, 7 (w.r.t. #LFs)
Number of iterations I 1, 2, 3, 4
Confident regular. weight λ 0.01, 0.1
The confident threshold ξ 0.2, 0.4, 0.6, 0.8
Label prediction soft, hard

Table 7: Hyperparameter values tried in a grid search in feature-based ULF and fine-tuning-based ULF.

4175

YouTube Spouse TREC SMS

Multiplying coefficient p 0.5 0.2 0.3 0.1
Learning rate lr 1e-2 1e-2 1e-1 1e-1
Number of folds k 8 3 3 10
Number of iterations I 5 1 1 2
Non-labeled data rate λ 0 3 1 0.5

Table 8: Feature-based ULFsng selected hyperparameters.

YouTube Spouse TREC SMS Yorùbá Hausa

Fine-tuning-based ULFFT_FT selected hyperparameters.

Multiplying coefficient p 0.5 0.1 0.1 0.3 0.1 0.1
Learning rate lr 1e-4 1e-06 1e-05 1e-05 1e-06 1e-06
Number of folds k 2 3 3 3 2 2
Number of iterations I 1 2 1 1 2 2
Confident regularization weight λ 0.1 0.01 0.1 0.1 0.1 0.05
Confident threshold ξ 0.8 0.2 0.6 0.8 0.2 0.8
Label prediction soft soft soft soft soft soft

Fine-tuning-based ULFFT_COS selected hyperparameters.

Multiplying coefficient p 0.5 0.1 0.3 0.3 0.1 0.1
Learning rate lr 1e-4 1e-06 1e-06 1e-05 1e-05 1e-05
Number of folds k 2 3 5 3 2 2
Number of iterations I 1 3 1 1 2 1
Confident regularization weight λ 0.1 0.01 0.01 0.1 0.1 0.05
Confident threshold ξ 0.8 0.2 0.8 0.8 0.2 0.4
Label prediction soft hard soft soft soft soft

Fine-tuning-based ULFCOS_FT selected hyperparameters.

Multiplying coefficient p 0.1 0.1 0.1 0.3 0.1 0.1
Learning rate lr 1e-06 1e-06 1e-05 1e-06 1e-06 1e-05
Number of folds k 3 3 3 5 7 2
Number of iterations I 2 1 1 2 4 1
Confident regularization weight λ 0.1 0.01 0.1 0.01 0.05 0.05
Confident threshold ξ 0.2 0.2 0.6 0.4 0.4 0.4
Label prediction soft hard soft soft soft soft

Fine-tuning-based ULFCOS_COS selected hyperparameters.

Multiplying coefficient p 0.7 0.1 0.3 0.1 0.1 0.1
Learning rate lr 1e-05 1e-06 1e-06 1e-05 1e-06 1e-05
Number of folds k 5 3 5 7 7 2
Number of iterations I 4 2 2 1 1 2
Confident regularization weight λ 0.01 0.01 0.01 0.05 0.05 0.05
Confident threshold ξ 0.2 0.2 0.8 0.4 0.4 0.4
Label prediction soft hard soft hard soft hard

Table 9: Fine-tuning-based ULF selected hyperparameters.

4176

